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Abstract. We prove that in two dimensions the synthetic notions of lower bounds on sectional and
on Ricci curvature coincide.
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1. Introduction

1.1. The result

In this note we provide an affirmative answer to a well-known conjecture in the theory
of spaces with synthetic bounds on Ricci curvature, formulated in print by Cédric Villani
[50, Open Problem 9].

Theorem 1.1. Let .X; d/ be a metric space and let H2 be the 2-dimensional Hausdorff
measure on X . If .X; d;H2/ is an RCD.�; 2/ space then X is an Alexandrov space of
curvature at least �.

The converse of our theorem is due to Anton Petrunin [43]. A combination of several
recent results [6, 15, 21, 26, 32, 41] implies that the claim of Theorem 1.1 extends to all
compact RCD.�; 2/ spaces .X; d; �/ with arbitrary measures �.

As a consequence of Theorem 1.1, all RCD.�; 2/ spaces .X; d;H2/ are topolo-
gical surfaces, possibly with boundary. As another consequence, any RCD.�; 2/ space
.X; d;H2/ is a metric-measure Gromov–Hausdorff limit of a sequence of 2-dimensional
smooth Riemannian manifolds with convex boundaries and curvature at least �.
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1.2. Theory of RCD spaces

The synthetic theory of spaces with lower Ricci curvature bounds, initiated in [49] and
[35], has experienced a tremendous growth over the last 15 years. We refer the reader to
the surveys [50] and [1] for an overview of the current state of the theory and the huge
bibliography.

The analytic aspects of the theory are highly developed. Most results, previously
known on Riemannian manifolds with lower bounds on Ricci curvature, now possess nat-
ural generalizations to the synthetic framework: see for instance [3,9,18]. Moreover, there
is a sophisticated understanding of measure-theoretic, or rather “almost everywhere”,
properties of such spaces [6, 41].

On the other hand, gaining information on the “everywhere” metric structure, or even
less ambitiously, on the topological structure of RCD spaces, seems to be very difficult.
Only a few results in this direction are known, all of which require either a rigid setting
[14, 17], or strong a priori assumptions on the geometry [29, 32]. Our approach is based
on recent advances of minimal surface theory in metric spaces [36, 37, 39, 40, 48].

1.3. Central steps in the proof

The proof is a combination of analytic RCD-techniques, some basic results about Alex-
androv spaces, the canonical uniformization of singular surfaces introduced in [40] and
Reshetnyak’s analytic theory of surfaces with integral curvature bounds [46].

In the first step, we use Bishop–Gromov comparison and the cone-rigidity theorem
[14] to study the infinitesimal structure of a space X as in Theorem 1.1. More precisely, it
is shown that unique tangent spaces exist at all points and are Euclidean cones over either
intervals or circles. In analogy with the theory of Alexandrov spaces, we call the set of
points at which the tangent space is homeomorphic to a half-plane the boundary ofX and
denote it by @X . Another application of Bishop–Gromov comparison implies that @X is a
closed subset of X . This is the content of Section 2.

In Section 3, we consider, for any ı > 0, the set Xı of points at which the density
of X is ı-close to the density of the Euclidean plane. The set Xı is open, dense, disjoint
from @X , and by the theorem of Cheeger–Colding–Reifenberg [11], it is a topological sur-
face without boundary once ı is small enough. Due to [10], Xı satisfies an isoperimetric
inequality of Euclidean type.

The next two sections are the central pieces of the proof. In Section 4, we use [40] to
find for any point x 2Xı a small closed neighborhood N� and a canonical parametrization
� W ND ! N� obtained by solving a Plateau problem. This parametrization is a quasisym-
metric map, which in addition is infinitesimally conformal. This implies, in particular, that
there exists a function f 2 L2.D/, the conformal factor, such that the lengths of almost
all curves in N� are obtained by integrating f along the corresponding curve in ND. In other
words, the metric in N� appears to be obtained from the flat metric in ND by a “singular
conformal change with factor f ”.
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In Section 5, we identify the Laplace operator of � in terms of D and f and use the
Bakry–Émery property of RCD spaces to derive an analytic condition on f . This condi-
tion implies log-subharmonicity in the case � D 0 and a related property for general �.

Using [46], we deduce in Section 6 that the metric on � is everywhere controlled
by f , and has curvature bounded below by � in the sense of Alexandrov.

In order to finish the proof of the main theorem we show that Xı is a convex sub-
set of X , a statement which is expected to be true in much greater generality [12]. Once
the convexity is verified, Toponogov’s globalization theorem, in the form of [44], provides
that last step. The proof of this convexity in Section 7 relies on the non-branching property
of RCD spaces [45]. Assuming that a geodesic between two non-boundary points passes
through a point x on the boundary @X , we easily obtain many branching geodesics, once
we know that X is a topological surface with boundary near x. While, in general, topo-
logical control in RCD spaces is very difficult to achieve, here we obtain the required
statement by a twofold application of the Cheeger–Colding–Reifenberg theorem.

2. Basic structure

2.1. Notation

We denote by D the open unit disc in R2 and by ND its closure. By Hk or Hk
X we denote

the k-dimensional Hausdorff measure on a metric space X .
In a metric spaceX we denote by d the distance and byBr .x/ the open ball of radius r

around the point x. By `./ D `X ./ we denote the length of a curve  in X .

2.2. Setting

We assume some familiarity with the synthetic theory of lower Ricci curvature bounds.
In particular, we assume that the reader is familiar with the notion of RCD.�; N / spaces,
which we will not define.

In the rest of the paper we fix a space X satisfying the assumptions of Theorem 1.1.
Thus X is a geodesic, locally compact metric space. By assumption, the space X is
RCD.�; 2/ with respect to the reference measure H2, whose support is X . In the termin-
ology introduced in [15], this means that X is a non-collapsed RCD.�; 2/ space.

