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Abstract. We prove a sharp stability result concerning how close homothetic sets attaining near-
equality in the Brunn–Minkowski inequality are to being convex. In particular, resolving a conjec-
ture of Figalli and Jerison, we show there are universal constants Cn; dn > 0 such that for A � Rn

of positive measure, if jACA2 n Aj � dnjAj, then jco.A/ n Aj � CnjACA2 n Aj for co.A/ the convex
hull of A.
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1. Introduction

Let A;B � Rn be measurable sets, which we will always assume throughout to have
positive measure. The Brunn–Minkowski inequality states that

jAC Bj
1
n � jAj

1
n C jBj

1
n

for j � j the outer Lebesgue measure. Equality is known to hold if and only if A and B are
homothetic copies of the same convex body (less a measure 0 set). A natural question is
whether this inequality is stable: if we are close to equality in the Brunn–Minkowski
inequality, are A and B close to homothetic copies of the same convex body? More
precisely, we want to know if

! D min
KA�A;KB�B

KA;KB homothetic convex sets

max
²
jKA n Aj

jAj
;
jKB n Bj

jBj

³
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is bounded above in terms of the quantities

ı0 D
jAC Bj

1
n

jAj
1
n C jBj

1
n

� 1 and t D
jAj

1
n

jAj
1
n C jBj

1
n

:

The bound should be positively correlated with the quantity ı0, and negatively corre-
lated with min.t; 1 � t / (as when min.t; 1 � t / is smaller the volumes of A;B are more
disproportionate).

In this paper we prove the following sharp stability result for the Brunn–Minkowski
inequality in the particular case that A;B are homothetic sets. Taking A D B resolves
a conjecture of Figalli and Jerison [6].

Theorem 1.1. For all n � 2, there are a (computable) constant C 0n > 0 and (computable)
constants dn.�/ > 0 for each � 2 .0; 1

2
� such that the following is true. With the notation

above, if � 2 .0; 1
2
� and A;B �Rn are measurable homothetic sets such that t 2 Œ�; 1� ��

and ı0 � dn.�/, then
! � C 0n�

�1ı0:

For these optimal exponents, we also show that e�.n/ � C 0n � e
O.n logn/ with explicit

constants. We discuss this further in Section 5.
The most general stability result for the Brunn–Minkowski inequality was proved

in a landmark paper by Figalli and Jerison [5, Theorem 1.3]. There they showed that for
arbitrary measurable sets A;B � Rn, there exists (computable) constants ˇn; Cn > 0 and
˛n.�/; dn.�/ > 0 for each � 2 .0; 1

2
� such that if t 2 Œ�; 1 � �� and ı0 � dn.�/, then

! � Cn�
�ˇnı0˛n.�/

(prior to this result, Christ [3] had proved a non-computable non-polynomial bound involv-
ing ı0 and � via a compactness argument). A natural question is therefore to find the
optimal exponents of ı0 and � , prioritized in this order. This question, with A;B restricted
to various sub-classes of geometric objects, is the subject of a large body of literature.
These optimal exponents potentially depend on which class of objects is being consid-
ered. For arbitrary measurable A;B the question is still wide open. Our result is the first
sharp stability result of its kind which does not require one of A;B to be convex.

Most of the literature focuses on upper bounding a measure closely related to ! for
how close A;B are to the same convex set, namely the asymmetry index [9]

˛.A;B/ D inf
x2Rn

jA � .s � co.B/C x/j
jAj

;

where co.B/ is convex hull of B , and s satisfies jAj D js � co.B/j. We always have
˛.A;B/ � 2!, so bounding the asymmetry index is weaker than bounding !. When A
and B are convex, the optimal inequality

˛.A;B/ � Cn�
� 1

2 ı0
1
2 (1.1)

was obtained by Figalli, Maggi, and Pratelli in [8, 9]. When B is a ball and A is arbi-
trary, the optimal inequality (1.1) was obtained by Figalli, Maggi, and Mooney in [7]. We
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note that this particular case is intimately connected with stability for the isoperimetric
inequality. When just B is convex the (non-optimal) inequality

˛.A;B/ � Cn�
�.nC 3

4 /ı0
1
4

was obtained by Carlen and Maggi in [2]. Finally, Barchiesi and Julin [1] showed that
when just B is convex, we have the optimal inequality (1.1), subsuming these previous
results.

In [4] Figalli and Jerison gave an upper bound for ! when A D B , and later in [6]
they conjectured the sharp bound ! � Cnı0 when A D B . This conjecture was proved
in [6] for n � 3 using an intricate analysis which unfortunately does not extend beyond
this case. Later on, Figalli and Jerison suggested a stronger conjecture that ! � Cn��1ı0

for A;B homothetic regions, which we will prove in this paper.
Because previous sharp exponent results have taken at least one of A;B to be convex,

allowing for the use of robust techniques from convex geometry, the implicit hope was
that solving this special case would shine a light on the general case where previous
methods are not as applicable. The methods we use are indeed very different from the
ones from convex geometry and, after an initial reduction, from [6]. We hope that these
new techniques, particularly the fractal and the boundary covering detailed in Section 1.2,
can provide new insight into finding optimal exponents for general A;B .

