

JEMS

Thomas Church • Mikhail Ershov • Andrew Putman

On finite generation of the Johnson filtrations

Received June 19, 2019; revised July 13, 2020

Abstract

We prove that every term of the lower central series and Johnson filtrations of the Torelli subgroups of the mapping class group and the automorphism group of a free group is finitely generated in a linear stable range. This was originally proved for the second terms by Ershov and He.

Keywords. Mapping class groups, Torelli groups, automorphism groups of free groups, BNS invariant

1. Introduction

1.1. The main results

Let Σ_{g}^{b} be a compact oriented genus g surface with either $b=0$ or $b=1$ boundary components. We will often omit b from our notation when $b=0$. The mapping class group of Σ_{g}^{b}, denoted $\operatorname{Mod}_{g}^{b}$, is the group of isotopy classes of orientation-preserving diffeomorphisms of Σ_{g}^{b} that fix $\partial \Sigma_{g}^{b}$ pointwise. The group $\operatorname{Mod}_{g}^{b}$ acts on $\mathrm{H}_{1}\left(\Sigma_{g}^{b} ; \mathbb{Z}\right)$ and preserves the algebraic intersection form. Since $b \leq 1$, the algebraic intersection form is a symplectic form, and thus this action induces a homomorphism $\operatorname{Mod}_{g}^{b} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z})$ which is classically known to be surjective. The kernel of this homomorphism is the Torelli group $\mathcal{~}_{\mathrm{g}}{ }^{b}$. We therefore have a short exact sequence

$$
1 \rightarrow \ell_{g}^{b} \rightarrow \operatorname{Mod}_{g}^{b} \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z}) \rightarrow 1
$$

See [15] for a survey of the mapping class group and Torelli group.
Lower central series. For any group G, the lower central series of G is the sequence

$$
G=\gamma_{1} G \supseteq \gamma_{2} G \supseteq \gamma_{3} G \supseteq \cdots
$$

[^0]Mathematics Subject Classification (2020): Primary 20F05, 57S05; Secondary 20F40, 57M07
of subgroups of G defined via the inductive formula

$$
\gamma_{1} G=G \quad \text { and } \quad \gamma_{k+1} G=\left[\gamma_{k} G, G\right] \quad(k \geq 1) .
$$

Equivalently, $\gamma_{k+1} G$ is the smallest normal subgroup of G such that $G / \gamma_{k+1} G$ is k-step nilpotent. The lower central series of ℓ_{g}^{b} has connections to number theory (see, e.g., [30]), to 3-manifolds (see, e.g., [17]), and to the Hodge theory of the moduli space of curves (see, e.g., $[19,20]$). Despite these connections, the structure of the lower central series of ℓ_{g}^{b} remains mysterious. One of the few structural results known about it is a theorem of Hain [20] giving a finite presentation for its associated Malcev Lie algebra.
Finite generation. A classical theorem of Dehn [11] from 1938 says that $\operatorname{Mod}_{g}^{b}$ is finitely generated. Since l_{g}^{b} is an infinite-index normal subgroup of $\operatorname{Mod}_{g}^{b}$, there is no reason to expect l_{g}^{b} to be finitely generated, and indeed McCullough and Miller [32] proved that ℓ_{2}^{b} is not finitely generated. However, a deep and surprising theorem of Johnson [24] says that α_{g}^{b} is finitely generated for $g \geq 3$.
Johnson kernel. The Johnson kernel, denoted \mathcal{K}_{g}^{b}, is the subgroup of $\operatorname{Mod}_{g}^{b}$ generated by Dehn twists about simple closed separating curves. Whether or not \mathcal{K}_{g}^{b} is finitely generated for $g \geq 3$ is a well-known question. The case $b=0$ was first mentioned in 1986 by McCullough and Miller [32], and appeared in Morita's 1994 problem list [34, Question 10] and 1998 survey [35, Problem 2.2 (i)]. Johnson [26] proved that $\left[\alpha_{g}^{b}, \ell_{g}^{b}\right]$ is a finite-index subgroup of \mathcal{K}_{g}^{b}. It follows that \mathcal{K}_{g}^{b} is finitely generated if and only if [$\left.\partial_{g}^{b}, \partial_{g}^{b}\right]$ is finitely generated.

Initially, various people conjectured that the answer to this finite generation question is negative for all $g \geq 3$. This expectation shifted towards a positive answer after the deep work of Dimca and Papadima [13], who proved that $\mathrm{H}_{1}\left(\mathcal{K}_{g} ; \mathbb{Q}\right)$ is finite dimensional for $g \geq 4$. Dimca, Hain, and Papadima [12] later gave a description of $\mathrm{H}_{1}\left(\mathcal{K}_{g} ; \mathbb{Q}\right)$ as a $\ell_{g} / \mathcal{K}_{g}$-module for $g \geq 6$, which recently was made more explicit by Morita, Sakasai and Suzuki [36, Theorem 1.4].

Ershov and He [14] recently proved that every subgroup of ℓ_{g}^{b} containing $\left[\ell_{g}^{b}, \alpha_{g}^{b}\right]$ (in particular, $\left[\ell_{g}^{b}, \ell_{g}^{b}\right]$ itself and \mathcal{K}_{g}^{b}) is indeed finitely generated for $g \geq 12$. Our first theorem extends this result to all $g \geq 4$ via a new and simpler proof. Morita's question is thus now settled with the exception of the single case $g=3$.
Theorem A. For $g \geq 4$ and $b \in\{0,1\}$, every subgroup of \mathcal{d}_{g}^{b} containing $\left[\mathcal{Q}_{g}^{b}, \mathcal{d}_{g}^{b}\right]$ is finitely generated. In particular, $\left[\ell_{g}^{b}, \ell_{g}^{b}\right]$ and \mathcal{K}_{g}^{b} are finitely generated.
Deeper in the lower central series. Another result in [14] asserts that if $k \geq 3, g \geq 8 k-4$, then the abelianization of any subgroup of ℓ_{g}^{b} containing $\gamma_{k} \ell_{g}^{b}$ is finitely generated. We will prove that any subgroup of ℓ_{g}^{b} containing $\gamma_{k} \ell_{g}^{b}$ is actually finitely generated (in fact, with a better range for g).

Theorem B. For $k \geq 3$ and $g \geq 2 k-1$ and $b \in\{0,1\}$, every subgroup of d_{g}^{b} containing $\gamma_{k} \ell_{g}^{b}$ is finitely generated. In particular, $\gamma_{k} \ell_{g}^{b}$ is finitely generated.
Remark 1.1. Since every subgroup containing $\gamma_{2} \ell_{g}^{b}$ also contains $\gamma_{3} \ell_{g}^{b}$, Theorem B implies Theorem A except in the borderline case $g=4$, where the more abstract argu-
ments used to prove Theorem B do not work. In addition to handling this one last case, our proof of Theorem A is considerably simpler than our proof of Theorem B while using many of the same ideas. It thus provides a concise introduction to our general approach.

The Johnson filtration. We want to highlight an important special case of Theorem B. Fix some $g \geq 0$ and $b \in\{0,1\}$. Pick a basepoint $* \in \Sigma_{g}^{b}$; if $b=1$, then choose $*$ such that it lies in $\bar{\partial} \Sigma_{g}^{b}$. Define $\pi=\pi_{1}\left(\Sigma_{g}^{b}, *\right)$. Since $\operatorname{Mod}_{g}^{1}$ is built from diffeomorphisms that fix $\partial \Sigma_{g}^{1}$ and thus in particular fix $*$, there is a homomorphism $\operatorname{Mod}_{g}^{1} \rightarrow \operatorname{Aut}(\pi)$. For closed surfaces, there is no fixed basepoint, so we only obtain a homomorphism $\operatorname{Mod}_{g} \rightarrow \operatorname{Out}(\pi)$. In both cases, this action preserves the lower central series of π, so we obtain homomorphisms

$$
\psi_{g}^{1}[k]: \operatorname{Mod}_{g}^{1} \rightarrow \operatorname{Aut}\left(\pi / \gamma_{k} \pi\right) \quad \text { and } \quad \psi_{g}[k]: \operatorname{Mod}_{g} \rightarrow \operatorname{Out}\left(\pi / \gamma_{k} \pi\right)
$$

The k-th term of the Johnson filtration of $\operatorname{Mod}_{g}^{b}$, denoted $J_{g}^{b}(k)$, is the kernel of $\psi_{g}^{b}[k+1]$. This filtration was introduced in 1981 by Johnson [23]. Chasing the definitions, we find that $J_{g}^{b}(1)=q_{g}^{b}$. Moreover, Johnson [25] proved that $J_{g}^{b}(2)=\mathcal{K}_{g}^{b}$. It is easy to see that $\gamma_{k} d_{g}^{b} \subseteq J_{g}^{b}(k)$ for all k, but these filtrations are known not to be equal. In fact, Hain proved that they even define inequivalent topologies on Ω_{g}^{b}; see [20, Theorem 14.6 plus Section 14.4]. Since $\gamma_{k} \partial_{g}^{b} \subseteq J_{g}^{b}(k)$, the following result is a special case of Theorem B.
Theorem C. For $k \geq 3$ and $g \geq 2 k-1$ and $b \in\{0,1\}$, the group $J_{g}^{b}(k)$ is finitely generated.

Automorphism groups of free groups. Let F_{n} be a free group on n generators. The group $\operatorname{Aut}\left(F_{n}\right)$ acts on the abelianization $F_{n}^{\mathrm{ab}}=\mathbb{Z}^{n}$. The kernel of this action is the Torelli subgroup of $\operatorname{Aut}\left(F_{n}\right)$ and is denoted IA_{n}. A classical theorem of Magnus [28] from 1935 says that IA_{n} is finitely generated for all n. Building on the aforementioned work of Dimca and Papadima [13] for the mapping class group, Papadima and Suciu [38] proved that $\mathrm{H}_{1}\left(\left[\mathrm{IA}_{n}, \mathrm{IA}_{n}\right] ; \mathbb{Q}\right)$ is finite-dimensional for $n \geq 5$.

Just like for the mapping class group, Ershov and He [14] proved that any subgroup of IA_{n} containing $\left[\mathrm{IA}_{n}, \mathrm{IA}_{n}\right]$ is finitely generated for $n \geq 4$. They also proved that the abelianization of any subgroup of IA_{n} containing $\gamma_{k} \mathrm{IA}_{n}$ is finitely generated for $n \geq 8 k-4$. The following theorem extends these results from [14] by both improving the range and strengthening the conclusion; it is a direct counterpart of Theorems A and B.
Theorem D. For $k \geq 3$ and $n \geq 4 k-3$, or for $k=2$ and $n \geq 4$, every subgroup of IA_{n} containing $\gamma_{k} \mathrm{IA}_{n}$ is finitely generated. In particular, $\gamma_{k} \mathrm{IA}_{n}$ is finitely generated.
Remark 1.2. One can also consider the Torelli subgroup IO_{n} of $\operatorname{Out}\left(F_{n}\right)$. The homomorphism $\mathrm{IA}_{n} \rightarrow \mathrm{IO}_{n}$ is surjective, so Theorem D also implies a similar result for $\gamma_{k} \mathrm{IO}_{n}$.

Johnson filtration for automorphism group of free group. Similarly to the mapping class group, there is a natural homomorphism

$$
\psi_{n}[k]: \operatorname{Aut}\left(F_{n}\right) \rightarrow \operatorname{Aut}\left(F_{n} / \gamma_{k} F_{n}\right)
$$

The k-th term of the Johnson filtration for $\operatorname{Aut}\left(F_{n}\right)$, denoted $\operatorname{JIA}_{n}(k)$, is the kernel of $\psi_{n}[k+1]$. This filtration was actually introduced by Andreadakis [1] in 1965, much
earlier than the Johnson filtration for the mapping class group. It is well known that $\gamma_{k} \mathrm{IA}_{n} \subseteq \mathrm{JIA}_{n}(k)$, and Bachmuth [2] and Andreadakis [1] independently proved that $\gamma_{2} \mathrm{IA}_{n}=\mathrm{JIA}_{n}(2)$. Recently Satoh [44] proved that $\gamma_{3} \mathrm{IA}_{n}=\mathrm{JIA}_{n}(3)$, improving an earlier result of Pettet [39] saying that $\gamma_{3} \mathrm{IA}_{n}$ has finite index in $\mathrm{JIA}_{n}(3)$. However, recent computer calculations of Bartholdi [4] (making key use of results of Day and Putman [10]) show that these filtrations are not commensurable for $n=3$. It is an open problem whether or not these two filtrations are equal (or at least commensurable) for $n \geq 4$. Since $\gamma_{k} \mathrm{IA}_{n} \subseteq$ $\mathrm{JIA}_{n}(k)$, Theorem D in particular applies to all subgroups containing $\mathrm{JIA}_{n}(k)$. However, in this special case we are able to prove finite generation with a better range for n.

Theorem E. For $k \geq 2$ and $n \geq 2 k+3$, every subgroup of IA_{n} containing $\mathrm{JIA}_{n}(k)$ is finitely generated. In particular, $\mathrm{JIA}_{n}(k)$ is finitely generated.

Remark 1.3. For $k=2$ and $k=3$ we have $2 k+3 \geq 4 k-3$, so in these cases Theorem E follows from Theorem D.

1.2. Outline of the proof

We now discuss the ideas behind the proofs of our theorems.
Initial reductions. We first point out two reductions which show that it suffices to prove Theorem B for $b=1$ and for the group $\gamma_{k} \ell_{g}^{1}$.

- If \mathcal{E} is a group satisfying $\gamma_{k} \partial_{g}^{b} \subseteq \mathcal{E} \subseteq \partial_{g}^{b}$, then letting $\overline{\mathcal{E}}$ be the image of \mathcal{E} in $\chi_{g}^{b} / \gamma_{k} \chi_{g}^{b}$ we have a short exact sequence

$$
1 \rightarrow \gamma_{k} \partial_{g}^{b} \rightarrow \mathscr{\mathcal { G }} \rightarrow \overline{\mathscr{G}} \rightarrow 1 .
$$

Since $\ell_{g}^{b} / \gamma_{k} \ell_{g}^{b}$ is a finitely generated nilpotent group, its subgroup $\overline{\mathcal{E}}$ is also finitely generated. To prove that \mathcal{G} is finitely generated, it is thus enough to prove that $\gamma_{k} \ell_{g}^{b}$ is finitely generated.

- The homomorphism $\ell_{g}^{1} \rightarrow \ell_{g}$ obtained by gluing a disc to $\partial \Sigma_{g}^{1}$ is surjective, and thus its restriction $\gamma_{k} \ell_{g}^{1} \rightarrow \gamma_{k} \ell_{g}$ is also surjective. To prove that $\gamma_{k} \ell_{g}$ is finitely generated, it is thus enough to prove that $\gamma_{k} d_{g}^{1}$ is finitely generated.
Similarly, it suffices to prove Theorem A for $\left[\ell_{g}^{1}, \ell_{g}^{1}\right]$, Theorem D for $\gamma_{k} \mathrm{IA}_{n}$, and Theorem E for $\mathscr{G}=\mathrm{JIA}_{n}(k)$.
[n]-groups. All of our main theorems except Theorem A will be deduced from a general result (Corollary 5.6 below) which deals with $[n]$-groups. Here $[n]$ denotes the set $\{1,2, \ldots, n\}$ and an $[n]$-group is a group G equipped with a distinguished collection of subgroups $\left\{G_{I}: I \subseteq[n]\right\}$ such that $G_{I} \subseteq G_{J}$ whenever $I \subseteq J$. The groups $\operatorname{Aut}\left(F_{n}\right)$ and $\operatorname{Mod}_{n}^{1}$ along with their subgroups IA_{n} and ℓ_{n}^{1} can be endowed with an $[n]$-group structure (see Definitions 4.4 and 4.6); indeed, this was essentially done by Church and Putman [8], though the technical setup of that paper is different from ours.
Weakly commuting. The key property we shall exploit is that these [n]-group structures are weakly commuting. By definition, an $[n]$-group G is weakly commuting if for all disjoint $I, J \subseteq[n]$, there exists some element $g \in G$ such that the subgroups G_{I} and
$\left(G_{J}\right)^{g}=g^{-1} G_{J} g$ commute. A closely related (but different) notion of a partially commuting [n]-group played an important role in [14]. We also note that weakly commuting [n]-groups are unrelated to the "weak FI-groups" that appeared in [8], despite the similar terminology. We will not use FI-groups or weak FI-groups in this paper.

BNS invariant. Let G be a finitely generated group. The BNS invariant is a powerful tool for studying the finite generation of subgroups of G that contain the commutator subgroup $[G, G]$. Let $\operatorname{Hom}(G, \mathbb{R})$ denote the set of additive characters of G, that is, homomorphisms from G to $(\mathbb{R},+)$. Let $S(G)$ denote the set consisting of nonzero characters of G modulo multiplication by positive scalars. As a topological space, this set is a sphere of dimension $b_{1}(G)-1$, where $b_{1}(G)$ is the first Betti number of G. Bieri, Neumann, and Strebel [6] introduced a certain subset $\Sigma(G)$ of $S(G)$, now called the BNS invariant of G, that completely determines which subgroups of G containing $[G, G]$ are finitely generated. The larger $\Sigma(G)$ is, the more such subgroups are finitely generated; in particular, all of them (including [G,G] itself) are finitely generated if and only if $\Sigma(G)=S(G)$.

Commuting elements. As we will make precise in Lemma 2.3 below, the presence of large numbers of commuting generators for a group can force $\Sigma(G)$ to be a very large subset of $S(G)$. This sort of mechanism has been used to completely determine the BNS invariant for several important classes of groups, including right-angled Artin groups [33] and pure braid groups [27]. However, this mechanism is usually insufficient by itself to show that $\Sigma(G)=S(G)$ (as it must be since in the aforementioned classes of groups the commutator subgroup $[G, G]$ is never finitely generated except when it is trivial). The obstacle is the existence of nonzero characters that vanish on almost all generators involved in these commutation relations.

Computing the BNS invariant of Torelli groups. In [14], it was proved that $\Sigma\left(\ell_{n}^{1}\right)=S\left(\ell_{n}^{1}\right)$ for $n \geq 12$ and that $\Sigma\left(\mathrm{IA}_{n}\right)=S\left(\mathrm{IA}_{n}\right)$ for $n \geq 4$. The proof was based on the following two properties of the groups $G=\ell_{n}^{1}$ and $G=\mathrm{IA}_{n}$:

- Similarly to right-angled Artin groups, G has a finite generating set in which many pairs of elements commute.
- The group G also has a large group of outer automorphisms coming from conjugation by $\operatorname{Mod}_{n}^{1}$ and $\operatorname{Aut}\left(F_{n}\right)$, respectively.
In particular, the outer automorphism group of G contains a natural copy of $\mathrm{SL}_{n}(\mathbb{Z})$. The corresponding action of $\mathrm{SL}_{n}(\mathbb{Z})$ on $G /[G, G]$ induces an action on $S(G)$ that is "sufficiently mixing", which implies in particular that every orbit on $S(G)$ contains characters that do not vanish on large numbers of generators. Combining this with the fact that $\Sigma(G)$ is invariant under $\operatorname{Out}(G)$, one deduces the equality $\Sigma(G)=S(G)$.

Generalization to higher terms of the lower central series. To extend the finite generation of $[G, G]$ for $G=\ell_{n}^{1}$ or $G=\mathrm{IA}_{n}$ to $\gamma_{k} G$ with $k>2$, we adopt an inductive approach. Assuming by induction that $\gamma_{k} G$ is finitely generated, the Bieri-Neumann-Strebel criterion (see Theorem 2.2) says that to prove this for $\gamma_{k+1} G$ we must show that $\Sigma\left(\gamma_{k} G\right)$ contains every character vanishing on $\gamma_{k+1} G$, or in other words that $\Sigma\left(\gamma_{k} G\right)$ contains the entire sphere $S\left(\gamma_{k} G / \gamma_{k+1} G\right)$.