For x 2 X and r > 0 we set

b.x; r/ D H2.Br .x//: (2.1)

Recall that the balls satisfy the Bishop–Gromov property, thus, for all s < r , the quotient
b.x; r/=b.x; s/ is bounded from above by the corresponding quotient in the 2-dimensional
simply connected Riemannian manifold M 2

� of constant curvature � [49].
Therefore, for any x 2 X we have a well-defined positive density

0 < b.x/ WD lim
r!0

b.x; r/

�r2
� 1

(see [15, Corollary 2.13]).
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Again by the Bishop–Gromov property, the space X is locally 2-Ahlfors regular: for
every compact subset K of X there exists some L � 1 such that for all x 2 K and all
0 < r < 1 we have

1

L
r2 � H2.Br .x// � Lr

2:

2.3. Convergence and blow-ups

Any sequence .Yi ; yi / of non-collapsed RCD.�; 2/ spaces has a subsequence converging
in the pointed measured Gromov–Hausdorff topology to a limit space .Y; y/. This limit
space Y is an RCD.�; 2/ space with respect to a limiting measure � [3, 19]. If there is
� > 0 such that H2.B1.yi // � � for all i , then the limit space Y is non-collapsed and
� D H2 [15, Theorem 1.2].

Moreover, in this situation the densities behave semicontinuously:

b.y/ � lim inf b.yi /:

In particular, the density function b W X ! .0; 1� is lower semicontinuous.
As a special case of [15, Theorem 1.2], for any sequence xi 2 X converging to a point

x 2 X and any sequence ri of positive numbers converging to 0, there is a subsequence
such that the rescaled spaces . 1

ri
X; xi / converge to a non-collapsed RCD.2; 0/ space

.Y; y/. We call any such space .Y; y/ a blow-up of X .
We claim that for all z 2 Y and all s � 0,

H2.Bs.z// � �b.x/s
2: (2.2)

Indeed, by the Bishop–Gromov inequality in X and continuity of H2 with respect to
convergence, we get for every t > 0,

H2.Bt .y//

�t2
D lim
i!1

H2.Bri t .xi //

�.ri t /2
� b.x/:

On the other hand, by the Bishop–Gromov inequality in Y ,

H2.Bs.z//

�s2
� lim
t!1

H2.Bt .y//

�t2
:

2.4. Tangent cones

A blow-up for a constant sequence of base points xi D x is called a tangent cone of X
at the point x. Relying on the volume rigidity of metric cones [14], it has been shown in
[15, Proposition 2.7] that any such tangent cone T of X at the point x is isometric to a
Euclidean cone C.Z/ over a compact space Z. Moreover, Z is an RCD.0; 1/ space of
diameter at most � [31].

As has been proved in [32], such a space Z is a closed interval or a circle. Due to
the stability of H2 and the definition of b.x/, the density b.x/ coincides with the density
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of C.Z/ at the vertex 0x of the cone C.Z/. Therefore,

b.x/ D
1

2�
H1.Z/:

Thus, at any point x 2 X at most two different tangent cones can exist.
However, the following lemma, valid for all doubling metric measure spaces and prob-

ably well-known to experts, shows that there cannot exist exactly two different tangent
cones.

Lemma 2.1 ([19]). The space T x of all metric measure tangent cones .Y; y;H2/ at the
point x 2 X is a connected subset of the space X of isomorphism classes of all pointed,
proper metric measure spaces.

Proof. Consider the map F W .0;1�!X which sends a number r > 0 to the pointed metric
measure space .1

r
X; x;H2/. The map is continuous and the image of F has compact

closure in X.
The set T x consists of all limit points limri!0 F.ri / of this continuous curve. Thus,

T x
D

\
n2N

F.0; 1=n�

is the intersection of a nested sequence of compact sets. Each element of the sequence is
the closure of a curve, hence is connected. Since the intersection of any nested sequence
of compact connected metric spaces is connected, so is T x .

Thus, we have shown

Corollary 2.2. At any x 2 X there exists a unique tangent cone. This tangent cone is a
Euclidean cone C.Z/, where Z is a circle or an interval. Moreover, H1.Z/ D b.x/ � 2�

and the diameter of Z is at most � .

We denote the unique tangent cone at x 2 X by Tx D TxX . By the above, Tx is
homeomorphic to a plane or to a half-plane.

Remark 2.3. We mention that an application of the analog of Lemma 2.1 for 3-dimen-
sional RCD spaces, together with [15, 26], Perelman’s stability theorem [8, 28] and our
main theorem, implies the following stability result for weakly non-collapsed RCD.�; 3/
spaces Y :

� For any y 2 Y all metric measure tangent cones of Y at y are pairwise homeomorphic.

For non-collapsed limits of Riemannian manifolds this confirms [13, Conjecture 1.2] in
dimension 3, which can also be deduced from [47].

2.5. The boundary

We define the boundary @X of X to be the set of all points x 2 X for which the tangent
space TxX is homeomorphic to a half-plane.
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Lemma 2.4. The boundary @X is a closed subset of X which contains only points x with
b.x/ � 1=2.

Proof. By definition, x 2 @X if and only if Tx is isometric toC.Z/, whereZ is an interval.
Since Z has length b.x/ � 2� and diameter at most � , this implies b.x/ � 1=2.

Let x 2X n @X be arbitrary. Then Tx is a cone over a circle, thus for any point z in Tx
but the vertex 0x , the density of Tx at z is 1. For any sequence xi 2 X n ¹xº converging
to x, we choose ri D d.x; xi /. Then (possibly after choosing a subsequence) under the
convergence of . 1

ri
X; x/ to .Tx ; 0x/ the points xi converge to a point z at distance 1

from 0x . The semicontinuity of densities implies that limi!1 b.xi /D 1. In particular, xi
is not in @X for i large enough.

Hence, X n @X must be open.

As a consequence of the splitting theorem we obtain

Lemma 2.5. Let x 2X be a point which is an interior point of a geodesic. If x 2 @X then
Tx is isometric to the Euclidean half-plane. If x 2 X n @X then TxX is isometric to R2.

Proof. The assumption implies that TxX contains a line (the tangent space to the geodesic
through x). By the splitting theorem [17], the space Tx splits off a line. This implies the
claim, since Tx is a cone over an interval or a circle.

