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Abstract. We prove a measurable version of the Hall marriage theorem for actions of finitely gener-
ated abelian groups. In particular, it implies that for free measure-preserving actions of such groups
and measurable sets which are suitably equidistributed with respect to the action, if they are are
equidecomposable, then they are equidecomposable using measurable pieces. The latter generalizes
a recent result of Grabowski, Máthé and Pikhurko on the measurable circle squaring and confirms
a special case of a conjecture of Gardner.

Keywords. Circle squaring, Hall matching theorem, Mokobodzki medial means

1. Introduction

In 1925 Tarski famously asked if the unit square and the disk of the same area are equide-
composable by isometries of the plane, i.e. if one can partition one of them into finitely
many pieces, rearrange them by isometries and obtain the second one. This problem
became known as the Tarski circle squaring problem.

The question whether two sets of the same measure can be partitioned into congru-
ent pieces has a long history. At the beginning of the 19th century Wallace, Bolyai and
Gerwien showed that any two polygons in the plane of the same area are congruent by
dissections (see [31, Theorem 3.2]) and Tarski [29] ([31, Theorem 3.9]) showed that such
polygons are equidecomposable using pieces which are polygons themselves. Hilbert’s
3rd problem asked if any two polyhedra of the same volume are equidecomposable using
polyhedral pieces. The latter was solved by Dehn (see [1]). Banach and Tarski showed
that in dimension at least 3, any two bounded sets in Rn with nonempty interior, are
equidecomposable, which leads to the famous Banach–Tarski paradox on doubling the
ball. Back in dimension 2, the situation is somewhat different, as any two measurable
subsets equidecomposable by isometries must have the same measure (see [31]) and this

Tomasz Cieśla: Department of Mathematics and Statistics, McGill University, 805, Sherbrooke
Street West Montreal, Quebec, Canada H3A 2K6; tomasz.ciesla@mail.mcgill.ca
Marcin Sabok: Department of Mathematics and Statistics, McGill University, 805, Sherbrooke
Street West Montreal, Quebec, Canada H3A 2K6; and Institute of Mathematics, Polish Academy
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was one of the motivation for the Tarski circle squaring problem. Using isometries was
also essential as von Neumann [32] showed that the answer is positive if one allows arbi-
trary area-preserving transformations. The crucial feature that makes the isometries of the
plane special is the fact that the group of isometries of R2 is amenable. Amenability was,
in fact, introduced by von Neumann in the search of a combinatorial explanation of the
Banach–Tarski paradox.

The first partial result on the Tarski circle squaring was a negative result of Dubins,
Hirsch and Karush [5] who showed that pieces of such decompositions cannot have
smooth boundary (which means that this cannot be performed using scissors). However,
the full positive answer was given by Laczkovich in his deep paper [16]. In fact, in [17]
Laczkovich proved a stronger result saying that whenever A and B are two bounded
measurable subsets of Rn of positive measure such that the upper box dimension of the
boundaries of A and B is less than n, then A and B are equidecomposable. The assump-
tion on the boundary is essential since Laczkovich [19] (see also [21]) found examples
of two measurable sets of the same area which are not equidecomposable even though
their boundaries have even the same Hausdorff dimension. The proof of Laczkovich,
however, did not provide any regularity conditions on the pieces used in the decompo-
sitions. Given the assumption that A and B have the same measure, it was natural to ask
if the pieces can be chosen to be measurable. Moreover, the proof of Laczkovich used the
Axiom of Choice.

A major breakthrough was achieved recently by Grabowski, Máthé and Pikhurko [10]
who showed that the pieces in Laczkovich’s theorem can be chosen to be measurable:
whenever A and B are two bounded subsets of Rn of positive measure such that the upper
box dimension of the boundaries ofA andB are less than n, thenA andB are equidecom-
posable using measurable pieces. Another breakthrough came even more recently when
Marks and Unger [25] showed that for Borel sets, the pieces in the decomposition can be
even chosen to be Borel, and their proof did not use the Axiom of Choice.

The goal of the present paper is to give a combinatorial explanation of these phenom-
ena. There are some limitations on how far this can go because already in Laczkovich’s
theorem there is a restriction on the boundary of the setsA andB . Therefore, we are going
to work in the measure-theoretic context and provide sufficient and necessary conditions
for two sets to be equidecomposable almost everywhere. Recently, there has been a lot
of effort to develop methods of the measurable and Borel combinatorics (see for instance
the upcoming monograph by Marks and Kechris [23]) and we would like to work within
this framework.

The classical Hall marriage theorem provides sufficient and necessary conditions for
a bipartite graph to have a perfect matching. Matchings are closely connected with the
existence of equidecompositions and both have been studied in this context. In 1996
Miller [27, Problem 15.10] asked whether there exists a Borel version of the Hall the-
orem. The question posed in such generality has a negative answer as there are examples
of Borel graphs which admit perfect matchings but do not admit measurable perfect
matchings. One example is provided already by the Banach–Tarski paradox (see [23]) and
Laczkovich [15] constructed a closed graph which admits a perfect matching but does not
have a measurable one. In the Baire category setting, Marks and Unger [24] proved that if
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a bipartite Borel graph satisfies a stronger version of Hall’s condition with an additional
" > 0, i.e. if the set of neighbors of a finite set F is bounded from below by .1C "/jF j,
then the graph admits a perfect matching with the Baire property (see also [22] and [4]
for related results on matchings in this context). On the other hand, in all the results of
Laczkovich [17], Grabowski, Máthé and Pikhurko [10] and Marks and Unger [25] on the
circle squaring, a crucial role is played by the strong discrepancy estimates, with an " > 0
such that the discrepancies of both sets are bounded by C 1

n1C" (for definitions see Sec-
tion 2). Recall that given a finitely generated group � generated by a symmetric set S and
acting freely on a space X , the Schreier graph of the action is the graph connecting two
points x and y if  � x D y for one of the generators  2 S .

Definition 1. Suppose � Õ .X; �/ is a free pmp action of a finitely generated group on
a space X . Write G for the Schreier graph of the action. A pair of sets A;B satisfies the
Hall condition (�-a.e.) with respect to � (given a set of generators) if for every (�-a.e.)
x 2 X and for every finite subset F of � � x we have

jF \ Aj � jNG.F / \ Bj;

jF \ Bj � jNG.F / \ Aj;

where NG.F / means the neighborhood of F in the graph G.