If one attempts to use the method of [14] inductively, the following issue arises. In order to apply this method to an $[n]$-group G, one needs to know that G has a finite generating set consisting of elements of "small complexity". Even if G possesses such a generating set, it is impossible to deduce the same for $[G, G]$ using the Bieri-NeumannStrebel theorem, as the proof of the latter is inherently ineffective. We resolve this issue with two ideas:

- The first is the notion of the commuting graph of an [n]-group (see Definition 5.2). We will use commuting graphs to show that the following holds for $n \gg k$: if $\gamma_{k} G$ is finitely generated, then we can find a "nice" generating set for $\gamma_{k} G$ which has enough commuting elements. The latter implies that $\Sigma\left(\gamma_{k} G\right)$ contains a large open subset of $S\left(\gamma_{k} G\right)$.
- The second provides a way to take this open subset and use it to show that $\Sigma\left(\gamma_{k} G\right)$ contains all of $S\left(\gamma_{k} G / \gamma_{k+1} G\right)$. Similarly to [14], this part of the proof uses the action of $\operatorname{Out}(G)$ on $S\left(\gamma_{k} G / \gamma_{k+1} G\right)$; however, instead of using combinatorial properties of this action as in [14], we will give an abstract argument involving algebraic geometry. This aspect of our proof is reminiscent of [13] and [38], but unlike those two papers we will only need very basic facts from algebraic geometry.

Outline. In the short Section 2 we record the properties of the BNS invariant that we will use. Next, in Section 3 we will prove Theorem A. This proof foreshadows in a simplified setting many of the ideas used in the remainder of the paper. In Section 4 we introduce the technical framework we will use for the rest of the paper. We use this framework in Section 5 to prove a general result that will imply our main theorems, and finally in Section 6 we prove those theorems.

Conventions. Let G be a group. For $g, h \in G$, we write

$$
h^{g}=g^{-1} h g \quad \text { and } \quad[g, h]=g^{-1} h^{-1} g h .
$$

Also, for a subgroup $H \subseteq G$ and $g \in G$ we write

$$
H^{g}=g^{-1} H g
$$

2. Preliminaries on the BNS invariant

Let G be a finitely generated group. This section contains a brief introduction to the BNS invariant $\Sigma(G)$ of G; see [46] for a reference that proves all statements for which we do not provide references. Recall from the introduction that $\Sigma(G)$ is a subset of $S(G)$, where

$$
S(G)=(\operatorname{Hom}(G, \mathbb{R}) \backslash\{0\}) / \mathbb{R}_{+}^{\times}
$$

is the quotient of the set of nonzero characters $\operatorname{Hom}(G, \mathbb{R}) \backslash\{0\}$ by the equivalence relation that identifies two characters if they differ by multiplication by a positive scalar. For a nonzero $\chi \in \operatorname{Hom}(G, \mathbb{R})$, write $[\chi]$ for its image in $S(G)$. There are many equivalent ways to define $\Sigma(G)$. Perhaps the easiest to state involves the connectedness of certain subgraphs of the Cayley graph of G.

Definition 2.1. Let G be a finitely generated group with a fixed finite generating set S. Let $\ell(G, S)$ be the Cayley graph of G with respect to S. Given $[\chi] \in S(G)$ represented by $\chi \in \operatorname{Hom}(G, \mathbb{R})$, the BNS invariant $\Sigma(G)$ is defined as the set of all $[\chi] \in S(G)$ such that the full subgraph of $\mathscr{C}(G, S)$ spanned by the set $\{g \in G: \chi(g) \geq 0\}$ is connected.

This definition does not depend on the choice of S (though this is not obvious). Thinking of $\operatorname{Aut}(G)$ as acting on G on the right, we obtain an action of $\operatorname{Aut}(G)$ on $\operatorname{Hom}(G, \mathbb{R})$ via the formula

$$
(\alpha \cdot \chi)(g)=\chi\left(g^{\alpha}\right) \quad(\alpha \in \operatorname{Aut}(G), \chi \in \operatorname{Hom}(G, \mathbb{R}), g \in G)
$$

This descends to an action of $\operatorname{Aut}(G)$ on $S(G)$ which factors through $\operatorname{Out}(G)$. The fact that the BNS invariant is independent of the generating set implies that $\Sigma(G)$ is invariant under this action.

If N is a normal subgroup of G, then we can identify $\operatorname{Hom}(G / N, \mathbb{R})$ with the subset of $\operatorname{Hom}(G, \mathbb{R})$ consisting of those characters that vanish on N. This induces an identification of $S(G / N)$ with a subset of $S(G)$. When N contains $[G, G]$, the following theorem of Bieri, Neumann and Strebel characterizes finite generation of N in terms of $\Sigma(G)$.
Theorem 2.2 ([6, Theorem B1]). Let G be a finitely generated group and N a subgroup of G containing $[G, G]$. Then N is finitely generated if and only if $S(G / N) \subseteq \Sigma(G)$.

The following sufficient condition for an element of $S(G)$ to lie in $\Sigma(G)$ was established by Ershov and He.

Lemma 2.3 ([14, Proposition 2.4 (b)]). Let G be a finitely generated group and let $\chi \in \operatorname{Hom}(G, \mathbb{R})$ be a nonzero character. Suppose there exists a finite sequence x_{1}, \ldots, x_{r} of elements of G such that the following hold:
(i) $\quad G$ is generated by x_{1}, \ldots, x_{r}.
(ii) $\chi\left(x_{1}\right) \neq 0$.
(iii) For every $2 \leq i \leq r$, there exists $j<i$ such that $\chi\left(x_{j}\right) \neq 0$ and such that the commutator $\left[x_{j}, x_{i}\right]$ lies in the subgroup generated by x_{1}, \ldots, x_{i-1}.
Then $[\chi] \in \Sigma(G)$.
Remark 2.4. An important special case of Lemma 2.3 is when x_{j} and x_{i} in (iii) are required to commute. This special case of the lemma was known prior to [14]. It is essentially equivalent to [27, Lemma 1.9], but the basic idea goes back further (compare with [33, Theorem 6.1] from 1995). This special case was sufficient for the purposes of [14] except when dealing with IA_{4} and IA_{5}. To prove Theorem A and the $k=2$ case of Theorem D we only need this special case of Lemma 2.3, but for Theorems B-E we will make essential use of the full strength of Lemma 2.3.

3. Proof of Theorem A

In this section we will prove Theorem A, which asserts that any subgroup of Ω_{g}^{b} containing $\left[\ell_{g}^{b}, \ell_{g}^{b}\right]$ is finitely generated for $g \geq 4$ and $b \in\{0,1\}$. This will imply in particular that

Fig. 1. On the left are two genus-1 BP maps $\varphi=T_{x} T_{y}^{-1}$ and $\psi=T_{x^{\prime}} T_{y^{\prime}}^{-1}$ that are adjacent in $\operatorname{BP}\left(\ell_{g}^{1}\right)$. On the right are the Dehn twists involved in the definition of the set S. Note that x^{\prime} and y^{\prime} on the left are disjoint from α_{2}, so $\psi=T_{x^{\prime}} T_{y^{\prime}}^{-1}$ commutes with $T_{\alpha_{2}}$.
\mathcal{K}_{g}^{b} is finitely generated. This proof follows the same outline as the proofs of our other results, but avoids a lot of technicalities. For that reason, we suggest that the reader begin with this section.
$B P$ graph. We will need a certain graph constructed from elements of the Torelli group. A genus-1 bounding pair on Σ_{g}^{1} (often shortened to a genus-1BP) is an ordered pair (x, y) of disjoint homologous nonseparating simple closed curves on Σ_{g}^{1} whose union $x \cup y$ separates Σ_{g}^{1} into two subsurfaces, one homeomorphic to Σ_{1}^{2} and the other to Σ_{g-2}^{3} (see Figure 1). If (x, y) is a genus-1 BP, then the corresponding product of Dehn twists $T_{x} T_{y}^{-1} \in \mathscr{l}_{g}^{1}$ is called a genus-1 BP map. This gives a bijection between genus-1 BP maps and isotopy classes of genus-1 BPs. All genus-1 BPs on Σ_{g}^{1} lie in the same $\operatorname{Mod}_{g}^{1}$-orbit (see [15, Section 1.3]), and therefore all genus-1 BP maps are conjugate in $\operatorname{Mod}_{g}^{1}$.
Definition 3.1. Let $\mathrm{BP}\left(\ell_{g}^{1}\right)$ denote the genus-1 BP graph whose vertices are genus-1 BP maps in ℓ_{g}^{1}, and where two elements are connected by an edge if they commute.
Remark 3.2. Given genus-1 BPs (x, y) and $\left(x^{\prime}, y^{\prime}\right)$, if we can homotope the curves such that $x \cup y$ is disjoint from $x^{\prime} \cup y^{\prime}$ (see Figure 1), then the BP maps $T_{x} T_{y}^{-1}$ and $T_{x^{\prime}} T_{y^{\prime}}^{-1}$ commute. The converse is also true, though we will not actually need this.

Proposition 3.3. The genus-1 BP graph $\mathrm{BP}\left(\mathcal{~}_{g}^{1}\right)$ is connected for $g \geq 4$.
Proposition 3.3 is likely folklore, but we do not know a reference, so we include a proof.

Proof of Proposition 3.3. We use the main idea from [40, Lemma 2.1]. Let $\varphi=T_{x} T_{y}^{-1}$ be the vertex of $\operatorname{BP}\left(d_{g}^{1}\right)$ depicted in Figure 1. We must prove that there is a path in $\operatorname{BP}\left(d_{g}^{1}\right)$ between φ and any other vertex of $\operatorname{BP}\left(\propto_{g}^{1}\right)$. The group $\operatorname{Mod}_{g}^{1}$ acts on $\operatorname{BP}\left(d_{g}^{1}\right)$ by conjugation, and this action is transitive on vertices since all genus-1 BP maps are conjugate in $\operatorname{Mod}_{g}^{1}$. It is thus enough to prove that for all $f \in \operatorname{Mod}_{g}^{1}$, there is a path in $\operatorname{BP}\left(\ell_{g}^{1}\right)$ from φ to φ^{f}.

We begin by proving a special case of this. Let

$$
S=\left\{T_{\alpha_{i}}^{ \pm 1}: 1 \leq i \leq g\right\} \cup\left\{T_{\gamma_{i}}^{ \pm 1}: 1 \leq i \leq g\right\} \cup\left\{T_{\beta_{i}}^{ \pm 1}: 1 \leq i \leq g-1\right\}
$$

be the Dehn twists depicted in Figure 1. The set S generates $\operatorname{Mod}_{g}^{1}$; see [24, Theorem 1]. We claim that for all $s \in S$, there exists a path η_{s} in $\mathrm{BP}\left(\ell_{g}^{1}\right)$ from φ to φ^{s}. Indeed, all the
curves α_{i}, γ_{i}, and β_{i} are disjoint from x and y, with the exception of α_{2}. Therefore for $s \notin\left\{T_{\alpha_{2}}^{ \pm 1}\right\}$, the map s commutes with φ, so $\varphi=\varphi^{s}$ and the claim is trivial. If $s \in\left\{T_{\alpha_{2}}^{ \pm 1}\right\}$, then letting $\psi=T_{x^{\prime}} T_{y^{\prime}}^{-1}$ be the BP map depicted in Figure 1, we see that x^{\prime} and y^{\prime} are disjoint from α_{2}. This implies that ψ commutes with both φ and s, and thus also with φ^{s}. We can therefore take η_{s} to be the length 2 path from φ to ψ to φ^{s}.

We now prove the general case. Consider $f \in \operatorname{Mod}_{g}^{1}$. Write

$$
f=s_{1} s_{2} \cdots s_{\ell} \quad \text { with } s_{i} \in S
$$

For $h \in \operatorname{Mod}_{g}^{1}$ and $s \in S$, the path $\left(\eta_{s}\right)^{h}$ goes from φ^{h} to $\varphi^{s h}$. Letting \bullet be the concatenation product on paths, the desired path from φ to φ^{f} is then

$$
\eta_{s_{\ell}} \bullet\left(\eta_{s_{\ell-1}}\right)^{s_{\ell}} \bullet\left(\eta_{s_{\ell-2}}\right)^{s_{\ell-1} s_{\ell}} \bullet \cdots \bullet\left(\eta_{s_{1}}\right)^{s_{2} s_{3} \cdots s_{\ell}}
$$

which finishes the proof.
Remark 3.4. The genus-1 BP graph $\operatorname{BP}\left(\mathscr{~}_{g}^{1}\right)$ is not connected for $g=3$. This can be seen by noting that if $T_{x} T_{y}^{-1}$ is connected to $T_{x^{\prime}} T_{y^{\prime}}^{-1}$ in $\operatorname{BP}\left(\ell_{3}^{1}\right)$, then the curves $\left\{x, y, x^{\prime}, y^{\prime}\right\}$ all share the same homology class. Therefore BP maps with different homology classes must lie in different components of $\mathrm{BP}\left(\ell_{3}^{1}\right)$. The connectivity of $\mathrm{BP}\left(\ell_{g}^{1}\right)$ is the only place in the proof of Theorem A where we will use the assumption $g \geq 4$.

Work of Johnson. We will need three important results of Johnson that are summarized in the following theorem; the three parts are proved in [22], [24], and [26], respectively.
Theorem 3.5 (Johnson). For $g \geq 3$, the following hold:
(a) The group ℓ_{g}^{1} is generated by genus -1 BP maps.
(b) The group ℓ_{g}^{1} is finitely generated.
(c) There is $a \operatorname{Mod}_{g}^{1}$-equivariant isomorphism

$$
\left(\ell_{g}^{1}\right)^{\mathrm{ab}} \otimes \mathbb{R} \cong \bigwedge^{3} \mathrm{H}_{1}\left(\Sigma_{g}^{1} ; \mathbb{R}\right)
$$

where $\operatorname{Mod}_{g}^{1}$ acts on $\left(\ell_{g}^{1}\right)^{\text {ab }}$ via its conjugation action on ℓ_{g}^{1}.
Zariski topology on the mapping class group. The final preliminary ingredient we will need is a certain topology on the mapping class group. The conjugation action of $\operatorname{Mod}_{g}^{1}$ on its normal subgroup ℓ_{g}^{1} induces an action of $\operatorname{Mod}_{g}^{1}$ on the vector space $\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right)$. This gives a group homomorphism

$$
\operatorname{Mod}_{g}^{1} \rightarrow \operatorname{GL}\left(\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right)\right)
$$

Endow $\operatorname{GL}\left(\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right)\right)$ with the Zariski topology. Let the $\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right)$-Zariski topology on $\operatorname{Mod}_{g}^{1}$ be the topology pulled back from the Zariski topology on $\operatorname{GL}\left(\operatorname{Hom}\left(\rho_{g}^{1}, \mathbb{R}\right)\right)$ by this map. The key property of this topology that we will use is as follows. Recall that a topological space is irreducible if it cannot be written as the union of two proper closed subspaces.
Lemma 3.6. For $g \geq 3$, the group $\operatorname{Mod}_{g}^{1}$ equipped with the $\operatorname{Hom}\left(d_{g}^{1}, \mathbb{R}\right)$-Zariski topology is an irreducible topological space.

Proof. In our proof, we will use three basic properties of irreducible spaces:
(i) if Y is an irreducible topological space and $X \rightarrow Y$ is a set map, then the pullback to X of the topology on Y makes X into an irreducible topological space;
(ii) if $Y \rightarrow Z$ is a continuous map between topological spaces and Y is irreducible, then the image of Y in Z is irreducible.
(iii) a subspace Z of a topological space W is irreducible if and only if the closure of Z in W is irreducible.

By property (i) above, it is enough to prove that the image of $\operatorname{Mod}_{g}^{1}$ in $\operatorname{GL}\left(\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right)\right)$ is an irreducible subspace. Set $H=\mathrm{H}_{1}\left(\Sigma_{g}^{1} ; \mathbb{R}\right)$ and $H_{\mathbb{Z}}=\mathrm{H}_{1}\left(\Sigma_{g}^{\mathrm{P}} ; \mathbb{Z}\right)$. Theorem 3.5 (c) gives a $\operatorname{Mod}_{g}^{1}$-equivariant isomorphism

$$
\left(\ell_{g}^{1}\right)^{\mathrm{ab}} \otimes \mathbb{R} \cong \bigwedge^{3} H
$$

Recall from the introduction that the algebraic intersection form on H turns it into a symplectic vector space and that the image of $\operatorname{Mod}_{g}^{1}$ in $\operatorname{GL}(H)$ is equal to $\operatorname{Sp}\left(H_{\mathbb{Z}}\right)$. The action of $\operatorname{Mod}_{g}^{1}$ on H thus factors through a representation of the symplectic group $\operatorname{Sp}(H)$. Since H is a self-dual representation of $\operatorname{Sp}(H)$, this implies that there is a $\operatorname{Mod}_{g}^{1}$-equivariant isomorphism

$$
\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right) \cong \bigwedge^{3} H
$$

as well. Under this identification, the image of $\operatorname{Mod}_{g}^{1}$ in $\operatorname{GL}\left(\operatorname{Hom}\left({ }_{g}{ }_{g}^{1}, \mathbb{R}\right)\right)$ is equal to the image of $\operatorname{Sp}\left(H_{\mathbb{Z}}\right)$ under the natural mapping $\iota: \mathrm{GL}(H) \rightarrow \mathrm{GL}\left(\bigwedge^{3} H\right)$. It is classical that the Zariski closure of $\operatorname{Sp}\left(H_{\mathbb{Z}}\right)$ in $\mathrm{GL}(H)$ is $\operatorname{Sp}(H) \cong \operatorname{Sp}_{2 g}(\mathbb{R})$, which is a connected algebraic group and hence an irreducible topological space (see, e.g., [7, Theorem III.2.1]). Property (iii) above thus implies that $\operatorname{Sp}\left(H_{\mathbb{Z}}\right)$ is an irreducible topological space. Since ι is Zariski-continuous, property (ii) above implies that $\iota\left(\operatorname{Sp}\left(H_{\mathbb{Z}}\right)\right)$ is irreducible, as desired. We remark that the self-duality of $\bigwedge^{3} H$ is not essential here; we could apply the exact same argument to the natural map $\operatorname{GL}(H) \rightarrow \operatorname{GL}\left(\left(\bigwedge^{3} H\right)^{*}\right)$.

Putting it all together. We now prove Theorem A.
Proof of Theorem A. Fix some $g \geq 4$. As discussed in Section 1.2, it suffices to prove that $\left[\alpha_{g}^{1}, \Omega_{g}^{1}\right]$ is finitely generated, which by Theorem 2.2 is equivalent to showing that the BNS invariant $\Sigma\left(\ell_{g}^{1}\right)$ is all of $S\left(\ell_{g}^{1}\right)$.

Theorem 3.5 (a) and (b) tell us that for $g \geq 3$ there is a finite set of genus-1 BP maps that generate ℓ_{g}^{1}; we emphasize that we do not need to know such a finite generating set explicitly. Proposition 3.3 says that $\mathrm{BP}\left(\ell_{g}^{1}\right)$ is connected for $g \geq 4$. Combining these two facts, we see that there exists a finite set $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ of genus-1 BP maps that generates Ω_{g}^{1} such that the full subgraph of $\operatorname{BP}\left(\ell_{g}^{1}\right)$ spanned by Λ is connected (simply begin with a generating set and add more vertices until the subgraph is connected).

The key property of Λ is as follows:

$$
\begin{equation*}
\text { If } \rho: \ell_{g}^{1} \rightarrow \mathbb{R} \text { satisfies } \rho(\lambda) \neq 0 \text { for all } \lambda \in \Lambda \text {, then }[\rho] \in \Sigma\left(\ell_{g}^{1}\right) . \tag{3.1}
\end{equation*}
$$

Indeed, consider such a ρ. We can assume that $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ is enumerated in increasing order of distance from some fixed basepoint in the subgraph spanned by Λ. This guarantees that for all $1<i \leq r$, there exists some $1 \leq j<i$ such that λ_{i} and λ_{j} are
adjacent in $\operatorname{BP}\left(\ell_{g}^{1}\right)$. In other words, the genus-1 BP maps λ_{i} and λ_{j} commute. Since $\rho\left(\lambda_{i}\right) \neq 0$ for all $1 \leq i \leq r$, the sequence $\lambda_{1}, \ldots, \lambda_{r}$ satisfies all three conditions of Lemma 2.3. That lemma now implies that $[\rho] \in \Sigma\left(\ell_{g}^{1}\right)$. Note that here we only used the special case of Lemma 2.3 discussed in Remark 2.4.