3. Almost regular parts

For any ı > 0, we call a point x 2 X a ı-regular point if b.x/ > 1� ı. We denote by Xı

the set of all ı-regular points in X . We have the following discreteness statement:

Lemma 3.1. The set Xı is open in X for any ı > 0. For any ı < 1=2, the set Xı is
disjoint from @X and the complement .X n @X/ nXı is discrete in X n @X .

Proof. The semicontinuity of the density function shows that Xı is open. Due to Lem-
ma 2.4, the set Xı is disjoint from @X for ı < 1=2.

Finally, the last argument in the proof of Lemma 2.4 implies that any point in X n @X
has a punctured neighborhood completely contained inXı . This implies the last claim.

The following observation is a very special and rough case of the results obtained
in [11] and [10] (see also [30]).

Lemma 3.2. There exist ı; C > 0 with the following property. Every point x 2 Xı has a
neighborhood Ux , homeomorphic toD, such that for any subsetK of Ux homeomorphic
to ND,

H2.K/ � C � .H1.@K//2: (3.1)

Proof. Due to [15, Theorem 1.2] and the Cheeger–Colding–Reifenberg theorem [11, The-
orem A.1], there exists some ı > 0 such that any point x 2 Xı has a neighborhood Ux
homeomorphic to D.
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It remains to prove that, for sufficiently small ı, we have the isoperimetric inequality
(3.1) for any closed topological disc K in some neighborhood of any point in Xı .

This statement is proved in [10, Corollary 1.6] (in a much more general and precise
form) with H1.@K/2 on the right hand side of (3.1) replaced by m.K/2, where m.K/ is
the outer Minkowski content

m.K/ WD lim inf
r!0

H2.Br .K// �H2.K/

r
:

Here Br .K/ denotes the set of points with distance at most r to K.
It suffices to prove 4� �H1.@K/ � m.K/ for any subset K of X homeomorphic to a

closed disc (cf. [16, Theorem 3.2.39]).
If @K is not rectifiable there is nothing to prove. Otherwise, for any natural n, we

set r D 1
2n

H1.@K/ and find an r-dense subset An in @K with n points. Then Br .@K/ �
B2r .An/.

By the Bishop–Gromov property, we deduce, for r small enough,

H2.Br .@K// � H2.B2r .An// � n � 2 � � � .2r/
2
D 4�rH1.@K/:

This implies m.K/ � 4�H1.@K/ and finishes the proof.

4. Conformal parametrization

4.1. Choice of a domain

Let ı; C > 0 be as in Lemma 3.2, let x0 2 Xı be arbitrary and let Ux0
be an open neigh-

borhood of x0 in X provided by Lemma 3.2.
Any Jordan curve � in Ux0

determines a Jordan domain � � Ux0
, homeomorphic

to D, such that N� D � [ � is homeomorphic to ND.
Starting with any Jordan curve � in Ux0

whose Jordan domain � contains x0, we
can replace � by a nearby curve and assume that � is biLipschitz to the round circle S1

[40, Lemma 4.3].
We fix this curve � and domain � for the rest of the section.

4.2. Metric properties of �

Consider the set N� with its intrinsic metric d�. Clearly, dX � d� on N�. Moreover, on �
the metrics dX and d� coincide locally.

Since � is a biLipschitz embedding of a circle, the metric d� is biLipschitz to the
induced metric dX on N�. Indeed, for any curve  in X connecting a pair of points in N�,
we can replace the part of  between its first and last intersection point with � by the
shorter part of � between these intersection points. This new curve y is contained in N�.
Moreover, its length is at most a multiple of the length of  where the factor c � 1 is the
biLipschitz constant of � . Hence, d� � cdX on N�.
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In order to apply the parametrization results of [40], we need to make sure that N� is
Ahlfors 2-regular and is linearly locally connected in the following sense.

A continuum is a compact connected space. A metric space Y is called linearly locally
connected if there exists a constant 0 < C < 1 such that for all y 2 Y and all 0 < r <
diam.Y / the following holds true. Any pair of points z1; z2 2 BCr .y/ is contained in a
continuum P � Br .y/; any pair of points z1; z2 2 Y nBr .y/ is contained in a continuum
P � Y n BCr .

If the space Y is geodesic, the first condition is always satisfied. Linear local connec-
tedness is preserved under biLipschitz transformations.

Lemma 4.1. The space . N�; d�/ is 2-Ahlfors regular and linearly locally connected.

Proof. Since the H2-measures with respect to dX and d� coincide on N�, a quadratic
upper bound on the H2-area of balls in � follows from the corresponding upper bound
on the area of balls in X .

The existence of a lower quadratic bound on the area of balls in N� is essentially proved
in [38, Theorem 9.4], as a consequence of the quadratic isoperimetric inequality (3.1). We
provide a simplified version of the argument here.

Relying on the lower bound on the area of balls in X , it is sufficient to find a constant
C0 < 1with the following property. For all small r and any z 2 � the ball B2r .z/ contains
a point y 2 � with distance at least C0r to � .

For topological reasons, the distance sphere of radius r around z must contain a con-
tinuum P , joining two points on � , locally separated on � by z. From the biLipschitz
property of the boundary curve � , we now deduce the existence of C0 < 1 such that the
continuum P contains a point y as claimed above.

This finishes the proof of the Ahlfors 2-regularity of N�.
In order to prove that N� is linearly locally connected, recall first from [38, The-

orem 8.6] that the isoperimetric property (3.1) implies the following statement. There
exists a constant C1 > 1 such that, for any y 2 N� and any r > 0, the ball Br .y/ is con-
tractible inside BC1r .y/.

The space N� is geodesic and the boundary � is linearly locally connected. Thus it
suffices to prove the following claim. There exists someC2 < 1 such that, for every y 2 N�,
every r < diam. N�/ and every z 2 N� nBr .y/ there is a curve connecting z with � outside
of BC2r .y/.

Assume the contrary. By the Jordan curve theorem, there exists a Jordan curve T
in BC2r .y/ whose Jordan domain contains the point z. But this implies that BC2r .y/ is
not contractible in Br .y/, which contradicts the result of [38, Theorem 8.6], mentioned
above, once C2 is sufficiently small.

