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Abstract. We study the singularities of integral models of Shimura varieties and moduli stacks of
shtukas with parahoric level structure. More generally, our results apply to the Pappas–Zhu and
Levin mixed characteristic parahoric local models, and to their equal characteristic analogues. For
any such local model we prove under minimal assumptions that the entire local model is normal
with reduced special fiber and, if p > 2, it is also Cohen–Macaulay. This proves a conjecture of
Pappas and Zhu, and shows that the integral models of Shimura varieties constructed by Kisin and
Pappas are Cohen–Macaulay as well.
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1. Introduction

Parahoric local models are flat projective schemes over a discrete valuation ring which are
designed to model the étale local structure in the bad reduction of Shimura varieties [27] or
moduli stacks of shtukas [1] with parahoric level structure. Thus, local models provide a
tool to study the singularities appearing in the reduction of these spaces. The subject dates
back to early 1990’s, starting with the work Deligne–Pappas [12], Chai–Norman [9, 10]
and de Jong [11], and was formalized in the book of Rapoport–Zink [35]. For further
details and references, we refer to the survey of Pappas, Rapoport and Smithling [33].

The simplest example is the case of the classical modular curve X0.p/ with �0.p/-
level structure. In this case, the local model is a P1Zp

blown up in the origin of the special
fiber P1Fp

. This models the reduction modulo p of X0.p/, which is visualized as the
famous picture of two irreducible components crossing transversally at the supersingular
points.

In a breakthrough, a group-theoretic construction for parahoric local models in mixed
characteristic was given by Pappas–Zhu [34]: fix a local model triple .G; ¹�º; K/ where
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G is a reductive group over Qp , K � G.Qp/ is a parahoric subgroup and ¹�º is a
(not necessarily minuscule) geometric conjugacy class of one-parameter subgroups in G.
Under a tamely ramified hypothesis on G, which was further relaxed by Levin [30],
Pappas and Zhu construct a flat projective Zp-scheme M¹�º D M.G;¹�º;K/, called the
(parahoric) local model.

Assume now that p does not divide the order of �1.Gder/, e.g., the caseGD PGLn and
p jn is excluded. Then it is shown in [34] (cf. also [30]) thatM¹�º is normal with reduced
special fiber. Further, they conjecture that M¹�º is Cohen–Macaulay [34, Rmk. 9.5 (b)].
This conjecture was proven in [34, Cor. 9.4] when K is very special (in which case the
special fiber ofM¹�º is irreducible), and by He [25] when the groupG is unramified,K is
an Iwahori subgroup and ¹�º is minuscule. Also some explicit special cases were treated
earlier by Görtz (unpublished) following the method outlined in [13, §4.5.1].

The purpose of this article is to show, for a general local model triple .G; ¹�º; K/ as
above under minimal assumptions (see Remark 2.4 below), that the local model M¹�º
itself is normal with reduced special fiber, and, if p > 2, also that M¹�º is Cohen–
Macaulay (see Theorem 2.1). This recovers and extends the results on the geometry of
local models obtained in [34] and [30]. In particular, under these assumptions we obtain
the Cohen–Macaulayness of M¹�º for all not necessarily minuscule ¹�º; this answers a
question of He, and seems to be new even in the case of G D GL2 (where the assumption
p > 2 alone is sufficient). Theorem 2.1 also seems to be the first Cohen–Macaulayness
result which applies to ramified groups and Iwahori level structure.

Our proof of normality follows the original argument of [34] relying on the Coherence
Conjecture proven by Zhu [41]. The assumption on the normality of Schubert varieties
inside the �-admissible locus is satisfied whenever p − j�1.Gder/j by Pappas–Rapoport
[32], but also in other cases of interest, e.g., whenever K is an Iwahori subgroup and
N� 2 X�.T /I is minuscule for the échelonnage root system (e.g. G is unramified and � is
minuscule for the absolute roots) [22].

The proof of the Cohen–Macaulayness of M¹�º is very different from the approaches
in [13, §4.5.1] and [25]. Here we reduce the problem first to equal characteristic where
we can use [41, Thm. 6.5] (which assumes p > 2) to apply the powerful method of
Frobenius splittings on the whole local model. This reduces us to the situation of a
scheme over a finite field whose complement along some divisor D is Cohen–Macaulay,
and which is Frobenius split relative to D. Surprisingly (at least for the authors), the
Cohen–Macaulayness at points lying on D then follows from a very nice homological
algebra lemma which we found in the work of Blickle–Schwede [3, Ex. 5.4] (see Propos-
ition 5.5).

Let us note that Cass [8] pursues a similar strategy to show that the equicharacteristic
local models for absolutely almost simple groups are even strongly F -regular.
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2. Main result

Let p 2 Z>0 be a prime number. Let F be a non-archimedean local field with ring of
integers OF and finite residue field k D kF of characteristic p, i.e. either F=Qp is a finite
extension or F ' k..t// is a local function field. We fix a separable closure NF=F .

We fix a triple .G; ¹�º; Gf/ where G is a connected reductive F -group, ¹�º a (not
necessarily minuscule) conjugacy class of geometric cocharacters defined over a finite
separable extension E=F , and Gf is a parahoric OF -group scheme associated with some
facet f � B.G; F /.

We put the following assumption on G. If F=Qp , we assume that G ' ResK=F .G1/
where K=F is a finite extension, and G1 is a connected reductive K-group which splits
over a tamely ramified extension. If F ' k..t//, we assume that in the simply connec-
ted cover of the derived group Gsc '

Q
j2J ResFj =F .Gj / each absolutely almost simple

factor Gj splits over a tamely ramified extension of Fj . Here J is a finite index set, and
each Fj =F is a finite separable field extension.

Attached to the triple .G; ¹�º;Gf/ is the flat projective OE -scheme

M¹�º DM.G;¹�º;Gf/;

called the ( flat) local model. It is defined in [30, 34] (cf. also [20, §4]) if F=Qp , and in
[37, 41] if F ' k..t//. The generic fiber is the Schubert variety Gr�¹�ºG ! Spec.E/ in
the affine Grassmannian of G ˝F E associated with the class ¹�º. The special fiber is
equidimensional, but not irreducible in general, and is equipped with a closed embedding

M ¹�º WDM¹�º ˝OE
kE ,! F`G[;f [ ˝k kE ; (2.1)

where kE is the residue field of E. Further, if F ' k..t//, we have .G[; f [/ D .G; f/.
If F=Qp , the pair .G[; f [/ is an equal characteristic analogue over a local function
field k..u// of the pair .G1; f1/ where f1 is the facet corresponding to f under B.G; F / '
B.G1; K/ (see §4.1.1 for details). By [20, Thm. 5.14], with no restriction on p, we have
for the reduced geometric special fiber

.M ¹�º ˝kE
Nk/red D A.G; ¹�º/;

where A.G; ¹�º/ � F`G[;f [ ˝k
Nk denotes the union of the .f [; f [/-Schubert varieties

indexed by the ¹�º-admissible set of Kottwitz–Rapoport.
The following theorem proves results on the geometry of local models under weaker

hypotheses than the hypothesis p − j�1.Gder/j in [34, Thm. 9.3] and [30, Thm. 4.3.2]. We
recover as very special cases the results of [34] in this direction, and those of [25], which
treats unramified groups, Iwahori level, and minuscule ¹�º.1

1But we note that [25] does not require the assumption p > 2.
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Theorem 2.1. Let .G; ¹�º; Gf/ be as above, and assume that Gr�¹�º
G; NF

is normal and that

all maximal .f [; f [/-Schubert varieties inside A.G; ¹�º/ are normal (see Remark 2.2 (ii)
below for situations when this is satisfied).

(i) The special fiber M ¹�º is geometrically reduced. More precisely, as closed subs-
chemes of F`G[;f [ ˝k

Nk, one has

M ¹�º ˝kE
Nk D A.G; ¹�º/:

Further, each irreducible component of M ¹�º ˝ Nk is normal, Cohen–Macaulay, with
only rational singularities, and Frobenius split.

(ii) The local model M D M¹�º is normal and, if p > 2, also Cohen–Macaulay with
dualizing sheaf given by the double dual of the top differentials

!M D .�
d
M=OE

/�;�;

where d D dim.ME / is the dimension of the generic fiber.

Remark 2.2. (i) In view of the results in [27] (resp. [1, §3]) the corresponding integral
models of Shimura varieties (resp. moduli stacks of shtukas) with parahoric level structure
are normal and Cohen–Macaulay as well.

(ii) The Schubert variety Gr�¹�º
G; NF

and all Schubert varieties inside A.G; ¹�º/ are
known to be normal

� if p − j�1.Gder/j andG ' ResK=F .G1/ withG1 tamely ramified as above (without any
restrictions on ¹�º; see [32, Thm. 8.4], [20, Thm. 5.14], and end of �3.5);

� if N� 2 X�.T /I is minuscule for the échelonnage root system, and the facet f contains a
special vertex, e.g.,G is unramified, Gf.OF / an Iwahori subgroup and � is minuscule
(without any restrictions on p) [22]. In general, N� being minuscule for the échelon-
nage roots implies that � is minuscule for the absolute roots, by [18, �4:3] (but not
conversely).