Now consider an arbitrary nonzero $\rho: \ell_{g}^{1} \rightarrow \mathbb{R}$; we will prove that $[\rho] \in \Sigma\left(\ell_{g}^{1}\right)$. For each $\lambda \in \Lambda$, define

$$
Z_{\lambda}=\left\{\gamma \in \operatorname{Mod}_{g}^{1}:(\gamma \cdot \rho)(\lambda)=0\right\} .
$$

For a fixed λ the condition $\varphi(\lambda)=0$ is a Zariski-closed condition on φ, so each \mathcal{Z}_{λ} is a closed subspace of $\operatorname{Mod}_{g}^{1}$ in the $\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right)$-Zariski topology. Moreover, we claim that each \mathcal{Z}_{λ} is a proper subset of $\operatorname{Mod}_{g}^{1}$. To see this, observe that the equality $\mathcal{Z}_{\lambda}=\operatorname{Mod}_{g}^{1}$ would mean that $(\gamma \cdot \rho)(\lambda)=\rho\left(\lambda^{\gamma}\right)$ vanishes for all $\gamma \in \operatorname{Mod}_{g}^{1}$. Since λ is a genus-1 BP map and all genus-1 BP maps are conjugate, this would mean that ρ vanishes on all genus-1 BP maps. But by Theorem 3.5 (a), \mathbb{d}_{g}^{1} is generated by genus- 1 BP maps for $g \geq 3$, so no nonzero homomorphism $\rho: \ell_{g}^{1} \rightarrow \mathbb{R}$ can vanish on all these elements. This verifies that $\mathcal{Z}_{\lambda} \subsetneq \operatorname{Mod}_{g}^{1}$ as claimed.

We recall from Lemma 3.6 that $\operatorname{Mod}_{g}^{1}$ is an irreducible space with respect to the $\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right)$-Zariski topology. Since an irreducible space cannot be written as a finite union of closed proper subspaces, we deduce that

$$
\bigcup_{\lambda \in \Lambda} Z_{\lambda} \subsetneq \operatorname{Mod}_{g}^{1}
$$

Choose some $\gamma \in \operatorname{Mod}_{g}^{1}$ such that $\gamma \notin \mathcal{Z}_{\lambda}$ for all $\lambda \in \Lambda$. By definition, this means that $(\gamma \cdot \rho)(\lambda) \neq 0$ for all $\lambda \in \Lambda$. Applying (3.1) to $\gamma \cdot \rho$, we deduce that $[\gamma \cdot \rho] \in \Sigma\left(\ell_{g}^{1}\right)$. Since $\Sigma\left(\ell_{g}^{1}\right)$ is invariant under automorphisms of \mathscr{d}_{g}^{1}, it follows that $[\rho] \in \Sigma\left(\ell_{g}^{1}\right)$ as well. Since ρ was arbitrary, this shows that $\Sigma\left(\ell_{g}^{1}\right)$ is all of $S\left(\ell_{g}^{1}\right)$, as desired.

We will use the same exact approach in Section 6.2 to prove that $\left[\mathrm{IA}_{n}, \mathrm{IA}_{n}\right]$ is finitely generated for $n \geq 4$. For now, we record the structure of the above argument; the proof of the following theorem follows exactly the proof of Theorem A above.
Theorem 3.7. Let G be a finitely generated group. Suppose that a group Γ acts on G by automorphisms such that the following hold:
(1) The group G is generated by a single Γ-orbit $C \subset G$.
(2) The image of Γ in $\operatorname{GL}(\operatorname{Hom}(G, \mathbb{R}))$ is irreducible in the Zariski topology.
(3) The graph whose vertices are elements $c \in C$ where two elements are connected by an edge if they commute is connected.
Then $[G, G]$ is finitely generated.

4. Basic properties of [$\boldsymbol{n}]$-groups

This section contains preliminary definitions and results that will be used in the technical framework of the remainder of the paper. It has three sections: Section 4.1 introduces $[n]$-groups and the two fundamental examples $\operatorname{Aut}\left(F_{n}\right)$ and $\operatorname{Mod}_{g}^{1}$, then Section 4.2
discusses central series and their Lie algebras, and finally Section 4.3 discusses Zariskiirreducible actions.

4.1. [n]-groups

Set $\mathbb{N}=\{1,2,3, \ldots\}$. For $n \in \mathbb{N}$, define $[n]=\{1, \ldots, n\}$.
Definition 4.1. Let $n \in \mathbb{N}$. An [n]-group is a group G equipped with a distinguished collection of subgroups $\left\{G_{I}: I \subseteq[n]\right\}$ such that $G_{[n]}=G$ and such that $G_{I} \subseteq G_{J}$ whenever $I \subseteq J$. We say that an $[n]$-group V is an $[n]$-vector space if V is a vector space and each V_{I} is a subspace.

Any subgroup or quotient of an [n]-group naturally inherits the structure of an [n]-group as follows.

Definition 4.2. Let G be an [n]-group. For a subgroup H of G, define an $[n]$-group structure on H by setting $H_{I}=H \cap G_{I}$ for all $I \subseteq[n]$. For a quotient G / K of G, define an [n]-group structure on G / K by setting $(G / K)_{I}=G_{I} K / K$ for all $I \subseteq[n]$.

In addition, any abelian $[n]$-group A can be tensored with \mathbb{R} to obtain an $[n]$-vector space as follows:
Definition 4.3. Let A be an abelian [n]-group. Then $A \otimes \mathbb{R}$ becomes an [n]-vector space by setting $(A \otimes \mathbb{R})_{I}=A_{I} \otimes \mathbb{R}$ for all $I \subseteq[n]$.

Key examples. Before moving on, we define the two key examples of $[n]$-groups that we will use in this paper, namely $\operatorname{Aut}\left(F_{n}\right)$ and the mapping class group. The structure on $\operatorname{Aut}\left(F_{n}\right)$ is easy to define.

Definition 4.4. Let F_{n} be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}$ and let $\Gamma=\operatorname{Aut}\left(F_{n}\right)$. For $I \subseteq[n]$, set $F_{I}=\left\langle x_{i}: i \in I\right\rangle$, and define

$$
\Gamma_{I}=\left\{f \in \Gamma: f\left(x_{i}\right) \in F_{I} \text { for all } i \in I \text { and } f\left(x_{j}\right)=x_{j} \text { for all } j \in[n] \backslash I\right\} .
$$

This endows Γ with the structure of an $[n]$-group.
For the mapping class group, it is a bit more subtle. The natural measure of complexity for the mapping class group is the genus g, so these will be $[g]$-groups. The starting point is the following lemma (which is implicit in [8, Section 4.1]).

Lemma 4.5. Fix some $g \geq 1$, and let $\Sigma=\Sigma_{g}^{1}$ be a genus g surface with one boundary component. We can then choose subsurfaces Σ_{I} for each $I \subseteq[g]$ such that the following hold:
(i) $\quad \Sigma_{I}$ is homeomorphic to $\Sigma_{|I|}^{1}$.
(ii) $\Sigma_{[g]}=\Sigma$.
(iii) Σ_{I} is isotopic to a subsurface of Σ_{J} whenever $I \subseteq J$.
(iv) If $I, J \subseteq[g]$ are disjoint and I consists of consecutive integers, then Σ_{I} is isotopic to a subsurface disjoint from Σ_{J}. We remark that this need not hold if I does not consist of consecutive integers.

Fig. 2. On the top are the X_{i} and the δ_{i} and $f([1, g])$ for $g=6$. In the middle is $\Sigma_{\{2,3,5\}}$, and on the bottom is $\Sigma_{\{3,4,5\}}$ isotoped to be disjoint from $\Sigma_{\{1,6\}}$.

Proof. As in Figure 2, choose disjoint subsurfaces $X_{1}, \ldots, X_{g} \subset \Sigma_{g}^{1}$ with $X_{i} \cong \Sigma_{1}^{1}$ for each i. Let $[1, g] \subset \mathbb{R}$ denote the closed interval. Letting

$$
Y=\Sigma_{g}^{1} \backslash \bigcup_{i=1}^{g} \operatorname{Int}\left(X_{i}\right)
$$

choose an embedding $f:[1, g] \rightarrow \operatorname{Int}(Y)$, and let $\delta_{1}, \ldots, \delta_{g}$ be arcs in Y such that δ_{i} connects a point on ∂X_{i} to $f(i)$. Pick the δ_{i} such that they all approach $f([1, g])$ from the same side, such that they are all pairwise disjoint from each other, and such that each δ_{i} only intersects $\partial Y \cup f([1, g])$ at its endpoints. For $I \subseteq[g]$ enumerated as

$$
I=\left\{i_{1}<\cdots<i_{k}\right\}
$$

let Σ_{I} be a closed regular neighborhood of

$$
f\left(\left[i_{1}, i_{k}\right]\right) \cup\left(\bigcup_{j=1}^{k} \delta_{i_{j}}\right) \bigcup\left(\bigcup_{j=1}^{k} X_{i_{j}}\right)
$$

See Figure 2. It is clear that these subsurfaces satisfy the conclusions of the lemma. The only nontrivial one is conclusion (iv), which is illustrated at the bottom of Figure 2.

This allows us to make the following definition.

Definition 4.6. Let $\Sigma=\Sigma_{g}^{1}$ be a genus g surface with one boundary component. We define a $[g]$-group structure on $\Gamma=\operatorname{Mod}(\Sigma)=\operatorname{Mod}_{g}^{1}$ as follows. Fix once and for all a collection of subsurfaces Σ_{I} as in Lemma 4.5, and for each $I \subseteq[g]$ define Γ_{I} to be the subgroup of Γ consisting of mapping classes supported on Σ_{I}. Conclusions (ii) and (iii) of Lemma 4.5 imply that Γ is an [g]-group.

Remark 4.7. Since any subgroup of an [n]-group inherits an [n]-group structure, Definition 4.4 induces an $[n]$-group structure on IA $_{n}$. Similarly, Definition 4.6 induces an [g]-group structure on ℓ_{g}^{1}.
Fundamental properties. We now turn to some fundamental properties of $[n]$-groups.
Definition 4.8. Let G be an [n]-group. We say that G is generated in degree d if G is generated by the set $\left\{G_{I}: I \subseteq[n],|I|=d\right\}$. We write $d(G)$ for the smallest $d \geq 0$ such that G is generated in degree d.

Remark 4.9. As we will explain in Section 6, the $[n]$-group $\operatorname{Aut}\left(F_{n}\right)$ is generated in degree 2 while its subgroup IA_{n} is generated in degree 3 . Similarly, the $[g]$-group $\operatorname{Mod}_{g}^{1}$ is generated in degree 2 and its subgroup ℓ_{g}^{1} is generated in degree 3 .
Definition 4.10. Let G be an [$n]$-group.
(i) We say that G is transitive if G_{I} and G_{J} are conjugate in G for all $I, J \subseteq[n]$ with $|I|=|J|$.
(ii) We say that G is commuting if G_{I} and G_{J} commute for all disjoint $I, J \subseteq[n]$.
(iii) We say that G is weakly commuting if for all disjoint $I, J \subseteq[n]$, there exists $g \in G$ such that $\left(G_{I}\right)^{g}=g^{-1} G_{I} g$ and G_{J} commute.

Remark 4.11. We can see directly from Definition 4.4 that the $[n]$-group $\operatorname{Aut}\left(F_{n}\right)$ is commuting, and thus so is its subgroup IA_{n}. It is easy to see that $\operatorname{Aut}\left(F_{n}\right)$ is transitive by using the automorphisms permuting the generators, but one can show that IA_{n} is not transitive (we omit the proof since this will not be needed). In Lemma 6.2 below, we will see that $\operatorname{Mod}_{g}^{1}$ is also transitive and that $\operatorname{Mod}_{g}^{1}$ and ℓ_{g}^{1} are weakly commuting, but not commuting.

Remark 4.12. If G is an [$n]$-group satisfying any of properties (i)-(iii) in Definition 4.10, then the same is true for any quotient of G. If H is a subgroup of a commuting [n]-group G, then the $[n]$-group H is also commuting. However, the properties of being transitive or weakly commuting need not pass to subgroups since their definitions refer to conjugation by elements of G that need not lie in the subgroup. For instance, as we mentioned in Remark 4.11 the $[n]$-group $\operatorname{Aut}\left(F_{n}\right)$ is transitive, but its subgroup IA ${ }_{n}$ is not.

4.2. Central series and Lie algebras

We recall the following definition.
Definition 4.13. A central series of a group G is a descending chain

$$
G=G(1) \supseteq G(2) \supseteq G(3) \supseteq \cdots
$$

of subgroups of G such that $[G, G(k)] \subseteq G(k+1)$ for all $k \geq 1$. If G is a normal subgroup of a group Γ, we will call such a central series a Γ-normal central series if $G(k)$ is normal in Γ for all $k \geq 1$.

The most common example of a central series is the lower central series of G; this is a Γ-normal central series if G is normal in Γ. Every central series determines a graded Lie algebra in the following way. Note that $G(k) / G(k+1)$ is an abelian group.

Definition 4.14. Let $G=G(1) \supseteq G(2) \supseteq \cdots$ be a central series of G. The associated graded real Lie algebra \mathscr{L} is the real Lie algebra

$$
\mathscr{L}=\bigoplus_{k=1}^{\infty} \mathscr{L}(k), \quad \text { where } \mathscr{L}(k)=(G(k) / G(k+1)) \otimes \mathbb{R}
$$

The Lie bracket on \mathscr{L} is induced by the commutator bracket on G, which descends to a bilinear map $\mathscr{L}(k) \otimes \mathscr{L}(\ell) \rightarrow \mathscr{L}(k+\ell)$; see [45, Section II]. If $G \triangleleft \Gamma$ and $G(k)$ is a Γ-normal central series, the conjugation action of Γ on G induces a linear action of Γ on each $\mathscr{L}(k)$; this preserves the Lie bracket and thus extends to an action of Γ on \mathscr{L} by Lie algebra automorphisms.

Remark 4.15. It is also common to consider the Lie ring $\bigoplus G(k) / G(k+1)$, without tensoring with \mathbb{R}. This object plays a key role in [14], but in this paper we will only deal with the real Lie algebra \mathscr{L}.

We next discuss how this interacts with an [n]-group structure.
Definition 4.16. Let G be an [n]-group and let $G=G(1) \supseteq G(2) \supseteq \cdots$ be a central series of G. Using Definition 4.2, the [n]-group structure on G induces an [n]-group structure on the subquotient $G(k) / G(k+1)$. By Definition 4.3, the latter induces an [n]-vector space structure on $\mathscr{L}(k)=(G(k) / G(k+1)) \otimes \mathbb{R}$. Unwinding the definitions to get an explicit description, we see that the subspace $\mathscr{L}(k)_{I}$ is the subspace of $\mathscr{L}(k)$ spanned by the image of $G(k)_{I}=G(k) \cap G_{I}$.

Remark 4.17. For each $I \subseteq[n]$, this gives a Lie subalgebra $\mathscr{L}_{I}=\bigoplus \mathscr{L}(k)_{I}$ of \mathscr{L}. We warn the reader that even if \mathscr{L} is generated as a Lie algebra by $\mathscr{L}(1)$, the Lie algebra \mathscr{L}_{I} need not be generated by $\mathscr{L}(1)_{I}$.

4.3. Zariski-irreducible actions

The following definition will play an important role in our proofs.
Definition 4.18. Let Γ be a group acting on a finite-dimensional vector space V. The V-Zariski topology on Γ is the pullback to Γ of the Zariski topology on GL(V) under the map $\Gamma \rightarrow \operatorname{GL}(V)$. We say that the action of Γ on V is Zariski-irreducible if Γ is irreducible in the V-Zariski topology (or, equivalently, if the image of Γ in $\operatorname{GL}(V)$ is irreducible).
Remark 4.19. The topologies on Γ obtained from the action on V and on the dual vector space V^{*} coincide.

Remark 4.20. The notion of Zariski-irreducible action should not be confused with the unrelated concept of an irreducible representation. For example, if V is a \mathbb{C}-vector space and $\lambda \in \mathbb{C}^{\times}$has infinite order, then the diagonal action of \mathbb{Z} on V defined by $n \cdot \vec{v}=\lambda^{n} \vec{v}$ is Zariski-irreducible, but is only irreducible as a representation if $\operatorname{dim} V=1$.

The main property of Zariski-irreducible actions we will need is the following lemma. We note that this lemma is closely related to Lemma 3.2 of [13], which was used for a similar purpose.

Lemma 4.21. Suppose that Γ acts on a graded Lie algebra $\mathscr{L}=\bigoplus \mathscr{L}(k)$. If \mathscr{L} is generated by $\mathscr{L}(1)$ and the action of Γ on $\mathscr{L}(1)$ is Zariski-irreducible, then the action of Γ on $\mathscr{L}(k)$ is Zariski-irreducible for all $k \geq 1$.

Proof. We first observe that the image of Γ in $\operatorname{GL}\left(\mathscr{L}(1)^{\otimes k}\right)$ under the diagonal action is irreducible. Indeed, the map $\Gamma \rightarrow \operatorname{GL}\left(\mathscr{L}(1)^{\otimes k}\right)$ can be factored as

$$
\Gamma \rightarrow \operatorname{GL}(\mathscr{L}(1)) \rightarrow \operatorname{GL}\left(\mathscr{L}(1)^{\otimes k}\right)
$$

By assumption, the image of Γ in $\operatorname{GL}(\mathscr{L}(1))$ is irreducible. Since

$$
\mathrm{GL}(\mathscr{L}(1)) \rightarrow \mathrm{GL}\left(\mathscr{L}(1)^{\otimes k}\right)
$$

is a continuous map, this implies that the image of Γ in $\operatorname{GL}\left(\mathscr{L}(1)^{\otimes k}\right)$ is irreducible, as claimed.

Now consider the linear map $m: \mathscr{L}(1)^{\otimes k} \rightarrow \mathscr{L}(k)$ taking the element $v_{1} \otimes \cdots \otimes v_{k}$ to $\left[\left[\left[v_{1}, v_{2}\right], \ldots\right], v_{k}\right]$. Since \mathscr{L} is generated by $\mathscr{L}(1)$, the map m is surjective. Let $W=\operatorname{ker} m$ be its kernel. As Γ acts on \mathscr{L} by Lie algebra automorphisms, the map $m: \mathscr{L}(1)^{\otimes k} \rightarrow \mathscr{L}(k)$ is Γ-equivariant. Therefore the image of Γ in $\operatorname{GL}\left(\mathscr{L}(1)^{\otimes k}\right)$ is contained in the subgroup $\operatorname{GL}\left(\mathscr{L}(1)^{\otimes k}, W\right)$ of elements which preserve W.

In other words, the map $\Gamma \rightarrow \operatorname{GL}(\mathscr{L}(k))$ can be factored as

$$
\Gamma \rightarrow \mathrm{GL}\left(\mathscr{L}(1)^{\otimes k}, W\right) \rightarrow \operatorname{GL}(\mathscr{L}(k)) .
$$

Since the map $\operatorname{GL}\left(\mathscr{L}(1)^{\otimes k}, W\right) \rightarrow \operatorname{GL}(\mathscr{L}(k))$ is Zariski-continuous, and we proved above that the image of Γ in $\operatorname{GL}\left(\mathscr{L}(1)^{\otimes k}, W\right)$ is irreducible, we conclude that the image of Γ in $\mathrm{GL}(\mathscr{L}(k))$ is irreducible with respect to the Zariski topology, as desired.

5. Finite generation for central series of [\boldsymbol{n}]-groups

This section contains our main tools for proving that terms of a central series of an [n]-group are finitely generated. It is divided into three subsections. In Section 5.1, we state and prove the main technical theorem of this paper. It isolates and unifies the technical structure of the proofs of our main theorems. The bounds in this theorem depend on two technical notions that we introduce here: the commuting graph of an [n]-group, and a new notion of "degree of generation" for an $[n]$-vector space endowed with a group action. In Section 5.2, we show how to guarantee that the commuting graph is connected. Finally, in Section 5.3 we show how to bound the degree of generation of a central series of an [n]-group.

5.1. The structure theorem

In this subsection, we prove the main technical theorem of this paper (Theorem 5.3 below) and its immediate consequence Corollary 5.6, which allows us to prove that certain terms of a central series of an $[n]$-group are finitely generated. The proof of our theorem is inspired by the proof in Section 3 that $\left[\ell_{g}^{1}, \ell_{g}^{1}\right]$ is finitely generated for $g \geq 4$.
Small subspaces. The key objects underlying our proof that $\left[\ell_{g}^{1}, \Omega_{g}^{1}\right]$ is finitely generated were genus-1 BP maps. These generate d_{g}^{1} and have two useful features: first, they are supported on a small part of the surface, and second, they are all conjugate under the action of $\operatorname{Mod}_{g}^{1}$. For an $[n]$-vector space V acted upon by a group Γ, we will similarly want to regard elements of the Γ-orbit of V_{I} with $|I|=d$ for a fixed small value of d as being small in some sense. This leads to the following definition.
Definition 5.1. Let V be an $[n]$-vector space and let Γ be a group acting on V. Define $d_{\Gamma}(V)=\min \left\{d \geq 0: V\right.$ is generated by the Γ-orbits of its subspaces V_{I} with $\left.|I|=d\right\}$.