This finishes the proof of the lemma.
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4.3. Moduli of families of curves and Newton–Sobolev maps

For the convenience of the reader, we recall the notions of moduli of families of curves
and of Newton–Sobolev maps with values in a metric space [25, Sections 5–7] in the
special case used here.

Let Y be a metric spaces with finite H2.Y /. For a family C of curves in Y , a Borel
function � W Y ! Œ0;1� is called admissible for C if

R

� � 1 for every locally rectifiable

curve in C . The modulus (more precisely the 2-modulus) of the family is defined as

mod.C/ WD inf
�

Z
Y

�2 dH2;

where the infimum is taken over all Borel functions admissible for C .
A statement holds for almost every curve in Y if the family C of all curves in Y for

which the statement does not hold has modulus 0.
A measurable map u W Y ! Z into a separable metric space Z is in the Newton–

Sobolev spaceN 1;2.Y;Z/ if for some z 2Z the composition dz ı u W Y !R is in L2.Y /
and the following statement holds true. There exists a function � 2 L2.Y /, called a weak
upper gradient of u, such that for almost any curve  in Y the composition u ı  is
absolutely continuous and

`.u ı / �

Z


�: (4.1)

There is a unique minimal weak upper gradient �u 2 L2.Y / of u such that �u � � almost
everywhere for any weak upper gradient � of u. The quantity

ChY .u/ WD
1

2

Z
Y

�2u dH2

is called the Cheeger energy of u. In [37, 40] the equivalent notion of Reshetnyak energy
E2C.u/ D 2Ch.u/ has been used.

4.4. Canonical parametrization

We will not recall the definition of quasisymmetric maps [23]. Instead we will use the
theory of quasisymmetric maps as a black-box, providing references for each required
statement.

From [40, Theorem 1.1] and Lemma 4.1 above we deduce

Corollary 4.2. Among all homeomorphisms u W ND ! N� there exists a homeomorphism
� 2 N 1;2. ND; N�/ with minimal Cheeger energy Ch N�.�/. The homeomorphism � is quasi-
symmetric.

The inverse ��1 W N� ! ND is then quasisymmetric as well [22, Proposition 10.6].
Since the disc ND satisfies the 1-Poincaré inequality [25, Section 8], the space N� satisfies
the q-Poincaré inequality for some q < 2 [33, Theorem 2.3].
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The map � and its inverse have Luzin’s propertyN , thus � and ��1 preserve the class
of sets of H2-measure 0 [24, Theorem 8.12].

Due to [23, Theorem 9.3], � 2 N 1;2. ND; N�/ and ��1 2 N 1;2. N�; ND/. By [24, The-
orem 9.8], a family C of curves in ND has modulus 0 if and only if the image � ı C of this
family has modulus 0 in N�.

4.5. Conformality and its consequences

No tangent space of the space X contains a non-Euclidean normed vector space. Due to
[37, Proposition 11.2],X has property ET, introduced in [37, Definition 11.1]. The metric
on � locally coincides with dX . Since � has vanishing H2-measure the space N� has
property ET as well.

Due to [37, Theorem 11.3], the energy minimizer � is a conformal map in the sense
of [37, Definition 6.1], meaning that almost all approximate metric differentials of � are
multiples of the (fixed) Euclidean norm on R2. Using [38, Lemma 3.1] this reads

`�.� ı / D

Z


�� (4.2)

for almost all curves  inD. Here, as before, �� denotes the minimal weak upper gradient
of �.

For any Borel subset E � ND we have [38, Lemma 3.3]

H2
X .�.E// D

Z
E

�2� dH2
ND
: (4.3)

Since the inverse ��1 has Luzin’s property N , the minimal weak upper gradient �� must
be positive almost everywhere.

From (4.2), [38, Lemma 3.1] and the absolute continuity on almost all curves of the
Sobolev maps �; ��1 [25, Proposition 6.3.2], we deduce that for any non-negative Borel
function h W ND ! R and almost every curve  in ND,Z

�ı

h ı ��1 D

Z


�� � h: (4.4)

Therefore, the Borel function

g WD
1

�� ı ��1
W N�! Œ0;1�

satisfies Z
�

g D ` ND.�
�1
ı �/

for almost every curve � in N�. This implies that g is the minimal weak upper gradient of
��1 2 N 1;2. N�; ND/.
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5. Conformal factor

5.1. Setting and aim

We continue to use the notations from the previous section. Thus, we have a domain
� � X and a conformal homeomorphism � W ND! N� which is contained in N 1;2. ND; N�/.
We let f WD �� W ND ! Œ0;1� be the minimal weak upper gradient of �.

The aim of this section is the following result and its consequence, Corollary 5.2.

Proposition 5.1. The function f �2 is in L1loc.D/. For any harmonic function v WD! R
the distributional Laplacian �D.f �2jrvj2/ is a Radon measure on D and satisfies as a
measure

�D.f
�2
jrvj2/ � 2� � jrvj2 �H2

D : (5.1)

The proof will be a direct consequence of the Bakry–Émery inequality on the
RCD.�; 2/ space X , once we have identified via the conformal homeomorphism � the
Sobolev spaces and Laplacians on D with the corresponding objects on X .

5.2. Identifications

Whenever no confusion is possible we will use the homeomorphism ��1 to identify N�
with ND.

Due to (4.3), under this identification we have

H2
X j� D H2

� D f
2
�H2

D : (5.2)

We are going to identify the space N 1;2.�/ D N 1;2.�;R/ of Sobolev functions with
the “classical” space N 1;2.D/ D W 1;2.D/.

From (4.4) we draw the following conclusion. Let u W�! R be measurable. A Borel
function � W � ! Œ0;1� is a weak upper gradient of u, thus satisfies (4.1) for almost
every curve  in �, if and only if .� ı �/ � f W D ! Œ0;1� is a weak upper gradient of
the composition u ı � W D ! R.