We also remark that when char.F / D 0, Gr�¹�º
G; NF

is known to be normal. However, when
p j j�1.Gder/j, there are non-normal Schubert varieties in F`G[;f [ , even for G[ D PGL2
over NF2 (cf. [22]).

Thus, Theorem 2.1 (i) gives new cases of normal local models with reduced special
fiber. The proof follows the original argument of Pappas–Zhu, using as a key input the
Coherence Conjecture proved by Zhu [41] (cf. also [34, §9.2.2, (9.19)]). The application
of the Coherence Conjecture is justified by our assumption on the normality of Schubert
varieties inside A.G; ¹�º/.

For (ii), the normality of M¹�º is an immediate consequence of (i) by [34, Prop. 9.2].
As mentioned above, the Cohen–Macaulayness of M¹�º can be deduced from Propos-
ition 5.5 below combined with the well-known theorem of Zhu [41, Thm. 6.5] which
is also the key to the Coherence Conjecture. In particular, our method avoids using any
finer geometric structure of the admissible locus A.G; ¹�º/ as for example in [13, §4.5.1]
or [25].
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Corollary 2.3. Let .G0; ¹�0º;Gf0/! .G; ¹�º;Gf/ be a map of local model triples as above
which induces G0ad ' Gad on adjoint groups. Then the induced map on local models,

M.G0;¹�0º;Gf0 /
! M.G;¹�º;Gf/ ˝OE

OE 0 ;

is a finite, birational universal homeomorphism where E 0=F denotes the reflex field
of ¹�0º, naturally an overfield of E. In particular, if M.G;¹�º;Gf/ is normal (see The-
orem 2.1), this map is an isomorphism.

Remark 2.4. The assumption that M.G;¹�º;Gf/ is normal is equivalent to the assump-
tion that its generic fiber Gr�¹�º

G; NF
is normal and all maximal .f [; f [/-Schubert varieties

inside A.G; ¹�º/ are normal. One implication is given by Theorem 2.1 (ii). For the other
implication, apply Corollary 2.3 to a z-extension G0 of G with G0der D G0sc and invoke
Remark 2.2 (ii) forG0. Thus the assumption on the normality of Schubert varieties appear-
ing in the special fiber is optimal in the following sense: if one of the maximal .f [; f [/-
Schubert varieties inside A.G; ¹�º/ is not normal, then the whole local modelM.G;¹�º;Gf/

is not normal.

The proof of Corollary 2.3 is given in §4.3 below. This relates to the modified local
models Mloc

G
.G; ¹�º/ of [26, §2.6]. For an appropriate choice of z-extension . QG; Q�/!

.Gad; �ad/ with QGder D Gsc and parahoric group QG corresponding to G , [26, �2:6] defines

Mloc
G .G; ¹�º/ WDM. QG; Q�; QG /

˝OEad
OE :

The raison d’être for Mloc
G
.G;¹�º/ is that it should possess the geometric properties which

can fail to hold for M.G;¹�º;G / when p j j�1.Gder/j. This is indeed the case.

Corollary 2.5. The modified local model Mloc
G
.G; ¹�º/ is normal with reduced special

fiber, and is also Cohen–Macaulay if p > 2.

As j�1. QGder/j D 1, Corollary 2.5 is immediate from Theorem 2.1 and Remark 2.2.
Only the Cohen–Macaulayness is new: the other statements were observed in [26,
Rmk. 2.9]. Corollaries 2.3 and 2.5 imply that the modified local model Mloc

G
.G; ¹�º/

always identifies with the normalization of M.G;¹�º;G /. The Kisin–Pappas integral mod-
els �K.G; X/ of Shimura varieties in [27] can be defined when p > 2 (even when
p j j�1.Gder/j), and are always “locally modeled” by associated modified local models
Mloc

G
.G;¹�º/ [26, Thm. 3.1]. Therefore, Corollary 2.5 implies that all Kisin–Pappas integ-

ral models are Cohen–Macaulay.

3. Preliminaries on Schubert varieties

We introduce temporary notation for use within §3. Let k be an algebraically closed field,
and letF D k..t// denote the Laurent series field. LetG be a connected reductiveF -group.
Let f; f0 � B.G; F / be facets of the Bruhat–Tits building. Let Gf (resp. Gf0 ) be the associ-
ated parahoric OF -group scheme. The loop group LG (resp. LCGf) is the functor on the
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category of k-algebras R defined by LG.R/ D G.R..t/// (resp. LCGf.R/ D Gf.RŒŒt ��/).
Then LCGf � LG is a subgroup functor, and the twisted affine flag variety is the étale
quotient

F`G;f WD LG=L
CGf;

which is representable by an ind-projective k-ind-scheme. Associated with an element
w 2 LG.k/, we define the .f0; f/-Schubert variety Sw D Sw.f0; f/ � F`G;f as the reduced
LCGf0 -orbit closure of w � e where e 2 F`G;f denotes the base point.

Let Gsc ! Gder � G denote the simply connected cover of the derived group. Then
Gsc '

Q
j2J ResFj =F .Gj / where J is a finite index set, each Fj =F is a finite separable

field extension, and each Gj is an absolutely almost simple, simply connected, reductive
Fj -group that splits over a tamely ramified extension. Under the induced map on buildings
B.Gsc; F /! B.G; F / the facets correspond bijectively to each other, and we denote by
fj � B.Gj ; Fj / D B.ResFj =F .Gj /; F / (cf. [20, Prop. 4.6]) the factor corresponding to
j 2 J of the facet f � B.G; F /.

Proposition 3.1. Let Sw D Sw.f0; f/ be any Schubert variety.

(i) The normalization QSw!Sw is a finite birational universal homeomorphism. Further,
QSw is also Cohen–Macaulay, with only rational singularities, and Frobenius split if

char.k/ > 0.

(ii) For each j 2 J , there exists an alcove aj � B.Gj ; Fj / containing fj in its closure
and an element wj 2 LGj .k/ together with an isomorphism of k-schemes

QSw '
Y
j2J

QSwj
;

where each QSwj
is the normalization of an .aj ; fj /-Schubert variety Swj

DSwj
.aj ; fj /

� F`Gj ;fj . Further, if QSw D Sw is normal, then each QSwj
D Swj

is normal as well.

Part (i) implies that Sw is always geometrically unibranch, and that the normalization
QSw ! Sw induces an equivalence of categories of (pro-)étale sheaves [40, 04DY, 09AB].

Part (ii) expresses the normalization QSw in terms of Schubert varieties for the simply
connected absolutely almost simple factors Gj . It is ultimately used to reduce the proof
of Theorem 2.1 to such groups. In view of [22] passing to the normalizations is strictly
necessary in order to have the isomorphism in (ii) in general.

We first reduce the proof of Proposition 3.1 to the case where f0 D a is an alcove, and
where Sw D Sw.a; f/ is contained in the neutral component F`oG;f � F`G;f (see §3.1).
The proof of part (i) is given in §3.3, and of part (ii) in §3.6.

3.1. Alcove reduction

By [5, Thm. 7.4.18 (i)], there exists a maximal F -split torus S � G such that f; f0 are both
contained in the apartment A.G; S; F /. The centralizer T D CG.S/ is a maximal torus
(because G is quasi-split over F by Steinberg’s theorem), and we denote by N D NG.S/
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the normalizer. Let QW D N.F /=T .OF / be the Iwahori–Weyl group (or extended affine
Weyl group) where T denotes the neutral component of the lft Néron model of T . We
also denote Wf D .L

CGf.k/ \N.F //=T .OF /, and likewise Wf0 .

3.1.1. Step 1. As QW acts transitively on the set of alcoves in A.G; S; F /, there exists an
n 2 N.F / such that n � f0 and f are contained in the closure of the same alcove. Further,
left multiplication by n on F`G;f induces an isomorphism

Sw.f0; f/ ' Sn�w.n � f0; f/;

where Sn�w.n � f0; f/ denotes the reduced orbit closure of n � w 2 LG.k/ under the group
LCGn�f0 D nL

CGf0n
�1. Hence, we may assume the facets f; f0 are in the closure of a single

alcove a � A.G; S; F /.

3.1.2. Step 2. By [19, Prop. 8], there exists an element w0 2 QW such that

LCGf0.k/ � w � L
CGf.k/ D L

CGf0.k/ � Pw0 � L
CGf.k/;

where Pw0 2 N.F / denotes any representative of w0. This implies the equality Sw.f0; f/D
S Pw0

.f0; f/ of Schubert varieties. Hence, we reduce to the case where w D Pw0 2 N.F /.