Commuting graph. Another key feature of genus-1 BP maps used in Section 3 is that they form the vertices of a connected graph $\mathrm{BP}\left(\&_{g}^{1}\right)$ whose edges correspond to commuting genus-1 BP maps. The following graph will play a similar role in this section.

Definition 5.2. Let Γ be an $[n]$-group. Fix some $m \leq n$. The m-commuting graph of Γ, denoted $X_{m}(\Gamma)$, is the following graph:

- The vertices of $X_{m}(\Gamma)$ are the Γ-conjugates of the subgroups Γ_{I} with $|I|=m$.
- Two vertices are joined by an edge if the associated subgroups commute elementwise. We say that $X_{m}(\Gamma)$ is nontrivial if it consists of more than one vertex.

Main theorem. Our main technical theorem is then as follows. It will be proven at the end of this section.

Theorem 5.3. Let Γ be an [n]-group and let H and K be normal subgroups of Γ such that $K \subseteq H$ and H / K is abelian. Let $V=H / K \otimes \mathbb{R}$, so Γ acts by conjugation on V. Assume the following conditions hold:
(1) The $[n]$-group Γ is transitive.
(2) The group H is finitely generated.
(3) The action of Γ on V is Zariski-irreducible.
(4) For some $m \geq d_{\Gamma}(V)$, the graph $X_{m}(\Gamma)$ is connected and nontrivial.

Then the group K is finitely generated.
Remark 5.4. The number $d_{\Gamma}(V)$ in Condition (4) is defined with respect to the [n]-vector space structure on V given by Definitions 4.2 and 4.3.

Remark 5.5. While Theorem 5.3 does not formally require that Γ be weakly commuting, some kind of commutativity assumption is obviously needed to ensure that the graph $X_{m}(\Gamma)$ is connected and nontrivial. In Section 5.2 below we show how to compute explicit bounds for weakly commuting Γ guaranteeing that $X_{m}(\Gamma)$ is connected and nontrivial.

Application to central series. Before we prove Theorem 5.3, we derive the following corollary from it. This corollary is what we will use to prove our main results.

Corollary 5.6. Let Γ be an $[n]$-group and let G be a normal subgroup of Γ. Let

$$
G=G(1) \supseteq G(2) \supseteq \cdots
$$

be a Γ-normal central series of G, so Γ acts by conjugation on the associated graded real Lie algebra \mathscr{L}. Fix $N \geq 1$, and assume the following conditions hold:
(1) The [n]-group Γ is transitive.
(2) The group G is finitely generated.
(3) The action of Γ on $\mathscr{L}(k)$ is Zariski-irreducible for all $k \geq 1$.
(4) For some $m \geq \max \left\{d_{\Gamma}(\mathscr{L}(k)): 1 \leq k<N\right\}$, the graph $X_{m}(\Gamma)$ is connected and nontrivial.
Then the group $G(k)$ is finitely generated for $1 \leq k \leq N$.
Proof. Apply Theorem 5.3 a total of $N-1$ times, first with $H=G=G(1)$ and $K=G(2)$, then with $H=G(2)$ and $K=G(3)$, etc.

Remark 5.7. In Section 5.3 we show how to effectively bound the numbers $d_{\Gamma}(\mathscr{L}(k))$.
Remark 5.8. When \mathscr{L} is generated by $\mathscr{L}(1)$, Lemma 4.21 shows that to verify condition (3) it suffices to check that the action of Γ on $\mathscr{L}(1)$ is Zariski-irreducible. In particular, this applies to the lower central series $G(k)=\gamma_{k} G$ since the graded Lie algebra of the lower central series of any group is always generated in degree 1 .

A key lemma. Before proving Theorem 5.3, we establish the following key lemma which is analogous to (3.1) from the proof of Theorem A. The set Λ in the lemma below does not correspond exactly to the set Λ appearing in (3.1) - there Λ was a generating set for the group whose BNS invariant we were trying to understand, while in the lemma below it is a set of things that conjugate the group whose BNS invariant we are trying to understand. However, despite these differences the function of Λ in our proof is similar to that of Λ in the proof of Theorem A.

Lemma 5.9. Let Γ be a transitive $[n]$-group and let $m \geq 1$ be such that $X_{m}(\Gamma)$ is connected and nontrivial. Let H be a finitely generated normal subgroup of Γ. Then there exists a finite subset $\Lambda \subseteq \Gamma$ with the following property. Let $\rho: H \rightarrow \mathbb{R}$ be a homomorphism such that for all $\lambda \in \Lambda$, there exists some $g \in\left(H_{[m]}\right)^{\lambda}=\lambda^{-1} H_{[m]} \lambda$ with $\rho(g) \neq 0$. Then $[\rho] \in \Sigma(H)$.

Proof. Let T be a finite generating set for H with $1 \notin T$. Since $X_{m}(\Gamma)$ is connected and nontrivial, the set $\left\{\left(\Gamma_{[m]}\right)^{t}: t \in T \cup\{1\}\right\}$ of vertices of $X_{m}(\Gamma)$ must be contained in a finite nontrivial connected subgraph L. Let $\Lambda \subseteq \Gamma$ be a set containing $T \cup\{1\}$ such that the vertices of L are $\left\{\left(\Gamma_{[m]}\right)^{\lambda}: \lambda \in \Lambda\right\}$. We remark that since we insisted that $T \cup\{1\} \subseteq \Lambda$, it might be the case that $\left(\Gamma_{[m]}\right)^{\lambda}=\left(\Gamma_{[m]}\right)^{\lambda^{\prime}}$ for distinct $\lambda, \lambda^{\prime} \in \Lambda$. We will prove that this set Λ has the desired property.

Consider some $\rho: H \rightarrow \mathbb{R}$ such that for all $\lambda \in \Lambda$, there exists some $g \in\left(H_{[m]}\right)^{\lambda}$ with $\rho(g) \neq 0$. We must prove that $[\rho] \in \Sigma(H)$. To do this, we will use the criterion in Lemma 2.3 applied to $G=H$. This requires producing an appropriate sequence of elements that generate H, which we will do in several steps. We begin by enumerating Λ as $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{\ell}\right\}$, where the ordering is chosen such that the following hold:

- $\lambda_{1}=1$.
- For all $1<i \leq \ell$, there exists some $1 \leq j<i$ such that the vertices $\left(\Gamma_{[m]}\right)^{\lambda_{i}}$ and $\left(\Gamma_{[m]}\right)^{\lambda_{j}}$ of L are distinct and joined by an edge.
We remark that the second condition is possible since L is connected and nontrivial (and might not be possible if L were trivial - this is where that condition is used). Since adjacent vertices of L correspond to commuting subgroups of Γ, the following key condition holds:
for all $2 \leq i \leq \ell$, there exists some $1 \leq j \leq i-1$ with $\left[\left(\Gamma_{[m]}\right)^{\lambda_{i}},\left(\Gamma_{[m]}\right)^{\lambda_{j}}\right]=1$.
For $1 \leq i \leq \ell$, pick elements $g_{i} \in\left(H_{[m]}\right)^{\lambda_{i}}$ in the following way. Recall that $\lambda_{1}=1$ and that Λ contains the generating set T for H; we will need to pick g_{i} slightly more carefully when $\lambda_{i} \in T$.
- If $\lambda_{i} \notin T$, then use our assumption that ρ does not vanish on $\left(H_{[m]}\right)^{\lambda_{i}}$ to pick some $g_{i} \in\left(H_{[m]}\right)^{\lambda_{i}}$ with $\rho\left(g_{i}\right) \neq 0$.
- If $\lambda_{i} \in T$, we must be more specific; in this case set $g_{i}=\left(g_{1}\right)^{\lambda_{i}}$. Since $\lambda_{i} \in T \subseteq H$, we still have

$$
\rho\left(g_{i}\right)=\rho\left(\lambda_{i}^{-1} g_{1} \lambda_{i}\right)=\rho\left(g_{1}\right)+\rho\left(\lambda_{i}\right)-\rho\left(\lambda_{i}\right)=\rho\left(g_{1}\right) \neq 0 .
$$

Finally, let $g_{\ell+1}, \ldots, g_{r}$ be an arbitrary enumeration of T. We emphasize for clarity that each element $t \in T$ entails two elements of this sequence: $\left(g_{1}\right)^{t}$ will appear among the first ℓ elements, and t itself will appear among the last $r-\ell$ elements.

We claim that the sequence g_{1}, \ldots, g_{r} of elements of H satisfies the three conditions of Lemma 2.3. We verify these three conditions as follows.

- The first says that the g_{i} generate H, which is true since they contain all the elements in the generating set T.
- The second says that $\rho\left(g_{1}\right) \neq 0$, which is true by construction.
- The third says that for all $2 \leq i \leq r$, there exists some $j<i$ such that $\rho\left(g_{j}\right) \neq 0$ and such that $\left[g_{j}, g_{i}\right]$ lies in the subgroup generated by g_{1}, \ldots, g_{i-1}. There are two cases. The first case is where $2 \leq i \leq \ell$. As we noted above (see (5.1), and recall that $\left.H_{[m]} \subseteq \Gamma_{[m]}\right)$, there exists some $1 \leq j<i$ such that $\left[g_{j}, g_{i}\right]=1$. Since $\rho\left(g_{j}\right) \neq 0$ by construction, the condition follows. The second case is where $\ell+1 \leq i \leq r$. Here $g_{i} \in T$. We claim in this case that $j=1$ works. Indeed, since $T \subseteq \Lambda$, we have $g_{i}=\lambda_{k}$ for some $1 \leq k \leq \ell$. By construction, we have $g_{k}=\left(g_{1}\right)^{\lambda_{k}}=\left(g_{1}\right)^{g_{i}}$. Therefore

$$
\left[g_{1}, g_{i}\right]=g_{1}^{-1}\left(g_{1}\right)^{g_{i}}=g_{1}^{-1} g_{k} \in\left\langle g_{1}, \ldots, g_{\ell}\right\rangle \subseteq\left\langle g_{1}, \ldots, g_{i-1}\right\rangle
$$

as desired.
Lemma 2.3 now implies that $[\rho] \in \Sigma(H)$.

Putting it all together. We finally prove Theorem 5.3, whose statement we recall for the reader's convenience.

Theorem 5.3. Let Γ be an [n]-group and let H and K be normal subgroups of Γ such that $K \subseteq H$ and H / K is abelian. Let $V=H / K \otimes \mathbb{R}$, so Γ acts by conjugation on V. Assume the following conditions hold:
(1) The $[n]$-group Γ is transitive.
(2) The group H is finitely generated.
(3) The action of Γ on V is Zariski-irreducible.
(4) For some $m \geq d_{\Gamma}(V)$, the graph $X_{m}(\Gamma)$ is connected and nontrivial.

Then the group K is finitely generated.
Proof. By Theorem 2.2, proving that K is finitely generated is equivalent to showing that $S(H / K) \subseteq \Sigma(H)$. Here and throughout the proof we identify $S(H / K)$ with the set of equivalence classes of nonzero $\rho: H \rightarrow \mathbb{R}$ that vanish on K. Our proof of this will follow the same outline as that of Theorem A in Section 3, though the fine details will be different.

Since H is finitely generated and $X_{m}(\Gamma)$ is connected and nontrivial, we can apply Lemma 5.9. Let $\Lambda \subseteq \Gamma$ be the resulting set, so for $\rho: H \rightarrow \mathbb{R}$ the following holds:

$$
\begin{equation*}
\text { if for all } \lambda \in \Lambda \text {, there exists } g \in\left(H_{[m]}\right)^{\lambda} \text { with } \rho(g) \neq 0 \text {, then }[\rho] \in \Sigma(H) \tag{5.2}
\end{equation*}
$$

Now consider an arbitrary nonzero $\rho: H \rightarrow \mathbb{R}$ that vanishes on K. For each $\lambda \in \Lambda$, define

$$
\mathcal{Z}_{\lambda}=\left\{\gamma \in \Gamma: \gamma \cdot \rho \text { vanishes on }\left(H_{[m]}\right)^{\lambda}\right\} .
$$

Since ρ vanishes on K and $V=(H / K) \otimes \mathbb{R}$, the map ρ factors through a unique homomorphism $\bar{\rho}: V \rightarrow \mathbb{R}$. The condition in the definition of \mathcal{Z}_{λ} is equivalent to saying that $\gamma \cdot \bar{\rho}$ vanishes on $\left(V_{[m]}\right)^{\lambda}$. From this, we see that each \mathcal{Z}_{λ} is a closed subspace of Γ in the V-Zariski topology.

Moreover, we claim that each \mathcal{Z}_{λ} is a proper subset of Γ. To see this, observe first that since \mathcal{Z}_{λ} is the translate by $\lambda \in \Gamma$ of \mathcal{Z}_{1}, it suffices to check that \mathcal{Z}_{1} is a proper subset of Γ. But to have $\mathcal{Z}_{1}=\Gamma$ would mean that $\gamma \cdot \bar{\rho}$ vanishes on $V_{[m]}$ for all $\gamma \in \Gamma$, or equivalently that $\bar{\rho}$ vanishes on the Γ-orbit of $V_{[m]}$. Since $d_{\Gamma}(V) \leq m$ and Γ is a transitive [n]-group, the vector space V is spanned by the Γ-orbit of $V_{[m]}$. It follows that $\bar{\rho}=0$. This contradicts the fact that ρ is nonzero, so we deduce that \mathcal{Z}_{λ} is a proper subset of Γ, as claimed.

Recall now that Γ is irreducible in the V-Zariski topology. Since an irreducible space cannot be written as a finite union of closed proper subspaces, we deduce that

$$
\bigcup_{\lambda \in \Lambda} Z_{\lambda} \subsetneq \Gamma .
$$

Choose some $\gamma \in \Gamma$ such that $\gamma \notin \mathbb{Z}_{\lambda}$ for all $\lambda \in \Lambda$. By definition, this means that the restriction of $\gamma \cdot \rho$ to $\left(H_{[m]}\right)^{\lambda}$ is nonzero for all $\lambda \in \Lambda$. We can therefore apply (5.2) to $\gamma \cdot \rho$ to deduce that $[\gamma \cdot \rho] \in \Sigma(H)$. Since $\Sigma(H)$ is invariant under automorphisms of H,
it follows that $[\rho] \in \Sigma(H)$ as well. Since $\rho: H \rightarrow \mathbb{R}$ was an arbitrary homomorphism vanishing on K, this shows that $\Sigma(H)$ contains all of $S(H / K)$, as desired.

5.2. Connectivity of the commuting graph

In this subsection we give an easy-to-verify sufficient condition for $X_{m}(\Gamma)$ to be connected.

Remark 5.10. Our results need $X_{m}(\Gamma)$ to be not only connected, but also nontrivial. However, nontriviality is a technicality that is in practice trivial to verify - it is enough for $\Gamma_{[\mathrm{m}]}$ to not be a normal subgroup of Γ, which holds for all the Γ considered in this paper.

In order to state our condition, we need some additional terminology.
Definition 5.11. Let Γ be an $[n]$-group and let $g \in \Gamma$.
(a) The complexity of g, denoted $\operatorname{comp}(g)$, is the smallest $c \geq 0$ such that $g \in \Gamma_{I}$ for some $I \subseteq[n]$ with $|I|=c$.
(b) The element g is good if for any $I, J \subseteq[n]$ such that $g \in \Gamma_{I}$ and such that J is disjoint from I, the element g commutes with all elements of Γ_{J}.
Remark 5.12. An $[n]$-group Γ is generated in degree c if and only if it is generated by elements of complexity at most c, and Γ is commuting if and only if all of its elements are good.

Remark 5.13. It is reasonable to consider making a different definition, which would define the complexity of $g \in \Gamma$ instead to be the smallest c such that g lies in a conjugate of Γ_{I} for some $I \subseteq[n]$ with $|I|=c$. However, the above definition works better in our proofs.

Our result is then as follows. Recall that the conditions of being transitive and weakly commuting were defined in Definition 4.10.

Proposition 5.14. Let Γ be a transitive weakly commuting $[n]$-group and let S be a generating set for Γ. Set $c=\max \{\operatorname{comp}(s): s \in S\}$, and for some $m \geq 1$ assume that either of the following two conditions hold:
(a) $2 m+c \leq n$, or
(b) $2 m+c-1 \leq n$ and every element of S is good.

Then $X_{m}(\Gamma)$ is connected.
Proof. The proof follows the same outline as the proof of Proposition 3.3, though there are some minor differences. Without loss of generality, we can assume that S is symmetric, i.e. that for all $s \in S$, we also have $s^{-1} \in S$. We must prove that there is a path in $X_{m}(\Gamma)$ between $\Gamma_{[m]}$ and any other vertex. Since Γ is transitive, it acts transitively on the vertices of $X_{m}(\Gamma)$. It is thus enough to prove that for all $g \in \Gamma$, there is a path in $X_{m}(\Gamma)$ from $\Gamma_{[m]}$ to $\left(\Gamma_{[m]}\right)^{g}$.

We begin with a special case of this. Consider some $s \in S$. We claim that there exists a path η_{s} in $X_{m}(\Gamma)$ from $\Gamma_{[m]}$ to $\left(\Gamma_{[m]}\right)^{s}$. Since $\operatorname{comp}(s) \leq c$ by assumption, we can pick
$I \subseteq[n]$ with $|I|=c$ such that $s \in \Gamma_{I}$. Set $J=[m] \cup I$. The subgroups $\Gamma_{[m]}$ and $\left(\Gamma_{[m]}\right)^{s}$ of Γ both lie in Γ_{J} and $|J| \leq m+c$. We divide the proof into two cases corresponding to the two possible hypotheses in the proposition.

- The first is where $2 m+c \leq n$. We can then find some $K \subseteq[n]$ with $|K|=m$ that is disjoint from J. Since Γ is weakly commuting, there exists some $f \in \Gamma$ such that $\left(\Gamma_{K}\right)^{f}$ commutes with Γ_{J}. Since both $\Gamma_{[m]}$ and $\left(\Gamma_{[m]}\right)^{s}$ are contained in Γ_{J}, this implies that $\left(\Gamma_{K}\right)^{f}$ commutes with both $\Gamma_{[m]}$ and $\left(\Gamma_{[m]}\right)^{s}$. The vertex $\left(\Gamma_{K}\right)^{f}$ of $X_{m}(\Gamma)$ is thus connected by an edge to both $\Gamma_{[m]}$ and $\left(\Gamma_{[m]}\right)^{s}$, and we have found a length 2 path in $X_{m}(\Gamma)$ from $\Gamma_{[m]}$ to $\left(\Gamma_{[m]}\right)^{S}$, as claimed.
- The second is where S consists of good elements and $2 m+c-1 \leq n$. If the intersection $[m] \cap I$ is nonempty, then $|J| \leq m+c-1$ and the argument in the previous paragraph applies. If instead $[m]$ and I are disjoint, then the fact that s is good implies that $\left(\Gamma_{[m]}\right)^{s}=\Gamma_{[m]}$, and there is nothing to prove.
We now deal with the general case. Consider $g \in \Gamma$. Since S is symmetric, we can write

$$
g=s_{1} s_{2} \cdots s_{\ell} \quad \text { with } s_{i} \in S \text {. }
$$

For $h \in \Gamma$ and $s \in S$, the path $\left(\eta_{s}\right)^{h}$ goes from $\left(\Gamma_{[m]}\right)^{h}$ to $\left(\Gamma_{[m]}\right)^{s h}$. Letting \bullet be the concatenation product on paths, the desired path from $\Gamma_{[m]}$ to $\left(\Gamma_{[m]}\right)^{g}$ is then

$$
\eta_{s_{\ell}} \bullet\left(\eta_{s_{\ell-1}}\right)^{s_{\ell}} \bullet\left(\eta_{s_{\ell-2}}\right)^{s_{\ell-1} s_{\ell}} \bullet \cdots \bullet\left(\eta_{s_{1}}\right)^{s_{2} s_{3} \cdots s_{\ell}} .
$$

5.3. Bounding $d_{\Gamma}(\mathscr{L}(k))$

In this subsection, we show how to effectively bound the numbers $d_{\Gamma}(\mathscr{L}(k))$ in the statement of Corollary 5.6. We start with the following lemma (see Definition 5.11 for the definition of $\operatorname{comp}(v)$).