This definition clearly depends on the choice of generators, and we say that A;B
satisfy the Hall condition (�-a.e.) if the above holds for some choice of generators. For
the case with a fixed set of generators (which will be more natural for us), we say that the
action � Õ .X; �/ satisfies k-Hall condition (�-a.e.) if for every (�-a.e., resp.) x 2 X
for every finite subset F of � � x we have

jF \ Aj � jN k
G.F / \ Bj;

jF \ Bj � jN k
G.F / \ Aj;

where N k
G.F / denotes the k-neighborhood of F in the graph G. Note that A;B satisfy

the Hall condition if and only ifA;B satisfy the k-Hall condition for some k > 0. We will
work under the assumption that both sets A;B satisfy certain form of equidistribution on
the orbits, namely that they are �-uniform (for definition see Section 2).

Our main result is the following.

Theorem 2. Let � be a finitely generated abelian group and let � Õ .X; �/ be a free
pmp action. Suppose A;B � X are two measurable �-uniform sets. The following are
equivalent:

(1) The pair A;B satisfies the Hall condition with respect to � �-a.e.

(2) A and B are �-equidecomposable �-a.e. using �-measurable sets.

(3) A and B are �-equidecomposable �-a.e.

As a consequence, it gives the following.

Corollary 3. Suppose � is a finitely generated abelian group and � Õ .X; �/ is a free
pmp Borel action on a standard Borel probability space. Let A;B � X be measurable
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�-uniform sets. If A and B are �-equidecomposable, then A and B are �-equidecom-
posable using measurable pieces.

This generalizes the recent measurable circle squaring result [10] as Laczkovich [16]
constructs an action of Zd satisfying the conditions above, for a suitably chosen d (big
enough, depending on the box dimensions of the boundaries).

In fact, in 1991 Gardner [8, Conjecture 6] conjectured that whenever two bounded
measurable sets in an Euclidean space are equidecomposable via an action of an amenable
group of isometries, then they are equidecomposable using measurable sets. The above
corollary confirms this conjecture in case of an abelian group � and �-uniform sets.

The main new idea in this paper is an application of measurable medial means. These
have previously used in descriptive set theory only in the work of Jackson, Kechris and
Louveau [11] on amenable equivalence relations but that context was combinatorially
different.1 They are used together with a recent result of Conley, Jackson, Kerr, Marks,
Seward and Tucker-Drob [3] on tilings of amenable group actions in averaging sequences
of measurable matchings. This allows us to avoid using Laczkovich’s discrepancy esti-
mates that play a crucial role in both proofs of the measurable and Borel circle squaring.
We also employ the idea of Marks and Unger in constructing bounded measurable flows.
More precisely, following Marks and Unger we construct bounded integer-valued measur-
able flows from bounded real-valued measurable flows. However, instead of using Timár’s
result [30] for specific graphs induced by actions of Zd , we give a self-contained simple
proof of the latter result, which works in the measurable setting for the natural Cayley
graph of Zd . This is the only part of the paper which deals with abelian groups and we
hope it could be generalized to a more general setting. On the other hand, the measurable
averaging operators that we employ, cannot be made Borel and for this reason the results
of this paper apply to the measurable setting and generalize only the results of [10].

While this paper deals with abelian groups (the crucial and only place which works
under these assumptions is Section 6), a positive answer to the following question would
confirm Gardner’s conjecture [8, Conjecture 6]. 2

Question 4. Is the measurable version of Hall’s theorem true for free pmp actions of
finitely generated amenable groups?

2. Discrepancy estimates

Both proofs of Grabowski, Máthé and Pikhurko and of Marks and Unger use a tech-
nique that appears in Laczkovich’s paper [16] and is based on discrepancy estimates.
Laczkovich constructs an action of a group of the form Zd for d depending on the upper
box dimension of the boundaries of the sets A and B such that both sets are very well
equidistributed on orbits on this action. To be more precise, given an action Zd Õ .X; �/

1As we have learnt recently, a similar idea can be also found in [20, 33].
2This has been recently answered in the negative by Kun [14], and the recent preprint [2] proves

some optimal results the positive direction.
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and a measurable set A � X , the discrepancy of A with respect to a finite subset F of an
orbit of the action is defined as

D.F;A/ D

ˇ̌̌̌
jA \ F j

jF j
� �.A/

ˇ̌̌̌
:

It is meaningful to compute the discrepancy with respect to finite cubes, i.e. sub-
sets of orbits which are of the form Œ0; n�d � x, where x 2 X and Œ0; n�d � Zd is the
d -dimensional cube with side ¹0; : : : ; nº. The cube Œ0; n�d has boundary, whose relative
size with respect to the size of the cube is bounded by c � 1

n
for a constant c.

A crucial estimation that appears in Laczkovich’s paper is that the action of Zd is such
that for both sets A and B the discrepancy is estimated as

D.Œ0; n�d � x;A/;D.Œ0; n�d � x;B/ � c
1

n1C"
(�)

for some " > 0 and some c > 0, which means that the discrepancies of both sets on cubes
decay noticeably faster than the sizes of the boundaries of these cubes.

A slightly more natural condition on the equidistrubition of a set A would be to
remove the " from (�) and require that there exists a constant c such that for every n
the discrepancy

D.Œ0; n�d �� � x;A/ � c
1

n
(��)

for �-a.e. x. In fact, as shown in [18, Theorem 1.2], condition (�) implies that (��) is
satisfied on every union of cubes in places of Œ0; n�d . Sets satisfying the latter condition
are called uniformly spread (see [18, Theorem 1.1]). However, in [18, Theorem 1.5],
Laczkovich gives examples of sets which satisfy (��) but are not uniformly spread.

In this paper, we work with even weaker assumption on equidistribution, given by the
following definition.

Definition 5. Given a Borel free pmp action � Õ .X; �/ of a finitely generated abel-
ian group � D Zd �� with � finite, and a measurable set A � X , we say that A is
�-uniform if there exists a constant c > 0 such that for �-a.e. X we have

jA \ .F � x/j � cjF j

whenever F is a set of the form F D Œ0; n�d ��.

Note that this definition does not depend (up to changing the constant c) on the way
the group is written as Zd �� and a choice of generators for the group.

3. Measurable averaging operators

In this paper we use special kinds of measurable averaging operators. These can be
constructed in different ways.

For the first construction, recall the definition of a medial mean.

Definition 6. A medial mean is a linear functional m W `1 ! R which is positive, i.e.
m.f / � 0 if f � 0, normalized, i.e. m.1N/ D 1, and shift invariant, i.e. m.Sf / D m.f /,
where Sf .n/ D f .nC 1/.
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Medial means were studied already by Banach who showed their existence (the
so-called Banach limits). In this paper we use a special kind of medial means m which
is additionally measurable on Œ0; 1�N and we use it to take a measurable average of
a sequence of functions fn W .X; �/! Œ0; 1� for a space .X; �/ with a Borel probabil-
ity measure �. It takes a bit more effort to construct medial means that are measurable but
this can be done in a couple of ways.