1.1. Main theorem

As we are considering homothetic regions A;B , we can replace A with tA and B with
.1 � t /A. Note that t retains its earlier meaning as

t D
jtAj

1
n

jtAj
1
n C j.1 � t /Aj

1
n

:

Define the interpolated sumset of A as

D.AI t / WD tAC .1 � t /A D ¹ta1 C .1 � t /a2 j a1; a2 2 Aº:

Note that we always have A � D.AI t /. To quantify how small D.AI t / is, we introduce
the expression

ı.AI t / WD jD.AI t / n Aj:

As a further simplification, we note that

ı0 D
jD.AI t /j

1
n

jAj
1
n

� 1 D

�
1

n
C o.1/

��
jD.AI t /j

jAj
� 1

�
D

�
1

n
C o.1/

�
ı.AI t /

jAj
;

where o.1/ depends on the upper bound on ı0. Since the exponent of ı0 is always at
most 1 (as shown by Example 1.4), we may work with ı.AIt/

jAj
in place of ı0 by absorbing

the 1
n
C o.1/ term into C 0n to make a new constant Cn.

The following is the specialization of [5, Theorem 1.3] to homothetic A;B , which we
restate for the reader’s convenience.
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Theorem 1.2 (Figalli and Jerison [5]). For all n � 2 there are (computable) constants
ˇn; Cn > 0, and (computable) constants ˛n.�/; dn.�/ > 0 for each � 2 .0; 1

2
�, such that

the following is true. If A � Rn is a measurable set, � 2 .0; 1
2
� and t 2 Œ�; 1 � ��, then

jco.A/ n Aj � CnjAj��ˇn

�
ı.AI t /

jAj

�˛n.�/

whenever ı.AI t / � dn.�/jAj.

Our main result optimizes the exponents to be ˛n D ˇn D 1 in Theorem 1.2, verifying
the conjecture of [6] and the further generalization to homothetic sets suggested by Figalli
and Jerison.

Theorem 1.3 (Theorem 1.1 reformulated). For all n � 2, there is a (computable) con-
stantCn > 0 (we can takeCn D .4n/5n), and (computable) constants�n.�/ > 0 for each
� 2 .0; 1

2
� such that the following is true. If A � Rn is a measurable set, � 2 .0; 1

2
� and

t 2 Œ�; 1 � ��, then
jco.A/ n Aj � Cn��1ı.AI t /

whenever ı.AI t / � �n.�/jAj.

Example 1.4. To see that the exponents on ı and � are sharp, suppose we have some
inequality of the form

jco.A/ n Aj � CnjAj���1.ı.AI t /jAj�1/�2

whenever ı.AI t / � �n.�/jAj. Take

A D ¹.0; 0/ [ Œ�; 1C �� � Œ0; 1�º � Œ0; 1�n�2;

with �� �n.�/
2�

, and t D � . The inequality then becomes �
2
� Cn�

��1.��.2 � 3�//�2 :

Because we can take � arbitrarily small, it follows that �2 � 1, so �2 D 1 would be the
optimal exponent. Given �2 D 1, we then have �1 � 1, so �1 D 1 would be the optimal
exponent.

Remark 1.5. When n D 1, [4, Theorem 1.1] (a corollary of Freiman’s 3k � 4 theo-
rem [10]) with A replaced with tA and B replaced with .1 � t /A shows that the optimal
exponents are actually �0ı.AI t /1 in contrast to the case n � 2.

Example 1.6. Given exponents �1 D �2 D 1, the constant Cn grows at least exponen-
tially as shown by the following example. Let R � 2. Consider the set A � Rn defined
by A D Œ0; 2�n�1 � Œ�R; 0� [ ¹.0; : : : ; 0; 2/º. Then

co.A/ D A [
[

x2Œ0;2�

Œ0; 2 � x�n�1 � ¹xº and
AC A

2
D A [ Œ0; 1�n:

Hence,

ı

�
A;
1

2

�
D 1 and jco.A/ n Aj D

Z
x2Œ0;2�

.2 � x/n�1 dx D
2n

n
:

This example shows that Cn � 2n�1

n
.
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1.2. Outline

By replacing t with 1 � t , we may assume that t � 1
2

.

1.2.1. Initial reduction. We first carry out a straightforward reduction along the lines of
the reduction in [6] to [6, Lemma 2.2], reducing to the case that co.A/ is a simplex T , so
A contains all of the vertices of T . In this reduction we use Theorem 1.2, though we need
only the following much weaker statement due to Christ [3]: jco.A/ n AjjAj�1 is bounded
above by a (computable) function of the parameters ı.AI t /jAj�1 and � which, for fixed
� , tends to 0 as ı.AI t /jAj�1 tends to 0.