Lemma 5.15. Let G be an $[n]$-group and let $G=G(1) \supseteq G(2) \supseteq \cdots$ be a central series. Let $\mathscr{L}=\bigoplus \mathscr{L}(k)$ be the associated graded real Lie algebra, and endow each $\mathscr{L}(k)$ with the [n]-vector space structure induced by the [n]-group structure on G (see Definition 4.16). Given $v \in \mathscr{L}(k)$ and $v^{\prime} \in \mathscr{L}\left(k^{\prime}\right)$, consider $\left[v, v^{\prime}\right] \in \mathscr{L}\left(k+k^{\prime}\right)$. The following then hold:
(i) We have $\operatorname{comp}\left(\left[v, v^{\prime}\right]\right) \leq \operatorname{comp}(v)+\operatorname{comp}\left(v^{\prime}\right)$.
(ii) If G is weakly commuting, then $\operatorname{comp}\left(\left[v, v^{\prime}\right]\right) \leq \max \left\{\operatorname{comp}(v)+\operatorname{comp}\left(v^{\prime}\right)-1,0\right\}$.

Proof. Given $g \in G(m)$, let

$$
\pi_{m}(g) \in \mathscr{L}(m)=(G(m) / G(m+1)) \otimes \mathbb{R}
$$

denote its projection to $\mathscr{L}(m)$, that is, $\pi_{m}(g)=g G(m+1) \otimes 1$. Note that

$$
\pi_{m+m^{\prime}}\left(\left[g, g^{\prime}\right]\right)=\left[\pi_{m}(g), \pi_{m^{\prime}}\left(g^{\prime}\right)\right]
$$

for all $g \in G(m)$ and $g^{\prime} \in G\left(m^{\prime}\right)$, by the definition of the bracket on \mathscr{L}.
Choose $I \subseteq[n]$ such that $v \in \mathscr{L}(k)_{I}$ and $|I|=\operatorname{comp}(v)$, and similarly choose $I^{\prime} \subseteq[n]$ such that $v^{\prime} \in \mathscr{L}\left(k^{\prime}\right)_{I^{\prime}}$ and $\left|I^{\prime}\right|=\operatorname{comp}\left(v^{\prime}\right)$. By the definition of the $[n]$-vector space
structures on the $\mathscr{L}(m)$, we can write

$$
v=\sum_{i=1}^{r} \lambda_{i} \pi_{k}\left(g_{i}\right) \quad \text { and } \quad v^{\prime}=\sum_{j=1}^{r^{\prime}} \lambda_{j}^{\prime} \pi_{k^{\prime}}\left(g_{j}^{\prime}\right),
$$

where $\lambda_{i}, \lambda_{j}^{\prime} \in \mathbb{R}$ and $g_{i} \in G(k)_{I}$ and $g_{j}^{\prime} \in G\left(k^{\prime}\right)_{I^{\prime}}$. We then have

$$
\left[v, v^{\prime}\right]=\sum_{i, j} \lambda_{i} \lambda_{j}^{\prime}\left[\pi_{k}\left(g_{i}\right), \pi_{k^{\prime}}\left(g_{j}^{\prime}\right)\right]=\sum_{i, j} \lambda_{i} \lambda_{j}^{\prime} \pi_{k+k^{\prime}}\left(\left[g_{i}, g_{j}^{\prime}\right]\right) .
$$

Since $\left[g_{i}, g_{j}^{\prime}\right] \in G\left(k+k^{\prime}\right) \cap G_{I \cup I^{\prime}}=G\left(k+k^{\prime}\right)_{I \cup I^{\prime}}$, it follows that

$$
\pi_{k+k^{\prime}}\left(\left[g_{i}, g_{j}^{\prime}\right]\right) \in \mathscr{L}\left(k+k^{\prime}\right)_{I \cup I^{\prime}}
$$

We deduce that $\left[v, v^{\prime}\right] \in \mathscr{L}\left(k+k^{\prime}\right)_{I \cup I^{\prime}}$. Since

$$
\left|I \cup I^{\prime}\right| \leq|I|+\left|I^{\prime}\right|=\operatorname{comp}(v)+\operatorname{comp}\left(v^{\prime}\right)
$$

this proves (i).
Suppose now that G is weakly commuting. If $I \cap I^{\prime} \neq \emptyset$, then

$$
\left|I \cup I^{\prime}\right| \leq|I|+\left|I^{\prime}\right|-1,
$$

and (ii) follows. If instead $I \cap I^{\prime}=\emptyset$, then there exists $x \in G$ such that $\left(G_{I}\right)^{x}$ and $G_{I^{\prime}}$ commute. Since

$$
g_{i}^{-1}\left(g_{i}\right)^{x}=\left[g_{i}, x\right] \in G(k+1)
$$

we have $\pi_{k}\left(g_{i}\right)=\pi_{k}\left(\left(g_{i}\right)^{x}\right) \in \mathscr{L}(k)$, so

$$
\pi_{k+k^{\prime}}\left(\left[g_{i}, g_{j}^{\prime}\right]\right)=\pi_{k+k^{\prime}}\left(\left[\left(g_{i}\right)^{x}, g_{j}^{\prime}\right]\right) \in \mathscr{L}\left(k+k^{\prime}\right)
$$

But since $\left(g_{i}\right)^{x}$ and g_{j}^{\prime} commute for all i and j, we have

$$
\pi_{k+k^{\prime}}\left(\left[\left(g_{i}\right)^{x}, g_{j}^{\prime}\right]\right)=\pi_{k+k^{\prime}}(1)=0
$$

It follows that $\left[v, v^{\prime}\right]=0$, and in particular that $\operatorname{comp}\left(\left[v, v^{\prime}\right]\right)=0$, proving (ii).
We can now prove our main proposition. Recall that the quantity $d_{\Gamma}(V)$ is defined for an arbitrary $[n]$-vector space V endowed with an action of a group Γ (see Definition 5.1).
Proposition 5.16. Let Γ be an $[n]$-group, let G be a normal subgroup of Γ, and let $G=G(1) \supseteq G(2) \supseteq \cdots$ be a Γ-normal central series. Let $\mathscr{L}=\bigoplus \mathscr{L}(k)$ be the associated graded real Lie algebra, and assume that \mathscr{L} is generated by $\mathscr{L}(1)$. Set $d=d(\mathscr{L}(1))$. If G is weakly commuting, set $e=d-1$; otherwise, set $e=d$. Then for all $k \geq 2$, we have $d_{\Gamma}(\mathscr{L}(k)) \leq d_{\Gamma}(\mathscr{L}(k-1))+e$. In particular, by induction we have

$$
d_{\Gamma}(\mathscr{L}(k)) \leq d_{\Gamma}(\mathscr{L}(1))+(k-1) e \leq d+(k-1) e .
$$

Remark 5.17. We emphasize that the definition of e in Proposition 5.16 depends on whether or not the normal subgroup G is weakly commuting as an [n]-group. This is a stronger condition than the hypothesis in Proposition 5.14, which only asserts that Γ is weakly commuting.

Proof of Proposition 5.16. Fix $k \geq 2$. Our goal is to show that

$$
d_{\Gamma}(\mathscr{L}(k)) \leq d_{\Gamma}(\mathscr{L}(k-1))+e .
$$

In other words, we must show that any $v \in \mathscr{L}(k)$ can be written as a finite sum of Γ-conjugates of elements of complexity at most $d_{\Gamma}(\mathscr{L}(k-1))+e$. Since the Lie algebra \mathscr{L} is generated by $\mathscr{L}(1)$, we can write v as a finite sum of elements of the form $[w, s]$ with $w \in \mathscr{L}(k-1)$ and $s \in \mathscr{L}(1)$. Since the desired conclusion is closed under addition, it suffices to handle the case of a single term, i.e. the case where $v=[w, s]$ with $w \in \mathscr{L}(k-1)$ and $s \in \mathscr{L}(1)$.

By the definition of $d_{\Gamma}(\mathscr{L}(k-1))$, we can write w as a finite sum of elements of the form u^{γ} with $\gamma \in \Gamma$ and $u \in \mathscr{L}(k-1)$ satisfying $\operatorname{comp}(u) \leq d_{\Gamma}(\mathscr{L}(k-1))$. Since the Lie bracket on \mathscr{L} is bilinear and our desired conclusion is closed under addition, it again suffices to handle the case of a single term, i.e. the case where $v=\left[u^{\gamma}, s\right]$ with $\gamma \in \Gamma$ and $u \in \mathscr{L}(k-1)$ satisfying $\operatorname{comp}(u) \leq d_{\Gamma}(\mathscr{L}(k-1))$.

Since Γ acts on \mathscr{L} by Lie algebra automorphisms, we have $\left[u^{\gamma}, s\right]=\left[u, s^{\gamma^{-1}}\right]^{\gamma}$. By the definition of $d(\mathscr{L}(1))$, we can write

$$
s^{\gamma^{-1}}=\sum_{i=1}^{r} s_{i} \quad \text { with } s_{i} \in \mathscr{L}(1) \text { satisfying } \operatorname{comp}\left(s_{i}\right) \leq d
$$

It follows that

$$
\begin{equation*}
v=\left[u^{\gamma}, s\right]=\left[u, s^{\gamma^{-1}}\right]^{\gamma}=\sum_{i=1}^{r}\left[u, s_{i}\right]^{\gamma} . \tag{5.3}
\end{equation*}
$$

Letting $\varepsilon=1$ if G is weakly commuting and $\varepsilon=0$ otherwise, Lemma 5.15 implies that for each i we have

$$
\begin{aligned}
\operatorname{comp}\left(\left[u, s_{i}\right]\right) & \leq \operatorname{comp}(u)+\operatorname{comp}\left(s_{i}\right)-\varepsilon \\
& \leq d_{\Gamma}(\mathscr{L}(k-1))+d-\varepsilon=d_{\Gamma}(\mathscr{L}(k-1))+e,
\end{aligned}
$$

as desired.

6. Proofs of Theorems B, D, and E

In this section, we prove Theorems B, D, and E. The bounds in our theorems are stronger than what can be obtained from a completely general framework, so we will need to use some rather special properties of the groups in question. There are three sections. First, in Section 6.1 we prove Theorem B on the lower central series of \mathscr{d}_{g}^{1}. Theorem C on the Johnson filtration of \mathscr{l}_{g}^{1} is a special case of Theorem B, so there is no need to prove it separately. Next, in Section 6.2 we prove Theorem D on the lower central series of IA_{n}. Finally, in Section 6.3 we prove Theorem E on the Johnson filtration of IA_{n}.

Remark 6.1. The proof of Theorem D in Section 6.2 has the fewest technicalities, so we suggest reading it first. It can be understood independently without first reading Section 6.1.

6.1. The lower central series of d_{g}^{1}

The goal in this subsection is to prove Theorem B concerning the lower central series of ℓ_{g}^{1}.
Notation. The following notation will be in place for the remainder of this subsection. Fix some $g \geq 3$. Let $\Gamma=\operatorname{Mod}_{g}^{1}$, let $G=\mathscr{d}_{g}^{1}$, and let $G(k)=\gamma_{k} \ell_{g}^{1}$. Finally, let $\mathscr{L}=\bigoplus \mathscr{L}(k)$ be the graded real Lie algebra associated to $G(k)$. Endow Γ with the [g]-group structure described in Definition 4.6. Recall that the subgroups G and $G(k)$ inherit a [g]-group structure, and the vector spaces $\mathscr{L}(k)$ inherit a $[g]$-vector space structure.
Basic properties. Our goal is to apply Corollary 5.6 to the filtration $G(k)$ of Γ. That corollary has several conditions. The following lemma verifies the first of them. Recall that we defined what it means for a $[g]$-group structure to be transitive and weakly commuting in Definition 4.10.

Lemma 6.2. The $[g]$-group Γ is transitive and the $[g]$-groups Γ and G are weakly commuting, but not commuting.

Proof. That Γ is transitive is a direct consequence of [8, Lemma 4.1 (i)], which says that for all $1 \leq k \leq g$ the group $\operatorname{Mod}_{g}^{1}$ acts transitively on isotopy classes of subsurfaces of Σ_{g}^{1} which are homeomorphic to Σ_{k}^{1}. We thus must only prove that Γ and G are weakly commuting. Let $I, J \subseteq[g]$ be disjoint. Recall that in Definition 4.6, we defined Γ_{I} and Γ_{J} to consist of mapping classes supported on the genus $|I|$ and $|J|$ subsurfaces Σ_{I} and Σ_{J} constructed by Lemma 4.5 and illustrated in Figure 2. As discussed in conclusion (iv) of Lemma 4.5, the surfaces Σ_{I} and Σ_{J} need not be homotopic to disjoint subsurfaces, so Γ_{I} and Γ_{J} need not commute and thus Γ and G are not commuting. However, we can always find a subsurface Σ_{J}^{\prime} which is homeomorphic to Σ_{J}, disjoint from Σ_{I}, and satisfies $\mathrm{H}_{1}\left(\Sigma_{J}\right)=\mathrm{H}_{1}\left(\Sigma_{J}^{\prime}\right)$ as subspaces of $\mathrm{H}_{1}(\Sigma)$. By [8, Lemma 4.2(ii)] this implies that there exists $\varphi \in G$ such that $\varphi\left(\Sigma_{J}^{\prime}\right)=\Sigma_{J}$, so the subgroup $\left(\Gamma_{J}\right)^{\varphi}=\varphi^{-1} \Gamma_{J} \varphi$ consists of mapping classes supported on Σ_{J}^{\prime}. It follows that $\left(\Gamma_{J}\right)^{\varphi}$ commutes with Γ_{I}. Since $\varphi \in G$, this shows that both G and Γ are weakly commuting.

Generating $G(1)$. The second condition in Corollary 5.6 is that $G(1)=\ell_{g}^{1}$ is finitely generated. This was proved by Johnson [24], and stated above as Theorem 3.5 (b).
Zariski-irreducibility. The third condition in Corollary 5.6 is that the action of $\Gamma=\operatorname{Mod}_{g}^{1}$ on each $\mathscr{L}(k)$ is Zariski-irreducible, which is the content of the following.

Lemma 6.3. For all $k \geq 1$, the action of Γ on $\mathscr{L}(k)$ is Zariski-irreducible.
Proof. Since $G(k)=\gamma_{k} G$ is the lower central series of G, by Remark 5.8 it suffices to prove that the action on $\mathscr{L}(1)=\left(\ell_{g}^{1}\right)^{\text {ab }} \otimes \mathbb{R}$ is Zariski-irreducible. But this has already been proved for the dual representation $\mathscr{L}(1)^{*}=\operatorname{Hom}\left(\ell_{g}^{1}, \mathbb{R}\right)$ in Lemma 3.6 which suffices according to Remark 4.19.

Connectivity bounds. The fourth condition in Corollary 5.6 asserts that the graph $X_{m}(\Gamma)$ must be connected and nontrivial for some $m \geq \max \left\{d_{\Gamma}(\mathscr{L}(k)): 1 \leq k<N\right\}$. The following lemmas will allow us to verify this.

Fig. 3. On the top are the generators for $\Gamma=\operatorname{Mod}_{g}^{1}$, drawn in such a way that it is clear how they interact with the subsurfaces Σ_{I}. On the bottom we illustrate why β_{j} lies in a surface isotopic to $\Sigma_{j, j+1}$, and thus why the Dehn twist $T_{\beta_{j}}$ lies in $\Gamma_{j, j+1}$.

Lemma 6.4. For all $m \geq 1$ such that $2 m+1 \leq g$, the graph $X_{m}(\Gamma)$ is connected and nontrivial.

For the proof of Lemma 6.4, we will need the following fact about generators for $\Gamma=\operatorname{Mod}_{g}^{1}$. Recall that we defined what it means for an element of a $[g]$-group to be good in Definition 5.11.

Lemma 6.5. The $[g]$-group Γ is generated by good elements of complexity at most 2 .
Proof. The key point here is that Γ is generated by the union of the subgroups $\Gamma_{\{i, i+1\}}$ for $1 \leq i \leq g-1$. To see this, observe that in Figure 3 we have redrawn Johnson's generating set for $\Gamma=\operatorname{Mod}_{g}^{1}$ from [24, Theorem 1] (we previously used this generating set in the proof of Proposition 3.3, where it is depicted in Figure 1). This generating set consists of Dehn twists $T_{\alpha_{i}}$ and $T_{\beta_{j}}$ and $T_{\gamma_{k}}$ with $1 \leq i, k \leq g$ and $1 \leq j \leq g-1$. Letting Σ_{I} be the surfaces given by Lemma 4.5 and used to define the [g]-group structure on Γ in Definition 4.6, it is clear from this picture that $T_{\alpha_{i}} \in \Gamma_{\{i\}}$ and $T_{\beta_{j}} \in \Gamma_{\{j, j+1\}}$ and $T_{\gamma_{k}} \in \Gamma_{\{k\}}$ (this is slightly nontrivial for $T_{\beta_{j}}$, for which we refer the reader to the bottom of this figure). We remark that an alternate algebraic proof that Γ is generated by the union of the subgroups $\Gamma_{\{i, i+1\}}$ is in [31]. Conclusion (iv) from Lemma 4.5 implies that any element of $\Gamma_{\{i, i+1\}}$ is good. Since these elements have complexity at most 2 , this verifies the lemma.

Proof of Lemma 6.4. We use Proposition 5.14. Let $S \subset \operatorname{Mod}_{g}^{1}$ be the generating set given by Lemma 6.5. Set $c=\max \{\operatorname{comp}(s): s \in S\}$, so $c=2$. Every element of S is good.

Proposition 5.14 thus says that $X_{m}(\Gamma)$ is connected whenever $2 m+c-1=2 m+1 \leq g$. As for the nontriviality of $X_{m}(\Gamma)$, it follows immediately from the fact that $\operatorname{Mod}_{m}^{1}$ is never normal in $\operatorname{Mod}_{g}^{1}$ except when $m=0\left(\operatorname{when~}_{\operatorname{Mod}}^{m} 11\right)$ and when $m=g$ (when $\operatorname{Mod}_{m}^{1}=\operatorname{Mod}_{g}^{1}$); see Remark 5.10.
Remarks 6.6. We make the following observations.
(1) The commuting graph $X_{m}(\Gamma)=X_{m}\left(\operatorname{Mod}_{g}^{1}\right)$ has a more geometric description. The conjugates of subgroups $\left(\operatorname{Mod}_{g}^{1}\right)_{I}$ with $|I|=m$ are in bijection with isotopy classes of subsurfaces of Σ homeomorphic to Σ_{m}^{1}; such a subsurface is sometimes called an m-handle. Two such subgroups commute if and only if the corresponding m-handles are disjoint. Accordingly the graph $X_{m}\left(\operatorname{Mod}_{g}^{1}\right)$ forms the 1 -skeleton of the " m-handle complex", whose vertices are m-handles and whose simplices consist of disjoint m-handles. For $m=1$, this first appeared in the paper [42], where it was proved to be $(g-3) / 2$-connected (this was deduced from a similar connectivity result for a slightly different complex by Hatcher-Vogtmann [21]). The fact that the m-handle complex is connected for $g \geq 2 m+1$ must be well known, although we are not aware of an explicit reference in the literature. We remark that after a first version of this paper was circulated, the third author proved that the m-handle complex is actually

$$
\frac{g-(2 m+1)}{m+1} \text {-connected; }
$$

see [41, Theorem D].
(2) We also see that the bound $g \geq 2 m+1$ is sharp. For $g<2 m$ there are no edges in $X_{m}\left(\operatorname{Mod}_{g}^{1}\right)$, since there cannot be two disjoint m-handles. For $g=2 m$, an m-handle determines a splitting of $\mathrm{H}_{1}\left(\Sigma_{g}^{1}\right)$ into two rank- m symplectic subspaces; disjoint m-handles determine the same splitting, so this invariant is constant on components of $X_{m}\left(\operatorname{Mod}_{g}^{1}\right)$.
(3) Finally, we remark that the genus-1 BP graph appearing in Section 3 can be thought of as the " 1.5 -handle complex", and note that we proved there that this is connected whenever $4=2(1.5)+1 \leq g$, matching Lemma 6.4.