Recall that Mokobodzki showed that under the assumption of the Continuum Hypo-
thesis there exists a medial mean which is universally measurable as a function on Œ0; 1�N .
For a proof the reader can consult the textbook of Fremlin [6, Theorem 538S] or the arti-
cle [26]. However, a careful analysis of Mokobodzki’s proof shows that for a single Borel
probability measure �, the existence of a �-measurable medial mean does not require
the Continuum Hypothesis. Nevertheless, some set-theoretical assumptions are still used
even for a single �, such as the Hahn–Banach theorem.

Another construction of measurable averaging a sequence of measurable functions
fn W X ! Œ0; 1� (perhaps more familiar to the general mathematical audience than the
Mokobodzki construction) can be done using the Banach–Saks theorem in L2.X; �/ by
using weak�-compactness of the unit ball (cf. [20]).

4. Set-theoretical assumptions

In view of the foundational questions and the role of the Axiom of Choice in equide-
compositions (e.g. recall that the Hahn–Banach theorem implies the Banach–Tarski para-
dox [28]), we argue below that for the measurable equidecompositions on co-null sets,
we can remove any set theoretic assumptions beyond ZF and the Axiom of Dependent
Choice (DC) that are needed to obtain a measurable medial mean.

Recall that Borel sets can be coded using a …1
1 set (of Borel codes) BC � 2N in a �1

1

way, i.e. there exists a subset C � BC �X such that the family ¹Cx W x 2 BCº consists
of all Borel subsets of X and the set C can be defined using both †1

1 and …1
1 definitions.

For details the reader can consult the textbook of Jech [12, Chapter 25].
Given a Borel probability measure � on X and a subset P � X � Y , we write

8� xP.x; y/ to denote that�.¹x 2X W P.x; y/º/D 1. It is well known [13, Chapter 29E]
that if P is †1

1, then ¹y 2 Y W 8�x P.x; y/º is †1
1.

The proposition below implies that if two Borel sets are coded using a real r , then
we can argue about their measurable equidecomposition a.e. in LŒr� (where AC and CH
hold).

Proposition 7. Let V � W be models of ZF + DC. Suppose in V we have a standard
Borel space X with a Borel probability measure �, two Borel subsets A;B � X and
� Õ .X; �/ is a Borel pmp action of a countable group � . The statement that the sets A
and B are �-equidecomposable �-a.e. using �-measurable pieces is absolute between V
and W .

Proof. Suppose that in W or V the sets A and B are �-equidecomposable �-a.e. Then
there exist disjoint Borel subsets A1; : : : ; An of A and disjoint Borel subsets B1; : : : ; Bn
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of B such that �.A n
Sn
iD1Ai / D 0, �.B n

Sn
iD1 Bi / D 0 and iAi D Bi for some ele-

ments 1; : : : ; n 2 � . This statement can be written as

9x1; : : : ; xn
^
i�n

BC.xi / ^
^
i 6Dj

Cxi
\ Cxj

D ;

^ 8
�x

�
x 2 A$

n_
iD1

x 2 Cxi

�
^ 8

�x
�
x 2 B $

n_
iD1

x 2 iCxi

�
and thus is it †1

2. By Shoenfield’s absoluteness theorem [12, Theorem 25.20], it is abso-
lute between V and W .

5. Measurable flows in actions of amenable groups

Given a standard Borel space X , a Borel graph G on X and f W X ! R, a function
' W G ! R is an f -flow if
� '.x; y/ D �'.y; x/ for every .x; y/ 2 G and
� f .x/ D

P
.x;y/2G '.x; y/ for every x 2 X .

Let � be a finitely generated amenable group. Let 1; : : : ; d be a finite symmetric
set of generators of � . Let X be a standard Borel space and let � be a Borel probability
measure on X . Let � Õ .X; �/ be a free pmp action. Recall that by the Schreier graph
of the action we mean the graph ¹.x; ix/ W x 2 X; 1 � i � dº � X �X .

Definition 8. For finite sets F;K � � and ı > 0 we say that F is .K; ı/-invariant if
jKF4F j < ıjF j.

In the following lemma we assume that there exists a universally measurable medial
mean m, which, by the remarks in the previous section, we can assume throughout this
paper.

In order to make it a bit more general, let us define the Hall condition for functions:
a function f W X ! Z satisfies the k-Hall condition if for every finite set F contained in
an orbit of � Õ X we have thatX

x2F
f.x/�0

f .x/ �
X

x2Nk
G
.F /

f .x/�0

�f .x/;
X
x2F
f.x/�0

�f .x/ �
X

x2Nk
G
.F /

f .x/�0

f .x/:

Note that a pair of sets A;B satisfies the k-Hall condition if and only if f D �A � �B
satisfies the k-Hall condition.

Proposition 9. Let � be a finitely generated amenable group and � Õ .X; �/ be a Borel
free pmp action. Suppose f W X ! Z is a measurable function such that

� jf j � l ,

� f satisfies the k-Hall condition,

for some k; l 2 N. Then there exists a �-invariant measurable subset X 0 � X of mea-
sure 1 and a measurable real-valued f -flow � on the Schreier graph of � Õ X 0 such



T. Cieśla, M. Sabok 2758

that
j�j � l � dk ;

where d is the number of generators of � .

Proof. First, we are going to assume that jf j � 1, i.e. that f D �A � �B for two mea-
surable subsets A;B � X . Indeed, replace X with X � l and take the projection

� W X � l ! X:

Then we can find two subsets A;B � X � l such that

f .x/ D j��1.¹xº/ \ Aj � j��1.¹xº/ \ Bj:

We can also induce the graph structure onX� l by taking as edges the pairs ..x; i/; .y; j //
such that .x; y/ forms an edge in X as well as all pairs ..x; i/; .x; j // for i 6D j . Then A
and B satisfy the k-Hall condition in X � l for the above graph.

Let K D ¹ 2 � W d.e; / � kº. Fix ı > 0. Use [3, Theorem 3.6] for K and ı to get
a �-conull �-invariant Borel set X 0 � X , a collection ¹Ci W 1 � i � mº of Borel sub-
sets of X 0, and a collection ¹Fi W 1 � i � mº of .K; ı/-invariant subsets of � such that
F D ¹Fic W 1 � i � m; c 2 Ciº partitions X 0.

