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Corrigendum: A coordinate-free proof
of the finiteness principle

for Whitney’s extension problem

Jacob Carruth, Abraham Frei-Pearson, Arie Israel and Bo’az Klartag

The purpose of this note is to draw attention to a misleading remark in the
introduction of [1]. In our discussion of Theorem 1.2 we make the following claim:
“one may check that the constants λ1 and λ2 in Theorem 1.2 are harmless poly-
nomial functions of D”. Although we believe this to be true, the statement does
not follow from the arguments of the paper. Several modifications are needed to
obtain the claim, which we will now describe.

The first issue relates to the ineffective constant R0 in Lemma 3.13 which
arises due to the use of a compactness argument in the proof. This issue can be
resolved, but the proofs are not as straightforward as we had once thought. In a
forthcoming paper by the first three named authors, we give a direct geometric
proof of Lemma 3.13 with the constant R0 = O(exp(poly(D))). This is sufficient
to obtain the polynomial dependence of λ1 and λ2, as claimed.

The second issue relates to an unfortunate typo appearing in Section 8 of the
paper: in Lemma 8.7, the constant C should be replaced by C ·Cold; here, Cold =
C#(K−1), and C is a constant determined by m and n. When accounting for
the missing factor of Cold, we find that a number of constants in Sections 8 and 9
which are claimed to depend only on m, n, actually depend also on the inductive
parameter K. In Section 9.1 we claim that C#(K) and �#(K) have the form

(0.1) C#(K) = CK , �#(K) = χ ·K,

where C and χ are constants determined by m and n. The scaling (0.1) is respon-
sible for the scaling C# = exp(λ1C(E)) and k# = exp(λ2C(E)) in Theorem 1.2;
see Remark 5.7.

In the rest of this note, we will demonstrate that the scaling (0.1) is not ruined
when we properly account for the factor of Cold in Lemma 8.7.

We first state an amended form of Lemma 8.1, which is the main result of
Section 8 of [1]. We then explain why the amended Lemma 8.1 is sufficient to
obtain the scaling (0.1). We finally discuss the proof of the amended Lemma 8.1.
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Lemma 1 (Amended Lemma 8.1 of [1]). There exist constants χ ≥ 1 and C ≥ 1,
determined by m and n, such that the following holds. Let � = �old+χ. Suppose the
parameter �# in the Main Decomposition Lemma (Lemma 7.1 of [1]) is chosen so
that �# ≥ �. Let (PB)B∈W be as in the outcome of the Main Decomposition Lemma.
Then PB − PB′ ∈ C · Cold · BzB ,diam(B) for any B,B′ ∈ W0 with 6

5B ∩ 6
5B

′ �= ∅.
Comparing Lemma 1 to Lemma 8.1 of [1], the key difference is the factor of Cold

in the estimates on PB−PB′ . We additionally amend the statement that �−�old = χ
is a universal constant, rather than � itself. Recall here that �old = �#(K − 1).

When we apply Lemma 1 in place of Lemma 8.1 in Section 9 of the paper, one
change is required: in (9.2), the constant C is replaced by C · Cold. As before,
condition (9.1) and this amended form of (9.2) imply that the Cm−1,1-seminorm
of our interpolant F =

∑
B FBθB is at most CCold. This completes the proof of

the Main lemma for K with C# = C · Cold and �# = �old + χ. Since C and χ
depend only on m and n, we obtain (0.1) by induction on K.

We now give the details of the proof of Lemma 1. As we shall see, the proof is
nearly identical to the proof of Lemma 8.1 from the original text.

We begin by stating the amended form of Lemma 8.7 with the corrected factor
of Cold. We then state the corresponding amended form of Lemma 8.8. For details
on the role of the constant A, see the definition of the keystone balls in Section 8.2.1.
The proof of Lemma 2 below is identical to the proof of Lemma 8.7.

Lemma 2 (Amended Lemma 8.7 of [1]). Let B# ∈ W be a keystone ball such that
AB# ⊂ 2B0. Let χ = �log(D · (180A)n + 1)/ log(D+ 1)	. There exists a constant
C0 ≥ 1 determined by m and n, so that if � ≥ �old + χ then

σ�(x) ⊂ C0Coldσ(x,E ∩ AB#) for any x ∈ AB#.

Lemma 3 (Amended Lemma 8.8 of [1]). For an appropriate choice of A deter-
mined by m and n, for every keystone ball B# ∈ W with AB# ⊂ 2B0,

σ�(zB#) ∩ V ⊂ CColdBz
B#,diam(B#),

for all � ≥ �old + χ as in Lemma 2; here, χ,C ≥ 1 are determined by m and n.

Proof. We follow the proof of Lemma 8.8, but we insert a factor of C̃old := C0Cold

on the ball Bz
B#,A diam(B#) in equation (8.3). By Lemma 2, and Lemma 2.9 of [1],

σ�(zB#) ∩ C̃oldBz
B#,A diam(B#) ⊂ C̃old(σ(zB# , E ∩AB#) ∩ Bz

B#,A diam(B#))

⊂ ĈC̃old · σ(zB#) (� ≥ �old + χ).(0.2)

Intersecting with V in (0.2) and applying the inclusion σ(zB#)∩V⊂R̂Bz
B#,diam(B#)

for R̂ = R̂(m,n) (see property (c) of the Main Decomposition Lemma),

(0.3) σ�(zB#) ∩ V ∩ (C̃oldBz
B#,A diam(B#)) ⊂ Ĉ C̃old R̂Bz

B#,diam(B#).