3.1.3. Step 3. Corresponding to the choice of a, we have the decomposition QW DWaf Ì�
where Waf D Waf. M†/ is the affine Weyl group for the échelonnage root system M†, and
� D �a denotes the stabilizer of a in QW [19, Prop. 12 ff.]. Thus QW has the structure of a
quasi-Coxeter group. Let w0 2 Wf0 � w �Wf be the unique left f0-maximal element among
all right f-minimal elements [36, Lem. 1.6 (ii)]. This element gives rise to the unique open
Iwahori orbit in Sw.f0; f/. More precisely, for any representative Pw0 2 N.F / of w0, we
have Sw.f0; f/ D S Pw0

.a; f/ [36, proof of Prop. 2.8]. Hence, we reduce further to the case
where f0 D a.

3.1.4. Step 4. The class of w in QW can be written uniquely in the form � � waf with
waf 2 Waf, � 2 �. Left multiplication by any lift P� 2 N.F / induces an isomorphism of
Schubert varieties S Pwaf.a; f/ D Sw.a; f/. Hence, we reduce to the case where � D 1, i.e.,
w D waf 2 Waf. This means that Sw.a; f/ is contained in the neutral component F`oG;f �

F`G;f [32, �5].

Corollary 3.2. If the statement of Proposition 3.1 holds for the Schubert varieties
Sw.a; f/ for all maximal split F -tori S �G, one choice of alcove a�A.G;S;F / contain-
ing f in its closure and all w 2 Waf, then Proposition 3.1 holds for the Schubert varieties
Sw.f0; f/ for all facets f; f0 � B.G; F / and all w 2 LG.k/.

Proof. The corollary is immediate from Steps 1–4 above. Note that it is enough to show
Proposition 3.1 (ii) for a single alcove f0 D a � A.G; S; F / because Waf acts (simply)
transitively on these alcoves.
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3.2. A lemma on orbits

The following lemma helps to control orbits in partial affine flag varieties.

Lemma 3.3. Let w 2 QW be right f-minimal. Then the natural map

LCGa � w � L
CGa=L

CGa ! LCGa � w � L
CGf=L

CGf (3.1)

is an isomorphism.

Proof. In the split case, this was proved in [21, Lem. 4.2] using negative loop groups. In
the general case the required properties of negative loop groups are not yet available, so
we give a different approach. Denote

B D LCGa and P D LCGf:

Recall that .LG=P /.k/D LG.k/=P.k/ (see e.g. [32, Thm. 1.4]). The map �WBwB=B!
BwP=P is clearly surjective on k-points. To see that it is injective on k-points one uses
the decomposition

P=B D
a
w02Wf

Bw0B=B

[36, Rem. 2.9] together with the fact l.w �w0/D l.w/C l.w0/ for allw0 2Wf, which holds
by the right f-minimality. Hence, the map is bijective on k-points, and, using Zariski’s
Main Theorem, one can show it is enough to prove that � is smooth.

Let w0 2Wf be the longest element. Consider the commutative diagram of k-schemes

BwB �B Bw0B=B BwP=B

BwB=B BwP=P

�

pr1

�

pr

The inclusion Bw0B=B � P=B is an open immersion. As w is assumed to be right f-
minimal, we have l.w �w0/D l.w/C l.w0/, and standard properties of partial Demazure
resolutions show that � is an open immersion. We claim that both projections pr1 and pr
are smooth and surjective; in that case [40, 02K5] shows that the morphism BwB=B !

BwP=P is smooth as well. The assertion for both pr and pr1 results from the following
general lemma applied with P D “smooth” (using étale descent [40, 02VL]). We note
that working with étale sheaves is justified by [32, Thm. 1.4] (cf. also [39, Prop. A.4.9]
and [21, proof of Lem. 4.9]).

Lemma 3.4. Let S be a scheme. Let X; Y be étale sheaves on AffSch=S (affine schemes
equipped with a map to S ), and let G be an étale sheaf of groups over S . Suppose X
(resp. Y ) carries a right (resp. left) G-action such that G acts freely on X . Let P be a
property of maps of algebraic spaces which is stable under base change, and which is
étale local on the target. If Y ! S is an algebraic space (resp. and has property P ),
then the canonical projection pr1WX �

G Y ! X=G is representable (resp. and has prop-
erty P ).
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Proof. We claim that there is a Cartesian diagram of étale sheaves

X � Y X �G Y

X X=G

pr1

where X ! X=G and X � Y ! X are the canonical projections. The claim implies the
representability of pr1 by [29, Cor. (1.6.3)] applied to the epimorphism X ! X=G using
that it is obvious for X � Y ! X [29, Rem. (1.5.1)]. Also this shows that if Y ! S has
property P , then pr1 has property P . To prove the claim we note that the map

X � Y ! X �X=G;pr1 .X �
G Y /; .x; y/ 7! .x; Œx; y�/;

is an isomorphism of étale sheaves. This is elementary to check using the freeness of the
G-action on X .

3.3. Proof of Proposition 3.1 (i)

Consider a general Schubert variety Sw.f0; f/ for some f0; f�B.G;F / andw 2LG.k/. By
Corollary 3.2, there exist a maximal F -split torus S � G, an alcove f � Na � A.G; S;F /,
and an elementwaf 2Waf such that Sw.f0; f/' Swaf.a; f/ as k-schemes. Thus, we may and
do assume that f0 D a and that w D waf 2 Waf is right f-minimal by Lemma 3.3. Further,
if f D a, then Proposition 3.1 (i) is proven in [32, Prop. 9.7] for tamely ramified groups,
and we explain how to extend the arguments to the general case.

Let � W F`G;a ! F`G;f be the canonical projection. Denote by w0 2 w � Wf the
maximal length representative inside the coset. Then ��1.Sw.a; f// D Sw0

.a; a/. Con-
sider the normalization QSw WD QSw.a; f/! Sw.a; f/ DW Sw (resp. QSw0

WD QSw0
.a; a/!

Sw0
.a; a/ DW Sw0

) which sits in a commutative diagram

QSw0
Sw0

QSw Sw

p

The right vertical map is an étale locally trivial fibration with typical fiber the homo-
geneous space Y WD LCGf=L

CGa [21, Lem. 4.9], and thus the diagram is Cartesian
because the property of being normal is local in the smooth topology [40, 0347]. By
[32, Prop. 9.7 (a)], the top horizontal map is a finite birational universal homeomorphism,
and so is the bottom horizontal map because all properties are fpqc local on the target
[40, 02LA, 02L4, 0CEX]. Further, QSw0

is Cohen–Macaulay by [32, Prop. 9.7 (d)], and
hence so is QSw by smoothness of p. For the property “Frobenius split if char.k/ > 0”
(resp. “has rational singularities”), we note first that the counit of the adjunction

O QSw

'
�! p�.p

�O QSw
/ D p�.O QSw0

/ (3.2)

is an isomorphism. Indeed, by étale descent for coherent sheaves we may argue locally
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in the étale topology. Using flat base change [40, 02KH], it remains to prove (3.2) for
maps of type prW Y � X ! X for some k-variety X . As the push forward of OY along
the structure map Y ! Spec.k/ is Ok [40, 0AY8], the assertion is immediate by flat
base change. Further, it is clear that Rqp�.OY / D 0 when q > 0, for example by a very
special case of the Borel–Bott–Weil theorem (Y is isomorphic to a classical flag variety
over k [21, §4.2.2]). If k is a field of characteristic p > 0, then QSw0

is Frobenius split
by [32, Prop. 9.7 (c)], and the push forward of a splitting defines a splitting of QSw by
using (3.2).

It remains to construct a rational resolution onto QSw . Recall that by [32, Prop. 9.7 (b)]
the natural closed immersion Sw.a; a/ � Sw0

.a; a/ D Sw0
lifts to a closed immersion

QSa
w WD

QSw.a; a/ � QSw0
. Let pw WD pj QSa

w
W QSa
w !