1.2.2. Fractal structure. Next we show that if ı.AI t /jAj�1 is small, then A contains an
approximate fractal structure. For each i we recursively construct a nested sequence of
families of simplices Ti;0 � Ti;1 � � � �; each family Ti;k consists of translates of .1 � t /iT
contained inside T , and in the limit

S
k Ti;k is dense among the translates of .1 � t /iT

contained inside T . We show that there exist universal constants ci;k;n D i C 2k such that
for translates T 0 2 Ti;k ,

j..1 � t /iA/T 0 \ Aj � j..1 � t /
iA/T 0 j � ci;k;nı.AI t /;

where ..1 � t /iA/T 0 is the translate of .1 � t /iA induced by the translation that identifies
.1 � t /iT with T 0. Though we need this fractal structure in order to prove this inequality
recursively, we only use the corollary that

jT 0 \ Aj �
jT 0j

jT j
jAj � ci;k;nı.AI t /:

This corollary quantitatively establishes that A becomes more homogeneous in T as
ı.AI t /jAj�1 ! 0.

1.2.3. Covering a thickened @T with small total volume. Next, we consider a large homo-
thetic scaled copy R WD .1 � �/T inside T for � � 1

n4 and we produce a cover A � Ti;k
of T nR for i � 5 log.n/

t
and k � n log.n/

t
. The cover A consists of translates of .1� t /iT �

1
n5T and has the property that the size of A is at most .2n/5n and the total volume of
the simplices in A is less than 1

2
jT j. We note that jAj; i; k affect the complexity of Cn,

whereas � affects only the complexity of �n.�/ and not Cn.
In order to produce the covering A above we proceed in two steps. First, we use a cov-

ering result of Rogers [12] to produce an efficient covering B of T nR with translates of
n�

1
n .1 � t /iT contained inside T . The covering B has the property that the size of B is

at most .2n/5n and the total volume of the simplices in B is less than 1
2n
jT j. Second, we

show that for each translate T 0 of n�
1
n .1 � t /iT contained inside T , there exists a simplex

T 00 2 Ti;k such that T 0 � T 00. This naturally gives the desired cover A.

1.2.4. Putting it all together. We may assume that R � D.AI t / since a straightforward
argument shows this holds whenever jT n AjjAj�1 is sufficiently small, and jT n AjjAj�1

tends to 0 as ı.AI t /jAj�1 ! 0 by Theorem 1.2. Rephrasing the homogeneity statement
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for A, for each T 0 2 Ti;k we have

jT 0 n Aj �
jT n Aj

jT j
jT 0j C ci;k;nı.AI t /:

Because A covers T nR and A � D.AI t /, we have jT nD.AI t /j �
P
T 02A jT

0 n Aj,
and by construction

P
T 02A jT

0j �
1
2
jT j. Combining these facts, we immediately deduce

jT nD.AI t /j �
1

2
jT n Aj C jAjci;k;nı.AI t /;

i.e.
jT n Aj � 2.1C jAjci;k;n/ı.AI t /:

Because jAj � .2n/5n and ci;k;n �
n log.n/
t

, we see that with Cn D .4n/5n we have

jT n Aj � Cn�
�1ı.AI t /:

2. Initial reduction

In this section, we will reduce Theorem 1.3 to Theorem 2.1, similar to the initial reduction
in [6] to [6, Lemma 2.2].

Theorem 2.1. For all n � 2 there are (computable) constants Cn > 0 (we can take Cn D
.4n/5n) and constants 0 < ın.�/ < 1 for each � 2 .0; 1

2
� such that the following is true.

Let � 2 .0; 1
2
�, t 2 Œ�; 1 � ��, and suppose T � Rn is a simplex with jT j D 1, A � T

a measurable subset containing all vertices of T , and jAj D 1 � ı with 0 < ı � ın.�/.
Then

jT n Aj � Cn�
�1ı.AI t /:

We first need the following geometric lemma.

Lemma 2.2. For every convex polytope P , there exists a point o 2 P (which we set to
be the origin) such that the following is true. For any constant bn.�/ 2 .0; 1/, there exists
a constant �n.�/ such that for any A � P , if t 2 Œ�; 1 � �� and jP n Aj � �n.�/jP j, then
.1 � bn.�//P � D.AI t /.

Proof. We may assume that t � 1
2

as the statement is invariant under replacing t with
1 � t . Without loss of generality we may assume that jP j D 1. By a lemma of John [11],
after a volume-preserving affine transformation, there exists a ball B � P of radius n�1.
Denote o for the center of B , and set o to be the origin.

We will show that .1 � bn.�//P � D.AI t /. Take x 2 .1 � bn.�//P , and let y be the
intersection of the ray ox with @P . Note that the ratio

r D
jxyj

joyj
� bn.�/:

Let H be the homothety with center y and ratio r . This homothety sends o to x and
P to H.P /. Note that H.P / � P because P is convex. Denoting

A0 D A \H.P /;
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we have
jA0j � rn � �n.�/:

The statement x 2 D.A0I t / is implied by the statement that o 2 D.C I t / for the set
C D H�1.A0/ � P , which we will now show (in fact, we will show o 2 D.C \ BI t /).

