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Abstract. As an analogy to the Gopakumar–Vafa conjecture on CY 3-folds, Klemm–Pandhari-
pande defined GV type invariants on CY 4-folds using GW theory and conjectured their integrality.
In this paper, we define stable pair type invariants on CY 4-folds and use them to interpret these GV
type invariants. Examples are computed for both compact and non-compact CY 4-folds to support
our conjectures.
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1. Introduction

1.1. Background

Gromov–Witten invariants are rational numbers counting stable maps from complex
curves to algebraic varieties (or symplectic manifolds). They are not necessarily integers
because of multiple cover contributions. In [24], Klemm–Pandharipande gave a definition
of Gopakumar–Vafa type invariants on Calabi–Yau 4-folds using GW theory and con-
jectured that they are integers. For dimensional reasons, GW invariants for genus g � 2
always vanish on Calabi–Yau 4-folds, so the integrality conjecture only applies in genus 0
and 1. In our previous paper [13], we gave a sheaf-theoretic interpretation of g D 0 GV
type invariants using DT4 invariants [4,12] of one-dimensional stable sheaves, analogous
to the work of Katz for 3-folds [22] (see [14] for an extension to the g D 1 case).

In this paper, we propose a sheaf-theoretic approach to both genus 0 and 1 GV type
invariants using stable pairs on CY 4-folds. For CY 3-folds, a Pairs/GV conjecture was
first developed in work of Pandharipande and Thomas [34,36]. Our paper may be viewed
as an analogue of their work in the setting of CY 4-folds.

1.2. GV type invariants on CY 4-folds

LetX be a smooth projective CY 4-fold. As mentioned above, Gromov–Witten invariants
vanish for genus g � 2 for dimensional reasons, so we only consider the genus 0 and 1
cases.
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The genus 0 GW invariants on X are defined using insertions: for integral classes
i 2 H

mi .X;Z/; 1 � i � n, one defines

GW0;ˇ .1; : : : ; n/ D

Z
ŒM0;n.X;ˇ/�vir

nY
iD1

ev�i .i /;

where evi WM 0;n.X; ˇ/! X is the i -th evaluation map.
The invariants

n0;ˇ .1; : : : ; n/ 2 Q (1)

are defined in [24] by the identityX
ˇ>0

GW0;ˇ .1; : : : ; n/q
ˇ
D

X
ˇ>0

n0;ˇ .1; : : : ; n/

1X
dD1

dn�3qdˇ :

For genus 1, virtual dimensions of GW moduli spaces without marked points are 0, so
the GW invariants

GW1;ˇ D

Z
ŒM1;0.X;ˇ/�vir

1 2 Q

can be defined without insertions. The invariants

n1;ˇ 2 Q (2)

are defined in [24] by the identityX
ˇ>0

GW1;ˇq
ˇ
D

X
ˇ>0

n1;ˇ

1X
dD1

�.d/

d
qdˇ C

1

24

X
ˇ>0

n0;ˇ .c2.X// log.1 � qˇ /

�
1

24

X
ˇ1;ˇ2

mˇ1;ˇ2 log.1 � qˇ1Cˇ2/;

where �.d/D
P
i jd i and wheremˇ1;ˇ2 2Z, called meeting invariants, can be inductively

determined by genus 0 GW invariants. In [24], both of the invariants (1), (2) are conjec-
tured to be integers, and GW invariants on X are computed to support the conjectures in
many examples by either localization techniques or mirror symmetry.

1.3. Our proposal

The aim of this paper is to give a sheaf-theoretic interpretation for the above GV-type
invariants (1), (2) via stable pairs, using Donaldson–Thomas theory for CY 4-folds intro-
duced by Cao–Leung [12] and Borisov–Joyce [4].



Y. Cao, D. Maulik, Y. Toda 530

We consider the moduli space Pn.X; ˇ/ of stable pairs .s W OX ! F / with ch.F / D
.0; 0; 0; ˇ; n/. By Theorem 2.4, one can construct a virtual class

ŒPn.X; ˇ/�
vir
2 H2n.Pn.X; ˇ/;Z/; (3)

which depends on the choice of orientation of a certain (real) line bundle over Pn.X; ˇ/.
On each connected component of Pn.X; ˇ/, there are two choices of orientation, which
affect the corresponding contribution to the virtual class (3) by a sign (for each connected
component).