Generation for $\mathscr{L}(k)$. Recall that a general upper bound on the quantities $d_{\Gamma}(\mathscr{L}(k))$ was obtained in Proposition 5.16. We will now use this proposition to obtain more specific bounds in the case $\Gamma=\operatorname{Mod}_{g}^{1}$ and $G=\ell_{g}^{1}$:
Proposition 6.7. We have $d_{\Gamma}(\mathscr{L}(1))=2$ and $d_{\Gamma}(\mathscr{L}(k)) \leq k$ for $k \geq 2$.
Proof. Set $V_{\mathbb{Z}}=\mathrm{H}_{1}\left(\Sigma_{g}^{1} ; \mathbb{Z}\right)$ and $V=\mathrm{H}_{1}\left(\Sigma_{g}^{1} ; \mathbb{R}\right)$. For each $1 \leq i \leq g$, let $\left\{a_{i}, b_{i}\right\}$ be a symplectic basic for $\mathrm{H}_{1}\left(\Sigma_{\{i\}} ; \mathbb{Z}\right)$, so $\mathcal{B}=\left\{a_{i}, b_{i}\right\}_{i=1}^{g}$ is a symplectic basis for $V_{\mathbb{Z}}$. For each $I \subseteq[n]$ let

$$
V_{I, \mathbb{Z}}=\bigoplus_{i \in I}\left(\mathbb{Z} a_{i} \oplus \mathbb{Z} b_{i}\right) \quad \text { and } \quad V_{I}=V_{I, \mathbb{Z}} \otimes \mathbb{R}=\bigoplus_{i \in I}\left(\mathbb{R} a_{i} \oplus \mathbb{R} b_{i}\right)
$$

Theorem 3.5 (c) states that $\mathscr{L}(1)=G^{\text {ab }} \otimes \mathbb{R} \cong \bigwedge^{3} V$. Moreover, it follows from Johnson's work in [26] that the image of G_{I} in $G^{\text {ab }} \otimes \mathbb{R}$ is equal to $\bigwedge^{3} V_{I, \mathbb{Z}}$ (even if $|I| \leq 3$), so
$\mathscr{L}(1)_{I}=\bigwedge^{3} V_{I}$. In particular, this shows that $d(\mathscr{L}(1)) \leq 3$ since each basis element of $\bigwedge^{3} V$ involves three elements of $\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right\}$, and thus lies in $\bigwedge^{3} V_{I}$ for some I with $|I| \leq 3$. It is easy to see that elements of complexity at most 2 cannot span $\bigwedge^{3} V$, so in fact $d(\mathscr{L}(1))=3$. We now tackle $d_{\Gamma}(\mathscr{L}(k))$ for different k in turn.

Case $k=1$. Consider the element $a_{1} \wedge a_{2} \wedge b_{2} \in \mathscr{L}(1)$, which has complexity 2 since it belongs to $\mathscr{L}(1)_{\{1,2\}}$. The $\operatorname{Sp}_{2 g}(\mathbb{Z})$-orbit of this element spans $\bigwedge^{3} V$. This can be seen either algebraically, since $\bigwedge^{3} V$ contains only two irreducible $\mathrm{Sp}_{2 g}(\mathbb{Z})$-representations and this element is not contained in either, or via Theorem 3.5 (a) (this is the image of a genus-1 BP map, and Theorem 3.5 (a) states that \mathscr{d}_{g}^{1} is generated by the Γ-orbit of such an element). Since $\mathscr{L}(1)$ is spanned by the Γ-orbit of this complexity- 2 element, we conclude that $d_{\Gamma}(\mathscr{L}(1))=2\left(\right.$ we cannot have $d_{\Gamma}(\mathscr{L}(1)) \leq 1$ since $\mathscr{L}(1)_{I}=0$ if $\left.|I|=1\right)$.

Case $k=2$. Next, we prove that $d_{\Gamma}(\mathscr{L}(2)) \leq 2$ using a rather different argument, resting on two important results of Johnson that we have not used thus far. Johnson [22, Theorem 1] proved that for $g \geq 3$ the Johnson kernel \mathcal{K}_{g}^{1} is generated by the set S of separating twists of genus 1 and 2, that is, Dehn twists about separating curves that cut off subsurfaces homeomorphic to either Σ_{1}^{1} or Σ_{2}^{1}. Any separating curve of genus 1 or 2 is in the $\operatorname{Mod}_{g}^{1}$-orbit of the boundary of $\Sigma_{\{1\}}$ or $\Sigma_{\{1,2\}}$ respectively. Therefore, \mathcal{K}_{g}^{1} is generated by the $\operatorname{Mod}_{g}^{1}$-conjugates of $\mathcal{K}_{g}^{1} \cap \Gamma_{\{1,2\}}$. Johnson [26] also proved that $\gamma_{2} G$ is a finite index subgroup of \mathcal{K}_{g}^{1} and that $\mathcal{K}_{g}^{1} / \gamma_{2} G \cong(\mathbb{Z} / 2)^{r}$ for some $r \geq 1$. Let $S^{\prime}=\left\{s^{2}: s \in S\right\}$ be the set of squares of separating twists of genus 1 and 2 and let $H \subseteq \gamma_{2} G$ be the subgroup generated by S^{\prime}. The group H is normal in Γ since S (and hence S^{\prime}) is closed under conjugation in Γ. Note that H need not have finite index in \mathcal{K}_{g}^{1}, but the quotient \mathcal{K}_{g}^{1} / H is generated by torsion elements (namely the order-2 elements that are the image of S).

Now consider the image of the group $H \subseteq \gamma_{2} G \subseteq \mathcal{K}_{g}^{1}$ under the natural projection $\rho: \mathcal{K}_{g}^{1} \rightarrow \mathcal{K}_{g}^{1} / \gamma_{3} G$. Since $G / \gamma_{3} G$ is finitely generated nilpotent, the same is true of its subgroup $\rho\left(\mathcal{K}_{g}^{1}\right)$. Therefore its quotient $\rho\left(\mathcal{K}_{g}^{1}\right) / \rho(H)$ is finitely generated, nilpotent, and generated by torsion elements, and thus is finite. This means that $\rho(H)$ is finite index in $\rho\left(\mathcal{K}_{g}^{1}\right)$, and therefore in the intermediate subgroup $\rho\left(\gamma_{2} G\right)=\gamma_{2} G / \gamma_{3} G$. Tensoring with \mathbb{R}, we conclude that the image of H spans all of $\left(\gamma_{2} G / \gamma_{3} G\right) \otimes \mathbb{R}=\mathscr{L}(2)$. Since H is generated by Γ-conjugates of elements of $G_{\{1,2\}}$, we conclude that $d_{\Gamma}(\mathscr{L}(2)) \leq 2$.

Case $k \geq 3$. To conclude the proof, we will modify the proof of Proposition 5.16 to show that for $k \geq 3$,

$$
\begin{equation*}
d_{\Gamma}(\mathscr{L}(k)) \leq d_{\Gamma}(\mathscr{L}(k-1))+1 ; \tag{6.1}
\end{equation*}
$$

the bound $d_{\Gamma}(\mathscr{L}(k)) \leq k$ then follows by induction. Fix $k \geq 3$. Recall from above that $d(\mathscr{L}(1))=3$. Since G is weakly commuting, the proof of Proposition 5.16 (specifically equation (5.3)) shows that $\mathscr{L}(k)$ is generated by the Γ-orbits of elements of the form $[v, s]$, where $v \in \mathscr{L}(k-1)_{I}$ and $s \in \mathscr{L}(1)_{J}$ for some $I, J \subseteq[g]$ with $|I| \leq d_{\Gamma}(\mathscr{L}(k-1))$ and $|J| \leq 3$ and $I \cap J \neq \emptyset$. We may assume that s is a standard basis element of $\mathscr{L}(1) \cong \bigwedge^{3} V$ and that I and J are as small as possible.

Note that

$$
\operatorname{comp}([v, s]) \leq|I \cup J| \leq d_{\Gamma}(\mathscr{L}(k-1))+1
$$

unless $|J|=3$ and $|I \cap J|=1$, so assume that the latter is the case. Let r be the unique
element of $I \cap J$ and t and u the other two elements of J. Since $\operatorname{comp}(s)=3$, we must have

$$
s=x \wedge y \wedge z
$$

where $x=a_{r}$ or $b_{r}, y=a_{t}$ or b_{t}, and $z=a_{u}$ or b_{u}. Set $w=\left[v, x \wedge a_{t} \wedge b_{t}\right]$. Since $x \wedge a_{t} \wedge b_{t} \in \mathscr{L}(1)_{\{r, t\}}$ we have $w \in \mathscr{L}(k)_{I \cup\{r, t\}}=\mathscr{L}(k)_{I \cup\{t\}}$, so

$$
\operatorname{comp}(w) \leq d_{\Gamma}(\mathscr{L}(k-1))+1
$$

Using the action of $\operatorname{Sp}_{2 g}(\mathbb{Z})$, we will show that the Γ-orbit of w contains $\left[v, x \wedge a_{t} \wedge a_{u}\right]$ and $\left[v, x \wedge a_{t} \wedge b_{u}\right]$ and $\left[v, x \wedge b_{t} \wedge a_{u}\right]$ and $\left[v, x \wedge b_{t} \wedge b_{u}\right]$. Since $[v, s]$ must be equal to one of these, this will finish the proof of (6.1).

Consider the symplectic automorphisms σ_{i} for $i \in[g]$ and $\tau_{i j}$ for $i \neq j \in[g]$ of $V_{\mathbb{Z}}$ defined as follows (all basis elements whose image is not specified are fixed):

$$
\sigma_{i}:\left\{\begin{array}{l}
a_{i} \mapsto b_{i}, \\
b_{i} \mapsto-a_{i},
\end{array} \quad \tau_{i j}:\left\{\begin{array}{l}
b_{i} \mapsto b_{i}+a_{j}, \\
b_{j} \mapsto b_{j}+a_{i}
\end{array}\right.\right.
$$

Note that

$$
\begin{aligned}
\tau_{t u}\left(a_{t} \wedge b_{t}\right) & =a_{t} \wedge\left(b_{t}+a_{u}\right)=a_{t} \wedge b_{t}+a_{t} \wedge a_{u} \\
\sigma_{t}\left(a_{t} \wedge a_{u}\right) & =b_{t} \wedge a_{u} \\
\sigma_{u}\left(a_{t} \wedge a_{u}\right) & =a_{t} \wedge b_{u} \\
\sigma_{t}\left(a_{t} \wedge b_{u}\right) & =b_{t} \wedge b_{u}
\end{aligned}
$$

This shows that the span of the orbit of $a_{t} \wedge b_{t} \in V \wedge V$ under the subgroup generated by $\left\{\sigma_{t}, \sigma_{u}, \tau_{t u}\right\}$ contains $a_{t} \wedge a_{u}$ and $b_{t} \wedge a_{u}$ and $a_{u} \wedge b_{t}$ and $a_{u} \wedge b_{u}$. By construction σ_{t} and σ_{u} and $\tau_{t u}$ fix V_{I}; this implies that they fix $v \in \mathscr{L}(k-1)_{I}$, since we may lift these automorphisms to elements of Γ that fix every element of Γ_{I}. They also fix $x \in V$. Therefore applying the computations above to $w=\left[v, x \wedge a_{t} \wedge b_{t}\right]$ shows that the Γ-orbit of w contains the claimed elements; for example, $\tau_{t u}(w)-w=\left[v, x \wedge a_{t} \wedge a_{u}\right]$, and so on.

Putting it all together. All the pieces are now in place to prove Theorem B.
Proof of Theorem B. The notation is as above. As was established in Section 1.2, we must prove that $G(k)$ is finitely generated for $k \geq 3$ and $g \geq 2 k-1$, or equivalently when $3 \leq k \leq \frac{g+1}{2}$. We will apply Corollary 5.6 with $N=\left\lfloor\frac{g+1}{2}\right\rfloor$ and $m=N-1=\left\lfloor\frac{g-1}{2}\right\rfloor$. This theorem has four hypotheses:

- The $[g]$-group Γ must be transitive, which is one of the conclusions of Lemma 6.2.
- The group G must be finitely generated, which is Theorem 3.5 (b).
- The action of Γ on each $\mathscr{L}(k)$ must be Zariski-irreducible, which is Lemma 6.3.
- The graph $X_{m}(\Gamma)$ must be connected and nontrivial, and we must have

$$
\begin{equation*}
m \geq \max \left\{d_{\Gamma}(\mathscr{L}(k)): 1 \leq k<N\right\} \tag{6.2}
\end{equation*}
$$

To see that $X_{m}(\Gamma)$ is connected and nontrivial, it is enough to verify the two hypo-
theses of Lemma 6.4. The first is that $m \geq 1$; indeed, since $g \geq 2 k-1 \geq 5$, we have

$$
m=\left\lfloor\frac{g-1}{2}\right\rfloor \geq 2 \geq 1
$$

The second is that $2 m+1 \leq g$; indeed,

$$
2 m+1=2\left\lfloor\frac{g-1}{2}\right\rfloor+1 \leq 2 \cdot \frac{g-1}{2}+1=g .
$$

As for (6.2), Proposition 6.7 says that $d_{\Gamma}(\mathscr{L}(1))=2$ and that $d_{\Gamma}(\mathscr{L}(k)) \leq k$ for $k \geq 2$, so since $N-1 \geq 2$ we have

$$
\max \left\{d_{\Gamma}(\mathscr{L}(k)): k \leq N-1\right\} \leq N-1=m,
$$

as desired.
Applying Corollary 5.6, we conclude that $G(k)$ is finitely generated for $1 \leq k \leq N$.

6.2. The lower central series of $\operatorname{Aut}\left(F_{n}\right)$

The goal in this section is to prove Theorem D concerning the lower central series of IA ${ }_{n}$.
Setup. Recall that in Definition 4.4 we defined an $[n]$-group structure on $\operatorname{Aut}\left(F_{n}\right)$. There is a minor technical problem that will prevent us from working with $\operatorname{Aut}\left(F_{n}\right)$ directly. To explain this, consider the map $\operatorname{Aut}\left(F_{n}\right) \rightarrow \mathrm{GL}_{n}(\mathbb{Z})$ arising from the action of $\operatorname{Aut}\left(F_{n}\right)$ on $F_{n}^{\mathrm{ab}}=\mathbb{Z}^{n}$. This map is surjective, and the Zariski closure of $\mathrm{GL}_{n}(\mathbb{Z})$ in $\mathrm{GL}_{n}(\mathbb{R})$ is the group $\mathrm{SL}_{n}^{ \pm}(\mathbb{R})$ of matrices whose determinant is ± 1. The group $\mathrm{SL}_{n}^{ \pm}(\mathbb{R})$ is not connected, so the pullback of the Zariski topology on $\mathrm{GL}_{n}(\mathbb{Z})$ to $\operatorname{Aut}\left(F_{n}\right)$ does not make $\operatorname{Aut}\left(F_{n}\right)$ into an irreducible space. To correct this, we will instead work with the group $\operatorname{SAut}\left(F_{n}\right)$ consisting of elements of $\operatorname{Aut}\left(F_{n}\right)$ that act on F_{n}^{ab} with determinant 1. Since $\operatorname{SAut}\left(F_{n}\right)$ is a subgroup of $\operatorname{Aut}\left(F_{n}\right)$, it inherits an $[n]$-group structure.

Notation. The following notation will be in place for the remainder of this section. Fix some $n \geq 2$. Let $\Gamma=\operatorname{SAut}\left(F_{n}\right), G=\mathrm{IA}_{n}$, and $G(k)=\gamma_{k} \mathrm{IA}_{n}$. Finally, let $\mathscr{L}=\bigoplus \mathscr{L}(k)$ be the graded real Lie algebra associated to $G(k)$. The groups Γ and G and $G(k)$ are endowed with the $[n]$-group structure coming from the $[n]$-group structure on $\operatorname{Aut}\left(F_{n}\right)$, and the vector spaces $\mathscr{L}(k)$ is endowed with the induced $[n]$-vector space structure.

Basic properties. Our goal is to apply Corollary 5.6 to the filtration $G(k)$ of Γ. That corollary has several conditions. The following lemma verifies the first of them. Recall that the we defined what it means for an [n]-group to be commuting and transitive in Definition 4.10.

Lemma 6.8. The $[n]$-group $\Gamma=\operatorname{SAut}\left(F_{n}\right)$ is commuting and transitive.
Proof. We have already noted in Remark 4.11 that the $[n]$-group $\operatorname{Aut}\left(F_{n}\right)$ is commuting, so the same is true of its subgroup $\operatorname{SAut}\left(F_{n}\right)$. To see that it is transitive, consider the subgroup of $\operatorname{Aut}\left(F_{n}\right)$ preserving the set $\left\{x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right\}$, which we identify with the signed permutation group $S_{n}^{ \pm}$. If $\widetilde{\sigma} \in S_{n}^{ \pm}$projects to $\sigma \in S_{n}$, then from the definition
of $\operatorname{Aut}\left(F_{n}\right)_{I}$ we see that $\widetilde{\sigma}$ conjugates $\operatorname{Aut}\left(F_{n}\right)_{\sigma(I)}$ to $\operatorname{Aut}\left(F_{n}\right)_{I}$ and hence conjugates $\operatorname{SAut}\left(F_{n}\right)_{\sigma(I)}$ to $\operatorname{SAut}\left(F_{n}\right)_{I}$. Since the index-2 subgroup $S_{n}^{ \pm} \cap \operatorname{SAut}\left(F_{n}\right)$ of $S_{n}^{ \pm}$surjects onto S_{n}, it follows that $\operatorname{SAut}\left(F_{n}\right)$ is a transitive [n]-group.

Generating $G(1)$. The second condition in Corollary 5.6 is that $G(1)=\mathrm{IA}_{n}$ is finitely generated. This was proved by Magnus. For later use, we will actually give an explicit generating set. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the standard basis for F_{n}. For distinct $1 \leq i, j \leq n$, define $C_{i j} \in \mathrm{IA}_{n}$ via the formula

$$
C_{i j}\left(x_{\ell}\right)= \begin{cases}x_{j}^{-1} x_{\ell} x_{j} & \text { if } \ell=i \\ x_{\ell} & \text { if } \ell \neq i\end{cases}
$$

Also, for distinct $1 \leq i, j, k \leq n$ define $M_{i j k} \in \mathrm{IA}_{n}$ via the formula

$$
M_{i j k}\left(x_{\ell}\right)= \begin{cases}x_{\ell}\left[x_{j}, x_{k}\right] & \text { if } \ell=i \\ x_{\ell} & \text { if } \ell \neq i\end{cases}
$$

Magnus ([28]; see [5] and [9] for modern accounts) proved the following.
Theorem 6.9. For $n \geq 2$, the group IA_{n} is $\operatorname{SAut}\left(F_{n}\right)$-normally generated by C_{12} and is generated by the finite set of all $C_{i j}$ and $M_{i j k}$.
Zariski-irreducibility. The third condition in Corollary 5.6 is that the action of the group $\Gamma=\operatorname{SAut}\left(F_{n}\right)$ on each $\mathscr{L}(k)$ is Zariski-irreducible, which is the content of the following lemma.

Lemma 6.10. For all $k \geq 1$, the action of Γ on $\mathscr{L}(k)$ is Zariski-irreducible.
For the proof of Lemma 6.10, we need the following classical computation of $\mathrm{IA}_{n}^{\mathrm{ab}}$. Let $V_{\mathbb{Z}}=F_{n}^{\text {ab }} \cong \mathbb{Z}^{n}$, and recall that the natural action of $\operatorname{Aut}\left(F_{n}\right)$ on $V_{\mathbb{Z}}$ factors through $\mathrm{GL}_{n}(\mathbb{Z})$. The following description holds for all $n \geq 0$.
Theorem 6.11. There is an $\operatorname{Aut}\left(F_{n}\right)$-equivariant isomorphism $\mathrm{IA}_{n}^{\mathrm{ab}} \cong \operatorname{Hom}\left(V_{\mathbb{Z}}, \bigwedge^{2} V_{\mathbb{Z}}\right)$.
As an abelian group, the description of $\mathrm{IA}_{n}^{\mathrm{ab}}$ in Theorem 6.11 was established by Bachmuth [2] in 1966 and implicitly (and independently) by Andreadakis [1] in 1965. The description as an $\operatorname{Aut}\left(F_{n}\right)$-module must have been folklore for some time; the earliest proof in the literature that we are aware of is due to Formanek [16].

Proof of Lemma 6.10. Since $G(k)=\gamma_{k} G$ is the lower central series of G, by Remark 5.8 it suffices to prove the lemma for $\mathscr{L}(1)=\mathrm{IA}_{n}^{\text {ab }} \otimes \mathbb{R}$. By Theorem 6.11, the action of $\operatorname{SAut}\left(F_{n}\right)$ on $\mathrm{IA}_{n}^{\text {ab }} \otimes \mathbb{R}$ factors through the surjection $\operatorname{SAut}\left(F_{n}\right) \rightarrow \mathrm{SL}_{n}(\mathbb{Z})$. $\mathrm{As}_{\mathrm{SL}_{n}}(\mathbb{Z})$ is Zariski dense in $\operatorname{SL}_{n}(\mathbb{R})$, arguing as in the proof of Lemma 6.3 in Section 6.1, we deduce that the image of $\operatorname{SAut}\left(F_{n}\right)$ in $\mathrm{GL}_{\left(\mathrm{IA}_{n}^{\mathrm{ab}}\right.}^{\otimes \mathbb{R}) \text { is irreducible. }}$

Connectivity bounds. The fourth condition in Corollary 5.6 asserts that the graph $X_{m}(\Gamma)$ must be connected for some $m \geq \max \left\{d_{\Gamma}(\mathscr{L}(k)): 1 \leq k<N\right\}$. This requires showing that $X_{m}(\Gamma)$ is connected if m is not too large (relative to n), and then estimating $d_{\Gamma}(\mathscr{L}(k))$. We start with the first of these.