QSw.a; f/ D QSw be the restriction. Fix a
reduced decomposition w D s1 � : : : � sn into simple reflections. The Demazure resolution
D.w/! Sa

w factors through the normalization, and we claim that the composition

f WD.w/
�w
��! QSa

w

pw
��! QSw

is a rational resolution, i.e., Rf�OD.w/ is quasi-isomorphic to O QSw
(in which case we call

f (cohomologically) trivial), and Rq!D.w/ D 0 for all q > 0, where !D.w/ D �nD.w/=k ,
n D l.w/. It is enough to show that f is trivial. Indeed, if char.k/ D 0, Rq!D.w/ D 0 for
q > 0 would follow from the Grauert–Riemenschneider vanishing theorem; if char.k/ D
p > 0, as D.w/ is Frobenius split [13, Prop. 3.20], the vanishing would follow from the
Grauert–Riemenschneider vanishing for Frobenius split varieties [31, Thm. 1.2]. Further
note that both morphisms f D pw ı �w are surjective and birational; for pw birational,
use Lemma 3.3 and recall that w is chosen to be right f-minimal. Therefore f is a resol-
ution of singularities. Since QSw is normal and integral, the Stein factorization of f yields
f�OD.w/ D O QSw

. It remains to prove that Rqf�.OD.w// D 0 for q > 0.
Extend the reduced decomposition of w to a reduced decomposition of w0, and con-

sider the diagram
D.w0/

prw

''

�w0

  

h

$$
D2.w/

q //

g

��

D.w/

f

��
QSw0

p // QSw

Here the square is Cartesian, prw is the natural projection (onto the first l.w/ factors),
and the dashed arrow h exists because f ı prw D p ı �w0

. Since �w0
and g are both

birational, so is h.
We claim that g is trivial. By the Leray spectral sequence it suffices to prove that

�w0
and h are trivial. The triviality of �w0

is proven in [32, Prop. 9.7 (d)]. For h, note
that D2

w D Dw Q� Y is the twisted product, and likewise D.w0/ D D.w/ Q�D.v/ for the
decompositionw0Dw � v with v 2Wf. Under these identifications the map h decomposes
as hD id Q�h0 where idWD.w/!D.w/ is the identity, and h0WD.v/! Y is the Demazure
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resolution. Locally in the smooth topology on D.w/2, the map h is isomorphic to the
direct product id � h0. Using the vanishing of Rqh0;�.OD.v// for q > 0 (loc. cit. applied
to h0) and flat base change, we get the vanishing of Rqh�.OD.w0// for q > 0. Also,
h�.OD.w0// D OD2.w/ by the Stein factorization of h, as D2.w/ is smooth and integral
and h is birational. This shows that h, hence g, is trivial.

Now the required vanishing of Rqf�.OD.w// for q > 0 follows from flat base change
applied to the Cartesian square. This finishes the proof.

3.4. Central extensions

Let �W G0 ! G be a map of (connected) reductive F -groups which induces an iso-
morphism on adjoint groups G0ad ' Gad (or equivalently on simply connected groups
G0sc ' Gsc). Then S 0 WD ��1.S/o � ��1.T /o DW T 0 is a maximal F -split torus contained
in a maximal torus. This induces a map on apartments A.G0; S 0; F /! A.G;S;F / under
which the facets correspond bijectively to each other. We denote the image of f by the
same letter. The map G0! G extends to a map on parahoric group schemes G 0 WD G 0f !

Gf DW G , and hence to a map on twisted partial affine flag varieties F`G0;f ! F`G;f. We
are interested in comparing their Schubert varieties.

There is a natural map on Iwahori–Weyl groups

QW 0 D W.G0; S 0; F /! W.G; S; F / D QW ;

which is compatible with the action on the apartments A.G0; S 0; F /! A.G; S; F /. For
w0 2 QW 0 denote by w 2 QW its image. As the map F`G0;f ! F`G;f is equivariant compat-
ibly with the map LCG 0 ! LCG , we get a map of projective k-varieties

Sw0 D Sw0.a; f/! Sw.a; f/ D Sw : (3.3)

Proposition 3.5. For each w0 2 QW 0, the map (3.3) is a finite birational universal homeo-
morphism, and induces an isomorphism on the normalizations.

We need some preparation. The Iwahori–Weyl groups are equipped with a Bruhat
order � and a length function l according to the choice of a.

Lemma 3.6. The map QW 0 ! QW induces an isomorphism of affine Weyl groups compat-
ible with the simple reflections, and thus compatible with � and l .

Proof. Let QWsc be the Iwahori–Weyl group associated to the simply connected cover  W
Gsc ! Gder and the torus Ssc WD  

�1.S \ Gder/
o. By [6, 5.2.10], QWsc can be identified

with the affine Weyl group for .G;S;a/ as well as .G0; S 0;a/ (see also [19, Prop. 13]).

We denote the affine Weyl Waf of QW , resp. QW 0 by the same symbol.

Corollary 3.7. For each w0 2 QW 0, the map QW 0 ! QW induces a bijection

¹v0 2 QW 0 j v0 � w0º
'
�! ¹v 2 QW j v � wº

under which the right f-minimal elements correspond to each other.
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Proof. Write w0 D � 0 � w01 according to QW 0 D �0 ËWaf. After left translation by . P� 0/�1

for any representative P� 0 2 NormG0.S
0/.F / of � 0, we may assume � 0 D 1. Lemma 3.6

implies the corollary.

Lemma 3.8. For each w0 2 QW 0, the map

LCG 0a � w
0
� LCG 0=LCG 0 ! LCGa � w � L

CG=LCG

is an isomorphism.

Proof. By the proof of Corollary 3.7, we may assume that w0 2 Waf, and that
w0 is right f-minimal. By Lemma 3.3, we may further assume that f D a is the
alcove. Let w0 D s01 � : : : � s

0
n be a reduced decomposition into simple reflections. By

Lemma 3.6, w D s1 � : : : � sn is a reduced decomposition of w. Let �w0 WD.w0/! Sw0

(resp. �w WD.w/! Sw ) be the Demazure resolution associated with the reduced decom-
position [32, Prop. 8.8]. There is a commutative diagram of k-schemes

D.w0/ D.w/

Sw0 Sw

�w0 �w

where the vertical maps are birational and isomorphisms onto the open cells. Hence, it
is enough to show that D.w0/! D.w/ is an isomorphism. By induction on l.w0/ D n,
we reduce to the case w0 D s0 (and hence w D s) is a simple reflection. In this case,
�w0 and �w are isomorphisms, and we have to show that P1

k
' Sw0 ! Sw ' P1

k
is

an isomorphism. The crucial observation is now that the map G 0 ! G on Bruhat–Tits
group schemes is the identity on the OF -extension of the root subgroups [6, 4.6.3, 4.6.7].
Hence, the map Sw0! Sw restricted to the open cells A1

k
� P1

k
is the identity. The lemma

follows.

Proof of Proposition 3.5. The LCG 0a-orbits (resp. LCGa-orbits) in Sw0 (resp. Sw ) corres-
pond under the map Sw0 ! Sw bijectively to each other (Corollary 3.7). Hence, Lemma
3.8 implies that the map Sw0! Sw is birational and bijective on k-points. As being quasi-
finite and proper implies finite, the map in question must be finite. To see that the map is
a universal homeomorphism consider the commutative diagram of k-schemes

QSw0 QSw

Sw0 Sw

where the vertical maps are the normalization morphisms. By Proposition 3.1 (i), the
vertical maps are finite birational universal homeomorphisms. In particular, the map
QSw0 ! QSw is a birational bijective proper, hence finite, morphism of normal varieties,

and therefore it is an isomorphism. This shows that the map Sw0 ! Sw is a universal
homeomorphism, and the proposition follows.
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3.5. Simple reduction

There is a finite index set J , and an isomorphism of F -groups

Gsc D
Y
j2J

ResFj =F .Gj /;

where each Fj =F is a finite separable extension, and each Gj is an absolutely almost
simple, simply connected Fj -group. Under the identification of buildings

B.Gsc; F / D
Y
j2J

B.Gj ; Fj /

the facet f corresponds to facets fj � B.Gj ; Fj / for each j 2 J .

Lemma 3.9. There is an isomorphism of k-ind-schemes

F`Gsc;f '
Y
j2J

F`Gj ;fj

under which the Schubert varieties correspond isomorphically to each other.

Proof. It is enough to treat the following two cases separately.

Products. If G D G1 � G2 is a direct product of two F -groups, then we have a direct
product of affine Weyl groups Waf D Waf;1 �Waf;2. Now, for each w D .w1; w2/ 2 Waf,
there is an equality for Schubert varieties Sw D Sw1

� Sw2
, which is easy to prove. In

particular, if both Sw1
and Sw2

are normal, then Sw is normal by [40, 06DG].

Restriction of scalars. Let G D ResF 0=F .G0/ where F 0=F is a finite separable extension,
and G0 is an F 0-group. By [20, Prop. 4.7], we have Gf D ResOF 0=OF

.G 0f / where we use
the identification B.G; F / D B.G0; F 0/. Now choose2 a uniformizer u 2 OF 0 . Since k
is algebraically closed, we have OF 0 D kŒŒu�� and F 0 D k..u//. For any k-algebra R, we
have RŒŒt ��˝OF

OF 0 D RŒŒu�� and R..t//˝F F 0 D R..u//. This gives an equality for loop
groups, LCGf D L

CG 0f and LG D LG0. Hence, there is an equality on twisted affine flag
varieties F`G;f D F`G0;f under which the Schubert varieties correspond to each other.