Note that jC j � 1 � r�n�n.�/, so jB n C j � r�n�n.�/. Consider the negative homo-
thety H 0 scaling by a factor of � t

1�t
2 Œ�1; 0/ about o. If o 62 D.C \ BI t /, then at least

one of y and H 0.y/ is not in C \ B for every y 2 B . A simple volume argument shows
that this would imply jB n C j � 1

2
jH 0.B/j, and as B contains a cube of side length 2p

n

we would have

r�n�n.�/ � jB n C j �
1

2
jH 0.B/j D

1

2

�
t

1 � t

�n
jBj �

1

2

�
�

1 � �

�n�
2
p
n

�n
:

Therefore as bn.�/�n � r�n, taking

�n.�/ < bn.�/
n 1

2

�
�

1 � �

�n�
2
p
n

�n
;

we deduce that o 2 D.C \ BI t / and therefore in particular x 2 D.A0I t /.

Observation 2.3. If P is a (regular) simplex T , we can take o to be the barycenter of T .

Proof that Theorem 2.1 implies Theorem 1.3. Note that we may assume that t � 1
2

since
Theorem 1.3 is invariant under replacing t with 1 � t . By approximation, we can assume
that A has polyhedral convex hull co.A/ with the vertices of co.A/ lying in A (see e.g.
[6, p. 3, footnote 2]).

Take bn.�/ to be the minimum of � and the constant such that

ın.�/
�1.1 � .1 � bn.�//

n/ D 1 � C�1n �;

and take �n.�/ as in Lemma 2.2.
From Theorem 1.2, we see that we can choose �n.�/ sufficiently small so that

jco.A/ n Aj � �n.�/jAj � �n.�/jco.A/j;

and therefore by Lemma 2.2 there is a translate of .1 � bn.�// co.A/ � D.AI t /. Let
o be the center of homothety relating this translate of .1 � bn.�// co.A/ and co.A/.
Because bn.�/ � � , the region toC .1 � t / co.A/ is contained in D.AI t /, so from this
we deduce thatD.A [ ¹oºI t / D D.AI t /. Therefore we may assume without loss of gen-
erality that o 2 A.

Note that the inequality in Theorem 1.3 that we want to deduce is equivalent to

jco.A/ nD.AI t /j � .1 � C�1n �/jco.A/ n Aj:

Triangulate co.A/ into simplices Ti by triangulating @ co.A/ and coning off each facet
at o. Then in each simplex Ti , we claim that

jTi nD.AI t /j � .1 � C
�1
n �/jTi n Aj:
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Provided jTi n Aj � ın.�/jTi j, applying Theorem 2.1 to Ti ; A \ Ti yields the stronger
inequality

jTi nD.A \ Ti I t /j � .1 � C
�1
n �/jTi n Aj:

On the other hand, if jTi n Aj � ın.�/jTi j, then as

bn.�/oC .1 � bn.�//Ti � D.AI t / \ Ti ;

we have

jTi nD.AI t /j � jTi j.1 � .1 � bn.�//
n/ � ın.�/

�1.1 � .1 � bn.�//
n/jTi n Aj

� .1 � C�1n �/jTi n Aj:

We conclude by noting

jco.A/ nD.AI t /j D
X
jTi nD.AI t /j

�

X
.1 � Cn�

�1/jTi n Aj D .1 � C
�1
n �/jco.A/ n Aj:

3. Setup and technical lemmas

We take A to satisfy the hypotheses of Theorem 2.1. We may assume that t � 1
2

since
Theorem 2.1 is invariant under replacing t with 1 � t . It suffices to prove the state-
ment for a particular choice of T since all simplices of volume 1 in Rn are equivalent
under volume-preserving affine transformations. Hence we work in a fixed regular sim-
plex T � Rn from now on. Let x0; : : : ; xn denote the vertices of T , and define the corner
�i -scaled simplices to be

S
j
i .�/ D .1 � �

i /xj C �
iT for 0 � j � n

and set
�i .�/ WD ¹S

0
i .�/; : : : ; S

n
i .�/º:

In the picture below, we have shaded one of the Sj2 .
1
2
/ inside T when n D 2.
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Define the �i -scaled k-averaged simplices Ti;k.�/ iteratively by

Ti;0.�/ D �i .�/;

Ti;kC1.�/ D ¹�B1 C .1 � �/B2 j B1; B2 2 Ti;k.�/º:

Note that all simplices in Ti;k.�/ are translates of �iT , and we have the inclusions

Ti;0.�/ � Ti;1.�/ � Ti;2.�/ � � � � :

For fixed i; �, the simplices in the family Ti;k.�/ eventually cover all of T and heavily
overlap each other as k !1 (in fact the translates become dense among all possible
translates of �iT which lie inside T ). Shaded below are the simplices in T2;1.

1
2
/ when

n D 2.