For a finite set F � � define F.K/ D ¹f 2 F W Kf � F º. Note that if F 0x D F 00y,
where F 0; F 00 are finite subsets of � and x; y 2 X , then F 0.K/x D F 00.K/y. If F � X
is a finite subset of a single orbit, then we let F.K/ D F 0.K/x where F 0 � � and
x 2 X satisfy F D F 0x. This definition does not depend on the choice of representation
F D F 0x by the previous remark. Note that if F � X is .K; ı/-invariant then

jF.K/j � jF j � jKF4F j � jKj > jF j � .1 � ıjKj/:

Write

H D ¹.x; x/ 2 A � B W x 2 Fi .K/ � c for some 1 � i � m and c 2 Ci ;  2 Kº:

Then H is a locally finite Borel graph satisfying Hall’s condition as A;B satisfy the
k-Hall condition. By the Hall theorem, there exists a Borel injection

h W A \
[
F 2F

F.K/! B \
[
F 2F

F:

Write G for the Schreier graph of � Õ X . For every x 2 dom h let

px D ¹.x0; x1/; .x1; x2/; : : : ; .xj�1; xj /º

be the shortest lexicographically smallest path in the graph G connecting x0 D x with
xj D h.x/. Let P D ¹px W x 2 dom hº.

Define � W G ! R by the formula

�.x; x/ D j¹p 2 P W .x; x/ 2 pºj � j¹p 2 P W .x; x/ 2 pºj:

Note that � is Borel (by definition). Also, j�j is bounded by dk (the number of paths
of length not greater than k passing through a given edge in the graph G). By definition,
� is a .�domh � �imh/-flow.
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Define
X 00 D

[
F 2F

F.K/ n .B n h.A//:

Note that for every x 2 X 00 we have �A.x/ � �B.x/ D �domh.x/ � �imh.x/.
For every 1� i �m let ¹.A1;i ; B1;i ; h1;i /; .A2;i ; B2;i ; h2;i /; : : : ; .Ani ;i ; Bni ;i ; hni ;i /º

be the set of all triples .A0; B 0; h0/ consisting of two subsets A0; B 0 � Fi and a bijection
h0 W A0 ! B 0. For 1 � j � ni define

Cj;i D ¹c 2 Ci W .dom hj;i /c D A \ .Fic/ ^ 8 2 dom hj;i hj;i ./c D h.c/º:

Then ¹C1;i ; C2;i ; : : : ; Cni ;iº is a partition of Ci into Borel sets.
Observe that for every F 2 F we have

jh.A/ \ F.K/j � jF.K/ \ Aj � jF n F.K/j

and
jB \ F.K/j � jA \ F j � jA \ F.K/j C jF n F.K/j:

Therefore

jF.K/ \ .B n h.A//j D j.F.K/ \ B/ n .F.K/ \ h.A//j

D jF.K/ \ Bj � jF.K/ \ h.A/j

� jA \ F.K/j C jF n F.K/j � .jF.K/ \ Aj � jF n F.K/j/

D 2jF n F.K/j:

It follows that

jF.K/ n .B n h.A//j D jF.K/j � jF.K/ \ .B n h.A//j

� jF.K/j � 2jF n F.K/j

D 3jF.K/j � 2jF j

> jF j.1 � 3ıjKj/:

Therefore

�.X 00/ D �

 
m[
iD1

ni[
jD1

.Fi .K/Cj;i n .B n h.A///

!

D

mX
iD1

niX
jDi

jFi .K/ n .Bj;i n Aj;i /j�.Cj;i /

>

mX
iD1

niX
jDi

jFi j.1 � 3ıjKj/�.Cj;i /

D

mX
iD1

jFi j.1 � 3ıjKj/�.Ci /

D 1 � 3ıjKj:
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Now, for every n pick ın > 0 so that 1 � 3ınjKj > 1 � 1
2n . Denote hn D h, �n D �

and Xn D X 00 where h, � and X 00 are constructed above for this particular ın.
Let Y D lim infXn D

S1
mD1

T1
nDmXn. Then �.Y / D 1. We can assume that Y is

�-invariant (by taking its subset if needed). Denote by G the Schreier graph of � Õ Y .
Write �1 D .�n/n2N W G ! `1. Define

�.x; y/ D m.�1.x; y//;

where m denotes the medial mean. Then for x 2 Y we haveX
y

.x;y/2G

�.x; y/ D
X
y

.x;y/2G

m..�n.x; y//n2N/

D m
�� X

y

.x;y/2G

�n.x; y/

�
n2N

�

D m..�domhn
.x/ � �imhn

.x//n2N/

D �A.x/ � �B.x/

as the sequence �domhn
.x/��imhn

.x/ is eventually constant and equal to �A.x/��B.x/.
Therefore � is a .�A � �B/-flow in the Schreier graph G of � Õ Y . Moreover, j�j

is bounded by dk , which is a common bound for the flows �n. For measurability of �,
write �0 D ��.� � �/ for the pushforward to Œ�dk ; dk �N of the measure � � � on the
graph G and note that since m is �0-measurable, it follows that � is �-measurable.

6. Flows in Zd

In this section we prove a couple of combinatorial lemmas which lead to a finitary proce-
dure of changing a real-valued flow on a cube in Zd to an integer-valued flow on a cube
in Zd . This gives an alternative proof of [25, Lemma 5.4] in the measurable setting. Also,
this is the only part of the paper which deals with the groups Zd as opposed to arbitrary
amenable groups.

Let
G D ¹.x; x0/ 2 Zd � Zd W x0 � x 2 ¹˙e1;˙e2; : : : ;˙ed ºº

be the Cayley graph of Zd . An edge .x; x0/ is called positively oriented if x0 � x D ej
for some j .

Definition 10. For a set A � Zd we define
E.A/ D ¹.x; x C ej / W j 2 ¹1; 2; : : : ; dº; ¹x; x C ej º � Aº;

EC.A/ D ¹.x; x C ej / W j 2 ¹1; 2; : : : ; dº; ¹x; x C ej º \ A ¤ ;º;

N.A/ D ¹x C y W x 2 A; y 2 ¹�1; 0; 1ºd º:

So,E.A/ is the set of positively oriented edges whose both endpoints are inA,EC.A/
is the set of positively oriented edges whose at least one endpoint is in A, and N.A/ is the
neighborhood of A (in the sup-norm).
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Definition 11. We say that a subset C of Zd is a cube if C is of the form

¹n1; n1 C 1; : : : ; n1 C k1º � � � � � ¹nd ; nd C 1; : : : ; nd C kd º

for some n1; : : : ; nd ; k1; : : : ; kd 2 Z with k1; : : : ; kd � 0. By the upper face of C we
mean

¹n1; n1 C 1; : : : ; n1 C k1º � � � � � ¹nd C kd º:

Definition 12. For any x1; x2; x3; x4 2Zd which are consecutive vertices of a unit square
and a real number s we define a 0-flow�x1;x2;x3;x4

s by the following formula:

�x1;x2;x3;x4
s .y; z/ D

8̂<̂
:
s for .y; z/ 2 ¹.x1; x2/; .x2; x3/; .x3; x4/; .x4; x1/º;
�s for .y; z/ 2 ¹.x2; x1/; .x3; x2/; .x4; x3/; .x1; x4/º;
0 otherwise.