3.6. Proof of Proposition 3.1 (ii)

Consider a general Schubert variety Sw.f0; f/ for some f0; f � B.G; F /, w 2 LG.k/. By
Corollary 3.2, there exist a maximal F -split torus S � G, an alcove f � Na � A.G; S;F /,
and an element waf 2 Waf such that Sw.f0; f/ ' Swaf.a; f/ as k-schemes. Proposition 3.5
applied to Gsc ! G shows that the normalization QSwaf.a; f/ is isomorphic to the normal-
ization of a Schubert variety inside

F`Gsc;f '
Y
j2J

F`Gj ;fj

2The result is independent of the choice of the uniformizers u, resp. t because loop groups can
be defined without a reference to them [2, §(1.3), footnote 2] (or [36, §2]).
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by Lemma 3.9. Thus, QSwaf.a; f/'
Q
j2J
QSwj
.aj ; fj / for somewj 2LGj .k/. Now assume

that Sw ' Swaf.a; f/ DW Swaf is normal. It remains to prove that each variety Swj
WD

Swj
.aj ; fj / is normal as well. First note that the canonical map

Q
j2J Swj

! Swaf must
be an isomorphism by Proposition 3.5, so that the product of the varieties Swj

is normal.
Fix some j0 2 J , and consider

QSwj0
�

Y
j 6Dj0

Swj
! Swj0

�

Y
j 6Dj0

Swj
;

where QSwj0
! Swj0

denotes the normalization. By Proposition 3.1 (i), this map is finite
and birational. As the target is normal, it must be an isomorphism, so that QSwj0

! Swj0

must be an isomorphism (because being an isomorphism is fpqc local on the target). This
proves Proposition 3.1 (ii).

4. Reducedness of special fibers of local models

In this section we start with the proofs of our main results stated in §2. It is worth noting
that the mixed characteristic case will ultimately be reduced to the equal characteristic
case which is easier to handle due to the presence of Frobenius splittings. Also, recall the
slightly different assumptions on the reductive group G in mixed and equal characteristic
given in §2.

4.1. Weil restricted local models in mixed characteristic

We now switch back to the notation of §2. We first treat the case where F=Qp is a mixed
characteristic local field. Recall that in this case we are assumingG DResK=F .G1/where
K=F is a finite extension with residue field k of characteristic p > 0, and G1 is a tamely
ramified connected reductive K-group. To simplify the discussion and notation we first
assume that K=F is totally ramified. The extension to the more general case is easy and
is explained in Remark 4.2 below. We fix a uniformizer$ 2 K, and letQ 2 OF Œu� be its
minimal polynomial (an Eisenstein polynomial). The reader who is only concerned with
Pappus–Zhu local models may take K D F and G1 D G throughout this discussion.

Under the identification B.G;F /D B.G1;K/ [20, Prop. 4.6], the facet f corresponds
to a facet denoted f1. We denote by G1 D Gf1 the parahoric OK-group scheme of G1
associated with f1. Then G WD ResOK=OF

.G1/ is the parahoric OF -group scheme of G
associated with f [20, Cor. 4.8]. We let A1 � G1 be a maximalK-split torus whose apart-
ment A.G1; A1; K/ contains f1.

4.1.1. Recollections. Following the method of [34, §3], a connected reductive OF Œu
˙�-

group scheme G1 is constructed in [30, §3.1, Prop. 3.3] (cf. also [20, Prop. 4.10 (i)])
together with an isomorphism

G1 ˝OF Œu˙�;u7!$
K ' G1: (4.1)
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We let A1 � G1 be the split OF Œu
˙�-torus extending A1 � G1. By [34, §4.1.3], the

isomorphism (4.1) induces identifications of apartments

A.G1; A1; K/ ' A.G1;�..u//; A1;�..u//; �..u///; (4.2)

for � D k; F . We denote by f1;�..u// the facet corresponding to f1. By [34, Thm. 4.1]
(cf. also [30, Thm. 3.3.3]), there exists a unique OF Œu�-group scheme G 1 with the fol-
lowing three properties: (a) the restriction of G 1 to OF Œu

˙� is G1; (b) the base change
G 1 ˝OF Œu�;u7!$ OK is G1; (c) the base change G 1 ˝OF Œu� �..u// is the parahoric �ŒŒu��-
group scheme associated with the facet f1;�..u// under (4.2) for � D k; F . Note that the
group scheme G 1 is already uniquely determined by property (a) and property (c) with
� D F by [34, 4.2.1].

Following [30, Def. 4.1.1] (see also [20, §4.4] for how this fits into the general picture
of Beilinson–Drinfeld Grassmannians), we define GrG to be the functor on the category
of OF -algebras R given by the isomorphism classes of tuples .F ; ˛/ with´

F a G 1-torsor on Spec.RŒu�/I

˛WF jSpec.RŒu�Œ1=Q�/ ' F 0jSpec.RŒu�Œ1=Q�/ a trivialization;
(4.3)

where F 0 denotes the trivial torsor. If Q D u �$ , i.e., K D F , then GrG is the BD-
Grassmannian defined in [34, 6.2.3; (6.11)]. Informally, we think about GrG as being the
Beilinson–Drinfeld Grassmannian associated with the parahoric OF -group scheme G .

By [30, Thm. 4.2.11] (cf. also [20, Thm. 4.16]), the functor GrG is representable by an
ind-projective ind-scheme over OF . Its generic fiber is equivariantly (for the left action
of the loop group) isomorphic to the usual affine Grassmannian GrG formed using the
parameter z WD u �$ 2 KŒu�. Its special fiber is canonically isomorphic to the twisted
affine flag variety F`G[;f [ where we denote

G[ WD G1 ˝OF Œu˙�
k..u//; f [ WD f1;k..u//: (4.4)

Informally, we think about the k..u//-group G[ as being a connected reductive group of
the “same type” as the K-group G1. By the discussion above, it is equipped with an
identification of apartments A.G[;A[; k..u///D A.G1;A1;K/ where A[ WD A1 ˝ k..u//.

Recall we fixed a conjugacy class ¹�º of geometric cocharacters in G with reflex
field E=F . This defines a closed subscheme Gr�¹�ºG � GrG ˝FE inside the affine
Grassmannian which is a (geometrically irreducible) projective E-variety. Following
[34, Def. 7.1] and [30, Def. 4.2.1] (cf. also [30, Prop. 4.2.4]), the local model M¹�º D
M.G1;Gf; ¹�º;$/ is the scheme-theoretic closure of the locally closed subscheme

Gr�¹�ºG ,! GrG ˝FE ,! GrG ˝OF
OE :

By definition, the local model is a reduced flat projective OE -scheme, and equipped with
an embedding of its special fiber

M ¹�º WDM¹�º ˝OE
kE ,! F`G[;f [ ˝k kE :
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We now define the admissible locus A.G; ¹�º/ � F`G[;f [ ˝k
Nk. Recall from [20, §5.4]

that there are identifications of Iwahori–Weyl groups

W D W.G;A; MF / D W.G1; A1; MK/ D W.G
[; A[; Nk..u///:

Then the admissible locus A.G; ¹�º/ is defined as the union of the .f [; f [/-Schubert
varieties Sw � F`G[;f [ ˝k

Nk where w runs through the elements of the admissible set
Admf

¹�º � WfnW=Wf. Under the assumption that all Schubert varieties inside A.G; ¹�º/

are normal, we show in the next subsection that M ¹�º ˝ Nk D A.G; ¹�º/.

4.1.2. Proof of Theorem 2.1 (i) in mixed characteristic. The proof uses the Coherence
Conjecture [41], and then follows easily from the method in [34, §9.2.2] using [30,
Thm. 4.3.2] and Proposition 3.1.

Note that the inclusion A.G; ¹�º/�M ¹�º˝kE
Nk is proven as part of [20, Thm. 5.14].

Let V1DLie G 1 denote the Lie algebra, which is a free OF Œu�-module of rank dimK.G1/.
The adjoint representation G 1 ! GL.V1/ induces by functoriality a morphism of ind-
projective OF -ind-schemes

adWGrG ! GrGL.V1/;

where the target is defined as in (4.3) using the OF Œu�-group scheme GL.V1/.
Let Ldet be the determinant line bundle on the target, and denote by L WD ad�.Ldet/

its pullback. Let L NF (resp. L Nk) denote the restriction of L to the geometric generic
(resp. geometric special) fiber GrG ; NF D GrG; NF (resp. Gr

G ; Nk D F`G[;f [ ˝ Nk).

Lemma 4.1. The pullback of the line bundle L to M¹�º is relatively ample over OE , and
for all n � 1 one has

dim NF �.M¹�º; NF ;L
˝n
NF
/ D dim Nk �.A.G; ¹�º/ Nk ;L

˝n
Nk
/: (4.5)

Proof. This lemma is a direct consequence of the Coherence Conjecture [41] invoking
Proposition 3.1 (ii) and the assumption on the normality of Schubert varieties; see also
[34, §9] (resp. [30, Thm. 4.3.2]) for similar arguments. We recall the argument for con-
venience.

First note that sinceM¹�º! Spec.OE / is proper, the line bundle L is relatively ample
on M¹�º if and only if its fibers LF , Lk are ample [17, Cor. 9.6.4] if and only if its
geometric fibers L NF , L Nk are ample [40, 01VR (4)]. Hence, the statement of the lemma
only depends on the geometric fibers.

