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Abstract. We obtain an improved Fourier restriction estimate for a truncated cone using the method
of polynomial partitioning in dimension n � 3, which in particular solves the cone restriction con-
jecture for n D 5, and recovers the sharp range for 3 � n � 4. The main ingredient of the proof is
a k-broad estimate for the cone extension operator, which is a weak version of the k-linear cone
restriction conjecture for 2 � k � n.
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1. Introduction and main results

In this article, we obtain an improved Fourier restriction estimate for the cone in all
dimensions n � 3, and in particular solve the cone restriction conjecture of Stein [14]
in dimension n D 5.

The Fourier restriction conjecture is one of the central open problems in harmonic
analysis. It concerns a very basic question: whether Of , the Fourier transform of a func-
tion f , can be meaningfully restricted to a hypersurface. Stein [14] conjectured that for
well curved surfaces such as sphere, paraboloid, or the cone studied in the present article,
this is indeed the case. The precise statement of Stein’s conjecture about the cone is the
following.

Conjecture 1 (Cone restriction conjecture). Let n � 3 and C be the truncated cone in Rn

defined in (1.1) below. For all 1 � p < 2.n � 1/=n,

k Of jCkLp.CId�/ � Cpkf kLp.Rn/; 8f 2 Lp.Rn/;

where d� denotes the surface measure on C.
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This conjecture was so far known to be true only in dimensions n D 3 and 4, proved
by Barceló [1] and Wolff [19] respectively. The main contribution of the present article is
the resolution of the conjecture in dimension n D 5 and improved partial results towards
higher-dimensional cases.

The Fourier restriction conjecture on various surfaces with enough curvature is dir-
ectly connected to many open conjectures in analysis and PDE including the Kakeya
conjecture, the Bochner–Riesz conjecture, and the local smoothing conjecture for wave
equations. It is also known that certain versions of the restriction estimates can be used to
study problems in other related fields such as geometric measure theory (e.g. Falconer’s
distance set conjecture) and analytic number theory (e.g. estimating the number of solu-
tions to Diophantine equations). It has been extensively studied for decades, and we refer
to [5, 6, 9, 10] and the references therein for historical remarks on the problem and the
aforementioned connections. However, there are very few surfaces and dimensions for
which a sharp restriction theorem is known. For example, the restriction conjecture for
the paraboloid and the sphere remains open for n � 3. Moreover, it is known [16] that
there is a certain link between the restriction estimate for the cone in RnC1 and that for
the paraboloid, sphere, or other conic sections in Rn, which suggests possible further
applications of our result.

We now give the precise formulation of the main theorem. Let Bn�1 be the open unit
ball in Rn�1 and denote its closure by NBn�1. Given a function f W 2 NBn�1 n Bn�1 ! C,
where 2 NBn�1 n Bn�1 denotes the closed annulus ¹� 2 Rn�1 W 1 � j�j � 2º, define the
truncated cone as

C D ¹.�; �n/ 2 Rn�1 �R W �21 C � � � C �
2
n�1 D �

2
n ; 1 � �n � 2º: (1.1)

Then the associated Fourier extension operator from the truncated cone C is

Ef .x/ WD

Z
2 NBn�1nBn�1

ei.x1�1C���Cxn�1�n�1Cxnj�j/f .�/ d�:

It is well known that a Fourier restriction estimate is equivalent to a Fourier extension
estimate by a short duality argument. Therefore, our main restriction estimate can be
formulated as follows:

Theorem 1. For n � 3, the extension operator E from the cone satisfies

kEf kLp.Rn/ � Cpkf kLp.2 NBn�1nBn�1/; 8f 2 Lp.2 NBn�1 n Bn�1/;

whenever

p >

8̂̂<̂
:̂
4 if n D 3;

2 � 3nC1
3n�3

if n > 3 and n is odd;

2 � 3n
3n�4

if n > 3 and n is even:

(1.2)

When nD 3 and nD 4, this recovers the sharp range of p (p > 4 for nD 3 by Barceló
[1] and p > 3 for n D 4 by Wolff [19]) for which the cone restriction estimate holds true.
When n D 5, Theorem 1 yields for the first time the sharp range p > 8=3 for the cone
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restriction estimate. When n � 6, Theorem 1 provides new partial progress towards the
sharp range p > 2.n�1/

n�2
corresponding to Conjecture 1. Before our work, the best known

range for n > 4 was p > 2.nC 2/=n, proved by Wolff [19] using a bilinear method.
It is also interesting to study Lq ! Lp restriction estimates for q ¤ p. Stein con-

jectured that E W Lq ! Lp whenever p > 2.n�1/
n�2

and q0 � n�2
n
p based on the Knapp

example. When q > p, such an estimate is immediately implied by Theorem 1 using
Hölder’s inequality. When q < p, one can obtain the following estimate by slightly modi-
fying the proof of Theorem 1.

Theorem 2. For n � 3, the operator E defined above satisfies

kEf kLp.Rn/ � Cp;qkf kLq.2 NBn�1nBn�1/; 8f 2 Lq.2 NBn�1 n Bn�1/;

whenever the tuple .p; q; k/ is admissible in the sense that q > 2, 2 � k � n and8<:p > 2 � nC2n ; q0 � n�2
n
p if k D 2;

p > 2 � nCk
nCk�2

; p � n
2n�k�1

2 �
n�kC1
q

if k � 3:
(1.3)

For each fixed n, one can optimize the range of Lq ! Lp restriction estimate above
by choosing the most suitable k. In particular, in the case nD 5, taking k D 3, Theorem 2
implies the optimal conjectured range p > 8

3
; q0 � 3

5
p. The result in the open range of

(1.3) follows from a similar argument for Theorem 1. In order to obtain the endpoint
estimate, we apply bilinear interpolation with a bilinear cone restriction estimate obtained
in [19]. The interpolation argument is adapted from the work of Tao, Vargas and Vega
[17], where the paraboloid version of the question is studied.

We prove the theorems above using polynomial partitioning. The idea of applying the
polynomial method in harmonic analysis dates back to the resolution of the finite field
Kakeya problem by Dvir [8]. Later on, Guth and Katz [11] introduced polynomial par-
titioning techniques to solve the Erdős distinct distances problem in combinatorics. In
2014, Guth [9, 10] introduced polynomial partitioning into the study of restriction estim-
ates (see also Wang [18] and Hickman–Rogers [13] for further refinements), which was
used by Du, Guth and Li [7] to solve the Schrödinger maximal estimate in R2.

More precisely, polynomial partitioning will be used in Section 3 where we prove
a k-broad restriction inequality on the cone (Theorem 3), which is a weak version of
the k-linear restriction estimate (3.5). The k-broad to linear reduction (i.e. how The-
orem 3 implies Theorem 1) is similar to the arguments in [10] for the paraboloid: it will
be obtained by the k-broad estimates together with decoupling and Lorentz rescaling.

Compared to the case of the paraboloid treated in [9,10], the main novelty of our argu-
ment is as follows. In the paraboloid case, polynomial partitioning reduces the problem to
a lower-dimensional problem using the so-called equidistribution property. This property,
however, fails to hold in the case of the cone. The failure essentially boils down to the fact
that the cone has vanishing curvature in one direction at each point, thus the geometry
of the resulting wave packets is more subtle. To overcome this geometric obstruction,
we remove a negligible part of Ef and show that the equidistribution property holds for
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the remaining part. We leave a more detailed discussion to Section 5.2.3. In addition, an
important ingredient in the induction by scales argument is to understand how the wave
packet decompositions (see Section 2 for definition) at various scales are related to each
other. This is another step in the proof where the cone has to be treated very differently
from the paraboloid. We address this question in Section 5.2.1, which seems to be of
independent interest.

The article is organized as follows. In Section 2, we recall several common notations
and basic tools in restriction theory (e.g. wave packet decomposition). Then, in Section 3
we introduce the aforementioned k-broad restriction inequality (Theorem 3), which will
be applied to obtain the main results, Theorems 1 and 2, in Section 6. The proof of The-
orem 3 is provided in Section 5 using polynomial partitioning, before which the basic
setup of the polynomial partitioning method is introduced in Section 4.

2. Preliminaries

2.1. Notations

Throughout the paper, we work with smooth functions f;g W 2 NBn�1 nBn�1!C. We use
BnR to denote an arbitrary ball in Rn of radius R and oftentimes we write BR D BnR for
short when the dimension of the space is clear from the context. The ˛-neighborhood of
a set E is denoted by N˛.E/. If Z is an algebraic variety in Rn, then its tangent plane at
z 2 Z is denoted by TzZ.

Our arguments will frequently involve a small parameter � > 0 and a large parameter
R > 1. Given positive numbers A;B and a list L of quantities, we use A .L B to denote
A � CLB for some absolute constant depending only on L and possibly the dimension n;
similarly for A &L B . And A �L B is used if both A .L B and A &L B hold. Further,
OL.1/ denotes a quantity that is smaller than a constant depending on L only. Moreover,
A / B if A � C�R�B for any � > 0 and R > 1.

We say a quantity is RapDec.R/ if it is bounded by a huge negative power ofR, which
makes it negligible in our arguments. A function Ef is said to be essentially supported in
a set � with an underlying parameter R if all appropriate norms of the tail of Ef outside
� are RapDec.R/.

2.2. Wave packet decomposition

We briefly recall the wave packet decomposition, an essential tool in our argument. Fix
a large parameter R � 1. Cover the region 2 NBn�1 n Bn�1 by finitely overlapping sec-
tors � of length 1 (in the radial direction) and angular width R�1=2. Let ¹ �º be a smooth
partition of unity subordinate to this cover, and write f D

P
�  �f .

Next, we break up  �f according to frequency. We do it in two steps. First, we cover
Rn�1 by finitely overlapping cubes of side length�R1=2Cı , centered at v 2R1=2CıZn�1.
Here ı > 0 is a fixed small parameter. Let ¹�vº be a smooth partition of unity subordinate
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to this cover. We write
f D

X
�; v

.�v. �f /
^/_:

Second, we break the function .�v. �f /^/_ into even finer pieces according to � .
More precisely, for each � , let �� D .��;1; : : : ; ��;n�1/ be the point on the central line
of � with j�� j D 1. We cover the R1=2Cı -cube centered at v by parallel thin plates P `

�; v

of radius � R1=2Cı and thickness Rı=2, where the normal direction of P `
�;v

is �� and
`D 1; : : : ;� R1=2. Let ¹�`

�;v
º be a smooth partition of unity subordinate to this cover. We

write
f D

X
�; v; `

.�`v;��v. �f /
^/_:

Note that .�v/^.�/ is rapidly decaying for � outside of ¹� 2 Rn�1 W j�j & R�1=2º and
.�`
�;v
/^.�/ is rapidly decaying for � 2 Rn�1 outside a thin tube of length 1 and radius

R�1=2 pointing in direction �� . We can choose smooth functions z � so that z � is essen-
tially supported on � , and z � D 1 on a cR�1=2-neighborhood of the support of  � for a
small constant c > 0. Now we define

f `�;v WD
z � Œ.�

`
v;��v. �f /

^/_�:

Because of the rapid decay of �_v and .�`
�;v
/_,

kf `�;v � .�
`
v;��v. �f /

^/_kL1 � RapDec.R/kf kL2 :

Therefore, one has the decomposition

f D
X
�; v; `

f `�;v C Err; where kErrkL1 � RapDec.R/kf kL2 :

The functions ¹f `
�;v
º are almost orthogonal. For any set T of .�; v; `/, one has X

.�;v;`/2T

f `�;v

2
L2
�

X
.�;v;`/2T

kf `�;vk
2
L2
:

When restricted to a large ball BR centered at the origin with radius R, Ef `
�;v

is
essentially supported on a thin tube T `

�;v
of length Rı in the mini direction M.�/ D

.�� ; 1/, R in the long direction L.�/ D .�� ;�1/, and R1=2Cı in the other directions.
More precisely, T `

�;v
can be identified with the Rı -neighborhood of the Minkowski sum

P `
�;v
C RL.�/, where P `

�;v
is viewed as a subset of Rn with the nth coordinate zero

and by an abuse of notation, RL.�/ means the line segment ¹tL.�/ W 0 � t � Rº. Note
that there is a one-to-one correspondence between the tubes T `

�;v
and the parallelotopes

NRı .P
`
�;v
C RL.�// and they are of comparable sizes: 1

10
T `
�;v
� NRı .P

`
�;v
C RL.�//

� 10T `
�;v

. Therefore, we do not distinguish them in the following.
The following lemma shows that Ef `

�;v
is essentially supported on T `

�;v
.
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Lemma 2.1. If x 2 BR n T `�;v , then

jEf `�;v.x/j � RapDec.R/kf kL2 :

Proof. Let h be a function on Rn�1 satisfying supph � 2 NBn�1 nBn�1. Then the Fourier
transform F of Eh in Rn can be written as

F.Eh/.�; �n/ D h.�/ı�nDj�j:

Similarly, F.E.hg// D h.�/ı�nDj�j � g.�/, hence

E.hg/ D Eh � Œ OgıxnD0�

where Og denotes the Fourier transform of g in Rn�1.
By choosing hD z � and g D .�`

�;v
�v. �f /

^/_, one can writeEf `
�;v
D E.hg/. Note

that Og is supported on P `
�;v

.
We use stationary phase to estimate Eh. Inside BR, jEh.x/j � RapDec.R/ if x is

outside a thin tube T 0
�

centered at the origin, of length R in the long direction L.�/,
Rı in the mini direction M.�/, and R1=2Cı in the other directions. Recall that T `

�;v
can

be identified with the Rı -neighborhood of the Minkowski sum P `
�;v
C RL.�/, which

contains the Minkowski sum P `
�;v
C T 0

�
, the support of E.hg/. Hence the desired result

follows. Again, here P `
�;v

is considered as a subset of Rn with the nth coordinate being
zero.