That is,�x1;x2;x3;x4
s is a flow sending s units through the path

x1 ! x2 ! x3 ! x4 ! x1:

Note that if ' W G ! R is an f -flow and s D '.x1; x4/ � b'.x1; x4/c, then

 D ' C�x1;x2;x3;x4
s

is an f -flow such that j' �  j < 1 and  .x1; x4/ is an integer.
We will now prove a couple of lemmas stating that one can modify a flow so that it

becomes integer-valued on certain sets of edges.

Lemma 13. Let f W Zd ! R. Let ' W G ! R be a bounded f -flow. Let

C D ¹n1; n1C1; : : : ; n1Ck1º � � � � � ¹nd�1; nd�1C1; : : : ; nd�1Ckd�1º � ¹nd ; ndC1º

for some n1; : : : ; nd ; k1; : : : ; kd�1 2 Z with k1; : : : ; kd�1 � 0. Then for every 1 � ` < d
there is an f -flow  such that:

� supp.' �  / � E.C/,
� for every x D .x1; : : : ; xd�1; nd / 2 C such that n` � x` < n` C k` we have

 .x; x C ed / 2 Z;

� j' �  j < 2.

Proof. Without loss of generality we may assume that n1 D n2 D � � � D nd D 0.
For every j � k` define

Cj D ¹.x1; : : : ; xd�1; 0/ 2 C W x` D j º:

We will define a sequence of f -flows '0; '1; : : : ; 'k`
such that

'j .x; x C ed / 2 Z and supp.' � 'j / � E.C/

for all x 2
S
i<j Ci .
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So, let '0 D '. Given 'j we define 'jC1 in the following way. For every x 2 Cj let
�x D �x;y;z;ts , where y D x C e`, z D y C ed , t D z � e` D x C ed and

s D 'j .x; t/ � b'j .x; t/c:

We define
'jC1 D 'j C

X
x2Cj

�x :

Note that supp.�x/ for x 2 Cj are disjoint from ¹.x; x C ed / W x 2
S
i<j Ciº. Therefore,

'jC1.x; x C ed / D 'j .x; x C ed / 2 Z for x 2
S
i<j Ci . Also, the sets supp.�x/ are

pairwise disjoint for x 2 Cj , and therefore, by the definition of 'jC1 we have for x 2 Cj

'jC1.x; x C ed / D 'j .x; x C ed /C�x.x; x C ed / D b'j .x; x C ed /c 2 Z:

It is also clear that supp.�x/ � E.C/, so

supp.' � 'jC1/ � supp.' � 'j / [
[
x2Cj

supp.�x/ � E.C/:

Therefore 'jC1 satisfies all required properties.
We put  D 'k`

. It remains to check that j' �  j < 2. This is because

 D ' C

k`�1X
jD0

X
x2Cj

�x ; j�xj < 1;

and for every edge .y; z/ there are at most two x 2
S
j<k`

Cj for which�x.y; z/ ¤ 0.

Lemma 14. Let f W Zd ! R. Let ' W G ! R be a bounded f -flow. Let

C D ¹n1; n1C1; : : : ; n1Ck1º � � � � � ¹nd�1; nd�1C1; : : : ; nd�1Ckd�1º � ¹nd ; ndC1º

for some n1; : : : ; nd ; k1; : : : ; kd�1 2 Z with k1; : : : ; kd�1 � 0. Then there is an f -flow 
such that:

� supp.' �  / � E.C/,
� if x D .x1; : : : ; xd�1; nd / 2 C n ¹.n1 C k1; n2 C k2; : : : ; nd�1 C kd�1; nd /º, then

 .x; x C ed / 2 Z;

� j' �  j < 2d .

Proof. Without loss of generality we may assume that n1 D n2 D � � � D nd D 0.
Define

Cj D ¹k1º � � � � � ¹k`�1º � ¹0; 1; : : : ; k`º � � � � � ¹0; 1; : : : ; kd�1º � ¹0; 1º

and
Dj D ¹.x1; : : : ; xd�1; 0/ W .x1; : : : ; xj / ¤ .k1; : : : ; kj /º:

By induction, construct f -flows '0; '1; : : : ; 'd�1 such that
(i) supp.' � 'j / � E.C/,
(ii) 'j .x; x C ed / 2 Z for every x 2 Dj ,
(iii) j'j � 'j�1j < 2.
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We define '0 D '. Given 'j�1, we obtain 'j by applying Lemma 13 for 'j�1, f ,
` D j and Cj . Then 'j satisfies (i) as

supp.' � 'j / � supp.' � 'j�1/ [ supp.'j�1 � 'j / � E.C/ [E.Cj / D E.C/:

For (ii) observe that

Dj D Dj�1 [ ¹.k1; : : : ; kj�1; xj ; : : : ; xd�1; 0/ 2 C W xj < kj º:

By Lemma 13, 'j agrees with 'j�1 on ¹.x; x C ed / W x 2 Dj�1º, thus 'j .x; x C ed / 2 Z
for x 2 Dj�1. Moreover, 'j .x; x C ed / 2 Z for x 2 Dj nDj�1 again by Lemma 13.
Also (iii) is immediate by Lemma 13. Therefore 'j satisfies the required properties.

We define  D 'd�1. By construction,  satisfies the first two conditions. For the
third condition note that

j' �  j �

d�1X
jD1

j'j � 'j�1j < 2d:

Lemma 15. Let C be a cube. Let C be a collection of cubes such that:

� N.C 0/ � C for every C 0 2 C ,

� N.C 0/ \N.C 00/ D ; for every distinct C 0; C 00 2 C .

Write
E D EC.C / n

[
¹E.N.C 0// W C 0 2 Cº:

Let f W Zd ! Z. Let ' W G ! R be a bounded f -flow. Then there exists an f -flow
 W G ! R such that:

� supp.' �  / � E.N.C//,
� supp.' �  / is disjoint from EC.C 0/ for every C 0 2 C ,

�  .e/ is integer for every edge e 2 E,

� j' �  j < 6d .

Proof. Without loss of generality we may assume that

C D ¹1; 2; : : : ; k1º � � � � � ¹1; 2; : : : ; kd º

for some positive integers k1; : : : ; kd and

N.C/ D ¹0; 1; : : : ; k1 C 1º � � � � � ¹0; 1; : : : ; kd C 1º:

For any 0 � k � kd let Hk D Zd�1 � ¹kº. Let

E2k D ¹.x; x C ed / 2 E W x 2 Hkº

be the set of vertical edges from E having their starting point in Hk and let

E2kC1 D ¹.x; x C ej / 2 E W x 2 Hk ; j < dº

be the set of edges from E having both endpoints in Hk .
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Fig. 1. Construction of '2kC1.