By Proposition 3.1 (ii), using the normality assumption on MG;¹�º; NF (resp. the max-
imal .f [; f [/-Schubert varieties inside A.G; ¹�º/), there is an isomorphism

MG;¹�º; NF 'M
o

G;¹�º; NF
(resp. A.G; ¹�º/ ' A.G; ¹�º/o) (4.6)

where, with a change of notation, the superscript o denotes as in [41, §2.2] (see also
[34, (9.18) ff.]) the object translated to the neutral component (Iwahori–) Schubert variety
inside the affine Grassmannian (resp. twisted affine flag variety) for the simply connected
group. Here, we really need the normality hypothesis in order to lift everything to the
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simply connected group (recall that M o

G;¹�º; NF
is normal). Further, note that M o

G;¹�º; NF

(resp. A.G; ¹�º/o) only depends on the adjoint group Gad and the image of ¹�º under
G ! Gad: the simply connected groups of G and Gad are the same, and the translate
to the affine Weyl group admissible set depends only on the image of ¹�º under G !
Gad (Corollary 3.7). This procedure is also compatible with the formation of L because
the morphism ad factors through the adjoint group. We now study the decomposition of
M o

G;¹�º; NF
(resp. A.G; ¹�º/o) in terms of the simple factors of Gad.

Let Gad D
Q
j2J ResFj =F .Gj;ad/ where J is a finite index set, Fj =F are finite field

extensions containingK, andGj;ad are absolutely simple, tamely ramified Fj -groups. The
geometric generic fiber becomes

M o

G;¹�º; NF
'

Y
j2J

njY
iD1

Gr
�¹�

.j /

i
º;o

Gj;ad; NF
� GrGsc; NF

(4.7)

where nj WD ŒFj WF � and .¹�.j /i º/iD1;:::;nj
is the j -factor of ¹�º underG NF !Gad; NF . Note

that (4.7) comes from the analogous decomposition for GrGsc; NF
. For j 2 J , consider the

maximal unramified subextensionFj =F ur
j =F , and write nj Dmj � lj withmj WD ŒFj WF ur

j �

and lj WD ŒF ur
j W F �. Also for each j 2 J we reorder

.¹�
.j /
i º/iD1;:::;nj

D
�
.¹�

.j /

i;k
º/kD1;:::;mj

; : : : ; .¹�
.j /

i;k
º/kD1;:::;mj

�
iD1;:::;lj

according to ResFj =F .Gj;ad/ D ResFj =F
nr

j
.ResF nr

j
=Fj
.Gj;ad//. As Fj =F ur

j is totally rami-
fied, we obtain in the geometric special fiber3

A.G; ¹�º/o '
Y
j2J

ljY
iD1

A.Gj;ad; ¹�
.j /
i;1 º C � � � C ¹�

.j /
i;mj
º/o: (4.8)

Again (4.8) comes from the analogous decomposition for F`G[
sc;f [

sc
where f [sc �

B.G[sc; k..u/// denotes the facet corresponding to f [. Here one has to remember that
G D ResK=F .G1/ and the composite field K � F ur

j is a subfield of Fj =F ur
j .

Also L NF (resp. L Nk) decomposes according to (4.7) (resp. (4.8)), so that its ampleness
on M o

G;¹�º; NF
(resp. on A.G; ¹�º/) now follows from the explicit formula given in [42,

Lem. 4.2] (see also [30, Prop. 4.3.6]). Note that we are using here the fact that a line bundle
is ample if and only if its restriction to the reduced locus is ample [14, Prop. 4.5.13]. For
each j 2 J , the remaining claim (4.5) now reads

njY
iD1

dim NF �.Gr
�¹�

.j /

i
º;o

Gj;ad; NF
;L˝n
NF
/ D

ljY
iD1

dim Nk �
�
A.Gj;ad; ¹�

.j /
i;1 º C � � � C ¹�

.j /
i;mj
º/o;L˝n

Nk

�
:

(4.9)

3Note that it is clear how to add conjugacy classes of one-parameter subgroups, by choosing
dominant representatives (for any notion of dominant) and taking the conjugacy class of the sum.
This is independent of all choices.
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By [30, Prop. 4.3.8] (and the references cited there), we have the product formula

mjY
kD1

dim NF �.Gr
�¹�

.j /

i;k
º;o

Gj;ad; NF
;L˝n
NF
/ D dim NF �.Gr

�¹�
.j /

i;1
ºC���C¹�

.j /

i;mj
º;o

Gj;ad; NF
;L˝n
NF
/:

Thus (4.9) follows from the equality

dim Nk �
�
A.Gj;ad; ¹�

.j /
i;1 º C � � � C ¹�

.j /
i;mj
º/o;L˝n

Nk

�
D dim NF �.Gr

�¹�
.j /

i;1
ºC���C¹�

.j /

i;mj
º;o

Gj;ad; NF
;L˝n
NF
/; (4.10)

which follows from the main theorem of [41].

Lemma 4.1 is enough to conclude the proof of Theorem 2.1 in this case, as follows.
As in [34, §9], by the local constancy of the Euler characteristic [16, Thm. 7.9.4] and
Serre’s cohomology vanishing theorem [15, Thm. 2.2.1], for n� 0 we have

dim NF �.M¹�º; NF ;L
˝n
NF
/ D dim Nk �.M ¹�º; Nk ;L

˝n
Nk
/ � dim Nk �.A.G; ¹�º/ Nk ;L

˝n
Nk
/;

and thus equality. As L Nk is ample, this implies M
¹�º; Nk D A.G; ¹�º/, and finishes the

proof of Theorem 2.1 (i) in this case.

Remark 4.2. Let K=F be any finite field extension, not necessarily totally ramified. We
explain how the preceding discussion extends to this more general case. Denote byK0=F
the maximal unramified subextension of K=F with residue field k0=k. We now have
Q 2OK0

Œu� for the Eisenstein polynomial of$ . We have the parahoric OK-group scheme
G1 D Gf1 as above, and we define the parahoric OF -group scheme G WD ResOK=OF

.G1/

and its associated positive loop group LC;Q.u/0 G 1 over OK0
. As in [20, �4:3], the group

scheme G1 in (4.1) (resp. G 1) is now defined over OK0
Œu˙� (resp. OK0

Œu�). Hence, the
Beilinson–Drinfeld Grassmannian in (4.3) is defined over OK0

as well. This ind-projective
ind-scheme is denoted by GrG ;0 ! Spec.OK0

/. As in [30, §4.1] we define the OF -ind-
scheme

GrG WD ResOK0
=OF

.GrG ;0/;

which is ind-projective as well, and carries a natural left action of the positive loop group

LC;Q.u/G 1 WD ResOK0
=OF

.L
C;Q.u/
0 G 1/:

Again its generic fiber is isomorphic to the usual affine Grassmannian GrG , equivariantly
for the action of .LC;Q.u/G 1/� D L

C
z G, where z D u�$ . Its special fiber is isomorphic

to F`G[;f [ where now

G[ WD Resk0..u//=k..u//.G1 ˝OK0
Œu˙� k0..u///;

and f [ � B.G[; k..u/// corresponds to f1 under B.G[; k..u/// D B.G1; k0..u/// D

B.G1; K/.
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For a geometric conjugacy class ¹�º inG, the local modelM¹�ºDM.G1;Gf; ¹�º;$/

is the scheme-theoretic closure of Gr�¹�ºG �GrG ˝OF
OE . LetE0 denote the compositum

of K0 with the reflex field E=F of ¹�º. Then according to G D ResK0=F .ResK=K0
.G1//

the conjugacy class ¹�º decomposes as a tuple of ResK=K0
.G1/-conjugacy classes ¹�j º,

1 � j � ŒK0 W F �, each having reflex field E0=K0. Since OK0
=OF is étale, we have as

OK0
-ind-schemes

GrG ˝OF
OK0
'

Y
1�j�ŒK0WF �

GrG ;0;

so thatM¹�º˝OE
OE0
'
Q
jM¹�j º

where eachM¹�j º
is a local model for ResK=K0

.G1/.
Further, on each GrG ;0 we have the line bundle L0 constructed as in (4.1.2) which induces
a line bundle L on GrG by étale descent. Now the analogue of Lemma 4.1 for the pair
.M¹�º;L/ is immediate from the product decomposition M¹�º ˝OE

OE0
'
Q
j M¹�j º

and the validity of Lemma 4.1 for each pair .M¹�j º
;L0/.

4.2. Equal characteristic local models

We now treat the case where F ' k..t// is of equal characteristic. In this situation, we
assume that in the simply connected group Gsc '

Q
j2J ResFj =F .Gj / each absolutely

almost simple factor Gj splits over a tamely ramified extension of Fj . We also fix a
uniformizer t 2 OF so that OF D kŒŒt ��. Let G D Gf denote the parahoric kŒŒt ��-group
scheme.