Let T be a collection of wave packets of f . In our argument, we often say f is
concentrated on wave packets from T , which means thatX

.�;v;`/…T

kf `�;vk
2
L2

. RapDec.R/kf kL2 :

3. A k-broad estimate for the cone

Using a standard �-removal trick [15], one can reduce the desired global Fourier extension
estimate

kEf kLp.Rn/ .p kf kLp.2 NBn�1nBn�1/; 8p with (1.2);

to the following local version:

kEf kLp.Bn
R
/ .p;� R�kf kLp.2 NBn�1nBn�1/; 8� > 0; 8R > 1; 8p with (1.2): (3.1)

(Indeed, the range (1.2) is open, and the �-removal trick enables one to deduce the global
estimate at all p > Np from the local estimate at p D Np.)

In order to study estimates of the form (3.1) with E replaced by the Fourier extension
operator from the paraboloid, Guth [10] introduced a useful strategy that decomposes Ef
restricted to BR into a broad part and a narrow part. The narrow part is locally supported
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in some lower-dimensional subspace of Rn and can be treated using decoupling [5] and
induction on spatial scales. He thus reduced (3.1) to an estimate of the broad part and
successfully derived (3.1) for a large range of p.

In this article, we prove (3.1) for the cone extension operator following the same
strategy. The narrow part of Ef will be treated in Section 6. In this section, together with
Sections 4 and 5, we deal with the broad part by formulating a k-broad norm and by
proving a general k-broad estimate (Theorem 3). For many arguments in the following
sections, the k-broad norm BL

p

k
behaves almost like the Lp norm.

Fix a large constant R and K such that K � R. We decompose 2 NBn�1 n Bn�1 in
the frequency space into sectors � of dimension 1 � K�1 � � � � � K�1, i.e. length 1 in
the radial direction and K�1 in the other directions. Using a smooth partition of unity
subordinate to the cover ¹�º, one writes f D

P
� f� where f� D f�� .

Let G.�/ D
S
��� L.�/. Here, recall that � is a sector of 2 NBn�1 n Bn�1 of angu-

lar radius R�1=2, and L.�/ denotes the long direction of the wave packets determined
by � . Then G.�/ � Sn�1 is contained in a spherical cap with radius � K�1, represent-
ing possible long directions of wave packets in Ef� . For any subspace V � Rn, we write
Angle.G.�/;V / for the smallest angle between any non-zero vectors v 2 V and v0 2G.�/.

In the physical space, we decompose the ball BR �Rn into small balls BK2 . For each
BK2 � BR, consider

R
B
K2
jEf� j

p for every � .

Heuristically, we sayEf is k-narrow at BK2 if there exists � , theK�2-neighborhood
of some .k � 2/-dimensional linear subspace of Rn�1, such that

R
B
K2
jEf jp is dominated

by
R
B
K2
jEf� j

p , where f� is the restriction of f on � . If Ef is not k-narrow at BK2 ,
then we say it is k-broad at BK2 and we haveZ

B
K2

jEf jp � KO.1/
Z
B
K2

sup
�1;:::;�k W

G.�1/^���^G.�k/&K
�O.1/

kY
jD1

jEf�j j
p=k : (3.2)

In the above, G.�1/ ^ � � � ^ G.�k/ denotes the infimum of the wedge product L.�1/ ^
� � � ^ L.�k/ over all choices of sectors �j � �j of angular radius R�1=2, j D 1; : : : ; k.

The k-broad norm of Ef , roughly speaking, will be defined as the sum of the right
hand side of (3.2) over those BK2 where Ef is k-broad. However, in order to make
the argument rigorous, we need a more technical definition of k-broad norm that carries
similar heuristics.

Here are the details. For a fixed parameter 1 < A . K� , define

�Ef .BK2/ WD min
V1;:::;VA .k�1/-subspaces of Rn

�
max

� WAngle.G.�/;Va/>K�2;8a

Z
B
K2

jEf� j
p

�
: (3.3)

Then for any open set U being the union of some balls BK2 , we define the k-broad part
of kEf kLp.U / by

kEf k
p

BL
p

k;A
.U /
WD

X
B
K2
�U

�Ef .BK2/:
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In fact, if defined on each BK2 as a constant multiple of the Lebesgue measure, �Ef
can be extended to a measure on BR. In particular, �Ef .BR/ D kEf k

p

BL
p

k;A
.BR/

. Note

that a similar measure is used in [10] for the study of the broad part of the extension
operator from the paraboloid. There, a quantity similar to �Ef .BK2/ is defined but with a
different angle condition, Angle.G.�/; Va/ > K�1. Our angle condition is more relaxed,
hence makes the broad estimate slightly more difficult. However, this change is necessary
for the cone; later in the narrow case (Section 6), one needs to ensure that there are not too
many sectors � whose corresponding long directions are near a low-dimensional subspace
V �Rn. We leave a more detailed discussion on whyK�2 would be enough to Section 6.

The parameterA is introduced to make the normBL
p

k;A
behave more like a regularLp

norm. In particular, it satisfies the following triangle inequality and Hölder’s inequality,
which are adapted directly from [10, Lemmas 4.1 and 4.2]. Note that even though we are
working with the cone and with a different angle condition, the same arguments as in [10]
still work. We omit the proofs.

Lemma 3.1 (Triangle inequality). Suppose 1 � p <1, f D g C h and A D A1 C A2,
where A;Ai are nonnegative integers. Then

kEf kBLp
k;A

.U / . kEgkBLp
k;A1

.U / C kEhkBLp
k;A2

.U /:

Lemma 3.2 (Hölder’s inequality). Suppose 1 � p;p1; p2 <1, and 0 � ˛1; ˛2 � 1 obey
˛1 C ˛2 D 1 and

1

p
D
˛1

p1
C
˛2

p2
:

Suppose that A D A1 C A2. Then

kEf kBLp
k;A

.U / � kEf k
˛1

BL
p1
k;A1

.U /
kEf k

˛2

BL
p2
k;A2

.U /
:

In order to be able to apply these inequalities many times in the argument (say, O�.1/
times), one needs to choose A sufficiently large (depending on �). The relation between
the parameters K;A;R is

1� A . K� . R�
2

:

The main result of this section is the following:

Theorem 3. For any 2 � k � n and any � > 0, there is a large constant A such that

kEf kBLp
k;A

.BR/
.� R�kf kL2.2 NBn�1nBn�1/ (3.4)

for any p � Np.k; n/ WD 2 � nCk
nCk�2

.

Theorem 3 is a weak version of the k-linear cone restriction conjecture, which says
that if U1; : : : ; Uk � 2 NBn�1 nBn�1 are transverse, i.e. jL.�1/^ � � � ^L.�k/j & 1 for any
choices of �j � Uj , and fj is supported in Uj , 1 � j � k, then kY

jD1

jEfj j
1=k

Lp.BR/

. R�
kY

jD1

kfj k
1=k

L2.2 NBn�1nBn�1/
: (3.5)
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This has been proven in [19] and [4] in the cases k D 2 and k D n respectively. When
3 � k � n � 1, it is unknown whether the k-linear cone restriction holds true. The only
progress towards it that the authors are aware of is due to Bejenaru [2, 3], where some
sharp (up to the endpoint) k-linear restriction estimate was obtained for a class of hyper-
surfaces with curvature including .k � 1/-conical surfaces, using very different methods.
Even though being a weaker result, (the corresponding version of) the k-broad estimate
has been shown by Guth [9, 10] to be sufficient for obtaining linear restriction estimates
for the paraboloid. This follows from an adapted argument of Bourgain and Guth [6],
where a method converting multilinear restriction estimates into linear restriction estim-
ates is introduced. In this sense, the core power of the k-linear restriction can be captured
by the k-broad estimate, which inspired us to take a similar path in our proof and suggests
possible further applications in other problems.

In the next two sections, we prove Theorem 3. Just as for the paraboloid, we apply
the method of polynomial partitioning, which exploits the algebraic structure of the broad
part of jEf j. We will emphasize the differences between the cases of the paraboloid and
the cone, while we only sketch the part of the proof where the argument for the paraboloid
in [10] applies equally well to our problem.

In Section 4, we recall some background on polynomial partitioning, provide an out-
line of the argument, and identify the main difficulties. Then, in Section 5, instead of
directly proving Theorem 3, we in fact prove a stronger inductive estimate (Theorem 6
below) that involves all intermediate dimensions 1 � m � n, which in particular recovers
Theorem 3 at m D n. This strengthening is necessary in order for us to tackle the issues
that arise over the course of induction and was also the strategy taken in [10].

4. Outline of polynomial partitioning

Polynomial partitioning has been a powerful tool widely used in the study of restriction
problems. It originated from the work of Guth–Katz [11] in their resolution of the Erdős
distinct distance conjecture in discrete geometry, and was introduced to the continuous
setting, in particular for the restriction estimates for the paraboloid, by Guth [9,10]. Briefly
speaking, it is a strategy of divide and conquer; it begins with identifying a polynomial
whose zero set partitions the mass of kEf kBLp

k;A
into pieces. It thus suffices to estimate

the part of kEf kBLp
k;A

restricted to each small piece, and the part of kEf kBLp
k;A

that is
restricted near the zero set of the polynomial. Both situations turn out to be suitable for
performing an induction type argument.

4.1. Tools from algebraic geometry

Given a polynomial P on Rn, its zero set is denoted by Z.P /. The basic partitioning
theorem our argument will rely on is the following.

Theorem 4 ([9, Theorem 1.4]). Suppose that W � 0 is a nonzero L1 function on Rn.
Then for each D there exists a nonzero polynomial P of degree at most D such that
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Rn nZ.P / is a union of � Dn disjoint open sets Oi , andZ
Oi

W D

Z
Oj

W; 8i; j: (4.1)

We would like the zero sets of the partitioning polynomials that appear in our proof
to be smooth and regular, so that locally they can be well approximated by their tangent
planes. To ensure this, we choose to work with varieties that are transverse complete
intersections. The following definition is borrowed from [10, Section 5].

Definition 4.1. Fix integerm 2 Œ1; n� and let P1; : : : ; Pn�m be polynomials on Rn whose
common zero set is denoted byZ.P1; : : : ;Pn�m/. The varietyZ.P1; : : : ;Pn�m/ is called
a transverse complete intersection if

rP1.x/ ^ � � � ^ rPn�m.x/ ¤ 0; 8x 2 Z.P1; : : : ; Pn�m/:

Define the degree of the transverse complete intersection as maxjD1;:::;n�m degPj .

A transverse complete intersectionZ.P1; : : : ;Pn�m/ is a smoothm-dimensional man-
ifold.

Remark 4.2. Theorem 4 does not guarantee that Z.P / is a transverse complete inter-
section. After a small pertubation and using Sard’s theorem, we could make Z.P / a
transverse complete intersection while changing “D” in (4.1) to “�”. We refer the reader
to [10, Lemma 5.1 and Theorem 5.5] for details.

The information of Ef is mostly carried by its wave packets. It is therefore useful to
understand how a wave packet may intersect a variety.