When n D 0, the virtual dimension of the virtual class (3) is 0. By integrating, we
define the stable pair invariant

P0;ˇ WD

Z
ŒP0.X;ˇ/�vir

1 2 Z:

When n D 1, the (real) virtual dimension of the virtual class (3) is 2. We use insertions to
define invariants as follows. For integral classes i 2 Hmi .X;Z/, 1 � i � n, let

� WHm.X/! Hm�2.P1.X; ˇ//; �./ D �P�.�
�
X [ ch3.F//; (4)

where �X , �P are the projections from X � P1.X; ˇ/ to the corresponding factors, I D
.��XOX ! F/ is the universal pair, and ch3.F/ is the Poincaré dual to the fundamental
cycle of F .

Then we define stable pair invariants

P1;ˇ .1; : : : ; n/ WD

Z
ŒP1.X;ˇ/�vir

nY
iD1

�.i /:

We propose the following interpretation of (1), (2) using stable pair invariants.

Conjecture 1.1 (Conjecture 2.5). For a suitable choice of orientation, we have

P1;ˇ .1; : : : ; n/ D
X

ˇ1Cˇ2Dˇ
ˇ1;ˇ2�0

n0;ˇ1.1; : : : ; n/ � P0;ˇ2 ;

where the sum is over all possible effective classes, and we set n0;0.1; : : : ; n/ WD 0 and
P0;0 WD 1. In particular, when ˇ is irreducible,

P1;ˇ .1; : : : ; n/ D n0;ˇ .1; : : : ; n/:

Conjecture 1.2 (Conjecture 2.6). For a suitable choice of orientation, we haveX
ˇ�0

P0;ˇq
ˇ
D

Y
ˇ>0

M.qˇ /n1;ˇ ;

where M.q/ D
Q
k�1.1 � q

k/�k is the MacMahon function and P0;0 WD 1.
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For instance, when the Picard number of X is 1, for an irreducible curve class ˇ, the
above identity implies

P0;ˇ D n1;ˇ ;

P0;2ˇ D n1;2ˇ C 3n1;ˇ C

�
n1;ˇ

2

�
;

P0;3ˇ D n1;3ˇ C n1;ˇ � n1;2ˇ C 6n1;ˇ C 6

�
n1;ˇ

2

�
C

�
n1;ˇ

3

�
;

by comparing the coefficients of qˇ , q2ˇ and q3ˇ .
One issue with our current proposal (as in our earlier conjecture [13]) is that we do

not have a general mechanism for choosing the orientation in the above conjectures. Cur-
rently, in the cases we examine in this paper, we choose orientations on a case-by-case
basis to show the correct matching. It would be very interesting to construct canonical
choices of orientation for these moduli spaces and study our conjectures using them.

Our proposal is based on a heuristic argument given in Section 2.5, where we show
Conjectures 1.1 and 1.2 assuming that the CY 4-fold X is ‘ideal’, i.e. curves in X deform
in some family of expected dimensions. Apart from that, we verify our conjecture in
examples as follows.

1.4. Verification of the conjectures, I: compact examples

We first prove our conjectures for some special compact Calabi–Yau 4-folds.

Sextic 4-folds. Let X � P5 be a degree 6 smooth hypersurface and Œl � 2 H2.X;Z/ Š
H2.P5;Z/ be the line class. We check our conjectures for ˇ D Œl �, 2Œl�.

Proposition 1.3 (Propositions 3.1, 3.2). Let X be a smooth sextic 4-fold and Œl � 2

H2.X;Z/ be the line class. Then Conjectures 1.1 and 1.2 are true for ˇ D Œl �, 2Œl�.

Elliptic fibrations. We consider a projective CY 4-fold X which admits an elliptic fibra-
tion � W X ! P3, given by a Weierstrass model (17). Let f be a general fiber of � and
h be a hyperplane in P3, and set

B D ��h; E D �.P3/ 2 H6.X;Z/;

where � is a section of � . Then we have

Proposition 1.4 (Propositions 3.4, 3.6). (1) Conjecture 1.1 is true for the fiber class
ˇ D Œf � and  D B2, B �E.

(2) Conjecture 1.2 is true for the multiple fiber classes ˇ D rŒf � (r � 1).

In the above cases, we can directly compute the pair invariants and check the compat-
ibility with the computation of GW invariants in [24].