Lemma 3.1 is the crux of our argument. The proof of Lemma 3.1 shows that for all
T 0 2 Ti;k.1 � t /, the set jT 0 \ Aj contains a translated copy of .1 � t /iA (up to a bounded
error). This fractal structure allows us to conclude that jT 0 \ Aj is bounded below by
jT 0j.1 � ı/ (up to a bounded error).

Lemma 3.1. The constants ci;k;n D i C 2k are such that for every T 0 2 Ti;k.1 � t / we
have

jT 0 \ Aj � jT 0j.1 � ı/ � ci;k;nı.AI t /:

Proof. For the remainder of this proof, we will denote

� D 1 � t;

and write for notational convenience Sji instead of Sji .�/. The following notation will be
useful for us: consider the translation that brings �iT to T 0 and denote by .�iA/T 0 the
shift of the set �iA under this translation.

We shall actually show the stronger inequalities

j.�iA/T 0 n Aj � ci;k;nı.AI t /

(which are stronger as j.�iA/T 0 j D jT 0j.1 � ı/).
First, we show the inequality when k D 0. Recall that if T 0 2 Ti;0.�/, then T 0 D Sji

for some j . The inequality is trivial for .i; k/ D .0; 0/ by definition of ı.
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We now show the inequality for .i; k/ D .1; 0/. Note

.�A/
S

j
1

D .1 � �/xj C �A � D.AI t /;

so
j.�A/

S
j
1

n Aj � jD.AI t / n Aj D ı.AI t /:

Suppose we know the result for .i; 0/, we now prove the result for .i C 1; 0/. Then
.�iC1A/

S
j

iC1

D .1 � �iC1/xj C �
iC1A; and we have

j.�iC1A/
S

j

iC1

n Aj � j.�iC1A/
S

j

iC1

n .�A/
S

j
1

j C j.�A/
S

j
1

n Aj

D �nj.�iA/
S

j

i

n Aj C j.�A/
S

j
1

n Aj

� .�nci;0;n C c1;0;n/ı.AI t /

� ciC1;0;nı.AI t /:

Finally, we induct on k. We have proved the base case k D 0, so assume the inequality
for .i; k/. We will now prove the inequality for .i; k C 1/.

Thus we suppose that T 0 2 Ti;kC1, which by definition means that there exist sim-
plices T 01; T

0
2 2 Ti;k such that

T 0 D �T 01 C .1 � �/T
0
2:

We now prove an easy claim before returning to the proof of the lemma.

Claim 3.2. Let X;X 0 be translates of each other in Rn with common volume V D jX j D
jX 0j, and let Y � X , Y 0 � X 0. Then if V 0 is a constant such that jX n Y j; jX 0 n Y 0j � V 0,
we have

j�Y C .1 � �/Y 0j � V � V 0:

Proof. We have jY j; jY 0j � V � V 0, so the result follows from the Brunn–Minkowski
inequality.

Returning to the proof of the lemma, we have by the induction hypothesis that both

j.�iA/T 0
1
n Aj � ci;k;nı.AI t / and j.�iA/T 0

2
n Aj � ci;k;nı.AI t /:

Since .�iA/T 0
1

and .�iA/T 0
2

are translates of each other with common volume .1 � ı/jT 0j,
setting X D .�iA/T 0

1
, X 0 D .�iA/T 0

2
, Y D A \ .�iA/T 0

1
, Y 0 D A \ .�iA/T 0

2
we deduce

from the claim that

j�.A \ .�iA/T 0
1
/C .1 � �/.A \ .�iA/T 0

2
/j � jT 0j.1 � ı/ � ci;k;nı.AI t /:

Because D.AI t / D �AC .1 � �/A and .�iD.AI t //T 0 D �.�iA/T 0
1
C .1 � �/.�iA/T 0

2
,

we have

jD.AI t / \ .�iA/T 0 j � jD.AI t / \ .�
iD.AI t //T 0 j � j�

iD.AI t / n �iAj

� jD.AI t / \ .�iD.AI t //T 0 j � ı.AI t /

� j�.A \ .�iA/T 0
1
/C .1 � �/.A \ .�iA/T 0

2
/j � ı.AI t /

� jT 0j.1 � ı/ � .ci;k;n C 1/ı.AI t /;
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which as j.�iA/T 0 j D .1 � ı/jT 0j is equivalent to

j.�iA/T 0 nD.AI t /j � .ci;k;n C 1/ı.AI t /:

We conclude that

j.�iA/T 0 n Aj � j.�
iA/T 0 nD.AI t /j C ı.AI t /

� .ci;k;n C 2/ı.AI t /

D ci;kC1;nı.AI t /:

The following lemma shows that given ˛ < 1 and 1
2
� � < 1, any arbitrary covering

of T by translates of ˛n�T contained inside T can be approximated by a covering con-
sisting of elements of Ti;k.�/ for fixed small values i; k. The parameters i; k are positively
correlated with �; ˛.

Before we proceed, we need the following notation. Let Tk.�I�
0IT / be recursively

defined by setting

T0.�I�
0
IT / D ¹�0T C .1 � �0/xj j j 2 ¹0; : : : ; nºº;

Tk.�I�
0
IT / D ¹�B1 C .1 � �/B2 j B1; B2 2 Tk�1.�I�

0
IT /º:

Note that by definition, Ti;k.�/ D Tk.�I�
i IT /.