In our argument, sometimes one needs to control the number of times a wave packet
can cross a variety Z transversely, hence the following result becomes helpful.

Lemma 4.3 ([10, Lemma 5.7]). Let T be a cylinder of radius r with central line ` and
suppose that Z D Z.P1; : : : ; Pn�m/ � Rn is a transverse complete intersection, where
the polynomials Pj have degree at most D. For any ˛ > 0, define

Z>˛ WD ¹z 2 Z W Angle.TzZ; `/ > ˛º:

Then Z>˛ \ T is contained in a union of . Dn balls of radius . r˛�1.

When applying the lemma, a typical choice is r D R.1Cı/=2 and ˛ D R�1=2Cı . Note
that in the case of the cone, the wave packets are thin tubes which are even smaller than
the cylinders T in the lemma above, hence the same result holds true for the wave packets.

4.2. Polynomial partitioning in Rn

We now apply the polynomial partitioning theorem to �Ef , the measure that was defined
via the broad norm of Ef after (3.3). Let BR � Rn be the fixed large ball as before.
By Theorem 4 and Remark 4.2, for a large constant D .�;m 1 to be determined later,
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there exists a (nonzero) polynomial of degree at most D such that its zero set Z divides
BR n Z into a disjoint union of O.Dn/ parts Oi with comparable measure �Ef .Oi / �
1
Dn
�Ef .BR/.
Recall the wave packet decomposition Ef D

P
�;v;`Ef

`
�;v

, where each wave packet
in the physical space is essentially supported in T `

�;v
, a thin tube of length R, radius

R.1Cı/=2 and thickness Rı . In the simplified model where each T `
�;v

is reduced to a line
segment, T `

�;v
intersects at most D different parts Oi , which is much less than the total

number of Oi ’s. In other words, the wave packets passing through a fixed Oi0 do not
interact much with otherOi ’s, which works in our favor when we do induction. However,
unlike a line segment, a tube T `

�;v
might intersect many more Oi ’s. In order to apply the

above heuristic, we need to first thicken Z to a wall W , which is defined as the R.1Cı/=2-
neighborhood of Z. Let zOi WD Oi nW be a cell. Then one has the partition

BR � W t
G
i

zOi ;

and each T `
�;v

intersects at most D cells.
Therefore,

�Ef .BR/ D
X
i

�Ef . zOi /C �Ef .W /:

We say that we are in the cellular case if the first term dominates the right hand side of
the above equality, and in the algebraic case if the second term dominates.

4.2.1. Cellular case. This case can be treated in the same way as for the paraboloid,
based on the fact that each tube intersects at most O.D/ cells. In fact, this case is even
easier since tubes in the cone case are thinner. Let Efi D

P
T `
�;v
\ zOi¤;

Ef `
�;v

. ThenX
i

kEfik
2
L2.BR/

. DkEf k2
L2.BR/

:

By Plancherel, X
i

kfik
2
L2

. Dkf k2
L2
:

Since
P
i �Ef .

zOi / � �Ef .BR/, there exists at least one cell zOi (in fact, this is true for
most of the cells) such that both of the following estimates hold:

�Ef .BR/ . Dn�Ef . zOi /; kfik
2
L2

.
1

Dn�1
kf kL2 :

We cover zOi with finitely many balls of radius R=2 and induct on the radius of the
ball BR. The induction closes if p > 2n

n�1
. More precisely,

�Ef .BR/ . Dn�Ef . zOi / . Dn
X

BR=2�BR

�Ef . zOi \ BR=2/

. R�Dn
kfik

p

L2
. R�Dn�.n�1/p=2

kf k
p

L2
:
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If D is chosen sufficiently large, the power of D dominates the implicit constant and the
induction is closed.

4.2.2. Algebraic case. A tube can intersect the wall W in two different ways, either cut-
ting across W or nearly tangent to Z.

Definition 4.4. Let Z0 be an m-dimensional variety in Rn. A tube T `
�;v

is said to be
 -tangent to Z0 in BR if

T `�;v � NR.Z0/ \ 2BR

and for all z 2 Z0 \N10R.T `�;v/ \ 2BR,

Angle.TzZ0; L.�// � ; where L.�/ denotes the long direction of T `�;v .

Fix ı > 0. (In this outline section, ı is the same as the one in Section 2 and is
much smaller than �. In later sections, the ı in Ttang and Ttrans will be ım, depending
on dimZ0 D m, as in Theorem 6.) If a tube intersects W , then we say it crosses W
transversely if it is not R�1=2Cı -tangent to Z. Denote

Ttrans WD ¹.�; v; `/ W T
`
�;v crosses W transversely in BRº;

Ttang WD ¹.�; v; `/ W T
`
�;v is R�1=2Cı -tangent to Z in BRº;

and let
ftrans WD

X
.�;v;`/2Ttrans

f `�;v; ftang WD
X

.�;v;`/2Ttang

f `�;v:

By the triangle inequality for the broad norm (Lemma 3.1), there are two different cases
to consider depending on which type of wave packets make the most contribution to
�Ef .W /:

� Algebraic transverse: �Eftrans.W / & �Ef .BR/;

� Algebraic tangential: �Eftang.W / & �Ef .BR/.

The transverse case can be dealt with by induction. CoverW with balls ¹Bj º of radius
� WD R1�ı and notice that T `

�;v
2 Ttrans crosses W transversely in at most . Dn different

Bj ’s according to Lemma 4.3 (by taking r D R.1Cı/=2 and ˛ D R�1=2Cı in the lemma).
Fix aBj and letEfj WD

P
T `
�;v
2Ttrans; T

`
�;v
\Bj¤;

Ef `
�;v

. By inducting on scales, one obtains

�Eftrans.W / �
X
Bj

�Eftrans.Bj \W / �
X
Bj

�Efj .Bj \W /C RapDec.R/kf kp
L2

.
X
Bj

��kfj k
p

L2
C RapDec.R/kf kp

L2
. ��Dpn=2

kf k
p

L2
. R�kf k

p

L2
:

Since D .�;m 1, we can choose R sufficiently large so that Rı� � Dpn=2, hence the last
inequality holds. Note that this argument is still the same as in the paraboloid problem.
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Things begin to change in the tangential case, where the cone restriction problem
becomes different from the paraboloid one. Because of the lack of curvature on the
straight lines on the cone, we choose to work with wave packets that are thinner than
the ones for the paraboloid, which however results in more wave packets lying inside the
R.1Cı/=2-neighborhood of a variety tangentially.

The main strategy in this case is to perform another polynomial partitioning insideW ,
look into the cellular, transverse and tangential cases at the next level, and repeat. At each
step, the dimension of the variety (denoted as Z again) that the wave packets are tangent
to is reduced by 1. And the iteration stops when dimZ < k according to the following
lemma.

Lemma 4.5. If Ef is R�1=2Cı -tangent to a variety Z of degree O.1/ and dimension
k � 1, then

kEf kBLp
k;A

.BR/
� RapDec.R/kf kL2 :

Proof. Fix any ball B of radius R.1Cı/=2 inside the R.1Cı/=2-neighborhood of Z, for
any x 2 B \Z and any T `

�;v
\ B ¤ ;. By the assumption the long direction of T `

�;v
lies

inside the R�1=2Cı -neighborhood of the tangent space TxZ. Since the dimension of TxZ
is k � 1, by the definition of the k-broad norm we have

kEf kBLp
k;A

.B/ . RapDec.R/kf kL2 :

Guth [10] applied this strategy for the paraboloid. The key idea is that ifEf is tangen-
tial to an m-dimensional variety Z, then one can essentially treat Z as Rm and make use
of a so-called equidistribution property. Morally, this property says that jEf j is roughly
a constant function locally along the normal direction of Z. This, however, is not true for
the cone. The main ingredient in our proof is to establish this equidistribution property
after removing some negligible part of Ef .

5. Main inductive argument

In this section, we prove the broad estimate (Theorem 3), which will be a consequence of
a more general result (Theorem 6 below). As mentioned at the end of the previous section,
we will apply polynomial partitioning iteratively on a sequence of subvarieties in Rn of
various dimensions.

To begin, we discuss how polynomial partitioning, introduced in the previous section
on Rn, can be extended to partition a general subvariety in Rn.

Theorem 5 ([10]). Fix r � 1 and d 2 N and suppose F 2 L1.Rn/ is nonnegative and
supported onBr \Nr1=2CıZ for some 0< ı� 1, where Z is anm-dimensional transverse
complete intersection of degree at most d .�;m 1. Then there exists D D D.�; d/ with
d . Dı2 .�;m 1 such that at least one of the following cases holds:
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(1) (Cellular case) There exists a polynomial P : Rn ! R of degree D and � Dm cells
O � Z nNr1=2CıZ.P / such that O � Br=2 andZ

O

F � D�m
Z

Rn
F for all O:

Furthermore, each tube of length r and radius r1=2Cı intersects at most O.D/ cells.

(2) (Algebraic case) There exists an .m � 1/-dimensional transverse complete intersec-
tion Y of degree at most O.D/ such thatZ

Br\Nr1=2CıZ
F .

Z
Br\Nr1=2CıY

F:

Theorem 5 is proved, but not explicitly stated, in [10, Section 8.1]. We borrow the
exact statement of Theorem 5 from [13, Theorem 6.3]. We briefly sketch its proof here.

One first decomposes Z into O.1/ pieces Zj such that the tangent spaces at points in
each piece Zj form an angle of at most 1=100 with a certain m-dimensional subspace Vj .
There exists a Zj such thatZ

Br\Nr1=2CıZ
F .

Z
Br\Nr1=2CıZj

F:

Next, one looks at only Zj and define the orthogonal projection � W Rn! Vj . Apply-
ing Theorem 4 with the function W.y/ D

R
��1.y/

F , one can partition Vj D Rm using
a polynomial PVj of degree D D D.�; d/. Let P be the polynomial on Rn defined as
P.x/D PVj .�.x//. We then apply the polynomial partitioning argument presented in the
last section. If it is the cellular case for W defined on Vj with PVj , then we would obtain
the cellular case in Theorem 5 with polynomial P . Otherwise it is the algebraic case
for W , so � 1 fraction of F is concentrated on the r1=2Cı -neighborhood of Z \ Z.P /.
We then apply Remark 4.2 to fine tune Z\Z.P / into a transverse complete intersection Y
after a small perturbation.

Instead of proving Theorem 3 directly, we prove the following stronger estimate,
which is similar to [10, Theorem 8.1] and is more suitable for induction.

Definition 5.1. Let S be a transverse complete intersection of degree D1 � O.1/ and of
dimension m < n inside BR .S is understood as S \BR if it is not completely contained
in BR/. Define

TS WD ¹.�; v; `/ W T
`
�;v is R�1=2Cım -tangent to S in BRº; (5.1)

where ım � 0 is a fixed small parameter for each dimension m, to be chosen later.

Theorem 6. For � > 0, there exist small parameters 0 < ı � ın�1 � � � � � ı1 �

ı0 � � and large parameter NA such that the following holds. Let 1 � m � n and Z D
Z.P1; : : : ; Pn�m/ be a transverse complete intersection with degPi � DZ .�;m 1. Sup-
pose that f is concentrated on wave packets from TZ as in Definition 5.1. Then for any
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2 � k � n, 1 � A � NA and radius R � 1,

kEf kBLp
k;A

.BR/
.K;�;m;DZ R

�Rı.log NA�logA/R�eC1=2kf kL2

whenever 2 � p � p.m; k/ WD 2 � mCk
mCk�2

where e WD 1
2

�
1
2
�

1
p

�
.nC k/.

Observe that when m D n and Z D Rn, by taking A D NA and p D p.n; k/ one com-
putes�eC 1=2D 0, which implies Theorem 3. We also remark that for pD 2, Theorem 6
follows quickly from an L2 estimate similar to [10, Lemma 3.2],

kEf k2
BL2

k;A
.BR/

. Rkf k2
L2
: (5.2)

By interpolation and Hölder’s inequality for the broad norm (Lemma 3.2), Theorem 6
will thus follow from the endpoint case p D p.m; k/, which we prove by induction next.
For technical reasons, we choose to present the proof by induction rather than iteration
as in [10]. This is also why we need to prove a stronger result that concerns algebraic
varieties of all intermediate dimensions m, which is more suitable for induction.