4.2.1. Recollections. Similarly to (4.3) the Beilinson–Drinfeld affine Grassmannian GrG

is the functor on the category of kŒŒt ��-algebras R given by the isomorphism classes of
tuples .F ; ˛/ with´

F a G ˝kŒŒt�� RŒŒz � t ��-torsor on Spec.RŒŒz � t ��/I

˛WF jSpec.R..z�t/// ' F 0jSpec.R..z�t/// a trivialization;
(4.11)

where F 0 denotes the trivial torsor. Here z is an additional formal variable, and the map
kŒŒt �� ! RŒŒz � t �� is the unique k-algebra map with the property t 7! z. By [38, §0.3]
the functor GrG agrees with [37, Def. 3.3] defined using a spreading of G over some
curve, and therefore is representable by an ind-projective ind-scheme over kŒŒt �� by [37,
Thm. 2.19]. The generic fiber GrG ;F is canonically the affine Grassmannian associated
with the reductive group scheme G ˝kŒŒt��;t 7!z F ŒŒz � t ��'G˝F F ŒŒz � t �� [38, Lem. 0.2],
and thus is equivariantly (for the left action of the positive loop group) isomorphic to the
usual affine Grassmannian GrG over F formed using the parameter z � t 2 F ŒŒz � t ��. Its
special fiber is canonically the twisted affine flag variety F`G;f for G DGf over OF D kŒŒt ��

in the sense of [32].
Recall we fixed a conjugacy class ¹�º of geometric cocharacters in G with reflex

field E=F . This defines a closed subscheme Gr�¹�ºG � GrG ˝FE inside the affine
Grassmannian which is a (geometrically irreducible) projective E-variety. As in mixed
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characteristic above (see [37, 41]), the local model (or global Schubert variety) M¹�º D
M.G;Gf; ¹�º; t / is the scheme-theoretic closure of the locally closed subscheme

Gr�¹�ºG ,! GrG ˝FE ,! GrG ˝OF
OE :

By definition, the local model is a reduced flat projective OE -scheme, and equipped with
an embedding of its special fiber

M ¹�º WDM¹�º ˝OE
kE ,! F`G;f ˝k kE :

Likewise, the admissible locus A.G; ¹�º/ is defined as the union of the .f; f/-Schubert
varieties Sw � F`G;f ˝k Nk where w runs through the elements of the admissible set
Admf

¹�º � WfnW=Wf inside the double classes in the Iwahori–Weyl group.

4.2.2. Proof of Theorem 2.1 (i) in equal characteristic. As in the mixed characteristic
situation, the inclusion A.G; ¹�º/ � M ¹�º ˝kE

Nk is proven as part of [20, Thm. 5.14].
Let V D Lie G denote the Lie algebra which is a free OF -module of rank dimF .G/. The
adjoint representation G ! GL.V/ induces by functoriality a morphism of ind-projective
OF -ind-schemes

adWGrG ! GrGL.V/;

where the target is defined as in (4.11) using the OF -group scheme GL.V/. Also we
let Ldet be the determinant line bundle on the target, and denote by L WD ad�.Ldet/

its pullback. Let L NF (resp. L Nk) denote the restriction of L to the geometric generic
(resp. geometric special) fiber GrG ; NF D GrG; NF (resp. Gr

G ; Nk D F`G;f ˝k Nk). The rest of
the argument is the same as in mixed characteristic above using the following lemma.

Lemma 4.3. The pullback of the line bundle L to M¹�º is relatively ample over OE , and
for all n � 1 one has

dim NF �.M¹�º; NF ;L
˝n
NF
/ D dim Nk �.A.G; ¹�º/;L

˝n
Nk
/:

Proof. The proof relies on Proposition 3.1 and the Coherence Conjecture [41], and pro-
ceeds in the same steps as in Lemma 4.1. The restriction on the group G is a little milder
in equal characteristic due the existence of local models for any, possibly wildly ramified,
reductive group.

4.3. Proof of Corollary 2.3

We treat mixed and equal characteristic by the same argument, so that now the local
field F is either a finite extension of Qp or isomorphic to kF ..t//. Let .G0; ¹�0º; Gf0/!

.G; ¹�º;Gf/ be as in Corollary 2.3 where the reductive groupsG0!G are defined over F
and induce an isomorphismG0ad ' Gad on adjoint groups. As in [27, Prop. 2.2.2], the map
G0 ! G induces a map of OE 0 -schemes on local models

M.G0;¹�0º;Gf0 /
!M.G;¹�º;Gf/ ˝OE

OE 0 ; (4.12)
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where E 0=F (resp. E=F ) denotes the reflex field of ¹�0º (resp. ¹�º). Note that E � E 0 is
naturally a subfield.

Now on geometric generic fibers (4.12) is the canonical map Gr�¹�
0º

G0; NF
! Gr�¹�º

G; NF
on

Schubert varieties which is finite and birational by Proposition 3.5. In particular, (4.12) is
birational. To show that (4.12) is finite, we observe that this map is proper (because the
source and target are proper), and hence it is enough, by [40, 0A4X], to show that (4.12)
is quasi-finite. As we already know that (4.12) is (quasi-)finite in generic fibers, it remains
to show that it is quasi-finite on (reduced geometric) special fibers. By [20, Thm. 5.14],
the map (4.12) identifies on reduced geometric special fibers with the canonical map
A.G0; ¹�0º/! A.G; ¹�º/. Applying Proposition 3.5 again, we see that the latter map
is finite. This shows that (4.12) is birational and finite.

For universal homeomorphism, we have to show that the map (4.12) is integral,
universally injective and surjective [40, 04DC]. Being finite, this map is integral. Uni-
versal injectivity and surjectivity can be checked on geometric points over the fibers of
Spec.OE 0/ where they again follow from Proposition 3.5.

Now assume the normality of Gr�¹�º
G; NF

and all maximal .f [; f [/-Schubert varieties
inside A.G; ¹�º/. Then Theorem 2.1 (i) applies to show that the special M.G;¹�º;Gf/;kE0

is reduced (because it is geometrically reduced). Since its generic fiber is normal, we can
apply [34, Prop. 9.2] to prove the normality of M.G;¹�º;Gf/ ˝OE

OE 0 . As the map (4.12)
is finite and birational, it must be an isomorphism.

5. Cohen–Macaulayness of local models

5.1. Recollections on Frobenius splittings

Let X be a scheme in characteristic p > 0, and denote by F D FX WX ! X its absolute
p-th power Frobenius. The scheme X is called Frobenius split if the map OX ! F�OX
splits as a map of OX -modules. In this case a splitting map 'WF�OX ! OX is called a
Frobenius splitting. Also recall the following notions.

Definition 5.1. Let X be Frobenius split.

(i) We say X splits compatibly with some closed subscheme Z D V.I / � X if there
exists a splitting 'WF�OX ! OX such that '.F�I / � I .

(ii) We say X splits relative to some effective Cartier divisor D � X if the composition
OX ! F�OX ,! F�OX .D/ splits as a map of OX -modules.

Lemma 5.2. Let X be Frobenius split, and let D � X be an effective Cartier divisor. If
X splits compatibly with D, then X splits relative to .p � 1/ �D. In this case, X splits
relative to D.

Proof. Let 'W F�OX ! OX be a splitting compatible with D D V.OX .�D//, i.e., '
restricts to a splitting F�OX .�D/ ! OX .�D/. By tensoring with OX .D/ we obtain
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a splitting

F�OX ..p � 1/ �D/ D F�.OX .�D/˝OX
F �OX .D//

D F�OX .�D/˝OX
OX .D/! OX ;

i.e., X splits relative to .p � 1/ �D. The last assertion is immediate from the factorization
OX ! F�OX .D/ ,! F�OX ..p � 1/ �D/.

Remark 5.3. IfX is a smooth variety over an algebraically closed field, then the converse
to Lemma 5.2 holds. Namely, X splits compatibly with D if and only if X splits relative
to .p � 1/ �D. This is stated in [4, Thm. 1.4.10], but we do not need this sharper result.

Lemma 5.4. Let X be Frobenius split compatibly with closed subschemes Z1; Z2 � X .
Then each Zi , i D 1; 2, is Frobenius split compatibly with Z1 \Z2.

Proof. For i D 1; 2, let Zi D V.Ii / and let ' be a splitting with '.F�Ii / � Ii . This auto-
matically induces splittings on eachZi , and it is elementary to see that '.F�.I1C I2//�
I1 C I2. Since V.I1 C I2/ D Z1 \Z2, the lemma follows.

Proposition 5.5. Let X be Frobenius split and locally of finite type over a field (or a
Dedekind domain), and let D � X be an effective Cartier divisor. Assume that all local
rings of X are equidimensional (e.g., X integral). If X splits relative to D and XnD is
Cohen–Macaulay, then X is Cohen–Macaulay.