Due to (5.2), � 2 L2.�/ if and only if .� ı �/ � f 2 L2.D/.
Since ND and N� satisfy the 2-Poincaré inequality, the 2-integrability of a weak upper

gradient implies that the function itself is 2-integrable [25, Lemma 8.1.5, Theorem 9.1.2].
This shows that a map v W D ! R is in N 1;2.D/ if and only if u WD v ı ��1 is

in N 1;2.�/. Moreover, in this case the minimal weak upper gradients satisfy

�u D
�v

f
ı ��1 D

jrvj

f
ı ��1: (5.3)

Combining this with (5.2) and identifying D and � shows that

jrvj2 �H2
D D �

2
u �H

2
� and Ch�.u/ D ChD.v/: (5.4)
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5.3. Laplacians

By the RCD property, the spaces X and R2 are infinitesimally Hilbertian, meaning that
ChX and ChR2 are quadratic forms on N 1;2.X/ and N 1;2.R2/, respectively. Thus, D
and � are infinitesimally Hilbertian as well [18, Proposition 4.22].

For Y D X;�;D;R2 we consider the corresponding bilinear forms EY W N
1;2.Y / �

N 1;2.Y /! R, called Dirichlet forms,

EY .u1; u2/ D
1
2
.ChY .u1 C u2/2 � ChY .u1 � u2/2/:

From (5.4) we see that for v1;2 2 N 1;2.D/ and u1;2 D v1;2 ı ��1 2 N 1;2.�/,

E�.u1; u2/ D ED.v1; v2/: (5.5)

For Y DD;�, a function u2N 1;2.Y / is in the domain of the (measure-valued) Laplacian
on Y if there exists a Radon measure � on Y with the following property [18, Defini-
tion 4.4, Proposition 4.7, Lemma 4.26]. For allw 2N 1;2.Y / continuous and with compact
support in Y ,

EY .u;w/ D �

Z
Y

w d�:

In this case, we set �Y .u/ WD �.
From (5.5), a function u 2 N 1;2.�/ is in the domain of the Laplacian if and only if

v D u ı � is in the domain of the Laplacian on D. Moreover, in this case

�D.v/ D ��.u/; (5.6)

where we identify Radon measures on D and � via �.

5.4. The proof of Proposition 5.1

Due to (5.6), for any harmonic function v WR2!R, the composition uD v ı ��1 satisfies
��.u/ D 0, thus u is a harmonic function on �.

Due to the regularity of harmonic functions on RCD spaces, the function u W �! R
is locally Lipschitz ([27, Theorem 1.1], which is a combination of [3, Theorem 6.2],
[4, Corollary 2.3] and [34, Theorem 1.1, Proposition 5.1]). Applying this observation to
the coordinate functions v1;2 we deduce that ��1 W �! D is locally Lipschitz. Since
1
f
ı ��1 is the minimal weak upper gradient of ��1 W �! D, we deduce that f �1 is

locally bounded on D.
Let now v WD! R be a harmonic function. Consider the composition uD v ı ��1 2

N 1;2.�/. By (5.6), ��.u/D 0. Due to (5.3) and (5.4) the right hand side of (5.1) is given
by 2� � �2u �H

2
�, where �u is the minimal weak upper gradient of u. Using (5.3) again,

it remains to show the following claim for any open subset O � NO � �. A representat-
ive of �2u is in the domain of the Laplacian in N 1;2.O/ and we have the comparison of
measures

�O.�
2
u/ � 2� � �

2
u �H

2
O : (5.7)
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The proof of (5.7) follows from the Bochner inequality [18, Proposition 4.36], [3,
Remark 6.3], [2] by localization, as follows.

If the function u is a restriction to O of a test function yu 2 N 1;2.X/ in the sense of
[1, (7.2)] then (5.7) is precisely [18, Proposition 4.36], since �O.u/ D 0. In general, we
multiply u by a test function which is constant 1 onO and has support in� (the existence
of such cut-off functions has been verified in [5, Lemma 6.7]). This provides a function
yu 2 N 1;2.X/ which restricts to u on O and is a test function on X [18, Proposition 4.17,
Theorem 4.29].

This finishes the proof of Proposition 5.1.

5.5. An analytic conclusion

By a combination of a smoothing argument and a pointwise computation we are going to
deduce

Corollary 5.2. The function log.f 2/ is contained in L1loc.D/. The distributional Lapla-
cian �.log.f 2// is a Radon measure on D and satisfies

�.log.f 2// � �2� � f 2 �H2
D : (5.8)

For any domain O compactly contained in D there exists a sequence of smooth functions
fn W O ! .0;1/ that satisfy (5.8) on O , log.fn/ converges to log.f / in L1.O/ and
�.log.f 2n // weakly converges to �.log.f 2// as measures on O .

Proof. Consider the function h D f �2. Due to Proposition 5.1, the function h is locally
bounded on D. Moreover, for any harmonic function v on R2, the function h satisfies

�.h � jrvj2/ � 2� � jrvj2 �H2
D (5.9)

in the sense of measures on D. We fix a ball O D B1�ı.0/ � D for the rest of the proof.
For all ı > 2� > 0 consider the mollifications h� W O ! R obtained by convolution of h
with the usual smooth mollifiers �� W R2 ! Œ0;1/ supported in B�.0/ � R2. Since h
is positive almost everywhere, the smooth functions h� are positive on O . By a direct
computation (or using the observation that (5.9) is a system of linear inequalities on the
function h, which is moreover equivariant with respect to translations), we see that h�
satisfies (5.9) on O for all harmonic functions v on R2.

The function h is bounded from above on the �-neighborhood ofO , hence so is log.h/.
On the other hand, � log.h/ D log.1=h/ � 1=h. Thus, the integrability of f 2 D 1=h

shows log.h/ 2 L1.O/.
The convexity of the function t 7! 1=t and Jensen’s inequality imply

1

h�
�

�
1

h

�
�

;

where on the right side we have the mollifications of the function 1=h. Since .1=h/�
converges in L1.O/ to 1=h as � goes to 0, we deduce that 1=h� converges to 1=h in
L1.O/ as well.
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Similarly, t 7! � log.t/ D log.1=t/ is convex and arguing as above with Jensen’s
inequality we see that log.h�/ converges in L1.O/ to log.h/ as � goes to 0.