The rest of the section is devoted to the proof of Theorem 6.
We will repeatedly use the strategy introduced in Section 4. More precisely, the plan

is to induct on the dimension m, the radius R, and the parameter A.
It is easy to see that the base case m D k � 1 (for all R and A) follows from

Lemma 4.5. If A D 1, then by choosing NA large enough, the desired estimate follows
from the trivial L1 ! L1 estimate of the extension operator E. If R is small, then the
desired estimate can be deduced by choosing the implicit constant sufficiently large. Now
suppose the desired estimate holds true if we decrease the dimension m, the radius R,
or A.

Recall that Z is a transverse complete intersection of dimension m. We first apply
Theorem 5; then it suffices to discuss the cellular case and the algebraic case separately.

5.1. The cellular case

Let O be a cell, and define fO D
P
.�;v;`/2TO

f `
�;v

, where

TO WD ¹.�; v; `/ W T
`
�;v \O ¤ ;º:

Since we are in the cellular case, for � Dm cells O ,

kEf k
p

BL
p

k;A
.BR/

. Dm
kEf k

p

BL
p

k;A
.O/

. Dm
kEfOk

p

BL
p

k;A
.BR/

:

Moreover, by orthogonality and the geometric observation that each .�; v; `/ belongs to
. D collections TO , X

i

kfik
2
L2

. Dkf k2
L2
:

Therefore, by the same argument as in Subsection 4.2.1, the induction for the nonalgebraic
case closes since p D p.m; k/ > 2m

m�1
.
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Remark 5.2. In fact, when proving the case m D k, one needs to first prove the slightly
larger endpoint case p D p.m;m/C ı and then interpolate. This is to make sure that the
induction on scales argument treating the cellular case described above can close. More
precisely, this slight change will produce a gain of D�ı at the end of the cellular case
inductive argument, for some D D D.�;DZ/. By choosing D sufficiently large, one then
closes the induction. We omit the separate discussion of this special case as the issue can
be handled in exactly the same way as in [10, Section 8.1, bottom of page 38].

5.2. The algebraic case

Fix p 2 Œ2; p.m; k/�. Recall that in the algebraic case, there exists a transverse complete
intersection Y of dimension m � 1, defined using polynomials of degree � D.�; DZ/

.�;m 1, such that
�Ef .NR1=2Cım .Y/ \ BR/ & �Ef .BR/:

One first covers BR by smaller balls Bj of radius �, where �1=2Cım�1 D R1=2Cım . Then

kEf k
p

BL
p

k;A
.BR/

.
X
j

kEfj k
p

BL
p

k;A
.Bj /
C RapDec.R/kf kp

L2
;

where

fj WD
X

.�;v;`/2Tj

f `�;v; Tj WD ¹.�; v; `/ W T
`
�;v \NR1=2Cım .Y/ \ Bj ¤ ;º:

We further subdivide each group Tj into tubes that are tangent to Y and ones that are
transverse to Y.

We say that T `
�;v
2 Tj is tangent to Y in Bj if

T `�;v \ Bj � NR1=2Cım .Y/ \ Bj D N�1=2Cım�1 .Y/ \ Bj (5.3)

and for any nonsingular point y 2 Y \ Bj \N10R1=2CımT `�;v ,

Angle.L.�/; TyY/ � ��1=2Cım�1 : (5.4)

The groups of tangential and transverse wave packets are denoted by

Tj;tang WD ¹.�; v; `/ 2 Tj W T�;v;` is tangent to Y in Bj º; Tj;trans WD Tj n Tj;tang;

and let
fj;tang D

X
.�;v;`/2Tj;tang

f `�;v; fj;trans D
X

.�;v;`/2Tj;trans

f `�;v: (5.5)

Then by the triangle inequality (Lemma 3.1),X
j

kEfj k
p

BL
p

k;A
.Bj /

.
X
j

kEfj;tangk
p

BL
p

k;A=2
.Bj /
C

X
j

kEfj;transk
p

BL
p

k;A=2
.Bj /

:
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We will estimate the contribution from the tangential wave packets and the transverse
wave packets separately by induction on the dimension m, parameter A and radius R.

Before diving into the study of the two cases, we first discuss a common ingredient
in their proofs: the relation between the wave packet decomposition of Efj at the large
scale R and its wave packet decomposition inside Bj at the small scale �. Understanding
this relation is one of the main novelties of the article. Note that even though a similar
discussion for the paraboloid can be found in [10, Section 7], many results there (for see
instance Remark 5.5 below) do not extend to the cone case, as the wave packet decom-
position for the cone and the paraboloid are different.

5.2.1. Adjusting the wave packet decomposition to a smaller ball. Fix a small ball
B.y; �/ � B.0;R/ with R1=2Cı < � < R. Let X D x � y and define

 y.�/ D y1�1 C � � � C yn�1�n�1 C ynj�j:

We also define the map zf .�/ D ei y.�/f .�/. Then Ef .x/ D E zf .X/.
Consider the wave packet decomposition of zf at scale �. In other words, for E zf .X/

defined on B.0; �/, write
zf D

X
�;w;L

zf L�;w ;

where each � is a small sector of 2 NBn�1 n Bn�1 of radius ��1=2, w 2 �1=2CıZn�1, and
1 � L � �1=2. The .n � 1/-dimensional Fourier transform of each zf L

�;w
is essentially

supported inside a thin plate PL
�;w

of side length �1=2Cı and thickness �ı in the ball of

radius �1=2Cı centered at w. The small wave packet E zf L
�;w

is essentially supported in
a thin tube T L

�;w
of length � in the long direction L.�/, thickness �ı in the mini direc-

tion M.�/, and width �1=2Cı in the other directions. In the X coordinate, the tube is
contained in B.0; �/, while in the x coordinates, the tube is translated to be in B.y; �/.

We would like to study how the original wave packet decomposition f D
P
`;�;v f

`
�;v

is related to the new wave packet decomposition zf D
P
L;�;w

zf L
�;w

.
For any .�; v; `/ such that T `

�;v
\ B.y; �/ ¤ ;, define

zT�;v;` D ¹.�; w;L/ W Dist.�; �/ . ��1=2; Dist.PL�;w ; P
`
�;v C P

0
� � @� y.�� // . Rıº:

Recall that �� is the point on the central line of � with j�� j D 1; P 0
�

is the thin plate
centered at the origin in Rn�1 � ¹0º of side length R1=2Cı , thickness Rı , with normal
direction �� ; and P `

�;v
is the essential support of .f `

�;v
/^.

Lemma 5.3. .f `
�;v
/� is concentrated on small wave packets from zT�;v;`. In other words,

.f `�;v/
�
D

X
.�;w;L/2zT�;v;`

.gL�;w/
�
C RapDec.R/kf kL2 ;

where g D f `
�;v

.
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Proof. First, since .f `
�;v
/� D ei y.�/f `

�;v
is essentially supported on � , it is obviously

concentrated in small wave packets .�; w;L/ satisfying Dist.�; �/ . ��1=2.
Let �� be a bump function that is 1 on � and 0 outside 2� . Then the Fourier transform

of .f `
�;v
/� D ei y.�/f `

�;v
�� is

.ei y.�/f `�;v�� /
^
D .��e

i y.�//^ � .f `�;v/
^:

In the following, we apply stationary phase to show that .��ei y.�//^ is rapidly decay-
ing outside �@� y.�� /C P 0� . Then, it will follow that the Fourier transform of .f `

�;v
/�

is essentially supported in P `
�;v
� @� y.�� /C P

0
�

. Hence, the second distance condition

in the definition of zT�;v;` also holds true, which will complete the proof.
To show that .��ei y.�//^ rapidly decays outside �@� y.�� /C P 0� , we first Taylor

expand the phase function:

 y.�/ D  y.�� /C @� y.�� / � .� � �� /C  y;tail.�/:

Note that we can ignore the constant terms  y.�� / and �@� y.�� / � �� . Let ˆ� D
ei y;tail�� . We have

.��e
i y.�//^.x/ D ei y.�� /�i@� y.�� /���

Z
ei��.xC@� y.�� //ˆ� .�/ d�:

It thus remains to show that b̂� is essentially supported on P 0
�

.
Up to a rotation, we might assume that �� D .0; : : : ; 0; 1/. Consider the change of

variableA W .�1; : : : ; �n�1/ 7! .R�1=2�1; : : : ;R
�1=2�n�2; �n�1/. Then �� .A �/ is supported

on the unit ball and

b̂
� .A
�1x/ D

Z
ei��xCi y;tail.A�/�� .A�/ dA�:

By definition, we have @�. y;tail.A�// D AŒ@� y.A�/ � @� y.A�� /�. In particular, this
implies for all � in the unit ball that

j@�. y;tail.A�//j D yn

ˇ̌̌̌�
R�1�1

jA�j
; : : : ;

R�1�n�2

jA�j
;
�n�1

jA�j
� 1

�ˇ̌̌̌
. 1:

Indeed, since yn � R and jA�j � 1, the first n � 2 coordinates are bounded. The last
coordinate is also bounded because

�n�1 � jA�j D �n�1 �

q
R�1�21 C � � � CR

�1�2n�2 C �
2
n�1 . R�1j�j2:

Therefore, when x &Rı , jb̂� .A�1x/j.N R�N for allN . This proves the rapid decay
of b̂� .x/ outside P 0

�
.

Let T L
�;w

be a small thin tube .�; w; L/ 2 zT�;v;` in the x coordinate (contained in
B.y; �/). We now discuss how T L

�;w
is related to the large tube T `

�;v
.
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Lemma 5.4. For any .�; w;L/ 2 zT�;v;`,

Angle.L.�/; L.�// . ��1=2; Angle.M.�/;M.�// . ��1=2;

Dist.ŒT `�;v \ B.y; 2�/�C 2P
0
� ; T

L
�;w/ . Rı :

Proof. First, it is obvious that

Angle.L.�/; L.�// . ��1=2; Angle.M.�/;M.�// . ��1=2

from the definition of zT�;v;`. It thus suffices to show the last inequality.
By definition, in the x coordinate,

T L�;w D P
L
�;w C �L.�/C ¹yº:

(When the ball B.y; �/ is clear from the context, by abusing notation, we use T L
�;w

to
denote the set PL

�;w
C �L.�/C ¹yº, where �L.�/ WD ¹tL.�/ W 0 � t � �º and similarly

for �L.�/ below.) By Lemma 5.3,

Dist.PL�;w ; P
`
�;v C P

0
� � @� y.�� // . Rı :

Moreover, PL
�;w
C �L.�/ � P `

�;v
C P 0

�
C �L.�/ because Angle.L.�/; L.�// . ��1=2.

Since j�� j D 1, we have @� y.�� / D y0 C yn�� where y0 WD .y1; : : : ; yn�1/. So

Dist.T L�;w ; 2P
0
� C P

`
�;v C �L.�/ � ¹ynL.�/º/ . Rı :

It suffices to show P `
�;v
C �L.�/ � ¹ynL.�/º � T

`
�;v
\ B.y; 2�/, which is obvious.

Remark 5.5. Given a ball B.y;�/, in the paraboloid case treated in [10, Section 7], many
large wave packets .�; v/ might give rise to essentially the same set zT�;v (which is the
analog of our set zT�;v;`; see [10, p. 30, (7.1)] for the exact definition). The reason is that
for any �1; �2 � �, if B.y; �/ \RıT�1;v1 \R

ıT�2;v2 ¤ ;, then B.y; 2�/ \ 2RıT�1;v1 \
2RıT�2;v2 contains a medium tube segment T� of length � and radius R1=2Cı . And both
zT�j ;vj , j D 1; 2, consist of all the small wave packets .�;w/ such that the small tube T�;w
lies in T�.

However, in the cone case, it is not true anymore that many .�; v; `/ always give rise to
essentially the same set zT�;v;`. This is because T `

�;v
is too thin in the mini directionM.�/.

If �1;�2� � andB.y;�/\RıT `1
�1;v1
\RıT

`2
�2;v2
¤;, then it might happen thatB.y;2�/\

2RıT
`1
�1;v1

\ 2RıT
`2
�2;v2

is contained in 2RıT L
�;w

for a single small wave packet T L
�;w

.
In fact, a small wave packet T L

�;w
might belong to as many as .R=�/.n�2/=2 different

zT�;v;`, which is about the number of disjoint � � �.