Proof. This is [3, Ex. 5.4], and the following proof was communicated to us by
K. Schwede.4 We have to show that all local rings OX;x for x 2 D are Cohen–Macaulay.
Without loss of generality we may assume that X D Spec.R/ where .R;m/ is a Noeth-
erian local equidimensional ring and D D V.f / for some non-zero-divisor f 2 m.
By [40, 0AVZ], we have to show that the local cohomology H i

m.R/ vanishes for i D
0; : : : ; d � 1, d WD dim.R/. Our finiteness assumptions on X imply that R admits a
dualizing complex [40, 0BFR], so that Lemma 5.6 below applies. Hence, there exists an
N � 0 with f N �H i

m.R/ D 0 for all i D 0; : : : ; d � 1. By [3, Lem. 5.2.3], there exists
for any e 2 Z�1 a splitting of the composition

R! F e�R
F e
�f

qe

����! F e�R; (5.1)

where qe WD 1 C p C � � � C pe�1, i.e., Spec.R/ is F e� -split relative to qe � V.f /. Now
choose e � 0 such that qe � N , i.e., f qe kills the local cohomologies as above. Finally,
consider the sequence of R-modules

H i
m.R/! H i

m.F
e
�R/

F e
�f

qe

����! H i
m.F

e
�R/:

Using H i
m.F

e
�R/ D F e�H

i
m.R/ (F� is exact) we see that F e�f

qe induces the zero map
on H i

m.F
e
�R/ for all i D 0; : : : ; d � 1. By virtue of the splitting (5.1) this means that

4Of course, any insufficiencies in the presentation are entirely due to the authors.
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the identity map on H i
m.R/ factors through 0, or equivalently H i

m.R/ D 0. The lemma
follows.

Lemma 5.6. Let .R;m; k/ be a Noetherian local ring of equidimension d which admits
a dualizing complex in the sense of [40, 0A7B]. Let f 2 R be a non-zero-divisor such
that the localization Rf is Cohen–Macaulay. For any finite R-module M whose localiz-
ation Mf is a projective Rf -module, there exists an integer N � 0 such that the local
cohomology vanishes:

f N �H i
m.M/ D 0 for all i D 0; : : : ; d � 1.

Proof. By the local duality theorem [40, 0AAK], we have

Ext�iR .M;!
�
R/
^
D HomR.H

i
m.M/;E/ D Hom OR.H

i
m.M/;E/;

where .�/^ denotes the m-adic completion, !�R the normalized dualizing complex [40,
0A7B] andE the injective hull of k. AsRf is Cohen–Macaulay and equidimensional, the
localized complex .!�R/f D !Rf

Œd � is concentrated in degree d [40, 0A86, 0AWS], so
that

Ext�iR .M;!
�
R/f D Extd�iRf

.Mf ; !Rf
/ D 0 for i D 0; : : : ; d � 1

where we have used the fact that Mf is projective over Rf for the last equation. Recall
that !�R is a cohomologically bounded complex whose cohomology groups are finite R-
modules (see [23, p. 257] or [40, 0A7B]). SinceM is finite, eachR-module Ext�iR .M;!

�
R/

is finite as well, and hence there exists a uniform N � 0 such that f N kills each module
Ext�iR .M; !

�
R/ ˝R

OR D Ext�iR .M; !
�
R/
^. We conclude that f N kills each H i

m.M/ by
Matlis duality [40, 08Z9], bearing in mind that H i

m.M/ satisfies the DCC because M is
finite and .R;m/ is Noetherian local [7, Prop. 3.5.4].

5.2. Proof of Theorem 2.1 (ii)

We begin with a general lemma.

Lemma 5.7. Let X be a flat scheme of finite type over a discrete valuation ring.

(i) Assume that the generic fiber X� is normal and the special fiber Xs is reduced. Then
X is normal.

(ii) Assume that the generic fiber X� is Cohen–Macaulay. Then X is Cohen–Macaulay if
and only if its special fiber Xs is Cohen–Macaulay if and only if its geometric special
fiber XNs is Cohen–Macaulay.

Proof. Part (i) is [34, Prop. 9.2], and (ii) is immediate from [40, 0C6G, 045P].

Now let F be a non-archimedean local field (either of mixed or equal characteristic),
and fix a triple .G; ¹�º;Gf/ as in §2 where G is defined over F . Let M WDM.G;¹�º;Gf/ be
the associated local model over OE , where E is the reflex field. As the geometric generic
fiber M NF is, by definition, a Schubert variety inside an affine Grassmannian which we
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assume to be normal, it is Cohen–Macaulay by Proposition 3.1 (i). By [40, 0380, 045V]
the generic fiber ME is normal and Cohen–Macaulay as well. In view of Theorem 2.1 (i)
and Lemma 5.7 this implies that M is normal. Here we are assuming that each maximal
Schubert variety inside the admissible locus A.G; ¹�º/ is normal.

It remains to show that if p > 2 then M is also Cohen–Macaulay. By Lemma
5.7 (ii) this is equivalent to the Cohen–Macaulayness of the geometric special fiber
M Nk D A.G; ¹�º/ (Theorem 2.1 (i)). As the combinatorics of Iwahori–Weyl groups are
the same in mixed and equal characteristic (see [20, Lem. 4.11] for a precise statement),
we may and do assume that F ' k..t// is of equal characteristic, i.e., M is a scheme in
characteristic p > 0. For this, we must remark that the group G[ in (4.4) arising from the
mixed characteristic situation is tamely ramified so that the tame ramification hypothesis
onG[sc used in Theorem 2.1 is satisfied; this holds by the description of the maximal torus
T 1 � G1 given in [20, Ex. 4.14]. Also we may and do assume that k D Nk is algebraically
closed because the formation of local models commutes with unramified base change.
Further, by (4.8) the admissible locus takes the form

Mk ' A.G; ¹�º/ ' A.G; ¹�º/o '
Y
j2J

ljY
iD1

A.Gj ; ¹�
.j /
i;1 º C � � � C ¹�

.j /
i;mj
º/o; (5.2)

where Gad D
Q
j2J ResFj =F .Gj / for absolutely simple Fj -groups Gj and mj WD

ŒFj W F
ur
j �, lj WD ŒF ur

j W F � for the maximal unramified subextension Fj =F
ur
j =F . As

products of locally Noetherian flat Cohen–Macaulay schemes are Cohen–Macaulay [40,
0C0W, 045J], we see that it is enough to prove the Cohen–Macaulayness of each
A.Gj ; ¹�

.j /
i;1 º C � � � C ¹�

.j /
i;mj
º/o, i.e., we may and do assume that G is absolutely almost

simple. Also note that under (5.2) the Schubert varieties in each factor are still normal by
Proposition 3.1 (ii) so that our normality assumption still holds for the Schubert varieties
in each absolutely almost simple factor.

Summarizing the discussion, we have an equal characteristic local modelM attached
with some absolutely almost simple group (so that Lemma 5.8 below is available) which
satisfies the normality assumptions of Theorem 2.1. We know that M is a flat projective
scheme over O D OE which is normal. Its generic fiber ME is Cohen–Macaulay, and its
special fiber Mk (D the admissible locus) is an effective Cartier divisor on M . We aim to
show that M is, as a whole, Cohen–Macaulay.

The key to the proof is the following lemma which is a direct consequence of [41,
Thm. 6.5] (this is also the key step in the proof of the Coherence Conjecture).

Lemma 5.8. Let p > 2. Then the local model M is Frobenius split compatibly with its
special fiber Mk �M viewed as a closed subscheme.

Proof. In [41, Thm. 6.5], an O-scheme X together with a closed immersion M � X
is constructed such that X is Frobenius split compatibly with both M and its special
fiber Xk . Hence, Lemma 5.4 implies that M is Frobenius split compatibly with M \Xk
DMk .
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Corollary 5.9. For p > 2, the local model M splits relative to its special fiber Mk �M

viewed as an effective Cartier divisor.

Proof. This follows from Lemmas 5.8 and 5.2.

As we already know that MnMk DME is Cohen–Macaulay, we can now apply Pro-
position 5.5 to conclude that M (and hence Mk D A.G; ¹�º/) is Cohen–Macaulay. It
remains to identify the dualizing sheaf on the local model.

Lemma 5.10. Let M D M.G;¹�º;G / be a local model in either mixed or equal char-
acteristic defined over the discrete valuation ring O D OE . If M is normal and
Cohen–Macaulay, then the dualizing sheaf is given by

!M D .�
d
M=O/

�;�;

where d D dim.ME / is the dimension of the generic fiber.

Proof. Both sheaves .�d
M=O

/�;� and !M are reflexive: for the first this is clear, and for
the second this is [28, Lem. 3.22] using the normality ofM . Let U WD .M/sm be the locus
which is smooth over O. It follows from [21, Thm. 6.12] (and [20, Thm. 5.14] for Weil
restricted groups in mixed characteristic) that the complement M n U has codimension
� 2. Also, by [40, 0EA0], there is a map�d

M=O
!!M which is an isomorphism restricted

to U . Thus, we get an isomorphism

.�dM=O/
�;�
jU ' �

d
U=O ' !U D !M jU ;

which by the normality of M and the reflexivity of both sheaves .�d
M=O

/�;�, !M extends
to all of M [24, Prop. 1.6] (see also [40, 0EBJ]).
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