We construct a sequence '0; '1; : : : ; '2kd
of f -flows so that

� supp.' � 'k/ � E.N.C// for every 0 � k � 2kd ,
� supp.' � 'k/ is disjoint from EC.C 0/ for every C 0 2 C and 0 � k � 2kd ,
� 'k.y; z/ is integer for every 0 � k � 2kd and .y; z/ 2

S
i�k Ei .

In the end we put  D '2kd
.

To define '0 we use Lemma 13 for ', f , ` D 1, and the cube

¹1; 2; : : : ; k1 C 1º � ¹1; 2; : : : ; k2º � ¹1; 2; : : : ; k3º � � � � � ¹1; 2; : : : ; kd�1º � ¹0; 1º:

Suppose that the f -flow '2k is defined. Now we define '2kC1 (cf. Figure 1). For
every edge .x; y/ 2 E2kC1 let z D y C ed , t D x C ed , s D �'2k.x; y/C b'2k.x; y/c
and�.x;y/ D �x;y;z;ts . Define

'2kC1 D '2k C
X

.x;y/2E2kC1

�.x;y/:

Note that '2kC1 assumes integer values on all .x; y/ 2E2kC1. Indeed, if .x0; y0/ 2E2kC1
is distinct from .x; y/, then�.x0;y0/.x; y/ D 0 and so

'2kC1.x; y/ D '2k.x; y/C�.x;y/.x; y/ D b'2k.x; y/c 2 Z:

Moreover, by definition, '2kC1 agrees with '2k on
S
i�2k Ei . It follows that '2kC1 is

integer-valued on
S
i�2kC1Ei .
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Fig. 2. Construction of '2k .

Since for every .x; y/ 2 E2kC1 we have

supp.�.x;y// � E.N.C// and supp.�.x;y// \EC.C 0/ D ;

for every C 0 2 C , and '2k satisfies these as well by inductive hypothesis, we see that
'2kC1 also has these properties.

Thus '2kC1 is as required.
Now suppose that '2kC1 is defined. We construct '2kC2 (cf. Figure 2). Let

D D ¹x W .x; x C ed / 2 E2kC2º:

Note that every x 2 D is either an element of C n
S
¹N.C 0/ W C 0 2 Cº or lies on the

upper face of some cube N.C 0/ for C 0 2 C . We also note that if C 0 2 C then the upper
face of N.C 0/ is either contained in D or disjoint from D. So, let C1; C2; : : : ; Cn be all
elements of C such that the upper faces D1;D2; : : : ;Dn of N.C1/; N.C2/; : : : ; N.Cn/
are subsets of D.

Let .x; x C ed / 2 E2kC2. Then either x 2 Dj for some j � n or x 2 D n
S
j�nDj .

First we deal with the case x 2 D n
S
j�nDj . Then

.x � ed ; x/ 2 E2k and .x; x C ei /; .x � ei ; x/ 2 E2kC1

for every 1 � i � d � 1. By inductive hypothesis,

'2kC1.x; x ˙ e1/; '2kC1.x; x ˙ e2/; : : : ; '2kC1.x; x ˙ ed�1/; '2kC1.x; x � ed / 2 Z:
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Since f .x/ 2 Z and

f .x/ D

dX
iD1

'2kC1.x; x ˙ ei /;

it follows that '2kC1.x; x C ed / 2 Z.
Next we deal with the case x 2 Dj for some j � n. Each Dj ; j � n is dealt with

separately. For every j � n we obtain an f -flow '0j by applying Lemma 14 for '2kC1,
f and the cube

D0j D Dj [ .Dj C ed /

D ¹n01; : : : ; n
0
1 C k

0
1º � � � � � ¹n

0
d�1; : : : ; n

0
d�1 C k

0
d�1º � ¹n

0
d ; n
0
d C 1º:

Then '0j agrees with '2kC1 outside of E.D0j /, and '0j is also integer-valued on all edges
of the form .x; x C ed / with x 2 Dj n ¹x0º, where

x0 D .n01 C k
0
1; n
0
2 C k

0
2; : : : ; n

0
d�1 C k

0
d�1; n

0
d /:

The only problematic edge is the one .x0; x0 C ed / We claim that '0j .x
0; x0 C ed / is

integer as well.
Indeed, observe that X

x2N.Cj /

f .x/ D
X

.x;y/2E

x2N.Cj /; y…N.Cj /

'0j .x; y/

Since f .x/ 2 Z for every x and, by the properties of '0j , we have that '0j .x; y/ 2 Z for all
.x;y/¤ .x0;x0C ed /with x 2 N.Cj / and y … N.Cj /, it follows that '0j .x

0;x0C ed / 2Z
as well.

We define '2kC2 by the formula

'2kC2.x; y/ D

´
'0j .x; y/ if .x; y/ 2 E.D0j / or .y; x/ 2 E.D0j / for some j;
'2kC1.x; y/ otherwise.

Note that '2kC2 is well-defined because E.D0j / are pairwise disjoint. By definition, it
is integer-valued on

S
i�2kC2Ei , and the conditions on supp.' � '2kC2/ are clearly

satisfied. Thus '2kC2 is as required.
We put  D '2kd

. It remains to check that j' �  j < 6d . This follows from the fact
that the value on every edge was modified at most three times by at most 2d .

7. Measurable bounded Z-flows a.e.

In this section we show how to turn a measurable bounded real-valued flow into a measur-
able bounded integer-valued flow on a set of measure 1. We only use Lemma 15 proved
in the previous section and the Gao–Jackson tiling theorem for actions of Zd .

Suppose Zd Õ .X; �/ is a free pmp action. We follow the notation from the previous
section in the context of the action.
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Definition 16. We say that a finite subset of X is a cube if it is of the form 
dY
iD1

ki

!
� x D .¹0; 1; : : : ; k1º � � � � � ¹0; 1; : : : ; kd º/ � x

for some positive integers k1; : : : ; kd and x 2 X . We refer to the numbers k1; : : : ; kd as
to the lengths of the sides of the cube. A family of cubes ¹.

Qd
iD1 ki .x// � x W x 2 C º is

Borel if the set C is Borel and the functions ki are Borel. A family of cubes ¹Cx W x 2 C º
is a tiling of X if it forms a partition of X .

Definition 17. Let C � ŒX�<1 be a collection of cubes. We say that it is nested if for
every distinct C;C 0 2 C :
� if C \ C 0 D ;, then N.C/ \N.C 0/ D ;,
� if C \ C 0 ¤ ;, then either N.C/ � C 0 or N.C 0/ � C .