Remark 5.5 suggests that it is difficult to use medium tube segments (of uniform length
and radius) as a bridge to pass back and forth between large and small wave packets,
unlike the situation with the paraboloid. Hence, in the following, we will only focus on
grouping large and small wave packets into different subcollections, which play the role
of the “medium tubes” in the cone case.
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Here are the details. Let �0 be a sector on 2 NBn�1 n Bn�1 of radius ��1=2, and let
v0 2 R

1=2CıZn�1 \ B.0; �/. We define

zT�0;v0 WD ¹.�; w;L/ W Dist.�0; �/ . ��1=2; PL�;w � B.v0; R
1=2C2ı/; L D 1; : : : ; �1=2º;

where PL
�;w

is the essential support of the Fourier transform of zf L
�;w

. The tube T L
�;w

in
the x coordinate is T L

�;w
D PL

�;w
C �L.�/C ¹yº where �L.�/ is the line segment ¹tL.�/ W

0 � t � �º. We also define

T�0;v0.y/ WD ¹.�; v; `/ W Dist.�; �0/ . ��1=2;

T `�;v \ B.y; �/ � B.v0; R
1=2C2ı/C �L.�0/C ¹yº; ` D 1; : : : ; R

1=2
º:

For v0; v00 satisfying Dist.v0; v00/ & R1=2C2ı , zT�0;v0 and zT�0;v00 are essentially dis-

joint. So are T�0;v0.y/ and T�0;v00.y/. In addition, the collections zT�0;v0 and zT� 0
0
;v0

are
essentially disjoint if Dist.�0; �00/& ��1=2. So are T�0;v0.y/ and T� 0

0
;v0
.y/. Moreover, the

collections zT�0;v0 and T�0;v0.y/ exhaust the set of all small wave packets ¹.�;w;L/º and
the set of all large wave packets ¹.�; v; `/º that intersect B.y; �/ respectively as .�0; v0/
ranges over all possible choices.

Furthermore, for any .�0; v0/, these two collections are naturally connected:

zT�0;v0 D
[

.�;v;`/2T�0;v0 .y/

zT�;v;`:

Therefore, applying Lemmas 5.3 and 5.4, one immediately obtains the following corol-
lary.

Lemma 5.6. If g is concentrated on large wave packets in T�0;v0.y/, then zg D ei yg

is concentrated on small wave packets in zT�0;v0 . On the other hand, if zg is concentrated
on small wave packets in zT�0;v0 , then inside B.y; �/, g is concentrated on large wave
packets in T�0;v0.y/.

We need a few more notations before wrapping up the discussion on large and small
wave packets. For a given ball B.y; �/ and any function g, define the part of g concen-
trated on large wave packets from T�0;v0.y/ as g�0;v0 :

g�0;v0 WD
X

.�;v;`/2T�0;v0 .y/

g`�;v; (5.6)

zg�0;v0 WD
X

.�;w;L/2zT�0;v0

zgL�;w : (5.7)

These give rise to the following decompositions of g and zg into wave packets that are
grouped together by collections T�0;v0.y/ and zT�0;v0 respectively:

g D
X
.�0;v0/

g�0;v0 C RapDec.R/kgkL2 ; zg D
X
.�0;v0/

zg�0;v0 C RapDec.R/kzgkL2 ;
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where the sums are over all possible sectors �0 of width ��1=2 partitioning the annulus,
and all v0 2 R1=2CıZn�1 \ B.0; �/.

Moreover, it is easy to see that both decompositions satisfy orthogonality:

kgk2
L2
�

X
.�0;v0/

kg�0;v0k
2
L2
; kzgk2

L2
�

X
.�0;v0/

kzg�0;v0k
2
L2
:

These decompositions will be used later in the transverse subcase. The discussion on how
to adjust f into a wave packet decomposition inside a smaller ball B.y; �/ is complete.

Next, we will go back to the algebraic case and study its two subcases. Recall that we
need to study the following situation: there is a function g that is concentrated on wave
packets in TZ, and we would like to study Eg restricted to a smaller ball B.y; �/ � BR.

5.2.2. The tangential subcase. In this part, supposeX
j

kEfj;tangk
p

BL
p

k;A=2
.Bj /

& kEf kp
BL

p

k;A
.BR/

:

We would like to apply the induction hypothesis that the desired estimate holds form� 1,
A=2 and �. Hence, in each Bj , we need to redo the wave packet decomposition of fj;tang

at the smaller scale � and verify that the assumptions in Theorem 6 are satisfied, i.e. fj;tang

is concentrated on small wave packets that are ��1=2Cım�1 -tangent to the variety Y in the
ball Bj of radius �.

Once we understood how to adjust Efj into small wave packets in Bj for the cone in
the previous subsection, the verification of these properties is very similar to the para-
boloid case (see [10, Section 8.3]). We sketch the idea here. We know that fj;tang is
concentrated on wave packets .�; v; `/ 2 Tj;tang.

To simplify the notation, let g D fj;tang and decompose

zg D
X
�;w;L

zgL�;w C RapDec.R/kf kL2 :

We would like to check that zg is concentrated on wave packets .�; w; L/ tangential to
Y in Bj in the sense of Definition 4.4. In other words, we would like to show that zg is
concentrated on wave packets .�; w;L/ such that

T L�;w � N�1=2Cım�1 .Y/ \ Bj ; (5.8)

and for any x 2 T L
�;w

, and any y 2 Y \ Bj with jx � yj . �1=2Cım�1 ,

Angle.L.�/; TyY/ . ��1=2Cım�1 : (5.9)

We know that g D fj;tang is concentrated on wave packets .�; v; `/ 2 Tj;tang, which by
definition obeys (5.3) and (5.4). These inequalities imply that T `

�;v
\Bj lies in the desired

neighborhood of Y\Bj and makes a small enough angle with Ty.Y/. By Lemma 5.3, for
any .�; v; `/, .f `

�;v
/� is concentrated on wave packets .�;w;L/ 2 zT�;v;`. By the definition
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of zT�;v;` and Lemma 5.4, if .�; v; `/ 2 Tj;tang and .�;w;L/ 2 zT�;v;`, then T L
�;w

obeys (5.8)
and (5.9).

We have thus verified the hypotheses of Theorem 6 for zg with the variety Y on the
ball Bj , and so by induction on dimension we get, for each j ,

kEfj;tangkBLp
k;A=2

.Bj /

� C.K; �=2;m � 1;D.�;DZ//�
�=2�ı.log NA�log.A=2//��eC1=2kfj;tangkL2

for all

2 � p � p.m � 1; k/ WD 2 �
m � 1C k

m � 1C k � 2
with e D

1

2

�
1

2
�
1

p

�
.nC k/:

Note that p.m; k/ < p.m � 1; k/, so the above estimate applies to all p 2 Œ2; p.m; k/�.
Summing over all the balls Bj (with total number . RO.ım�1/), one has

kEf kBLp
k;A

.BR/

. RO.ım�1/C.K; �=2;m � 1;D.�;DZ//�
�=2�ı.log NA�log.A=2//��eC1=2kf kL2

. RO.ım�1/C.K; �=2;m � 1;D.�;DZ//R
�=2Rı.log NA�logA/R�eC1=2kf kL2 ;

where the last step follows from the observation that ��eC1=2 � RO.ım�1/R�eC1=2 and

�ı.log NA�log.A=2//
� RıRı.log NA�logA/;

recalling that ı � ım�1.
Since ım�1 � �, one has RO.ım�1/R�=2 . R� . The induction thus closes if one

chooses C.K; �; m;DZ/ larger than C.K; �=2; m � 1;D.�;DZ//. The discussion of the
tangential subcase is complete.

5.2.3. The transverse subcase. In the transverse case, our goal is to estimateX
j

kEfj;transk
p

BL
p

k;A=2
.Bj /

;

assuming that it dominates kEf kp
BL

p

k;A
.BR/

. Our first claim isX
j

kfj;transk
2
L2

. Poly.D.�;DZ//kf k
2
L2
; (5.10)

where Poly.D.�; DZ// is a polynomial in D.�; DZ/. Since D.�; DZ/ .�;m 1, we have
Poly.D.�;DZ// .�;m 1. Inequality (5.10) will enable us to reduce the desired estimate to
be inside each individual Bj .

To see (5.10), one rewrites its left hand side asX
j

kfj;transk
2
L2
D

X
.�;v;`/

j¹j W .�; v; `/ 2 Tj;transºj kf
`
�;vk

2
L2
:
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Then it suffices to show that j¹j W .�; v; `/ 2Tj;transºj.�;DZ 1 for each .�; v; `/. According
to [10, beginning of Section 8.4], this is indeed the case. In fact, it is true even if one
replaces the wave packet T `

�;w
by a cylinder (with radius r D R1=2Cım D �1=2Cım�1 and

the same central line as T `
�;w

in the long direction). This is in particular a consequence of
Lemma 4.3 (with the choice ˛ D ��1=2Cım�1 ) and we omit the details.

Therefore, in the following, we would like to estimate Efj;trans in each ball Bj and
apply induction on the radius R. The induction hypothesis is: if f is concentrated on
wave packets from TZ, the collection of wave packets T `

�;v
(at scaleR) that are ��1=2Cım -

tangent to the m-dimensional variety Z in Bj , then

kEf kBLp
k;A

.Bj /
� C.K; �;m;DZ/�

�CO.ı/�eC1=2
kf kL2

where 2 � p � p.m; k/ and e D 1
2

�
1
2
�

1
p

�
.nC k/. There are two obstacles preventing

us from applying the induction hypothesis directly.
First,Ef is only known to be concentrated in theR1=2Cım -neighborhood of Z, which

is larger than the needed �1=2Cım -neighborhood. Therefore, one needs to decompose the
R1=2Cım -neighborhood of Z into different layers of thickness �1=2Cım so that each layer
is a �1=2Cım -neighborhood of a translate Zb of Z. We also need to do a wave packet
decomposition in Bj at scale � similarly to the tangential subcase. Write g D fj;trans and
decompose

zg D
X

.�;w;L/

zgL�;w C RapDec.�/kf kL2 :

One needs to verify that each small wave packet T L
�;w

lies inside a unique layer Zb and that
T L
�;w

is ��1=2Cım -tangent to Zb . This is true and can be argued as in the paraboloid case:
each small wave packet comes from some large wave packets that are even more tangent
to Z, so the small wave packet lies entirely in some layer Zb and is also ��1=2Cım -tangent
to Zb . The justification proceeds exactly as in the paraboloid case, which we will sketch
later and refer the interested reader to [10, Section 7, pp. 32–33] for more details.

Second, notice that ��CO.ı/�eC1=2 is greater than R�CO.ı/�eC1=2 for p.n; k/ � p �
p.m; k/. In order to obtain the correct (negative) power, one needs to find more structure
between different layers. In the paraboloid case, the L2-norms of f on different layers
turn out to be roughly the same, which is referred to as the equidistribution phenomenon.
This is a key ingredient in the treatment of the corresponding case for the paraboloid
in [10]. However, the argument there does not apply to the cone since our tubes are thinner
and there are different mini directions existing for each wave packet. We solve this issue
by showing that there still holds an analogous version of the equidistribution property for
the cone, once a negligible part of f is removed. This is one of the main novelties of our
proof. In the following, we first establish the equidistribution property, and then apply it
to complete the proof of the transverse subcase.

Transverse equidistribution estimates. Intuitively, the property of equidistribution
holds true because of the following heuristic: when all the tubes are tangent to an
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m-dimensional low degree subvariety Z, the situation is similar to a k-broad restriction
problem in Rm.

Given a point � D .�1; : : : ; �n/ on the cone

C D ¹� 2 Rn W �21 C � � � C �
2
n�1 D �

2
n ; �n > 0; 1 � �j � 2; 81 � j � n � 1º;

the normal direction n� at � is parallel to .�1; : : : ; �n�1;��n/. Fix a ball B of radius
R1=2Cım . Let V be the tangent space of Z at some point inB \Z. Note that in hindsight, it
does not matter which point we pick (because of Definition 4.4 of tangent tubes). Assume
that V is given by the equations

nX
jD1

ai;jxj D bi ; i D 1; : : : ; n �m:

Then the collection of all points � on C such that the normal vector n� of C at � is parallel
to V lies in the vector space V C given by

n�1X
jD1

ai;j �j � ai;n�n D 0; i D 1; : : : ; n �m:

Recalling (5.1), define

TB;Z WD ¹.�; v; `/ 2 TZ W T
`
�;v \ B ¤ ;º:

For any function h W 2 NBn�1 n Bn�1 ! C, let hB WD
P
.�;v;`/2TB;Z

h`
�;v

. Define the lift
of hB onto the cone as HB.�/ WD hB ı �.�/, where � denotes the projection from the
cone C onto its first n � 1 coordinates. Then one observes that the support of HB lies
inside NR�1=2CımV

C \ C. Indeed, suppHB lies inside NR�1=2CımV
C by the definition

of tangential wave packets, and suppHB lying in C is due to the definition of HB .