Lemma 6.12. For all $m \geq 2$ such that $2 m+1 \leq n$, the graph $X_{m}(\Gamma)$ is connected and nontrivial.

For the proof of Lemma 6.12, we need a generating set for $\operatorname{SAut}\left(F_{n}\right)$. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the standard basis for F_{n}. For distinct $i, j, 1 \leq i, j \leq n$, define $L_{i j} \in \operatorname{SAut}\left(F_{n}\right)$ and $R_{i j} \in \operatorname{SAut}\left(F_{n}\right)$ via the formulas

$$
L_{i j}\left(x_{\ell}\right)=\left\{\begin{array}{rl}
x_{j} x_{\ell} & \text { if } \ell=i, \\
x_{\ell} & \text { if } \ell \neq i,
\end{array} \quad R_{i j}\left(x_{\ell}\right)= \begin{cases}x_{\ell} x_{j} & \text { if } \ell=i, \\
x_{\ell} & \text { if } \ell \neq i\end{cases}\right.
$$

Nielsen ([37]; see [18] for a modern account) proved the following theorem.
Theorem 6.13. For $n \geq 2$, the group $\operatorname{SAut}\left(F_{n}\right)$ is generated by the set of all $L_{i j}$ and $R_{i j}$.
Proof of Lemma 6.12. We use Proposition 5.14. Let $S \subset \operatorname{SAut}\left(F_{n}\right)$ be the set of all $L_{i j}$ and $R_{i j}$. Setting $c=\max \{\operatorname{comp}(s): s \in S\}$, the fact that $\operatorname{comp}\left(L_{i j}\right)=\operatorname{comp}\left(R_{i j}\right)=2$ implies $c=2$. Lemma 6.8 says that $\operatorname{SAut}\left(F_{n}\right)$ is transitive and commuting. In particular, every element of S is good. We can thus apply Proposition 5.14 and deduce that $X_{m}(\Gamma)$ is connected whenever $2 m+c-1=2 m+1 \leq n$. As for the nontriviality of $X_{m}(\Gamma)$, it follows immediately from the fact that $\operatorname{SAut}\left(F_{m}\right)$ is never normal in $\operatorname{SAut}\left(F_{n}\right)$ except with $m=0,1\left(\right.$ when $\left.\operatorname{SAut}\left(F_{m}\right)=1\right)$ and when $m=n\left(\right.$ when $\left.\operatorname{SAut}\left(F_{m}\right)=\operatorname{SAut}\left(F_{n}\right)\right)$; see Remark 5.10.

We now estimate $d_{\Gamma}(\mathscr{L}(k))$.
Lemma 6.14. For all $k \geq 1$ we have $d_{\Gamma}(\mathscr{L}(k)) \leq 2 k$.
Proof. We will use Proposition 5.16. This proposition requires that \mathscr{L} is generated by $\mathscr{L}(1)$, which holds since the filtration $G(k)$ is the lower central series. We now calculate the quantities that go into its bound:

- Theorem 6.9 says that IA_{n} is $\operatorname{SAut}\left(F_{n}\right)$-normally generated by the element C_{12}. Since $\operatorname{comp}\left(C_{12}\right)=2$, we have $d_{\Gamma}(\mathscr{L}(1)) \leq 2$. We cannot have $d_{\Gamma}(\mathscr{L}(1)) \leq 1$ (since $G_{\{i\}}=1$ and thus $\left.\mathscr{L}(1)_{\{i\}}=0\right)$ so in fact $d_{\Gamma}(\mathscr{L}(1))=2$.
- Set $d=d(\mathscr{L}(1))$. Theorem 6.9 says that IA_{n} is generated by the set of all $C_{i j}$ and $M_{i j k}$. Since $\operatorname{comp}\left(C_{i j}\right)=2$ and $\operatorname{comp}\left(M_{i j k}\right)=3$, we deduce that $d \leq 3$ (and one can check that in fact $d=3$).
- Lemma 6.8 says that $\operatorname{SAut}\left(F_{n}\right)$ is commuting, so as in Proposition 5.16 we set

$$
e=d-1=2
$$

Proposition 5.16 now says that for $k \geq 1$ we have

$$
d_{\Gamma}(\mathscr{L}(k)) \leq d_{\Gamma}(\mathscr{L}(1))+(k-1) e=2+(k-1) 2=2 k .
$$

Putting it all together. All the pieces are now in place to prove Theorem D. This theorem has two parts that we prove separately.

Proof of Theorem D for $k \geq 3$. Notation is as above. As was established in Section 1.2, we must prove that $G(k)$ is finitely generated for $k \geq 3$ and $n \geq 4 k-3$, or equivalently
when $k \leq \frac{n+3}{4}$. We apply Corollary 5.6 with $N=\left\lfloor\frac{n+3}{4}\right\rfloor$ and $m=2(N-1)=2 \cdot\left\lfloor\frac{n-1}{4}\right\rfloor$. This theorem has four hypotheses:

- The [n]-group Γ must be transitive, which is one of the conclusions of Lemma 6.8.
- The group G must be finitely generated, which is Theorem 6.9.
- The action of Γ on each $\mathscr{L}(k)$ must be Zariski-irreducible, which is Lemma 6.10.
- The graph $X_{m}(\Gamma)$ must be connected and nontrivial, and we must have

$$
\begin{equation*}
m \geq \max \left\{d_{\Gamma}(\mathscr{L}(k)): 1 \leq k<N\right\} . \tag{6.3}
\end{equation*}
$$

To see that $X_{m}(\Gamma)$ is connected and nontrivial, it is enough to verify the two hypotheses of Lemma 6.12. The first is that $m \geq 2$; indeed, since $n \geq 4 k-3 \geq 9$, we have

$$
m=2 \cdot\left\lfloor\frac{n-1}{4}\right\rfloor \geq 4 \geq 2
$$

The second is that $2 m+1 \leq n$; indeed,

$$
2 m+1=4 \cdot\left\lfloor\frac{n-1}{4}\right\rfloor+1 \leq 4 \cdot \frac{n-1}{4}+1=n
$$

As for (6.3), Lemma 6.14 says that $d_{\Gamma}(\mathscr{L}(k)) \leq 2 k$, so

$$
\max \left\{d_{\Gamma}(\mathscr{L}(k)): 1 \leq k<N\right\} \leq 2(N-1)=m,
$$

as desired.
Applying Corollary 5.6, we conclude that $G(k)$ is finitely generated for $1 \leq k \leq N$.
Proof of Theorem D for $k=2$. We must prove that $\left[\mathrm{IA}_{n}, \mathrm{IA}_{n}\right]$ is finitely generated for $n \geq 4$. To do this, we will apply Theorem 3.7 to $G=\operatorname{IA}_{n}$ and $\Gamma=\operatorname{SAut}\left(F_{n}\right)$ acting by conjugation. Our Γ-orbit C will be the Γ-conjugates of the Magnus generator C_{12}; Theorem 6.9 tells us that G is generated by C and finitely generated. We have already checked in Lemma 6.10 that the action of Γ on $\mathscr{L}(1) \cong \operatorname{Hom}(G ; \mathbb{R})$ is Zariski-irreducible. Therefore we need only verify the remaining hypothesis of Theorem 3.7: denoting by $\operatorname{Conj}\left(\mathrm{IA}_{n}\right)$ the graph whose vertices are $\operatorname{SAut}\left(F_{n}\right)$-conjugates of C_{12} with edges connecting commuting elements, we must show that $\operatorname{Conj}\left(\mathrm{IA}_{n}\right)$ is connected when $n \geq 4$.

Let $S=\left\{L_{i j}^{ \pm}, R_{i j}^{ \pm}\right\}$be the generating set for $\operatorname{SAut}\left(F_{n}\right)$ from Theorem 6.13. Just as in the proofs of Proposition 3.3 or Proposition 5.14, to prove that $\operatorname{Conj}\left(\mathrm{IA}_{n}\right)$ is connected, it suffices to prove the following: for all $s \in S$, there exists a path η_{s} in $\operatorname{Conj}\left(\mathrm{IA}_{n}\right)$ from C_{12} to $C_{12}{ }^{s}$. We will repeatedly rely on the observation that for fixed $b \in[n]$, the $2 n-2$ elements $\left\{L_{i b}, R_{i b} \mid i \neq b\right\}$ commute; indeed, they generate a subgroup of $\operatorname{SAut}\left(F_{n}\right)$ isomorphic to $\mathbb{Z}^{2 n-2}$, which contains $C_{i b}=R_{i b} L_{i b}^{-1}$ for all $i \neq b$.

Fix distinct a and b in $[n]$ and consider $s \in\left\{L_{a b}, L_{a b}^{-1}, R_{a b}, R_{a b}^{-1}\right\}$.

- If $\{a, b\} \cap\{1,2\}=\emptyset$, then s commutes with C_{12}; thus $\left(C_{12}\right)^{s}=C_{12}$ and there is nothing to prove.
- If $\{a, b\}=\{1,2\}$, then C_{34} commutes with both C_{12} and s, and thus with $\left(C_{12}\right)^{s}$. Therefore for η_{s} we may take the length 2 path from C_{12} to C_{34} to $\left(C_{12}\right)^{s}$.
- If $a \in\{1,2\}$ and $b \notin\{1,2\}$, we can choose some $c \in[n] \backslash\{1,2, b\}$ since $n \geq 4$. Then $C_{c b}$ commutes with C_{12} (since $\{1,2\} \cap\{c, b\}=\emptyset$). At the same time, $C_{c b}$ commutes with s (since both lie in the abelian subgroup generated by $L_{i b}$ and $R_{i b}$), and thus with $\left(C_{12}\right)^{s}$. Therefore for η_{s} we may take the length 2 path from C_{12} to $C_{c b}$ to $\left(C_{12}\right)^{s}$.
- It remains to handle the case $b \in\{1,2\}$ and $a \notin\{1,2\}$.
- If $b=2$, then s commutes with C_{12}, so $\left(C_{12}\right)^{s}=C_{12}$ and there is nothing to prove.
- Finally, if $b=1$ and $a \notin\{1,2\}$, we can choose some element $d \in[n] \backslash\{1,2, a\}$ since $n \geq 4$. Then $C_{d 2}$ commutes with C_{12} (since both lie in the abelian subgroup generated by $L_{i 2}$ and $R_{i 2}$). At the same time, $C_{d 2}$ commutes with s (since $\{a, b\} \cap\{d, 2\}=\emptyset)$, and thus with $\left(C_{12}\right)^{s}$. Therefore for η_{s} we may take the length 2 path from C_{12} to $C_{d 2}$ to $\left(C_{12}\right)^{S}$.
This concludes the proof that $\operatorname{Conj}\left(\mathrm{IA}_{n}\right)$ is connected for $n \geq 4$. Theorem 3.7 now shows that $\left[\mathrm{IA}_{n}, \mathrm{IA}_{n}\right]=\gamma_{2}\left(\mathrm{IA}_{n}\right)$ is finitely generated for $n \geq 4$.

6.3. The Johnson filtration of $\operatorname{Aut}\left(F_{n}\right)$

We close by describing how to modify the proof of Theorem D from Section 6.2 to prove Theorem E, which as we discussed in Section 1.2 is equivalent to the assertion that for $k \geq 2$ the term $\mathrm{JIA}_{n}(k)$ of the Johnson filtration of IA_{n} is finitely generated for $n \geq 2 k+3$. This is stronger than the bound from Theorem D , which only gives this for $n \geq 4 k-3$.

Notation. The following notation will be in place for the remainder of this subsection. Fix some $n \geq 2$. Let $\Gamma=\operatorname{SAut}\left(F_{n}\right), G=\mathrm{IA}_{n}$, and $G(k)=\mathrm{JIA}_{n}(k)$. Let $\mathscr{L} \mathscr{L}=\bigoplus \mathscr{L} \mathscr{L}(k)$ be the graded real Lie algebra associated to $G(k)$. Maintaining the same notation from the previous subsection, let $\mathscr{L}=\bigoplus \mathscr{L}(k)$ be the graded real Lie algebra associated to the lower central series of IA_{n}. The groups Γ and G and $G(k)$ are endowed with the [n]-group structure coming from the $[n]$-group structure on $\operatorname{Aut}\left(F_{n}\right)$, and the vector spaces $\mathscr{\mathscr { L }}(k)$ and $\mathscr{L}(k)$ are endowed with the induced $[n]$-vector space structures.

What must be done. The structure of the proof of Theorem E is exactly the same as that of Theorem D; the only change needed is to use the following two results in place of Lemmas 6.10 and 6.14, respectively.

Lemma 6.15. For all $k \geq 1$ the action of Γ on $\mathscr{G} \mathscr{L}(k)$ is Zariski-irreducible.
Proposition 6.16. For all $k \geq 1$ we have $d_{\Gamma}(\mathscr{L} \mathscr{L}(k)) \leq k+2$.
The improved bound in Proposition 6.16 (compared with the bound $d_{\Gamma}(\mathscr{L}(k)) \leq 2 k$ in Lemma 6.14) is the source of our improved range of finite generation for $\mathrm{JIA}_{n}(k)$. We will prove these two results below, but first we illustrate how they imply Theorem E.

Proof of Theorem E. We must prove that $G(k)=\mathrm{JIA}_{n}(k)$ is finitely generated for all $n \geq 2 k+3$, or equivalently when $k \leq \frac{n-3}{2}$. With notation as above, we will apply Corollary 5.6 with $N=\left\lfloor\frac{n-3}{2}\right\rfloor$ and $m=N+1=\left\lfloor\frac{n-1}{2}\right\rfloor$. The first two hypotheses, dealing
with Γ and $G(1)=\mathrm{IA}_{n}$, are unchanged from before, so we must verify the remaining two hypotheses.

- The action of Γ on each $\mathscr{\mathscr { L }} \mathscr{L}(k)$ must be Zariski-irreducible, which is Lemma 6.15.
- The graph $X_{m}(\Gamma)$ must be connected and nontrivial, and we must have

$$
\begin{equation*}
m \geq \max \left\{d_{\Gamma}(\mathscr{G} \mathscr{L}(k)): 1 \leq k<N\right\} . \tag{6.4}
\end{equation*}
$$

To see that $X_{m}(\Gamma)$ is connected and nontrivial, it is enough to verify the two hypotheses of Lemma 6.12. The first is that $m \geq 2$; indeed, since $n \geq 2 k+3 \geq 5$, we have

$$
m=\left\lfloor\frac{n-1}{2}\right\rfloor \geq 2
$$

The second is that $2 m+1 \leq n$; indeed,

$$
2 m+1=2 \cdot\left\lfloor\frac{n-1}{2}\right\rfloor+1 \leq 2 \cdot \frac{n-1}{2}+1=n
$$

As for (6.4), Proposition 6.16 says that $d_{\Gamma}(\mathscr{G} \mathscr{L}(k)) \leq k+2$, so

$$
\max \left\{d_{\Gamma}(\mathscr{L}(k)): 1 \leq k<N\right\} \leq(N-1)+2=m
$$

as desired.
Applying Corollary 5.6, we conclude that $G(k)$ is finitely generated for $1 \leq k \leq N$.
We now proceed to prove Lemma 6.15 and Proposition 6.16. The following key fact will be used in the proofs of both. Let $V_{\mathbb{Z}}=F_{n}^{\mathrm{ab}} \cong \mathbb{Z}^{n}$ and $V=V_{\mathbb{Z}} \otimes \mathbb{R} \cong \mathbb{R}^{n}$. Let $\operatorname{Lie}\left(V_{\mathbb{Z}}\right)=\bigoplus \operatorname{Lie}_{m}\left(V_{\mathbb{Z}}\right)$ be the free Lie algebra on $V_{\mathbb{Z}}$, and let $\operatorname{Lie}(V)=\bigoplus \operatorname{Lie}_{m}(V)$ be the free \mathbb{R}-Lie algebra on V, so that $\operatorname{Lie}_{m}(V) \cong \operatorname{Lie}_{m}\left(V_{\mathbb{Z}}\right) \otimes \mathbb{R}$. The action of Γ on $V_{\mathbb{Z}}$ and V, which factors through $\operatorname{SL}\left(V_{\mathbb{Z}}\right) \cong \operatorname{SL}_{n}(\mathbb{Z})$, extends to an action on $\operatorname{Lie}\left(V_{\mathbb{Z}}\right)$ and $\mathrm{Lie}(V)$ by Lie algebra automorphisms. There is a canonical Γ-equivariant embedding

$$
\iota: \mathrm{JIA}_{n}[k] / \mathrm{JIA}_{n}[k+1] \hookrightarrow V_{\mathbb{Z}}^{*} \otimes \mathrm{Lie}_{k+1}\left(V_{\mathbb{Z}}\right)
$$

described concretely as follows. Given $\varphi \in \operatorname{Aut}\left(F_{n}\right)$, to say that $\varphi \in \mathscr{G} \mathscr{L}(k)$ means by definition that the map $x \mapsto x^{-1} \varphi(x)$ defines a function $F_{n} \rightarrow \gamma_{k+1} F_{n}$. This descends to a homomorphism from $F_{n}^{\mathrm{ab}}=V_{\mathbb{Z}}$ to $\gamma_{k+1} F_{n} / \gamma_{k+2} F_{n} \cong \operatorname{Lie}_{k+1}\left(V_{\mathbb{Z}}\right)$. The resulting assignment $\mathrm{JIA}_{n}[k] \rightarrow V_{\mathbb{Z}}^{*} \otimes \operatorname{Lie}_{k+1}\left(V_{\mathbb{Z}}\right)$ is a homomorphism, and by definition its kernel is $\mathrm{JIA}_{n}[k+1]$. Tensoring with \mathbb{R}, we obtain a Γ-equivariant embedding of $\mathcal{G} \mathscr{L}(k)$ into $M(k):=V^{*} \otimes \operatorname{Lie}_{k+1}(V)$. In particular, this equivariance implies that the action of Γ on $\mathscr{L} \mathscr{L}(k)$ factors through $\operatorname{SL}\left(V_{\mathbb{Z}}\right)$.

Proof of Lemma 6.15. The action of $\operatorname{SL}\left(V_{\mathbb{Z}}\right)$ on $M(k)$ extends to a polynomial representation of $\mathrm{SL}(V) \cong \mathrm{SL}_{n}(\mathbb{R})$. The Γ-equivariance of the embedding $\mathcal{G} \mathscr{L}(k) \rightarrow M(k)$ implies that the subspace $\mathscr{\mathscr { L }} \mathscr{L}(k)$ is $\operatorname{SL}\left(V_{\mathbb{Z}}\right)$-invariant. Since $\operatorname{SL}\left(V_{\mathbb{Z}}\right)$ is Zariski-dense in $\mathrm{SL}(V)$ and the map $\mathrm{GL}(V) \rightarrow \mathrm{GL}(M(k))$ is Zariski-continuous, the subspace $\mathscr{\mathscr { L }}(k)$ must also be $\operatorname{SL}(V)$-invariant. Moreover, this implies that the Zariski closure of the image of Γ in $\operatorname{GL}(\mathscr{g} \mathscr{L}(k))$ coincides with the image of $\operatorname{SL}(V)$; it is therefore a quotient of $\mathrm{SL}(V) \cong \mathrm{SL}_{n}(\mathbb{R})$, and thus is irreducible.

Proof of Proposition 6.16. This proposition is a fairly easy consequence of Bartholdi's work [3], but in order to make our argument precise it will be more convenient to refer to other sources.