Definition 18. Given a cube of the form

C D ¹.n1; : : : ; nd / � x W 0 � ni � Niº;

by its interior we mean the cube

intC D ¹.n1; : : : ; nd / � x W 1 � ni � Ni � 1º

and its boundary is
bdC D C n intC:

Lemma 19. Suppose Zd Õ .X; �/ is a free pmp action. Then there is a sequence of
families Fn of cubes such that each Fn consists of disjoint cubes,

S
Fn is nested and

covers X up to a set of measure zero.

Proof. If S and T are families of sets, define

S u T D ¹C \ C 0 W C 2 S; C 0 2 T; C \ C 0 ¤ ;º:

Note that
S
.S u T / D .

S
S/ \ .

S
T /. Also note that if S and T are families of cubes

then S u T is a family of cubes as well. We also write intS D ¹intC W C 2 Sº and intk

for the k-th iterate of int.
Use the Gao–Jackson theorem [7] to obtain a sequence of partitions S1; S2; : : : of X

so that Sn consists of cubes with sides n3 or n3 C 1. Define S1n D intSn and

Skn D S
k�1
n u intk SnCk for k > 1.

Note that each Skn consists of pairwise disjoint cubes.
Define

Fn D lim inf
m

Smn D ¹C W 9m08m � m0 C 2 S
m
n º:

Note that if C 2 Fn, then there exist unique cubes Cn 2 Sn; CnC1 2 SnC1; : : : such that
C D

T
k�0 intkC1 CnCk . Also note that

S
Fn D

T1
kD0

S
intkC1 SnCk .
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We claim that F D
S
n Fn is nested and covers a set of measure 1.

For nestedness, consider cubesC;C 0 2 F . Then C 2 Fn,C 0 2 Fm for some n;m. We
may assume that m � n. Write C D

T
k�0 intkC1 CnCk and C 0 D

T
k�0 intkC1 CmCk

with Ck ; C 0k 2 Sk .
If m D n and Ck D C 0k for all k � m, then C D C 0.
If m > n and Ck D C 0k for all k � m, then

C �
\
k�m

intk�nC1 Ck D
\
k�m

intk�nC1 C 0k �
\
k�m

intk�mC2 Ck ;

so
N.C/ �

\
k�m

intk�mC1 Ck D C 0:

IfCk ¤ C 0k for some k � m, thenCk \C 0k D ;. Note thatC � intk�nC1 Ck � intCk
soN.C/ � Ck . Similarly,N.C 0/ � C 0

k
. Since Ck ; C 0k 2 Sk are disjoint, it follows that C

and C 0 are disjoint.
This shows that F is nested.
We will prove now that �.

S
F / D 1.

For a cube C let xC to be the point x 2 X such that C D .
Qd
iD1Œ0; ni �/ � xC . For

a positive integer n write Xn D ¹xC W C 2 Snº. Note that for any 0 � k < n,

�
�[

intk Sn
�
� .n3 � 2k/d�.Xn/

�
.n3 � 2k/d

.n3 C 1/d
D

�
1 �

2k C 1

n3 C 1

�d
� 1 � d �

2k C 1

n3 C 1
:

Since
S
Fn D

T1
kD0

S
intkC1 SnCk , we have

�
�
X n

[
Fn

�
�

1X
kD0

�
�
X n

[
intkC1 SnCk

�
� d �

1X
kD0

2k C 3

.nC k/3 C 1

� d �

1X
kDn

3

k2
:

This implies that
�
�
X n

[
F
�
D lim
n!1

�
�
X n

[
Fn

�
D 0:

Hence �.
S
F / D 1.

Marks and Unger [25, Lemma 5.4] showed that for every d � 2, any Borel, bounded
real-valued flow on the Schreier graph of a free Borel action of Zd can be modified to
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a bounded Borel integer-valued flow. Below we provide a short proof for the case d D 1
and additionally an independent proof (based on Lemma 15) for d � 2 in the case of
a pmp action where we consider flows defined a.e.

Proposition 20. Suppose Zd Õ .X; �/ is a free pmp action and G is its Schreier graph.
Let f W X ! Z be a bounded measurable function. Then, for every measurable f -flow
' W G ! R, there exists a measurable bounded  W G ! Z such that:

�  is an f -flow �-a.e.,

� j j � j'j C 12d .

Proof. First we deal with the case d D 1. In that case for every e 2 G we simply put
 .e/ D b'.e/c. Note that since G is a graph of degree 2, for every x 2 X , the fractional
parts of the two edges which contain x are equal because f is integer-valued. Thus,  is
also an f -flow.

Now suppose d � 2. By Lemma 19, there exists an invariant subset X 0 � X of mea-
sure 1 and a sequence of families Fn of cubes such that

S
n2N Fn is nested, each Fn con-

sists of disjoint cubes,
S
n2N Fn covers X 0. By induction on n we construct measurable

f -flows 'n such that '0 D ' and
� supp.'nC1 � 'n/ �

S
¹E.N.C// W C 2 Fnº,

� 'm D 'nC1 for every m > n on every EC.C / for C 2 Fn,
� j'nj � j'j C 12d .

Given the flow 'n we apply Lemma 15 on each cube C 2 Fn to obtain the flow 'nC1.
The bound on 'n follows from the fact that the value of the flow on each edge is changed
at most twice by at most 6d along this construction.

The sequence 'n converges pointwise on the edges of X 0 to a measurable f -flow
'1, which is integer-valued on all edges in X 0 except possibly for the edges in bdC
for cubes C 2

S
n Fn. However, the family ¹bdC W C 2

S
n Fnº consists of pairwise

disjoint finite sets. By the integral flow theorem for finite graphs, we can further cor-
rect '1 on each of these finite subgraphs without changing the bound j'j C 12d to
obtain a measurable integer-valued f -flow  , which is equal to '1 on all edges from
G n

S
¹E.bdC/ W C 2

S
n2N Fnº.

8. Hall’s theorem

In this section we prove Theorem 2. The proof of (1)) (2) is based on an idea of Marks
and Unger [25].

Proof of Theorem 2. The implication (2)) (3) is obvious.
The implication (3)) (1) is true for every finitely generated group � . In general, if

A and B are �-equidecomposable, and the group elements used in the decomposition are
1; : : : ; n, then A and B satisfy the k-Hall condition for k greater than the word lengths
of the group elements 1; : : : ; n. If X 0 � X is a set of measure 1 such that A \X 0 and
B \X 0 are �-equidecomposable, then A \X 0 and B \X 0 satisfy the k-Hall condition.
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(1)) (2). Without loss of generality assume that the k-Hall condition and �-unifor-
mity is satisfied everywhere Let � D Zd ��, where � is a finite group and d � 0.