Remark 5.7. What does NR�1=2CımV
C \ C look like? One special case is when V C is

tangent to C. As shown in the proof of Lemma 5.8 below, in this case dim V C \ C D 1
and NR�1=2CımV

C \ C is an R�1=4C2ım -neighborhood of few radial line segments. In
general, if V C is tangent to C up to an angle of R�ım (“K�2” in Lemma 5.8 below),
NR�1=2CımV

C \ C is an O.R�ım/-neighborhood of few radial line segments.

Lemma 5.8. Decompose Rn D V C ˚W so that V C ? W . Then either

(a) W and V are transverse in the sense that Angle.V;W / > K�2, or

(b) supphB is contained in the union of O.1/ sectors �j in 2 NBn�1 n Bn�1 of dimensions
1 �K�2 � � � � �K�2.

Proof. Let N̨ i D .ai;1; : : : ; ai;n�1/ and ˛i D . N̨ i ;�ai;n/. Suppose there existsw 2W such
that Angle.w; V / � K�2. SinceW ? V C, one can write w D

Pn�m
iD1 �i˛i DW . Nw;�wn/.

Then by definition, it is straightforward to check that . Nw;wn/ 2 V ?, which in particular
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implies that the angle betweenwD . Nw;�wn/ and . Nw;wn/ lies in the interval Œ�=2�K�2;
�=2CK�2�. Hence, for w and � D . N�; �n/ 2 suppHB ,ˇ̌̌̌

j Nwj2 � w2n
j Nwj2 C w2n

ˇ̌̌̌
. K�2; j N�j2 � �2n D 0;

j N� � Nw � �nwnj

j�j jwj
. R�1=2Cım :

After renormalization so that jwj D 1, the first inequality above shows that jw2n � 1=2j �
CK�2. Combining the last two estimates, we have

j N� � Nwj

j N�j � j Nwj
�
jwn�nj

j N�j � j Nwj
� CR�1=2Cım D

jwnj

j Nwj
� CR�1=2Cım � 1 � CK�2:

Thus the support of hB must lie in an O.K�2/-angular neighborhood of Nw. In particular,
supp hB lies in an O.K�2/-angular region in 2 NBn�1 n Bn�1, hence case (b) is true.

For a fixed variety Z, whether case (a) or (b) holds true depends only on the vector
space V , in other words, only on the ball B . If we are in case (b), by the definition of the
BL

p

k
norm, since supp hB is contained in the union of O.1/ sectors and we have chosen

1� A� K, for all k � 2 we always have

kEhBk
p

BL
p

k;A
.B/
D �EhB .B/ D RapDec.R/khBk

p

L2
: (5.11)

On the other hand, if we are in case (a), the following lemma, adapted from the parabol-
oid case [10, Lemma 6.2], says that the L2 norm of EhB is equidistributed in B along
directions transverse to V .

Lemma 5.9. Let hB D
P
.�;v;`/2TB;Z

h`
�;v

and Z be defined as in Theorem 6. Suppose
that B is a ball of radius R1=2Cım in BR � Rn, and satisfies case (a) of Lemma 5.8. Then
for any � � R,Z
B\N

�1=2Cım
.Z/
jEhB j

2 . RO.ım/
�
R1=2

�1=2

��.n�m/ Z
2B

jEhB j
2
C RapDec.R/khBk2L2 :

Note that the angle condition in case (a) of Lemma 5.8 is used in the analog of [10,
Lemma 6.5], which is a key step in the proof of the above lemma.

Proof of Lemma 5.9. Recall that V is the tangent space of Z at some point in B \ Z,
hence

TB;Z � TB;V WD ¹.�; v; `/ W T
`
�;v \ B ¤ ; and Angle.L.�/; V / . R�1=2Cımº:

According to the discussion above Remark 5.7, for all .�; v; `/ 2 TB;Z, .Eh`
�;v
/^ is sup-

ported in NR�1=2CımV
C \ C. For any .n�m/-plane… parallel toW passing through B ,

if we view the restriction ofEhB to… as a functionG W…!C, then its Fourier transform
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is supported in a ball of radius . R�1=2Cım because V C ? W . Therefore, by Lemma 6.4
in [10],Z
…\B.x0;�1=2C2ım /

jEhB j
2 .

�
R1=2�2ım

�1=2C2ım

��dimW Z
…

WB.x0;R1=2�2ım /jEhB j
2; (5.12)

wherex0 is any point andWB.x0;R1=2�2ım / is a weight that is equal to 1 onB.x0;R1=2�2ım/
and rapidly decaying outside of it. Since Angle.V;W / > K�2, for some x0 2 B we have

… \N�1=2Cım .Z/ \ B � … \ B.x0; �
1=2C2ım/: (5.13)

Therefore,Z
…\N

�1=2Cım
.Z/\B

jEhB j
2
�

Z
…\B.x0;�1=2C2ım /

jEhB j
2

.RO.ım/
�
R1=2

�1=2

��.n�m/ Z
…

WB jEhB j
2: (5.14)

Note that if x 2 … n 2B , jEhB.x/j � RapDec.R/khBkL2 , which impliesZ
…

WB jEhB j
2
�

Z
…\2B

WB jEhB j
2
C RapDec.R/khBk2L2 :

Hence, by integrating over all… that are parallel toW and passing throughB , one obtains
the desired estimate.

Remark 5.10. In the proof above, one can see that (5.12) and (5.13) are the key relations
for the derivation of the transverse equidistribution of EhB . Note that inequality (5.12) is
in fact general and stated in [10, Lemma 6.4]. In the paraboloid case, the angle condition
implying (5.13) always holds. However, in the cone case, this is not always true, which is
why we need to rule out case (b) in Lemma 5.8.

The key property we are going to demonstrate is: inside each ball Bj of radius �, the
L2 norm of the part of the function fj;trans corresponding to case (a) of Lemma 5.8 is
equidistributed along the direction of a fixed vector b; the precise statement is postponed
to Lemma 5.13 below. Unlike the paraboloid case, we do not have such equidistribution
for the entire fj;trans; however, (5.11) ensures that the leftover part of fj;trans is inessential
as it makes a negligible contribution.

Fix Bj D B.y; �/ and again write g D fj;trans for short. Cover Bj by balls B of radius
R1=2Cım and partition NR1=2Cım .Z/\Bj D Xa [Xb , where Xa (resp. Xb) is the union
of the balls B in case (a) (resp. case (b)) as defined in Lemma 5.8.

Recall from Section 5.2.1 the definitions of the collections T�0;v0.y/ of large wave
packets at scaleR, zT�0;v0 of small wave packets at scale �, and the notations g�0;v0 ; zg�0;v0 ,
where �0 is a sector in 2 NBn�1 nBn�1 of radius ��1=2 and v0 2 R.1Cı/=2Zn�1 \B.0; �/.
We define gess, the essential part of fj;trans corresponding to case (a), as follows:

gess D
X

.�0;v0/2Tess

g�0;v0 D g �
X

.�0;v0/2Ttail

g�0;v0 ;
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where

Tess WD ¹.�0; v0/ W 9.�; v; `/ 2 T�0;v0.y/ with T `�;v \Xa ¤ ;º;

Ttail WD ¹.�0; v0/ W 8.�; v; `/ 2 T�0;v0.y/; T
`
�;v \Xa D ;º:

Note that we only consider those T�0;v0 that contain some large wave packet intersect-
ing Bj , so Tess and Ttail above form a partition of all .�0; v0/ that matter to Bj .

Remark 5.11. Another important observation is that for any given .�0; v0/, if there exist
.�; v; `/ 2 T�0;v0.y/ and an R1=2Cım -ball B such that T `

�;v
\ B \ Bj ¤ ;, then for all

.� 0; v0; `0/ 2T�0;v0.y/, one has T `
0

� 0;v0
\ 2B ¤;. This is because the union of all T `

�;v
\Bj

over .�; v; `/ 2 T�0;v0.y/ is a short tube of length � and radius � R1=2C2ı . So when B
intersects this short tube, all T `

�;v
automatically pass through 2B .

We now reduce the estimate of gD fj;trans to its essential part. By the triangle inequal-
ity of Lemma 3.1, one has

kEgkBLp
k;A

.Bj /
� kEgesskBLp

k;A=2
.Bj /
C

E� X
.�0;v0/2Ttail

g�0;v0

�
BL

p

k;A=2
.Bj /

� kEgesskBLp
k;A=2

.Bj /
C

E� X
.�0;v0/2Ttail

g�0;v0

�
BL

p

k;A=2
.Xb/

C RapDec.R/kf kL2

D kEgesskBLp
k;A=2

.Bj /
C RapDec.R/kf kL2 :

In the above, the second step is a consequence of the definition of Ttail, and the last step
follows from (5.11). It thus suffices to study gess from this point on. Now, we would like
to choose a direction, given by a vector b 2 Rn�m with jbj � R1=2Cım , and decompose
the R1=2Cım -neighborhood of Z into layers of thickness �1=2Cım along b.

Fix a .�0;v0/2Tess and anR1=2Cım -ballB�T `
�;v
\Xa for some .�;v;`/2T�0;v0.y/;

then Lemma 5.9 applies to g�0;v0 and B .
Recall that the ball B determines locally a tangent space to Z, denoted by V , and a

vector space V C that contains points on the cone with normal direction parallel to V .
Since B � Xa, according to Lemma 5.8 one has Angle.V; W / > K�2, where W is the
orthogonal complement of V C in Rn. Choose any b 2 W with jbj � R1=2Cım ; then the
direction b is transverse to TxZ for all x 2 B \ Z. In fact, by a simple reduction, one can
assume without loss of generality that b is transverse (by an angle at least K�2) to TxZ
for all points x 2 Z \ Bj .

Indeed, let ƒ be a K�3-net of all directions in Rn. Then there are O.K3.n�1// points
(directions) in ƒ. Decompose NR1=2Cım .Z/ \ 2Bj D

S
Us into O.K3.n�1// disjoint

parts such that for each x 2 Us \ Z, the normal direction of TxZ is O.K�3/-close to a
point in ƒ. The disjointness of ¹Usºs and the triangle inequality imply that

kEf k
p

BL
p

k;A
.Bj /
D

X
s

kEf k
p

BL
p

k;A
.Us/
�

X
s

kEfskBLp
k;A=2

.Us/
C RapDec.R/kf kp

L2
:
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Here Efs WD
P
T `
�;v
\Us¤;

Ef `
�;v

, hence there is rapid decay of jEf �Efsj on Us . It thus

suffices to study each Efs as there are only O.K3.n�1//� R� of them in total.
After this reduction, in the following, independently of the ball B , the choice of the

vector b will be fixed, as it is transverse to the tangent plane TxZ for all x 2 Z \ Xa.
Our goal is to show that the L2 norm of gess is equidistributed along the direction b in
NR1=2Cım .Z/ \ Bj .

Note that in the paraboloid setting dealt with in [10], one can choose b’s freely in
each B , since equidistribution in the physical space (Lemma 6.2 of [10], the analog of our
Lemma 5.9) holds true on eachB . We unfortunately do not have this luxury with the cone.
In fact, it can be as bad that only oneB here has equidistribution. A key observation is that
this is already good enough for us. Essentially, the equidistribution ofEgess in the physical
space deduced in Lemma 5.9 will give rise to that of kgesskL2 in the frequency space,
and after breaking gess down into the orthogonal pieces ¹g�0;v0º, the behavior of Eg�0;v0
inside B will control kg�0;v0kL2 . We state this last observation as the following lemma,
which is borrowed from the paraboloid case [10, Lemma 3.4]. Being a direct corollary of
orthogonality of wave packets and Plancherel, it works in the cone case equally well.

Lemma 5.12. Suppose that h is a function concentrated on a set T of wave packets and
that for every T `

�;v
2 T , T `

�;v
\ Br .z/ ¤ ; for some radius r � R1=2Cım . Then

kEhk2
L2.B10r .z//

� rkhk2
L2
:

This, together with Remark 5.11, immediately implies that for any B � Xa such that
B \ T `

�;v
¤ ;, where .�; v; `/ 2 T�0;v0.y/ for some .�0; v0/ 2 Tess, one has

kg�0;v0k
2
L2
� R�1=2�ımkEg�0;v0k

2
L2.40B/

: (5.15)

Along the direction of b, we decompose NR1=2Cım .Z/ \ Bj into layers of thickness
� �1=2Cım . More precisely, choose a set of vectors BD ¹bºwith jbj �R1=2Cım such that
¹N�1=2Cım .ZC b/\Bj º form a disjoint decomposition ofNR1=2Cım .Z/\Bj . Since our
goal is to induct on the radius, we now look at the small wave packet decomposition of
g in Bj at scale � and study how the small wave packets are distributed among different
layers.