Lemma 3.3. For ˛;� 2 .0; 1/; � 2 Œ1
2
; 1/, every translate T 0 � T of ˛n�T is completely

contained in some element of Tk0.�I�IT / with

k0 D

nX
jD1

�
log.˛j�1.1 � ˛/�/

log.�/

�
:

Proof. To prove this, we need the following claim, which is essentially the result for
n D 1.

Claim 3.4. Every weighted average of two (corner) simplices in T0.�I˛�IT / lies in some
simplex of T`.�I�IT / with ` D dlog..1 � ˛/�/=log.�/e

Proof. Suppose the two corner simplices are at the corners xa and xb . Then every homo-
thetic copy T 0 � T of T is determined by the corresponding edge x0ax

0
b
. Thus the claim

is implied by the one-dimensional version of the claim by intersecting all simplices with
xaxb . Hence we may assume that T D Œ0; 1�, so that T0.�I�IT / D ¹Œ0; ��; Œ1 � �; 1�º,
and we want to show that every sub-interval of Œ0; 1� of length ˛� is contained in an
element of T`.�I�IT /.

We now proceed by showing that the largest distance between consecutive midpoints
of intervals in TjC1.�I�IT / is at most � times the largest such distance in Tj .�I�IT /.
Let I1; I2 be two consecutive intervals in Tj .�I�IT / for some j . Then in TjC1.�I�IT /

we also have the intervals JD�I1C .1��/I2 andKD.1��/I1C�I2, and the intervals
I1; J;K; I2 appear in this order from left to right as � � 1

2
. If d is the distance between the

midpoints of I1; I2, the distances between the consecutive midpoints of I1; J;K; I2 are
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.1 � �/d; .2� � 1/d; .1 � �/d , respectively. Therefore, the largest distance between two
midpoints djC1 in TjC1.�I�IT / is at most max.1 � �; 2� � 1; 1 � �/dj � �dj , where
dj is the largest distance between two consecutive midpoints in Tj .�I�IT /. Therefore,
the distance between two consecutive midpoints in T`.�I�IT / is at most �` � .1 � ˛/�.

Given an interval I of length ˛�, then either the midpoint lies in Œ0; �
2
� [ Œ1 � �

2
; 1�, in

which case I is already contained in one of Œ0; �� or Œ1 � �; 1� belonging to T0.�I�IT /,
or else we can find an interval I 0 2 T`.�I�IT / of length � such that the distance between
the midpoints of I and I 0 is at most 1

2
.1 � ˛/�, which implies I � I 0.

We prove our desired statement by induction on the dimension n. The claim above
proves the base case n D 1, so now assuming the statement is true for dimensions up
to n � 1, we will show it to be true for n.

Let T 0 � T be a fixed translate of ˛n�T , with corresponding vertices x00; : : : ; x
0
n.

Denote by F the facet of T opposite xn, and denote by F 0 the facet of T 0 opposite the
corresponding vertex x0n. Denote by H the hyperplane spanned by F 0. Then S D H \ T
is an n � 1-simplex, with vertices y0; : : : ; yn�1 such that yi is on the edge of T connect-
ing xi to xn.

If the common ratio r WD jyj xnj

jxj xnj
� ˛�, then T 0 is already contained in an element

of T0.�I�IT / and we are done. Otherwise, denote by T0; : : : ; Tn�1 � T the translates
of ˛�T that sit on H and have corners at y0; : : : ; yn�1, respectively. Denote the facet
Ti \H of Ti by Fi . We remark that each Fi is a translate of �0S for some fixed �0 � ˛�.

By the claim, the simplices T0; : : : ; Tn�1 are completely contained in elements of
T`.�I�IT / with

` D

�
log..1 � ˛/�/

log.�/

�
:

By the induction hypothesis applied to the n � 1-simplex S , F 0 is completely con-
tained in a simplex from the family T`0.�I�

0IS/ for

`0 WD

n�1X
jD1

�
log..1 � ˛/˛j�1�0/

log.�/

�
�

n�1X
jD1

�
log..1 � ˛/˛j�/

log.�/

�
;

as �0 � ˛�. Note that F 0 is contained in a certain iterated weighted average of the facets
F0; : : : ; Fn�1 if and only if T 0 is contained in the analogously defined iterated weighted
average of T0; : : : ; Tn�1. Therefore T 0 2 T`C`0.�I�IT /.

Finally, we have that `C `0 � k0, so T 0 2 Tk0.�I�IT / as desired.

The following lemma helps to show that arbitrary coverings of T can be modified at
no extra cost to coverings of T contained inside T .

Lemma 3.5. Let r 2 .0; 1/ and rT C x a translate of rT . Then there exists a y such that
.rT C x/ \ T � rT C y � T .