Note that when $n \leq k+2$, the proposition is vacuous; we may therefore assume that $k<n-2$. We will actually only assume $k \leq n-2$ since this suffices for the argument below. Throughout this section, we will write $\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ for the left-normed commutator:

$$
\left[v_{1}, v_{2}, \ldots, v_{k}\right]:=\left[\left[\left[v_{1}, v_{2}\right], \ldots\right], v_{k}\right] .
$$

For $k=1$, since $\mathrm{JIA}_{n}(2)=\gamma_{2}\left(\mathrm{IA}_{n}\right)$, we have already obtained the stronger bound

$$
d_{\Gamma}(\mathscr{L} \mathscr{L}(1))=d_{\Gamma}(\mathscr{L}(1)) \leq 2
$$

in Lemma 6.14. So fix $2 \leq k \leq n-2$, and consider the following finite families of automorphisms:
(1) Let $i \in[n]$ and let $\omega=\omega_{1} \omega_{2} \ldots \omega_{k+1}$ be a sequence of length $k+1$ with $i \notin \omega$ (that is, $\omega_{j} \in[n] \backslash\{i\}$ for each j). Let $T_{i, \omega}$ be the element of $\operatorname{Aut}\left(F_{n}\right)$ which sends x_{i} to $x_{i}\left[x_{\omega_{1}}, x_{\omega_{2}}, \ldots, x_{\omega_{k+1}}\right]$ and fixes x_{j} for all $j \neq i$.
(2) Let $\mu=\mu_{1} \mu_{2} \ldots \mu_{k}$ be a sequence of length k with $\mu_{j} \in[n]$ for each j. For each μ, choose once and for all two distinct elements $i, j \in[n]$ with $i \notin \mu$ and $j \notin \mu$ (this is possible precisely because $k \leq n-2$). Define S_{μ} to be the left-normed commutator

$$
S_{\mu}=\left[M_{i j \mu_{1}}, C_{i \mu_{2}}, C_{i \mu_{3}}, \ldots, C_{i \mu_{k-1}}, M_{j i \mu_{k}}\right]
$$

where $C_{i j}$ and $M_{i j l}$ are the Magnus generators defined before Theorem 6.9. Note that the definition of S_{μ} depends on the choice of i and j, but this dependence will not be important for our purposes.
By construction, the elements $T_{i, \omega}$ and S_{μ} have complexity at most $k+2$ and lie in $G(k)$. Let $t_{i, \omega}$ and s_{μ} be their images in $\mathscr{\mathscr { L }} \mathscr{L}(k)$. Denote by A (resp. B) the subspace of $\mathscr{L} \mathscr{L}(k)$ generated by the Γ-orbits of the elements $t_{i, \omega}$ (resp. by the Γ-orbits of the elements s_{μ}). Since $t_{i, \omega}$ and s_{μ} have complexity at most $k+2$, to prove that $d_{\Gamma}(\mathscr{L} \mathscr{L}(k)) \leq k+2$ it suffices to show that $\mathscr{J} \mathscr{L}(k)=A+B$.

Define the map $\Phi: V^{*} \otimes V^{\otimes k+1} \rightarrow V^{\otimes k}$ by

$$
\Phi\left(v^{*} \otimes v_{0} \otimes \cdots \otimes v_{k}\right)=v^{*}\left(v_{0}\right) v_{1} \otimes \cdots \otimes v_{k}
$$

Realizing $\operatorname{Lie}_{k+1}(V)$ as a subspace of $V^{\otimes k+1}$ in the standard way, we obtain a composite Γ-equivariant map

$$
\tau: \mathscr{H} \mathscr{L}(k) \hookrightarrow M(k)=V^{*} \otimes \operatorname{Lie}_{k+1}(V) \hookrightarrow V^{*} \otimes V^{\otimes k+1} \xrightarrow{\Phi} V^{\otimes k}
$$

Let $\langle\gamma\rangle$ be a cyclic group of order k acting on $V^{\otimes k}$ by cyclically permuting the factors, that is, $\gamma\left(v_{1} \otimes \cdots \otimes v_{k-1} \otimes v_{k}\right)=v_{2} \otimes \cdots \otimes v_{k} \otimes v_{1}$. Let W be the subspace of γ-invariant elements in $V^{\otimes k}$. We claim that
(i) $\quad A=\operatorname{ker}(\tau)$,
(ii) $\tau(\mathscr{J} \mathscr{L}(k)) \subseteq W$,
(iii) $\tau(B) \supseteq W$.

Claims (ii) and (iii) together imply that $\tau(B)=W=\tau(\mathscr{L} \mathscr{L}(k))$, so with (i) this implies that $\mathscr{L} \mathscr{L}(k)=A+B$ as desired.

For $i \in[n]$ let $e_{i} \in V=F_{n}^{\mathrm{ab}} \otimes \mathbb{R}$ be the image of x_{i}, and let $e_{1}^{*}, \ldots, e_{n}^{*}$ be the dual basis of V^{*}. For any sequence $\delta=i \omega=i \omega_{1} \omega_{2} \ldots \omega_{k+1}$ of length $k+2$, define

$$
e_{\delta}=e_{i}^{*} \otimes e_{\omega}=e_{i}^{*} \otimes\left[e_{\omega_{1}}, e_{\omega_{2}}, \ldots, e_{\omega_{k+1}}\right]
$$

Note that these elements span $V^{*} \otimes \operatorname{Lie}_{k+1}(V)$.
Assertion (ii) is merely a restatement of [29, Proposition 5.3]. For (iii), an easy direct computation shows that for any sequence $\mu=\mu_{1} \cdots \mu_{k}$ of length k we have

$$
\tau\left(s_{\mu}\right)=e_{\mu_{1}} \otimes \cdots \otimes e_{\mu_{k-1}} \otimes e_{\mu_{k}}-e_{\mu_{2}} \otimes \cdots \otimes e_{\mu_{k}} \otimes e_{\mu_{1}}
$$

Since elements of this form span W, inclusion (iii) follows.
It remains to prove (i). Since $\operatorname{ker}(\tau)$ is Γ-invariant, to verify the inclusion $A \subseteq \operatorname{ker}(\tau)$ we only need to check that $\tau\left(t_{i, \omega}\right)=0$. But since $i \notin \omega$, as an element of $V^{*} \otimes \operatorname{Lie}_{k+1}(V)$ we have

$$
t_{i, \omega}=e_{i \omega}=e_{i}^{*} \otimes\left[e_{\omega_{1}}, e_{\omega_{2}}, \ldots, e_{\omega_{k+1}}\right]
$$

Since ω does not contain i, the term $\left[e_{\omega_{1}}, e_{\omega_{2}}, \ldots, e_{\omega_{k+1}}\right]$ belongs to Lie ${ }_{k+1}\left(\operatorname{ker} e_{i}^{*}\right)$, so $t_{i, \omega}$ belongs to $\operatorname{ker}(\Phi)$. This shows that $\tau\left(t_{i, \omega}\right)=0$ as claimed, so $A \subseteq \operatorname{ker}(\tau)$. The opposite inclusion $\operatorname{ker}(\tau) \subseteq A$ (which is what we ultimately need) is implicitly proved in [3, Lemma 5.4] and also in [43, Proposition 3.2], but for clarity we will give a short direct proof.

Given any sequence $\delta=i \omega=i \omega_{1} \omega_{2} \ldots \omega_{k+1}$ of length $k+2$, let $c(\delta)$ denote the number of times i (the first element of δ) appears in the tail $\omega_{1} \ldots \omega_{k+1}$. We already observed that $e_{\delta} \in A$ when $c(\delta)=0$ since then $e_{\delta}=t_{i, \omega}$.

We next claim that if $c(\delta) \geq 2$, then we can write $e_{\delta}=x+y$ where $x \in A$ and y is a linear combination of elements e_{γ} with $c(\gamma)<c(\delta)$. Indeed, choose any index $j \in[n]$ with $j \notin \delta$, which is possible since the number of distinct elements of δ is at most $k+2-c(\delta) \leq n-c(\delta) \leq n-2$. Let ω^{\prime} be the sequence obtained from ω by replacing all appearances of i by j and let $\delta^{\prime}=i \omega^{\prime}$. Note that $c\left(\delta^{\prime}\right)=0$ so $e_{\delta^{\prime}} \in A$.

Let $E_{i j} \in \Gamma$ be any element projecting to the elementary matrix $E_{i j} \in \mathrm{SL}_{n}(\mathbb{Z})$. For simplicity, we will write the action of Γ on the left. Set $z=E_{i j}^{2} e_{\delta^{\prime}}-2 E_{i j} e_{\delta^{\prime}}$, so $z \in A$. The action of $E_{i j}^{p}$ on $e_{\delta^{\prime}}$ will replace e_{i}^{*} by $e_{i}^{*}-p e_{j}^{*}$ and each occurrence of e_{j} by $e_{j}+p e_{i}$, and a simple computation shows that

$$
z=\left(2^{c(\delta)}-2\right) e_{\delta}+u
$$

where $c(\gamma)<c(\delta)$ for each e_{γ} that appears in u. Since $c(\delta)>1$, we have

$$
e_{\delta}=\frac{1}{2^{c(\delta)}-2}(z-u)
$$

as desired.
Applying this claim inductively shows that any element of $V^{*} \otimes \operatorname{Lie}_{k+1}(V)$ can be written $z=a+b$, where $a \in A$ and $b=\sum \lambda_{\delta} e_{\delta}$ with $c(\delta)=1$ for each δ. Moreover, using the Lie algebra axioms, we can assume that each δ in the above sum has the form $\delta=i i \varepsilon$ where ε is a sequence of length k with $i \notin \varepsilon$.

Note that $\Phi\left(e_{i i \varepsilon}\right)=\Phi\left(e_{i}^{*} \otimes e_{i \varepsilon}\right)$ is equal to $e_{\varepsilon_{1}} \otimes e_{\varepsilon_{2}} \otimes \cdots \otimes e_{\varepsilon_{k}}$ when $i \notin \varepsilon$. To see this, note that when the left-normed commutator $e_{\omega}=\left[\left[\left[e_{\omega_{1}}, e_{\omega_{2}}\right], \ldots\right], e_{\omega_{\ell}}\right] \in \operatorname{Lie}_{k+1}(V)$ is considered as an element of $V^{\otimes k+1}$, it is equal to $e_{\omega_{1}} \otimes e_{\omega_{2}} \otimes \cdots \otimes e_{\omega_{k+1}}$ plus permutations of the form $e_{\omega_{\ell}} \otimes \cdots$ for $\ell \neq 1$.

Now take an arbitrary $z \in \operatorname{ker}(\tau)$ and write it as a sum $z=a+b$ as above. Since $A \subseteq \operatorname{ker}(\tau)$, this implies that $\tau(b)=0$. Since $\Phi\left(e_{i i \varepsilon}\right)=e_{\varepsilon_{1}} \otimes e_{\varepsilon_{2}} \otimes \cdots \otimes e_{\varepsilon_{k}}$ for $i \notin \varepsilon$ and all such simple tensors coming from different ε are linearly independent, to have $\tau(b)=0$ means that for each ε we have $\sum_{i \notin \varepsilon} \lambda_{e_{i i \varepsilon}}=0$. It follows that b must be a linear combination of elements of the form $e_{i i \varepsilon}-e_{j j \varepsilon}$ with $i \neq j$ and $i, j \notin \varepsilon$. However, these elements too belong to A :

$$
e_{i i \varepsilon}-e_{j j \varepsilon}=E_{i j} e_{i j \varepsilon}-e_{i j \varepsilon}+e_{j i \varepsilon}=E_{i j} t_{i, j \varepsilon}-t_{i, j \varepsilon}+t_{j, i \varepsilon} \in A
$$

We conclude that $b \in A$ and hence $z \in A$, as desired.
Funding. TC is supported in part by NSF grant DMS-1350138, the Alfred P. Sloan Foundation, the Institute for Advanced Study, and the Friends of the Institute. AP is supported in part by NSF grant DMS-1737434.

References

[1] Andreadakis, S.: On the automorphisms of free groups and free nilpotent groups. Proc. Lond. Math. Soc. (3) 15, 239-268 (1965) Zbl 0135.04502 MR 188307
[2] Bachmuth, S.: Induced automorphisms of free groups and free metabelian groups. Trans. Amer. Math. Soc. 122, 1-17 (1966) Zbl 0133.28101 MR 190212
[3] Bartholdi, L.: Automorphisms of free groups. I. New York J. Math. 19, 395-421 (2013) Zbl 1288.20039 MR 3084710
[4] Bartholdi, L.: Automorphisms of free groups. I-Erratum [MR 3084710]. New York J. Math. 22, 1135-1137 (2016) Zbl 1351.20017 MR 3576285
[5] Bestvina, M., Bux, K.-U., Margalit, D.: Dimension of the Torelli group for $\operatorname{Out}\left(F_{n}\right)$. Invent. Math. 170, 1-32 (2007) Zbl 1135.20026 MR 2336078
[6] Bieri, R., Neumann, W. D., Strebel, R.: A geometric invariant of discrete groups. Invent. Math. 90, 451-477 (1987) Zbl 0642.57002 MR 914846
[7] Carter, R., Segal, G., Macdonald, I.: Lectures on Lie Groups and Lie Algebras. London Math. Soc. Stud. Texts 32, Cambridge University Press, Cambridge (1995) Zbl 0832.22001 MR 1356712
[8] Church, T., Putman, A.: Generating the Johnson filtration. Geom. Topol. 19, 2217-2255 (2015) Zbl 1364.20025 MR 3375526
[9] Day, M., Putman, A.: The complex of partial bases for F_{n} and finite generation of the Torelli subgroup of $\operatorname{Aut}\left(F_{n}\right)$. Geom. Dedicata 164, 139-153 (2013) Zbl 1294.20041 MR 3054621
[10] Day, M., Putman, A.: On the second homology group of the Torelli subgroup of $\operatorname{Aut}\left(F_{n}\right)$. Geom. Topol. 21, 2851-2896 (2017) Zbl 1429.20035 MR 3687109
[11] Dehn, M.: Die Gruppe der Abbildungsklassen. Acta Math. 69, 135-206 (1938) Zbl 64.1276.01 MR 1555438
[12] Dimca, A., Hain, R., Papadima, S.: The abelianization of the Johnson kernel. J. Eur. Math. Soc. (JEMS) 16, 805-822 (2014) Zbl 1344.57001 MR 3191977
[13] Dimca, A., Papadima, S.: Arithmetic group symmetry and finiteness properties of Torelli groups. Ann. of Math. (2) 177, 395-423 (2013) Zbl 1271.57053 MR 3010803
[14] Ershov, M., He, S.: On finiteness properties of the Johnson filtrations. Duke Math. J. 167, 1713-1759 (2018) Zbl 06904638 MR 3813595
[15] Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Math. Ser. 49, Princeton University Press, Princeton (2012) Zbl 1245.57002 MR 2850125
[16] Formanek, E.: Characterizing a free group in its automorphism group. J. Algebra 133, 424432 (1990) Zbl 0715.20022 MR 1067415
[17] Garoufalidis, S., Levine, J.: Finite type 3-manifold invariants and the structure of the Torelli group. I. Invent. Math. 131, 541-594 (1998) Zbl 0895.57004 MR 1614551
[18] Gersten, S. M.: A presentation for the special automorphism group of a free group. J. Pure Appl. Algebra 33, 269-279 (1984) Zbl 0542.20021 MR 761633
[19] Hain, R.: Completions of mapping class groups and the cycle $C-C^{-}$. In: Mapping Class Groups and Moduli Spaces of Riemann surfaces (Göttingen, 1991/Seattle, 1991), Contemp. Math. 150, American Mathematical Society, Providence, 75-105 (1993) Zbl 0831.57005 MR 1234261
[20] Hain, R.: Infinitesimal presentations of the Torelli groups. J. Amer. Math. Soc. 10, 597-651 (1997) Zbl 0915.57001 MR 1431828
[21] Hatcher, A., Vogtmann, K.: Tethers and homology stability for surfaces. Algebr. Geom. Topol. 17, 1871-1916 (2017) Zbl 1439.20063 MR 3677942
[22] Johnson, D.: Homeomorphisms of a surface which act trivially on homology. Proc. Amer. Math. Soc. 75, 119-125 (1979) Zbl 0407.57003 MR 529227
[23] Johnson, D.: A survey of the Torelli group. In: Low-Dimensional Topology (San Francisco, 1981), Contemp. Math. 20, American Mathematical Society, Providence, 165-179 (1983) Zbl 0553.57002 MR 718141
[24] Johnson, D.: The structure of the Torelli group. I. A finite set of generators for d. Ann. of Math. (2) 118, 423-442 (1983) Zbl 0549.57006 MR 727699
[25] Johnson, D.: The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves. Topology 24, 113-126 (1985) Zbl 0571.57009 MR 793178
[26] Johnson, D.: The structure of the Torelli group. III. The abelianization of \mathcal{T}. Topology 24, 127-144 (1985) Zbl 0571.57010 MR 793179
[27] Koban, N., McCammond, J., Meier, J.: The BNS-invariant for the pure braid groups. Groups Geom. Dyn. 9, 665-682 (2015) Zbl 1326.20045 MR 3420539
[28] Magnus, W.: Über n-dimensionale Gittertransformationen. Acta Math. 64, 353-367 (1935) Zbl 0012.05405 MR 1555401
[29] Massuyeau, G., Sakasai, T.: Morita's trace maps on the group of homology cobordisms. J. Topol. Anal. 12, 775-818 (2020) Zbl 07239868 MR 4139214
[30] Matsumoto, M.: Introduction to arithmetic mapping class groups. In: Moduli Spaces of Riemann Surfaces, IAS/Park City Math. Ser. 20, American Mathematical Society, Providence, 319-356 (2013) Zbl 1275.14018 MR 3114689
[31] McCool, J.: Generating the mapping class group (an algebraic approach). Publ. Mat. 40, 457468 (1996) Zbl 0881.20017 MR 1425631
[32] McCullough, D., Miller, A.: The genus 2 Torelli group is not finitely generated. Topology Appl. 22, 43-49 (1986) Zbl 0579.57007 MR 831180
[33] Meier, J., VanWyk, L.: The Bieri-Neumann-Strebel invariants for graph groups. Proc. Lond. Math. Soc. (3) 71, 263-280 (1995) Zbl 0835.20037 MR 1337468
[34] Morita, S.: Problems on the structure of the mapping class group of surfaces and the topology of the moduli space of curves. In: Topology, Geometry and Field Theory, World Scientific Publishing, River Edge, 101-110 (1994) Zbl 0892.57018 MR 1312176
[35] Morita, S.: Structure of the mapping class groups of surfaces: a survey and a prospect. In: Proceedings of the Kirbyfest (Berkeley, 1998), Geom. Topol. Monogr. 2, Geometry \& Topology Publications, Coventry, 349-406 (1999) Zbl 0959.57018 MR 1734418
[36] Morita, S., Sakasai, T., Suzuki, M.: Torelli group, Johnson kernel, and invariants of homology spheres. Quantum Topol. 11, 379-410 (2020) Zbl 1462.57017 MR 4118638
[37] Nielsen, J.: Die Isomorphismengruppe der freien Gruppen. Math. Ann. 91, 169-209 (1924) Zbl 50.0078.04 MR 1512188
[38] Papadima, S., Suciu, A. I.: Homological finiteness in the Johnson filtration of the automorphism group of a free group. J. Topol. 5, 909-944 (2012) Zbl 1268.20037 MR 3001315
[39] Pettet, A.: The Johnson homomorphism and the second cohomology of IA n. Algebr. Geom. Topol. 5, 725-740 (2005) Zbl 1085.20016 MR 2153110
[40] Putman, A.: A note on the connectivity of certain complexes associated to surfaces. Enseign. Math. (2) 54, 287-301 (2008) Zbl 1182.57004 MR 2478089
[41] Putman, A.: Partial Torelli groups and homological stability. arXiv:1901.06624 (2019)
[42] Putman, A., Sam, S. V.: Representation stability and finite linear groups. Duke Math. J. 166, 2521-2598 (2017) Zbl 1408.18003 MR 3703435
[43] Satoh, T.: On the lower central series of the IA-automorphism group of a free group. J. Pure Appl. Algebra 216, 709-717 (2012) Zbl 1252.20034 MR 2864772
[44] Satoh, T.: The third subgroup of the Andreadakis-Johnson filtration of the automorphism group of a free group. J. Group Theory 22, 41-61 (2019) Zbl 1439.20036 MR 3895637
[45] Serre, J.-P.: Lie Algebras and Lie Groups. W. A. Benjamin, Inc., New York-Amsterdam (1965) Zbl 0132.27803 MR 0218496
[46] Strebel, R.: Notes on the Sigma invariants. arXiv:1204.0214 (2012)

[^0]: Thomas Church: Department of Mathematics, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA; tchurch@gmail.com
 Mikhail Ershov: Department of Mathematics, University of Virginia, 141 Cabell Drive, Charlottesville, VA 22904, USA; ershov @ virginia.edu
 Andrew Putman: Department of Mathematics, University of Notre Dame, 279 Hurley Hall, Notre Dame, IN 46556, USA; andyp@nd.edu