As ABz
B#,diam(B#) ⊂ Bz

B#,A diam(B#) for A ≥ 1, if A > ĈR̂ then (0.3) yields

σ�(zB#) ∩ V ⊂ ĈC̃oldR̂ · Bz
B#,diam(B#). We take A = 2ĈR̂ to complete the proof.

�
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Rather than to give the amended Lemma 8.2, we will simply derive the re-
quired upper inclusion on σ�(x) that is needed for the proof of Lemma 1. The
inclusion (0.4) below is valid under the following small ball assumption: there

exists a ball B̂ ∈ W0 with diam(B̂) ≤ ε∗ diam(B0) (for ε∗ = 1/3A2). This is the
main case in the proof of Lemma 1; as before, the proof of Lemma 1 is easy in the
complementary case. Under the small ball assumption, we will demonstrate that

(0.4)
{
σ�+1(x) + BzB,diam(B)

} ∩ V ⊂ CColdBzB,diam(B)

for x ∈ 3B, B ∈ W0, � ≥ �old + χ. Here, C is a constant determined by m and n.

Fix B ∈ W0 and x ∈ 3B. Recall that we associate to B a keystone ball B# =
κ(B) satisfying the geometric relations B# ⊂ CB, AB# ⊂ 2B0, and diam(B#) ≤
diam(B). From these relations, since zB ∈ 6

5B and zB# ∈ 6
5B

# (see the Main
Decomposition Lemma), we conclude that |zB − zB# | ≤ C ′ diam(B).

To prove (0.4) we follow the proof of Lemma 8.2 of [1] (see Section 8.2.2), but
we use Lemma 3 in place of Lemma 8.8. Thus, in place of equation (8.4) we obtain

(0.5) σ�(zB#) ∩ V ⊂ CColdBz
B#,diam(B).

We shall demonstrate that the additional factor of Cold = C#(K − 1) in the
inclusion (0.5) is effectively harmless to the constants in our proofs.

In addition to (0.5), we state the matching lower inclusion on σ�(zB#). By an
outcome of the Main Decomposition Lemma (see condition (c)), and using that
σ(zB#) ⊂ σ�(zB#),

(0.6) Bz
B#,diam(B)/V ⊂ R̂ · (σ�(zB#) ∩ Bz

B#,diam(B))/V, R̂ = R̂(m,n).

We will now shift the inclusions (0.5) and (0.6) from the basepoint zB# to the
point x ∈ 3B. As in the original argument, we apply Lemma 2.6 of [1] to show

(0.7) σ�+1(x) + Bz
B#,diam(B) ⊂ σ�(zB#) + C̃ · Bz

B#,diam(B), C̃ = C̃(m,n).

In our original argument, we apply Lemma 3.3 (the “Stability I” estimates) to
show that that the inclusions (0.5) and (0.6) are stable with respect to forming
the Minkowski sum of σ�(zB#) with the ball Bz

B#,diam(B) in P. Unfortunately,
a näıve application of this lemma degrades the constants in (0.5) and (0.6) to a
quadratic dependence on Cold. We avoid this issue by use of the following variant
of Lemma 3.3 which allows us to obtain improved estimates for the stability of
inclusions with asymmetric constants.

Lemma 4 (Stability I ′). If Ω is a symmetric convex set in a Hilbert space X, and
V ⊂ X is a subspace, satisfying (i) Ω ∩ V ⊂ ZB, and (ii) R−1B/V ⊂ (Ω ∩ B)/V ,
for constants R,Z ≥ 1, then for any λ ≥ 1,

(Ω + λB) ∩ V ⊂ Z · (3Rλ+ 1)B.
Proof. We copy the proof of Lemma 3.3 in [1], with the obvious changes to account
for the appearance of distinct constants Z and R in (i) and (ii). �
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We apply the above lemma to the Hilbert space X = (P, 〈·, ·〉z
B#,diam(B)).

From the inclusions (0.5) and (0.6), we thus deduce that
(
σ�(zB#) + C̃Bz

B#,diam(B)

) ∩ V ⊂ CCold · (3R̂C̃ + 1)Bz
B#,diam(B).

From (0.7), we then obtain
(
σ�+1(x) ∩ Bz

B#,diam(B)

) ∩ V ⊂ Ĉ Cold · Bz
B#,diam(B), Ĉ = Ĉ(m,n).

Since Bz
B#,diam(B) and BzB,diam(B) are comparable up to constant factors (recall

that |zB − zB# | ≤ C diam(B); see equation (2.4) of [1]), we obtain (0.4).

0.1. Proof of Lemma 1

We adapt the proof of Lemma 8.1 of [1], but we replace the use of Lemma 8.2 by
an application of (0.4). As in the previous argument, without loss of generality
we can make the small ball assumption (as before, the proof in the complementary
case is essentially trivial). Let B,B′ ∈ W0 with 6

5B ∩ 6
5B

′ �= ∅. As an outcome of
the Main Decomposition Lemma we obtain that

(0.8) PB − PB′ ∈ C ′′ · (σ�#−2(zB) + BzB,diam(B)) ∩ V.

(See the fourth and fifth inline equations in the proof of Lemma 8.1.) Next we
apply (0.4) with � = �old + χ and x = zB. If �# − 2 ≥ � + 1 then σ�#−2(zB) ⊂
σ�+1(zB), so (0.4) and (0.8) imply that

(0.9) PB − PB′ ∈ C ′′ · CColdBzB ,diam(B).

Thus, PB−PB′ ∈ CColdBzB,diam(B) for �
# ≥ �old+χ, where the constants χ = χ+3

and C depend only on m and n. This finishes the proof of Lemma 1.
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