For all n > 2=ı consider the smooth function fn on O such that f �2n D h1=n. As
above, log.fn/D �2 log.h1=n/ converges to log.f / in L1.O/. The remaining statements
follow by a continuity argument, once we have verified �.log.f 2n // � �2� � f

2
n on O .

As seen above, the smooth positive functions h1=n satisfy (5.9) on O for all harmonic
functions v W R2 ! R. Therefore, we only need to verify that for a smooth positive func-
tion h on a domain U in R2 the validity of (5.9) for all harmonic functions v W R2 ! R
implies

�.log.h// D
�.h/

h
�
jrhj2

h2
�
2�

h
: (5.10)

It is sufficient to verify this pointwise statement at a single point z 2 U which we may
assume to be z D 0.

Set e WD rh.0/. If e D 0 we choose v to be a linear non-zero function on R2. Then
(5.9) implies �.h/.0/ � 2�, hence (5.10) holds.

If e ¤ 0, fix � 2 R and consider the uniquely determined symmetric traceless matrix
A W R2 ! R2 with A.e/ D � � e. The function

v.z/ WD hz; A.z/C ei

is harmonic on R2 and satisfies rv.z/ D e C 2A.z/. Therefore,

r.jrvj2/.z/ D 4� � e C 8A2.z/ and �.jrvj2/.z/ D 16�2:

Thus, the right hand side of (5.9) at z D 0 is just 2� � jej2.
For the left hand side of (5.9) at the point z D 0 we compute

�.h/ � jrvj2 C 2hrh;r.jrvj2/i C h ��.jrvj2/

D �.h/.0/ � jej2 C 8� � je2j C 16 � �2 � h.0/:

For � D � jej
2

4h.0/
the inequality (5.9) now reads

jej2 �

�
�.h/.0/ �

jej2

h.0/

�
� 2�jej2:

Dividing by h.0/jej2 we deduce (5.10).
This finishes the proof of Corollary 5.2.

6. Curvature bound in the regular part

6.1. Preliminaries from Alexandrov geometry

We refer to [7] for the basics of Alexandrov geometry and just agree on notation here,
following [44]. Let � be a fixed real number as before. For points p; x1; x2 in a met-
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ric space Y , we denote by z†�.px1
x2
/ the �-comparison angle, whenever it exists. Thus,

z†�.p
x1
x2
/ is the angle in the constant curvature surface M 2

� at the vertex zp of a triangle
zpzx1zx2 with the same side-lengths as px1x2.

A subset O of a metric space Y satisfies the .1 C 3/-point comparison if for any
quadruple of points p; x1; x2; x3 2 O the inequality

z†
�.px1

x2
/C z†�.px2

x3
/C z†�.px3

x1
/ � 2�

is true or one of the �-comparison angles is not defined.
A metric space Y has curvature� � if every point y 2 Y has a neighborhoodO which

satisfies the .1C 3/-point comparison and every pair of points in O is connected in Y by
a geodesic.

A complete geodesic metric space of curvature � � is called an Alexandrov space of
curvature � �.

If Y has curvature � �, the ball NB2R.y/ � Y is compact and any pair of points in
BR.y/ is connected in Y by a geodesic, then BR.y/ satisfies the .1C 3/-point compar-
ison, [44, p. 3].

Note finally that the .1 C 3/-point comparison property (of subsets) is stable under
Gromov–Hausdorff convergence.

The aim of this section is to prove

Proposition 6.1. The subspace Xı of ı-regular points in X has curvature � �.

6.2. Reshetnyak’s theory

We keep the notation from Sections 4 and 5. For a homeomorphism � W D ! � � X

the length `X .� ı / is given by (4.2) for almost all curves  in D. The conformal factor
f D �� satisfies the conclusion of Corollary 5.2.

By Corollary 5.2, the function�.log.f // is a Radon measure. Thus, on any compactly
contained domain O � D we can canonically represent log.f / as a sum of a harmonic
function and a Riesz potential [46, p. 99]. Using this representation, the f -length f̀ ./

of any rectifiable curve  on O is defined in [46, p. 100] by the formula (4.2).
This induces a new metric df on O by letting df .z1; z2/ be the infimum of all f -

lengths of rectifiable curves connecting z1 and z2. The metric df induces the original
Euclidean topology on O [46, Theorem 7.1.1]. We define the metric space Of D .O; df /
to be the domain O equipped with the metric df .

The following statement is implicitly contained in [46, p. 140]. For convenience of
the reader, we reduce the result to other more explicit statements in [46].

Lemma 6.2. The space Of has curvature � �.

Proof. We find smooth positive functions fn W O ! R approximating f as in Corol-
lary 5.2. By [46, Theorem 7.3.1], the distance functions dfn

converge on O locally uni-
formly to df .
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On the other hand, dfn
is a smooth Riemannian metric. Its curvature can be computed

pointwise by the classical formula ��.log.fn//

f 2
n

[46, p. 40]. Thus, (5.8) shows that the
Riemannian manifold Ofn

has sectional curvature � �.
Hence, Ofn

has curvature � � in the sense of Alexandrov [7, Theorem 6.5.6]. There-
fore, for any compact metric ball B in .O; df / and the concentric ball B 0 with one-third
the radius of B , the set B 0 �Ofn

satisfies the .1C 3/-point comparison for all large n. By
continuity, B 0 satisfies the .1C 3/-point comparison when considered as a subset of Of .
This completes the proof.

6.3. Sobolev-to-Lipschitz

By construction, for almost all curves  in O , the length of � ı  in X is equal to the f -
length of  , hence to the length of  in the metric space Of . The easiest way to upgrade
the equality statement from almost all curves to all curves is via an application of the
Sobolev-to-Lipschitz property of RCD spaces, stated as follows [17, p. 48], [4]:

For any RCD.�; 2/ space X , any open subset W of X and any u 2 N 1;2.W / for
which the constant function � D 1 is a weak upper gradient, the function u has a locally
1-Lipschitz representative.

In fact, the Sobolev-to-Lipschitz property is defined and verified in [17, p. 48] only in
the global caseW D X , but the proof presented there covers the local version formulated
above.

Lemma 6.3. The open embedding � W Of ! X is a local isometry.