Proof. The intersection of any two copies of the simplex T is itself homothetic to T .
Therefore .rT C x/ \ T is homothetic to T , and so must be a translate of r 0T for some
r 0 � r . Because T is convex and .rT C x/ \ T is a homothetic copy of T lying inside T ,
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the center of homothety between .rT C x/ \ T and T lies inside .rT C x/ \ T , and
all intermediate homotheties lie inside T . In particular, there is a homothety which pro-
duces a translate of rT which lies inside T , and this translate by construction contains
.rT C x/ \ T .

4. Proof of Theorem 2.1

Recall that we may assume that t � 1
2

.

Proof of Theorem 2.1. Let

i D

� log
�
n

1
n

.2n/5

�
log.1 � t /

�
;

so that .1 � t /i 2 Œ n
1
n

2.2n/5
; n

1
n

.2n/5
� (as t � 1

2
). Note that

i � 1C
log..2n/5/

t
�
6 log.2n/

t
:

Let

� D n�
1
n .1 � t /i 2

�
1

2.2n/5
;

1

.2n/5

�
;

and let � D .nC 1/�.
Recall T is a regular simplex of volume 1, denote by o the barycenter. By Lemma 2.2,

setting o to be the origin, if we choose ın.�/ sufficiently small, thenR WD .1 � �/T is con-
tained inD.AI t /. LetLD .1C �.nC 1//T n .1� � � �.nC 1//T . Note that T nR � L
and for any T 0 a translate of �T intersecting T nR, we have T 0 � L.
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Claim 4.1. There exists a covering B of T nR by translates of �T contained in T such
that

P
T 02B jT

0j �
1
2n

and jBj � .2n/5n.

Proof of claim. It follows from [12] that1 for all n � 2, there exists r 2 R and there exists
a covering F of Rn=.rZ/n by translates of �T with average density at most 7n log.n/,
i.e.

jF j�n

rn
� 7n logn:

Passing to a multiple of r , we may assume that T;L � Œ� r
2
; r
2
�n. Consider a uniformly

random translate F C x. For any T 0 2 F and any point t 0 2 T 0, we have

P .T 0 C x � L/ � P .t 0 C x 2 L/ D
jLj

rn
:

Therefore,

E.j¹T 0 C x 2 F C x j T 0 C x � Lºj/ �
jLj

rn
jF j � jLj��n7n logn;

so there exists an x0 such that

j¹T 0 C x0 2 F C x0 j T
0
C x0 � Lºj � jLj�

�n7n logn:

Define
B 0 D ¹T 0 C x0 2 F C x0 j .T

0
C x0/ \ .T nR/ ¤ ;º:

Then by the above discussion we have B 0 is a covering of T nR, and

jB 0j � jLj��n7n logn:

By Lemma 3.5, for each element T 0 C x0 2 B 0 we can find a translate T 0 C yT0 such that
.T 0 C x0/ \ T � T

0 C yT0 � T . Define

B D ¹T 0 C yT0 j T
0
C x0 2 B 0º:

Then B is a cover of T nR by translate of �T contained in T with jBj � jLj��n7n logn.
We can calculate the upper bound

jLj D .1C �.nC 1//n � .1 � � � �.nC 1//n

D .1C �.nC 1//n � .1 � 2�.nC 1//n

� 1C 2�n.nC 1/ � .1 � 2�n.nC 1//

D 4�n.nC 1/:

The inequality follows from the fact that �k.nC 1/k
�
n
k

�
� .1

2
/k2�.nC 1/ and the con-

vexity of .1 � x/n for x 2 .0; 1/.
Therefore,

jBj � 4�n.nC 1/��n.7n logn/ �
1

2n
��n � .2n/5n

1We note that n D 2 is not mentioned explicitly in [12] but follows easily.
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and X
T 02B

jT 0j D �njBj � �n
1

2n
��n �

1

2n
:

Claim 4.2. There is a cover A � Ti;k.1 � t / of T nR with k � 8n log.2n/
t

such that

jAj � .2n/5n and
X
T 002A

jT 00j �
1

2
:

Proof. We apply Lemma 3.3 with ˛ D n�
1
n , � D 1 � t , � D .1 � t /i and obtain

k D

nX
jD1

�
log.˛j�1.1 � ˛/�/

log.�/

�
� n

�
log.˛n.1 � ˛/�/

log.�/

�

� n

�
1C

log
� logn
2n2 �

�
log.�/

�
� n

�
1C

log
� logn
.2n/7

�
�t

�
�
8n log.2n/

t
:

This shows that every translate of �T D n�
1
n .1 � t /iT inside T is contained in some ele-

ment of Tk..1 � t /I .1 � t /
i IT / D Ti;k.1 � t /. For each simplex T 0 2 B, we can there-

fore choose a simplex f .T 0/ 2 Ti;k.1 � t / such that T 0 � f .T 0/. Let

A D ¹f .T 0/ j T 0 2 Bº:

Note that A is a cover of T nR,

jAj D jBj � .2n/5n;

and X
T 002A

jT 00j D .n
1
n /n

X
T 02B

jT 0j �
1

2
:

Returning to the proof of Theorem 2.1, note that since A � Ti;k.1 � t /, Lemma 3.1
implies that for every T 00 2 A we have

jT 00 n Aj �
jT n Aj

jT j
jT 00j C ci;k;nı.AI t /:

Since R � D.AI t /, we have

jT nD.AI t /j D j.T nR/ nD.AI t /j �
X
T 002A

jT 00 nD.AI t /j �
X
T 002A

jT 00 n Aj

�
jT n Aj

jT j

X
T 002A

jT 00j C jAj � ci;k;nı.AI t /

�
1

2
jT n Aj C jAj � ci;k;nı.AI t /;
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which after replacing jT nD.AI t /j D jT n Aj � ı.AI t / yields

jT n Aj � 2.1C jAj � ci;k;n/ı.AI t /:

We estimate

ci;k;n D i C 2k �
6 log.2n/

t
C
16n log.2n/

t
�
19n log.2n/

t
:

Therefore

2.1C jAjci;k;n/ � 2

�
1C .2n/5n

19n log.2n/
t

�
�
.4n/5n

�
:

In conclusion, with Cn D .4n/5n we obtain

jT n Aj � Cn�
�1ı.AI t /

as desired.

5. Sharpness of Cn

In studying the asymptotic behavior of the optimal value of Cn in Theorem 1.3, we note
that there is still a gap of order log.n/ in the exponent between the upper and lower
bounds. Our proof shows the upper bound

Cn � .4n/
5n
D e5n log.4n/

and, the example mentioned in the introduction shows the lower bound Cn � 2n�1

n
.

In our method the complexity of Cn is limited by the fact that jAj � Cn, where A

is a set of translates of �T contained inside T with � � 1
2

covering @T and satisfyingP
T 02A jT

0j < jT j. In fact, by a slight restructuring of our proof it is equivalent to cov-
ering just a single facet F of T . Taking A0 to be the family of intersections of elements
of A with the hyperplane containing F , we see that jA0j � Cn with A0 a set of translates
of �F covering F and

P
F 02A0 jF

0j < ��1jF j.

Question 5.1. Is it true that for every 0 < �0 � 1
2

, then for all sufficiently large n if
F � Rn is a simplex and A0 is a family of translates of �0F covering F we haveX

F 02A0

jF 0j > ��10 jF j‹

Resolving this question would shed light on the correct growth rate of Cn. In partic-
ular, if the question has a negative answer with ��10 replaced with ��10 .1 � �/ for some
fixed �, then our methods would show that Cn has exponential growth.

Acknowledgments. The authors would like to thank their respective institutions Clare College, Uni-
versity of Cambridge, Harvard University, and Trinity Hall, University of Cambridge, respectively.
Collectively we would also like to thank Professor Alessio Figalli for his suggestion to extend
our results from equal sets to homothetic sets, Professor David Jerison for improvements to the
exposition, and our advisor Professor Béla Bollobás for his continued support.



Sharp stability of Brunn–Minkowski for homothetic regions 4223

References

[1] Barchiesi, M., Julin, V.: Robustness of the Gaussian concentration inequality and the Brunn–
Minkowski inequality. Calc. Var. Partial Differential Equations 56, Paper No. 80, 12 (2017)
Zbl 1378.60042 MR 3646982

[2] Carlen, E., Maggi, F.: Stability for the Brunn–Minkowski and Riesz rearrangement inequal-
ities, with applications to Gaussian concentration and finite range non-local isoperimetry.
Canad. J. Math. 69, 1036–1063 (2017) Zbl 1379.26021 MR 3693147

[3] Christ, M.: Near equality in the Brunn–Minkowski inequality. arXiv:1207.5062 (2012)
[4] Figalli, A., Jerison, D.: Quantitative stability for sumsets in Rn. J. Eur. Math. Soc. (JEMS) 17,

1079–1106 (2015) Zbl 1325.49052 MR 3346689
[5] Figalli, A., Jerison, D.: Quantitative stability for the Brunn–Minkowski inequality. Adv. Math.

314, 1–47 (2017) Zbl 1380.52010 MR 3658711
[6] Figalli, A., Jerison, D.: A sharp Freiman type estimate for semisums in two and three dimen-

sional Euclidean spaces. Ann. Sci. Éc. Norm. Supér. (4) 54, 235–257 (2021) Zbl 07360798
MR 4245865

[7] Figalli, A., Maggi, F., Mooney, C.: The sharp quantitative Euclidean concentration inequality.
Camb. J. Math. 6, 59–87 (2018) Zbl 1385.39005 MR 3786098

[8] Figalli, A., Maggi, F., Pratelli, A.: A refined Brunn–Minkowski inequality for convex sets.
Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2511–2519 (2009) Zbl 1192.52015
MR 2569906

[9] Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric
inequalities. Invent. Math. 182, 167–211 (2010) Zbl 1196.49033 MR 2672283

[10] Freı̆man, G. A.: The addition of finite sets. I. Izv. Vysš. Učebn. Zaved. Matematika 1959,
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