If d D 0, then the group � is finite and the action has finite orbits (the discrepancy
condition trivializes and we do not need to use it). On each orbit the Hall condition is
satisfied, so on each orbit there exists a bijection between A and B on that orbit. Thus,
the sets A and B are �-equidecomposable using a Borel choice of bijections on each
orbit separately.

Thus, we can assume for the rest of the proof that d � 1. Since� is finite, we can quo-
tient by its action and get a standard Borel spaceX 0 D X=� with the probability measure
induced by the quotient map � W X ! X 0. We then have a free pmp action of Zd Õ X 0.
Consider the function f W X 0 ! Z defined by

f .x0/ D jA \ ��1.¹x0º/j � jB \ ��1.¹x0º/j:

Note that f is bounded by j�j. Using Proposition 9 and Proposition 20 we get an invariant
subset Y 0 � X 0 of measure 1 and an integer-valued measurable f -flow  on the edges of
the Schreier graph G of Zd Õ Y 0 on Y 0 such that j j � j�j dk C 12d . Again, without
loss of generality, we can assume Y 0 D X 0 by replacing X with Y D ��1.Y 0/, if needed.

Note that there exists a constant r , depending only on d such that for every tiling
of Zd with cubes with sides n or nC 1, every cube is adjacent to at most r many other
cubes in the tiling.

Note that �-uniformity implies that for every setD such thatD D D0 ��, whereD0

is a cube with sides n or nC 1 we have jA \Dj; jB \Dj � cnd j�j. Let n be such that
cnd j�j � r.nC 1/d�1.j�j dk C 12d/.

Using the Gao–Jackson theorem [7], find a Borel tiling T 0 of X 0 with cubes of sides
n or nC 1. Pulling back the tiling to X via � , we get a Borel tiling T of X with cubes of
the form D D .D0 ��/ � x where D0 has sides of length n or nC 1. Note that for every
tile D in T we have

jA \Dj; jB \Dj � r.nC 1/d�1.j�j dk C 12d/: (�)

LetH be the graph on T where two cubes are connected with an edge if they are adjacent
and similarly let H 0 be the graph on T 0 with two cubes connected with an edge if they
are adjacent. We have two functions F 0 W T 0 ! Z defined as F 0.C / D

P
x02C f .x

0/ and
F W T ! Z defined as

F.C/ D jA \ C j � jB \ C j:

Define an F 0-flow ‰0 on H 0 as

‰0.C;D/ D
X

.x0
1
;x0

2
/2G;x0

1
2C;x0

2
2D

 .x01; x
0
2/

and let ‰ be an F -flow on H obtained by pulling back ‰0 via � . Note that any adjacent
cubes in T 0 are connected by at most .nC 1/d�1 edges, so both ‰ and ‰0 are bounded
by j‰j; j‰0j � .nC 1/d�1.j�j dk C 12d/.

Note that each vertex in H 0 has degree at most r and the same is true in H .
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Thus, by estimate (�), for each C 2 T and D 2 T which are connected with an
edge in H , we can find pairwise disjoint sets A.C;D/;B.C;D/ � C of size at least
.nC 1/d�1.j�j dk C 12d/ such that A.C;D/ � A \ C , B.C;D/ � B \ C .

Now, the function which witnesses the equidecomposition is defined in two steps.
First, we can find a map g W dom.g/! B such that dom.g/ �

S
.C;D/2H A.C;D/, for

any two neighboring cubes C;D 2 T satisfying ‰.C;D/ > 0 we have

jdom.g/ \ A.C;D/j D ‰.C;D/

and the points in dom.g/ \ A.C;D/ are mapped injectively toB.C;D/. Note that for any
cube C 2 T the set C \ .Andom.g// contains as many points as the set C \ .B n im.g//.
Hence, one can extend g to a function g0 W A! B in such a way that its restriction to
C \ .A n dom.g// is a bijection onto C \ .B n im.g// for any cube C 2 T . Since  and
hence ‰0 and ‰ are measurable, the function g0 can be chosen to be measurable and
it moves points by at most 2.j�j C .nC 1/d / in the Schreier graph distance. Thus, g0

witnesses that A and B are equidecomposable using measurable pieces.

9. Measurable circle squaring

In this section we comment on how Corollary 3 follows from Theorem 2. We use an
argument which appears in a preprint of Grabowski, Máthé and Pikhurko [9] and provide
a short proof for completeness.

Lemma 21. Suppose that � Õ .X; �/ is a free pmp action of a countable group � . If
A;B � X are �-equidecomposable andX 0 � X is �-invariant, thenA \X 0 andB \X 0

are also equidecomposable. If X 0 is additionally �-measurable and A and B are �-equi-
decomposable using �-measurable pieces, then A \X 0 and B \X 0 are �-equidecom-
posable using �-measurable pieces.

Proof. The proof is the same in both cases. Let A1; : : : ; An and B1; : : : ; Bn be partitions
of A and B such that iAi D Bi for some i 2 � . Put A0i D Ai \X

0 and B 0i D Bi \X
0.

Then iA0i DB
0
i , so A0i and B 0i witness thatA\X 0 and B \X 0 are equidecomposable.

Lemma 22. Let � be a probability measure onX and � Õ X be a Borel pmp action of a
countable group � . Suppose A;B � X are �-equidecomposable and there exists a mea-
surable set Y � X of measure 1 such that A \ Y;B \ Y are equidecomposable using
�-measurable pieces. Then A;B are equidecomposable using �-measurable pieces.

Proof. Write X 0 D
T
2� X . Note that �.X 0/ D 1 and X 0 D X 0 for all  2 � . By

Lemma 21, A0 D A\X 0 and B 0 D B \X 0 are �-equidecomposable using �-measurable
pieces. Write X 00 D X nX 0 and note that X 00 D X 00 for all  2 � . By Lemma 21 again,
A00 D A \X 00 and B 00 D B \X 00 are �-equidecomposable. However, all pieces in the
latter decomposition all �-null, hence �-measurable. This shows that A D A0 [ A00 and
B D B 0 [ B 00 are �-equidecomposable using �-measurable pieces.

Finally, we give a proof of Corollary 3.
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Proof of Corollary 3. Suppose � Õ .X; �/ is a free pmp action of a finitely generated
abelian group � andA andB are two measurable �-uniform sets which are �-equidecom-
posable. Note that since � is amenable, A and B must have the same measure (see
[31, Corollary 10.9]). Let 1; : : : ; n be the elements of � used in the equidecomposition
and let k be bigger than the lengths of i . Then A and B satisfy the k-Hall condition.
In particular, A and B satisfy the k-Hall condition �-a.e., so by Theorem 2 there is
a �-invariant measurable set X 0 � X of measure 1 such that A \X 0 and B \X 0 are
�-equidecomposable using �-measurable pieces. By Lemma 22, A and B are �-equi-
decomposable using �-measurable pieces as well.
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