Proof. Set W D �.Of / and consider the inverse map  D ��1 W W ! Of . By con-
struction,  preserves the length of almost every curve  in W . Therefore, the map  is
contained in the Sobolev space N 1;2.W;Of / and the constant function 1 is a weak upper
gradient of  .

Therefore, for any point y 2 Of , the composition  y 2 N 1;2.W / of  with the dis-
tance function in Of to the point y has the constant function 1 as a weak upper gradient.
By the Sobolev-to-Lipschitz property, this implies that  y is locally 1-Lipschitz. Since X
is a geodesic space, and y was arbitrary, this implies that  is locally 1-Lipschitz.

In order to prove that � is locally 1-Lipschitz, we apply the same argument. (Altern-
atively, this can be seen directly, as in [39, Lemma 9.3].) Firstly, H2

Of
D f 2 �H2

O and
the same computation as in Section 4 shows that any family of curves of modulus 0 in O
has modulus 0 in Of . Thus, the map � preserves the lengths of almost all curves in Of .
Therefore, � 2 N 1;2.Of ; X/ and the constant function 1 is a weak upper gradient of �.
Arguing as above we deduce that � is locally 1-Lipschitz, once the Sobolev-to-Lipschitz
property has been verified locally in Of .

But any point in Of has a compact neighborhood isometric to an Alexandrov space,
by [42, Theorem 7.1.3]. This implies the Sobolev-to-Lipschitz property, as a consequence
of [43] and [17, p. 40].

Since � and ��1 are locally 1-Lipschitz, � is a local isometry.
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For any ı-regular point x0 2 X , we choose a domain � containing x0 as in Sec-
tion 4. Lemmas 6.3 and 6.2 imply the existence of a neighborhood of x0 in � which has
curvature � �. This finishes the proof of Proposition 6.1.

7. Extension to the singular points

7.1. Topological statement

Most of this rather long section is devoted to the proof of the following topological state-
ment.

Proposition 7.1. Any point z 2 @X with b.z/ D 1=2 has an open neighborhood U in X
homeomorphic to the closed half-plane H such that z lies on the boundary line @H .

Before we embark on the proof of this proposition, we explain why this statement is
sufficient to finish the proof of our main theorem.

Lemma 7.2. The validity of Proposition 7.1 implies that the set Xı is strongly convex
in X . Thus any geodesic  with endpoints x; y 2 Xı is completely contained in Xı .

Proof. Assume the contrary and consider a point z 2 X nXı on  closest to x.
Due to Lemma 2.5, the point z is in @X and satisfies b.z/ D 1=2. Applying Proposi-

tion 7.1 we find a neighborhood U of z homeomorphic to H such that z lies on @H .
The part C of the geodesic  between x and z is contained in Xı (up to the point z)

hence it intersects @H only in z. By choosing the neighborhood U smaller we can there-
fore assume that C separates U into two components.

Fix a point q on the part of  between z and y sufficiently close to z and let UC be
the component of U n C which does not contain q. Thus, for any m 2 UC sufficiently
close to z, any geodesic between q andm intersects C. In particular, z lies on a geodesic
between m and q.

Thus, we have found points q ¤ z 2 X and an open non-empty set zUC in X such that
for any m 2 zUC the point z lies on a geodesic connecting q and m. This contradicts the
essentially non-branching property of X [20], as we are going to explain now.

Indeed, due to [20, Corollary 1.4], for almost everym 2 zUC there is only one geodesic
between q and m. Hence this geodesic must contain z. In particular, the geodesic �
between q and z has to be unique.

By [20, Theorem 1.1], there exists a unique optimal geodesic plan et from the normal-
ized restriction � WD 1

H2. zUC/
�H2j zUC to the Dirac measure ıq . By construction, for all

sufficiently small � the push-forward .e1��/#� is concentrated on the geodesic �. How-
ever, by [20, Corollary 1.6], the probability measure .et /#� is absolutely continuous with
respect to H2. This contradiction finishes the proof.

Therefore, Proposition 7.1 implies thatXı is a geodesic space. SinceX is the comple-
tion ofXı , we would deduce from [44] thatX is an Alexandrov space with curvature� �
and finish the proof of Theorem 1.1.
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7.2. Interior points

Consider a point x 2 X n @X . Assume that x is not contained in Xı . By Lemma 3.1, we
find some r > 0 such that B2r .x/ n Xı contains only the point x. By Proposition 6.1,
B2r .x/ n ¹xº has curvature � � in the sense of Alexandrov.

Due to Lemma 2.5, for any y; z 2 Br .x/ n ¹xº, any geodesic connecting y and z in
X is contained in B2r .x/ n ¹xº. Toponogov’s globalization theorem in the version of [44]
now shows that Br .x/ n ¹xº satisfies the .1C 3/-point comparison. By continuity, Br .x/
satisfies the .1C 3/-point comparison as well.

We have just verified

Corollary 7.3. The subspace X n @X of X has curvature � �.

7.3. Setting

We now fix a point z 2 @X with b.z/ D 1=2. We consider a sequence of points xi 2 X
converging to z and a sequence ri of positive numbers converging to 0. After choosing a
subsequence we may and will assume that the blow-up .Y; y/ D lim . 1

ri
X; xi / exists.

Furthermore, we consider the sequence of non-negative numbers si D d.xi ; @X/. By
choosing a further subsequence, we may and will assume that the following limit exists:

A WD lim
i!1

si

ri
2 Œ0;1�:

As we have seen in Section 2, any ball of any radius t in the blow-up Y has H2-measure
at least �

2
t2. From the volume-cone rigidity [14] and Lemma 2.4 we deduce

Lemma 7.4. The RCD.0;2/ space Y can have non-empty boundary only if Y is isometric
to the flat half-plane H .

Our next aim is to show that (non-) boundary points ofX converge to (non-) boundary
points in the blow-up Y . Then we will show that the blow-up Y is isometric to a plane or
a half-plane.

7.4. Stability of the boundary

In the previous notation we are going to show

Lemma 7.5. If A > 0 then the point y is not contained in @Y .