Decompose
zg D

X
.�;w;L/

zgL�;w C RapDec.�/kf kL2 :

Observe that for any .�; w;L/ in the wave packet decomposition in Bj , if T L
�;w

intersects
N�1=2Cım .ZC b/ \ Bj for some b 2 B, then according to Lemma 5.4, T L

�;w
is contained

in N2�1=2Cım .Z C b/ \ Bj and moreover T L
�;w

is 2��1=2Cım -tangent to Z C b in Bj .
Define

zTZCb WD ¹.�; w;L/ W T
L
�;w is 2��1=2Cım -tangent to ZC b in Bj º;

zgb WD
X

.�;w;L/2zTZCb

zgL�;w :
(5.16)
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Then
zgess;b D

X
.�0;v0/2Tess

X
.�;w;L/2zT�0;v0\

zTZCb

zgL�;w :

For each b 2 B, zgess;b is concentrated on wave packets tangent to ZC b in Bj , hence the
induction hypothesis at scale � applies to zgess;b .

The transverse equidistribution property as follows is the main estimate of this sub-
section.

Lemma 5.13. Let gess and b 2 B be as above. Then

kzgess;bk
2
L2
� RO.ım/

�
R1=2

�1=2

��.n�m/
kgessk

2
L2
:

Proof. For every .�0; v0/ 2 Tess, define

zg�0;v0;b D
X

.�;w;L/2zT�0;v0\
zTZCb

zgL�;w :

According to Lemma 5.6, zg�0;v0;b is concentrated on large wave packets T `
�;v

in T�0;v0.y/.
Moreover, according to Remark 5.11, there exists some R1=2Cım -ball B � Xa such that
2B intersects all T `

�;v
2 T�0;v0.y/. Since modulation does not change theL2 norm, apply-

ing Lemma 5.12 to zg�0;v0;b and 2B , one obtains

kzg�0;v0;bk
2
L2
� R�1=2�ımkEg�0;v0k

2
L2.20B\N

�1=2Cım.ZCb//
: (5.17)

Recall also from (5.15) that

kg�0;v0k
2
L2
� R�1=2�ımkEg�0;v0k

2
L2.40B/

:

Combining (5.17), Lemma 5.9, and (5.15), we obtain the equidistribution for each g�0;v0 :

kzg�0;v0;bk
2
L2
� RO.ım/

�
R1=2

�1=2

��.n�m/
kg�0;v0k

2
L2
: (5.18)

Note that strictly speaking, Lemma 5.9 only applies to B instead of 20B . However, it is
easy to see that the same result holds true if we use a constant dilation of B from the
beginning. We omit this technicality.

By orthogonality, one has

kgessk
2
L2
�

X
.�0;v0/2Tess

kg�0;v0k
2
L2
;

kzgess;bk
2
L2
�

X
.�0;v0/2Tess

kzg�0;v0;bk
2
L2
:

Hence the desired estimate follows immediately from (5.18).
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Now, we can use Lemma 5.13 to complete the estimate of the transverse subcase. This
part of the argument, once the above version of the equidistribution estimate is proved,
proceeds exactly as in the paraboloid case. We provide only a sketch, referring the inter-
ested reader to [10, Section 8.4, pp. 42–43] for details.

Recall that it suffices to estimateX
j

kEgessk
p

BL
p

k;A=2
.Bj /

:

Note that gess also implicitly depends on j .
First, for each Bj one has

kEgessk
p

BL
p

k;A=2
.Bj /

. .logR/
X
b2B

kEf ess
j;trans;bk

p

BL
p

k;A=2
.Bj /

;

where f ess
j;trans;b is defined so that .f ess

j;trans;b/
�D zgess;b , i.e. f ess

j;trans;b D e
�i y.�/zgess;b . Hence,

kEf k
p

BL
p

k;A
.BR/

. .logR/
X
j

X
b2B

kEf ess
j;trans;bk

p

BL
p

k;A=2
.Bj /

: (5.19)

Second, for each .�0; v0/ 2Tess and eachR1=2Cım -ballB �Xa that intersects all T `
�;v

in T�0;v0.y/, the sets B \ N�1=2Cım .ZC b/ for different b 2 B are disjoint. Hence, by
(5.15) and (5.17), X

b2B

kzg�0;v0;bk
2
L2

. kg�0;v0k
2
L2
:

Since zgess;b D
P
.�0;v0/2Tess

zg�0;v0;b is an orthogonal decomposition, and so is the decom-
position gess D

P
.�0;v0/2Tess

g�0;v0 , one has the estimateX
j

X
b2B

kf ess
j;trans;bk

2
L2
D

X
j

X
b2B

kzgess;bk
2
L2

. Poly.DZ/kgessk
2
L2

.�;m kgessk
2
L2
: (5.20)

Moreover, by the equidistribution estimate of Lemma 5.13,

max
b2B
kf ess
j;trans;bk

2
L2
� RO.ım/

�
R1=2

�1=2

��.n�m/
kgessk

2
L2
: (5.21)

By the inductive hypothesis, for each Bj one has

kEf ess
j;trans;bkBLpk;A=2.Bj /

� C.K; �;m;DZ/�
��ı.

NA�log.A=2//��eC1=2kf ess
j;trans;bkL2

� C.K; �;m;DZ/R
ı��Rı.log NA�logA/��eC1=2kf ess

j;trans;bkL2 :

Combining the estimates (5.19)–(5.21), one has

kEf k
p

BL
p

k;A
.BR/

. .logR/
X
j

X
b2B

kEf ess
j;trans;bk

p

BL
p

k;A=2
.Bj /

. RO.ı/
�
C.K; �;m;DZ/�

�Rı.log NA�logA/��eC1=2
�pX

j;b

kf ess
j;trans;bk

p

L2

. RO.ım/
�
C.K; �;m;DZ/�

�Rı.log NA�logA/��eC1=2
�p�R1=2

�1=2

��.n�m/.p=2�1/
kf k

p

L2
:
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If p D p.m; k/ is as defined in Theorem 6, then

.��eC1=2/p
�
R1=2

�1=2

��.n�m/.p=2�1/
D .R�eC1=2/p;

hence

kEf k
p

BL
p

k;A
.BR/

� C�;DZR
O.ım/.R=�/��

�
C.K; �;m;DZ/R

�Rı.log NA�logA/R�eC1=2
�p
kf k

p

L2
:

Note that R=� D RO.ım�1/. By choosing the parameters so that ım � �ım�1, one can
have .R=�/�� dominate the other terms, thus C�;DZR

O.ım/.R=�/�� � 1. The induction
in the transverse subcase is closed, and we have completed the proof of Theorem 6.

6. k-broad estimate implies linear restriction

6.1. Lp ! Lp restriction

In this subsection, we demonstrate how Theorem 3, the k-broad estimate, implies the
main Theorem 1, the linear cone restriction estimate. The first ingredient of the argument
is a decoupling inequality for the cone derived by Bourgain and Demeter [5], and the
second one is induction on scales. The main difference from the paraboloid case lies in
the second step, where a Lorentz rescaling is applied to the cone.

More precisely, we are going to prove for any R > 1 and p � q � 1 that

kEf kLp.BR/ .� R�kf kLq (6.1)

whenever the k-broad estimate

kEf kBLp
k;A

.BR/
.K;� R�kf kLq

holds for p in the range

p.k; n/ < p �
2n

n � 2
; p.k; n/ WD

´
2 � n�1

n�2
if 2 � k � 3;

2 � 2n�kC1
2n�k�1

if k > 3:

The upper bound of the range for p comes from the requirement in the decoupling theorem
below. Note that the lower bound p.k; n/ is different from the critical index Np.k; n/ D
2 � nCk

nCk�2
in Theorem 3. We claim that (6.1) (with p in the range above) implies The-

orem 1 immediately. Indeed, taking k D .nC 1/=2 when n is odd and k D n=2C 1 when
n is even, max.p.k; n/; Np.k; n// gives the lower bound for p in Theorem 1. Then The-
orem 1 follows by interpolating with the trivial L1 bound of E and �-removal (see [15]).

We now begin the proof of (6.1). The k-broad estimate assumption says thatX
B
K2
�BR

min
V1;:::;VA

max
�…Va

Z
B
K2

jEf� j
p
� C.K; �/Rp�kf k

p
Lq ;
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where V1; : : : ; VA are .k � 1/-planes and we have used the abbreviation � … Va to denote
Angle.G.�/; Va/ > K�2, a D 1; : : : ; A. For each BK2 , fix a choice of V1; : : : ; VA so that
the minimum above is attained. ThenZ

B
K2

jEf jp . KO.1/ max
�…Va

Z
B
K2

jEf� j
p
C

AX
aD1

Z
B
K2

ˇ̌̌X
�2Va

Ef�

ˇ̌̌p
; (6.2)

where the first term can be bounded using the k-broad estimate, while the second term
will be handled by the cone decoupling theorem of Bourgain and Demeter, which in our
notation states the following.

Theorem 7 ([5]). Assume supp Of � NK�2.C/, the K�2-neighborhood of the truncated
cone C � Rn. Then on any ball BK2 of radius K2, for any ı > 0,

kf kLp.B
K2
/ .ı Kı

� X
�2P

K�2
.C/

kf�k
2
Lp.WB

K2
/

�1=2
; 82 � p �

2n

n � 2
;

where PK�2.C/ is a partition of NK�2.C/ into sectors � of dimensions 1 �K�1 � � � � �
K�1 � K�2, f D

P
� f� such that bf� D Of �� , and WB

K2
is a weight approximately

equaling 1 on BK2 and rapidly decaying outside.

Applying this theorem to the second term followed by Hölder’s inequality, for the
subspaces Va as in (6.2) one obtainsZ

B
K2

ˇ̌̌X
�2Va

Ef�

ˇ̌̌p
.ı Kı max.1;K.k�3/.p=2�1//

X
�2Va

Z
WB

K2
jEf� j

p;

where we have observed that the number of � 2 Va is . max.1;Kk�3/.
Indeed, by definition, � 2 Va means that the angle between � and Va is less thanK�2.

By [12, Lemma 2.2], � \ Sn�1 lies in a CnK�1-neighborhood of Va \ C \ Sn�1. Note
that C \ Sn�1 is an .n � 2/-dimensional sphere, which we denote by Sn�2. Recall that
dim Va D k � 1; the upper bound Kk�3 then follows from the fact that Va \ Sn�2 has
dimension � k � 3. This is a unique feature of the cone, which is why in the definition of
the broad norm, we chose to define the angle between � and Va to be less than K�2, in
contrast to the paraboloid case where K�1 is used.

Next, summing over BK2 � BR, a D 1; : : : ; A, one has

X
B
K2
�BR

AX
aD1

Z
B
K2

ˇ̌̌X
�2Va

Ef�

ˇ̌̌p
. Kı max.1;K.k�3/.p=2�1//

X
�

Z
W jEf� j

p;

where W WD
P
B
K2
�BR

WB
K2

satisfies W . 1 on B2R and rapidly decays outside B2R.
Hence, combining this with the k-broad estimate, we getZ

BR

jEf jp � C.K; �/Rp�kf k
p
Lq C CK

ı max.1;K.k�3/.p=2�1//
X
�

Z
B2R

jEf� j
p;

(6.3)
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from which we are going to prove by induction on the radius thatZ
BR

jEf jp � NC.�/Rp�kf k
p
Lq : (6.4)

This is obviously true when R D 1 by the trivial L1 bound of E. Assume now that
(6.4) holds for radii less than R=2. We apply Lorentz rescaling to handle the contribution
of each f� . To do this, we first observe that our desired estimate (6.4) is preserved under
rotations. To see this, it is easier to work with the “lift” of the functions f on Rn�1 onto
the cone. For any f 2 Lq.2 NBn�1 n Bn�1/, define F.�/ D f . N�/ as a function supported
on the cone C. Then

kF kLq.d�C/ D kf kLq.2 NBn�1nBn�1/

where d�C is the pullback of the Lebesgue measure on Rn�1 under the projection � 7! N�,
and (6.4) can be rephrased as

k1Fd�CkLp.BR/ � NC.�/Rp�kF kpLq.d�C/: (6.5)

Lemma 6.1. Let F be a function supported on the cone C, and A be any rotation in Rn.
Then for any set � � Rn the following two inequalities are equivalent:

(1) k1Fd�CkLp.�/ � XkF kLq.d�C/,
(2) k7F.A�1�/d�A.C/kLp.A.�// � XkF.A�1 �/kLq.d�A.C//.
Proof. By a change of variables, since the Jacobian of the rotation is 1, the left hand sides
of both inequalities are the same, as also are the right hand sides.