Proof. Assume the contrary. By Lemma 7.4, Y is isometric to the half-plane H and
y 2 @H .

By rescaling, we may assume that A > 9. Thus, for all i large enough, the compact
ball yBi in Xi D 1

ri
X of radius 6 around xi does not contain boundary points. Due to

Corollary 7.3, the open ball Bi of radius 3 around xi in Xi satisfies the .1 C 3/-point
comparison (see Section 6 and [44]).
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A contradiction to the fact that the surfaces Bi without boundary converge to a surface
with boundary (the ball in H around the limit point y) can now be deduced in several
ways. We choose a way relying on (the simplest case of) Perelman’s topological stability
theorem [8, 28].

From [42, Theorem 7.1.3] we deduce the existence of some ı > 0 and closed com-
pact convex subsets Ci � Bi containing the ball Bı.xi /� Bi . The spaces Ci are compact
2-dimensional Alexandrov spaces converging (after choosing a subsequence) to an Alex-
androv spaceC �H which contains the ballBı.y/�H . By Perelman’s stability theorem
[8, 28], for all large i , there exists a homeomorphism ˆi W Ci ! C close to the identity.
Since Bı.xi / is a 2-manifold without boundary, we deduce that y must have in Y a neigh-
borhood homeomorphic to a 2-manifold without boundary, which is impossible.

This contradiction finishes the proof.

Lemma 7.6. If A D 0 then Y is isometric to the half-plane H and y is on @H .

Proof. Consider points zi 2 @X with d.zi ; xi / D si D d.@X; xi /. The assumption A D 0
implies that the points zi 2 Xi D 1

ri
X converge to the same point y 2 Y .

Since zi 2 @X , we see that the density b.y/ at Y is at most 1=2. The volume-cone
rigidity argument implies that b.y/ D 1=2 and Y is isometric to the Euclidean cone TyY .
It remains to show that TyY cannot be the Euclidean cone over the circle of length � .

We assume that Y is a Euclidean cone over a circle and are going to derive a contra-
diction.

For all i large enough, there exist no points pi in @X with ri < d.pi ; zi / < 2ri ,
since Y n ¹yº is locally Euclidean. Denote by Ki the set @X \ NBri .zi / and by yKi the
complement @X nKi . Then, for all i large enough,Ki is compact and yKi is closed in @X .
Moreover,

d.z; zi / � ti WD d.Ki ; yKi / � ri :

Consider points ki 2 Ki and yki 2 yKi realizing the distance between Ki and yKi and take
the blow-up (choosing a subsequence) . yY ; k/ D lim . 1

ti
X; ki /.

As before, the volume-cone rigidity implies that yY is either a half-plane or a cone over
a circle. However, the points yki converge (after taking a subsequence) to a non-Euclidean
point yk 2 yY with distance 1 to k. Therefore, yY must be isometric to H and the geodesic
between k and yk must lie on @H .

Hence, the midpoints mi of any geodesic between ki and yki in X converge to a point
on the boundary of yY .

But, by construction, the point mi in X has distance ti=2 from @X . We obtain a con-
tradiction with Lemma 7.5 and finish the proof.

Lemma 7.7. If A D1 then Y is isometric to R2.

Proof. Due to Lemmas 7.6 and 7.5, the sequence . 1
si
X; xi / converges to a half-plane

.H; yy/ where yy has distance 1 from @H . Therefore, H2.B1.yy// D � . Stability of the
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Hausdorff measures implies
H2.Bsi .xi //

s2i
! �:

Applying the Bishop–Gromov inequality and the assumption AD1, we see that for any
fixed t > 0,

b.xi ; t ri /

r2i
! �t2:

Thus, the ball Bt .y/ in Y has H2-measure �t2. Since t is arbitrary, the volume-cone
rigidity implies that Y is isometric to TyY D R2.

Combining the last three statements we easily arrive at

Corollary 7.8. The space Y is either R2 or the half-planeH . The case Y DH happens if
and only ifA<1. Moreover, in this case @H coincides with the limit of the boundary @X .

Proof. The only statement not directly contained in Lemmas 7.5–7.7 is that for 0 <
A < 1 the space Y is isometric to H . However, if A < 1 we can replace the base
points xi by closest points zi 2 @X and apply Lemma 7.6 to deduce the statement.

7.5. Reifenberg’s lemma twice

We can now finish

Proof of Proposition 7.1. Due to Corollary 7.8, for any sequence zi 2 @X converging to z
and any sequence ri ! 0 the sequence . 1

ri
@X;zi / converges to the line @H DR. Thus, for

any � > 0 there exists some ı > 0 with the following properties. For any z0 2 Bı.z/\ @X
and any 0 < r < ı�, the ball of radius 1 in 1

r
@X around z0 has Gromov–Hausdorff distance

less than � to the interval of length 2.
Applying the Cheeger–Colding–Reifenberg Lemma [11, Theorem A1], we find that a

neighborhood of z in @X is homeomorphic to an interval.
Consider now the doubling W D X [@X X of X with its natural length metric [8,

Section 5].
We claim that for any sequence xi 2 W converging to z and any sequence of positive

numbers ri converging to 0 the blow-up lim . 1
ri
W; xi / is isometric to R2.

Choosing a subsequence and using symmetry we may assume that xi 2 X � W
and that for si WD d.xi ; @X/ the quotients si=ri converge to a number A 2 Œ0;1�.
Applying Corollary 7.8, we see that in the case A D 1, the blow-up coincides with
lim . 1

ri
X; xi / D R2.

On the other hand, if A <1, we can change the base points xi and assume xi 2 @X ,
without changing the isometry class of the blow-up. Then the limit lim . 1

ri
W; xi / is the

doubling of H D lim . 1
ri
W; xi / along the boundary @H D lim . 1

ri
@X; zi /.

Having proved the claim, we can now apply the Cheeger–Colding–Reifenberg Lemma
a second time and deduce that a neighborhood V of z in W is homeomorphic to an open
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disc. Passing to a smaller subdisc if necessary, we obtain a homeomorphism between V
and the plane which takes V \ @X to a line.

By connectedness we see that X \ V must be homeomorphic to a half-plane.
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