Now we start estimating each f� , or equivalently its lift F� . We slightly abuse notation
by using � to denote both the sector in 2 NBn�1 n Bn�1 and its lift onto the cone. For
a fixed � , by symmetry of the cone, there is no loss of generality to assume that the
central line of � is in the first quadrant of the .�n�1; �n/-plane. (This can be achieved
through a rotation fixing the �n-axis, mapping C to itself and the central line of � into the
.�n�1; �n/-plane, combined with Lemma 6.1.) Next, we want to find a rotation A sending
the central line of � to be lying on the positive half of the �n�1-axis. In fact, A is exactly
the volume conserving linear transformation mapping � D . N�; �n/ to ! D . N!; !n/ such
that �n�1 D .!n�1 � !n/=

p
2, �n D .!n�1 C !n/=

p
2 and �j D !j , j D 1; : : : ; n � 2,

under which the original vertical cone

C D ¹� 2 Rn W �21 C � � � C �
2
n�1 D �

2
n ; �n > 0; 1 � �j � 2; 81 � j � n � 1º

is mapped to the tilted cone

T D ¹! 2 Rn W !21 C � � � C !
2
n�2 D 2!n�1!n;

p
2 � !n�1 � 2

p
2;

1 � !j � 2; 81 � j � n � 2º:

By a change of variable,

2F�d�C.x/ D 2G�d�T .y/; G� .!/ WD F� .A
�1.!// D F� .�/; y WD Ax;

where d�T is the pushforward of d�C under the rotation A.
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We are now ready to apply rescaling. Introduce a new coordinate Q! such that

Q!j D K!j ; 81 � j � n � 2; Q!n�1 D !n�1; Q!n D K
2!n:

Then

!1y1 C � � � C !n�1yn�1 C
!21 C � � � C !

2
n�2

2!n�1
yn

D Q!1 Qy1 C � � � C Q!n�1 Qyn�1 C
Q!21 C � � � C Q!

2
n�2

2 Q!n�1
Qyn

where

Qyj D K
�1yj ; 81 � j � n � 2; Qyn�1 D yn�1; Qyn D K

�2yn:

Observing that ¹ Q! W ! 2 �º is contained in a constant dilation of the tilted cone T , say,
5T , we have

j2G�d�T .y/j D K�.n�2/j3G0�d�5T . Qy/j;
where G0� . Q!/ is a function on the dilated cone 5T such that G0� . Q!/ D G� .!/ on the
dilated A� and 0 elsewhere. We then apply A�1 to rotate 5T back to the vertical position,
which leads to

3G0�d�5T . Qy/ D 5G0� .A�/d�5C.A�1 Qy/:
We now end up with a restriction problem on 5C, while in the physical space the linear

transformation has sent the ball BR into a tube of dimension RK�1 � � � � � RK�1 �
RK�2 � R. There is still an obstruction preventing us from directly using the induction
assumption: this tube is not contained in a ball of radius less than R=2. Fortunately, this
can be easily overcome by covering the tube with no more than C0 balls of radius R=C0,
where 1 < C0� K � R. For each ball BR=C0 , one can also assume that it is centered at
the origin, as translation in the physical space corresponds to modulation in the frequency
space which does not change the Lq norm. By the symmetry of BR=C0 and Lemma 6.1,
the induction assumption implies that

k3G0�d�5T kpLp.BR=C0 / �
NC.�/Rp�C

�p�
0 kG0�k

p

Lq.d�5T /

D NC.�/Rp�C
�p�
0 K.n�2/p=qkG�k

p

Lq.d�T /
:

Then, collecting the equalities above, we getZ
B2R

jEf� j
p
D k1Fd�CkpLp.B2R/ D K

n�.n�2/p
X
BR=C0

k3G0�d�5T kpLp.BR=C0 /

� NC.�/Rp�C
1�p�
0 Kn�.n�2/pC.n�2/p=qkG�k

p

Lq.d�T /

D NC.�/Rp�C
1�p�
0 Kn�.n�2/pC.n�2/p=qkf�k

p
Lq : (6.6)
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Plugging this back into (6.3), one hasZ
BR

jEf jp � C.K; �/Rp�kf k
p
Lq

C C NC.�/Rp�C
1�p�
0 max.1;K.k�3/.p=2�1//KıCn�.n�2/pC.n�2/p=q

X
�

kf�k
p
Lq :

Observing that there are . Kn�2 sectors � in total and recalling that p � q, Hölder’s
inequality implies that X

�

kf�k
p
Lq � K

.n�2/.1�p=q/
kf k

p
Lq :

Plugging this into the inequality above, one hasZ
BR

jEf jp � C.K; �/Rp�kf k
p
Lq

C C NC.�/Rp�C
1�p�
0 max.1;K.k�3/.p=2�1//KıCn�.n�2/pC.n�2/kf kpLq

where the dependence on q in the exponent of K cancels out.
Then the induction closes if the exponent (excluding ı) of K is strictly negative (so

that one can always choose ı > 0 small enough to keep the exponent negative). Note that
the presence of C0 will not harm us, as for any fixed �, it makes a negligible contribution
when K is sufficiently large. When 2 � k � 3,

n � .n � 2/p C .n � 2/ < 0 ” p > 2 �
n � 1

n � 2
I

when k > 3,

.k � 3/.p=2 � 1/C n � .n � 2/p C .n � 2/ < 0 ” p > 2 �
2n � k C 1

2n � k � 1
:

These give exactly the desired lower bound p.k; n/, as claimed in (6.1).

6.2. Lq ! Lp restriction

This subsection is devoted to the proof of Theorem 2, again, using the k-broad estimate
of Theorem 3.

6.2.1. Interior of (1.3). When the pair .p;q/ lies strictly inside the interior of the claimed
range in (1.3), the estimate follows from a very similar argument to that in the Lp ! Lp

case, so we only sketch the necessary modifications that are needed in our current case
q < p. More precisely, fix any R > 0. When 2 � q � p � 2n

n�2
, Theorem 3 tells us that

kEf kBLp
k;A

.BR/
.k;� R�kf kLq ; 8p � Np.k; n/ D 2 �

nC k

nC k � 2
:
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We are going to show that

kEf kLp.BR/ .� R�kf kLq (6.7)

whenever 2 � p � 2n
n�2

and8<:p � 2 � nC2n ; q0 < n�2
n
p if k D 2;

p � Np.k; n/; p > n
2n�k�1

2 �
n�kC1
q

if k � 3;
(6.8)

for some 2 � k � n.
As in the previous subsection, we start by estimating the “broad” part of Ef by

Theorem 3 and treating the “narrow” part of it using the decoupling theorem of Bourgain–
Demeter. After decoupling, we apply Hölder’s inequality to change from `2 to `q , reach-
ing the estimateZ

B
K2

ˇ̌̌X
�2Va

Ef�

ˇ̌̌p
.ı Kı max.1;K.k�3/.1=2�1=q/p/

�X
�2Va

�Z
WB

K2
jEf� j

p

� q
p
�p
q

:

Summing over a D 1; : : : ; A and then over BK2 � BR using the Minkowski inequality,
we getX
B
K2
�BR

AX
aD1

Z
B
K2

ˇ̌̌X
�2Va

Ef�

ˇ̌̌p
. Kı max.1;K.k�3/.

1
2�

1
q /p/

X
B
K2
�BR

�X
�

�Z
WB

K2
jEf� j

p

� q
p
�p
q

. Kı max.1;K.k�3/.
1
2�

1
q /p/

�X
�

� X
B
K2
�BR

�Z
WB

K2
jEf� j

p

� q
p �
p
q
� q
p
�p
q

. Kı max.1;K.k�3/.
1
2�

1
q /p/

�X
�

�Z
B2R

jEf� j
p

� q
p
�p
q

C RapDec.R/kf kpLq ;

where we have summed up WB
K2

to a single weight W as in the previous subsection.
This gives us a slightly different form of (6.3):Z

BR

jEf jp � C.K; �/Rp�kf k
p
Lq

C CKı max.1;K.k�3/.
1
2�

1
q /p/

�X
�

�Z
B2R

jEf� j
p

� q
p
�p
q

: (6.9)

We then proceed as in the previous subsection to apply induction on scales to get (6.6).
Without the need of using Hölder’s inequality, one can plug it into (6.9) to directly obtainZ
BR

jEf jp � C.K; �/Rp�kf k
p
Lq

C C NC.�/Rp�C
1�p�
0 max.1;K.k�3/.1=2�

1
q /p/KıCn�.n�2/pC.n�2/

p
q kf k

p
Lq :
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The induction closes if the exponent (excluding ı) of K is strictly negative. When k D 2,

n � .n � 2/p C .n � 2/
p

q
< 0 ” q0 <

n � 2

n
pI

when k � 3,

.k � 3/

�
1

2
�
1

q

�
p C n � .n � 2/p C .n � 2/

p

q
< 0 ” p >

n
2n�k�1

2
�
n�kC1
q

:

These are exactly the desired conditions in (6.8).

Remark 6.2. In the case q D 2, the range of tuples .p; q; k/ in (6.8) is empty for all
2 � k � n, which explains the extra restriction one needs to put on q in the admissibility
condition (1.3). Moreover, the elimination of the endpoint of the range of p follows from
�-removal.

6.2.2. Boundary of (1.3). In the previous subsection, we have already obtained the
desired linear restriction estimate for all pairs .p; q/ that lie strictly inside the claimed
range (1.3); it thus remains to examine the boundary case q0 D n�2

n
p when k D 2 and

p D n
2n�k�1

2 �
n�kC1
q

when k > 3.

In order to do this, we apply a bilinear interpolation adapted from [17, Theorem 2.2]
where the case of the paraboloid is studied. The key idea here is that linear and bilinear
restriction estimates are essentially equivalent on the boundary line of (1.3).

Theorem 8. Let n � 3 and 1 < p; q <1 be such that 2p > 2.n�1/
n�2

and q0 � n�2
n
� 2p.

Let R.q ! 2p/ denote the linear cone restriction estimate

kEf kL2p.Rn/ . kf kLq

and R.q � q ! p/ the bilinear cone restriction estimate

k.Ef1/.Ef2/kLp.Rn/ . kf1kLqkf2kLq

for all functions fi supported in Ui � 2Bn�1 n Bn�1 such that U1; U2 are transverse.
Then

(1) R.q ! 2p/ implies R.q � q ! p/;

(2) if R. Qq � Qq ! Qp/ holds for all . Qp; Qq/ in a neighborhood of .p; q/, then R.q ! 2p/

holds.

It seems that this theorem has not been explicitly stated in the literature before, but
its proof is very similar to that of [17, Theorem 2.2]. In particular, the direction of linear
implying bilinear restriction simply follows from Hölder’s inequality. In order to deduce
linear restriction from the bilinear restriction, one partitions the cone into sectors at differ-
ent scales and explores the quasi-orthogonality between pairs of sectors that are close to
each other at each scale, which follows from the bilinear restriction estimate after apply-
ing Lorentz rescaling as in Subsection 6.1 above. This then yields enough decay for all the
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scales to be summable. In fact, when n� 4, the proof proceeds exactly as in [17, Theorem
2.2] after replacing n by n� 1. When nD 3, one needs to work through the argument sep-
arately as the case n � 1 D 2 is not covered in their theorem, but no new difficulty arises.
We omit the details.

Therefore, given 2 � k � n and a point .p; q/ on the boundary of the region (1.3), it
suffices to find a neighborhood of .p; q/ where the bilinear restriction holds true. Such a
neighborhood can be found by interpolating the bilinear restriction in the interior of (1.3)
that is implied by the linear estimate, together with the following theorem of Wolff.

Theorem 9 ([19, Theorem 1]). For n � 3 and p > 1C 2=n, the bilinear cone restriction
estimate R.2 � 2! p/ holds true.
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