Product of elliptic curve and Calabi–Yau 3-fold. Let X D Y � E be the product of
a Calabi–Yau 3-fold and an elliptic curve E. We check our conjectures when the curve
class comes from either Y or E.
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Theorem 1.5 (Theorem 3.13, 3.15, Proposition 3.17). LetX D Y �E be as above. Then:

(1) Conjecture 1.1 is true for any irreducible curve class ˇ 2 H2.Y / � H2.X/ if Y is a
complete intersection in a product of projective spaces.

(2) Conjecture 1.2 is true for any irreducible curve class ˇ 2 H2.Y / � H2.X/.

(3) Conjecture 1.2 is true for the classes ˇ D rŒE� (r � 1).

The proof of these results is briefly reviewed here.
For (1), when ˇ 2 H2.Y / � H2.X/ is an irreducible curve class, we have an isomor-

phism
Pn.X; ˇ/ Š Pn.Y; ˇ/ �E:

The corresponding virtual class satisfies (see Proposition 3.11)

ŒPn.X; ˇ/�
vir
D ŒPn.Y; ˇ/�

vir
pair ˝ ŒE�

for a certain choice of orientation in defining the LHS, where the virtual class of Pn.Y;ˇ/
is defined using the deformation-obstruction theory of pairs (Lemma 3.9) instead of the
deformation-obstruction theory of complexes in the derived category used by [34].

In this case, we have a forgetful morphism

f W P1.Y; ˇ/!M1;ˇ .Y /; .OY ! F / 7! F; (5)

to the moduli space M1;ˇ .X/ of 1-dimensional stable sheaves F with ŒF � D ˇ and
�.F / D 1. We show that the map satisfies Manolache’s virtual push-forward formula
(Proposition 3.10), Z

ŒP1.Y;ˇ/�
vir
pair

1 D

Z
ŒM1;ˇ.Y /�

vir
1:

Then Conjecture 1.1 can be reduced to Katz’s conjecture on the CY 3-fold Y [22] (Corol-
lary 3.12). Combining with our previous proof of Katz’s conjecture for primitive classes
[13, Cor. A.6], we can deduce (1) of Theorem 1.5.

As for (3), this is one of few cases where we can compute non-primitive curve classes
and form generating series. The point is to identify pair moduli spaces on X with Hilbert
schemes of points on Y and compute zero-dimensional DT invariants of Y .

Hyperkähler 4-folds. When the CY 4-fold X is hyperkähler, GW invariants vanish, and
so do the GV type invariants. To verify our conjectures, it remains to prove the vanishing
of pair invariants. A cosection map from the (trace-free) obstruction space is constructed
and shown to be surjective and compatible with Serre duality (Proposition 3.18). We
expect the following vanishing result then follows.

Claim 1.6 (Claim 3.19). Let X be a projective hyperkähler 4-fold and Pn.X; ˇ/ be the
moduli space of stable pairs with n ¤ 0 or ˇ ¤ 0. Then the virtual class satisfies

ŒPn.X; ˇ/�
vir
D 0:
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At the moment, a Kiem–Li type theory of cosection localization for D-manifolds is
not available in the literature. We believe that when such a theory is established, our claim
should follow automatically. Nevertheless, we have the following evidence for the claim.
1. At least whenPn.X;ˇ/ is smooth, Proposition 3.18 gives the vanishing of virtual class.
2. If there is a complex analytic version of .�2/-shifted symplectic geometry [37] and

the corresponding construction of virtual classes [4], one could prove the vanishing
result as in GW theory, i.e. taking a generic complex structure in the S2-twistor family
of the hyperkähler 4-fold which does not support coherent sheaves, and then vanishing
of virtual classes follows from their deformation invariance.

1.5. Verification of the conjectures, II: local 3-folds and surfaces

For a Fano 3-fold Y , we consider the non-compact CY 4-fold

X D KY :

In this case, the stable pair moduli space Pn.X; ˇ/ is compact (Proposition 4.3), so we
can formulate Conjectures 1.1 and 1.2 here (even though the target is not projective).

When the curve class ˇ 2 H2.X/ is irreducible, we study this as follows. Similar
to the case of the product of a CY 3-fold and an elliptic curve, for a certain choice of
orientation, the virtual class of Pn.X; ˇ/ satisfies (Proposition 4.3)

ŒPn.X; ˇ/�
vir
D ŒPn.Y; ˇ/�

vir
pair;

under the isomorphism
Pn.X; ˇ/ Š Pn.Y; ˇ/:

And we have a virtual push-forward formula (Proposition 4.2)

f�ŒP1.Y; ˇ/�
vir
pair D ŒM1;ˇ .Y /�

vir;

where f WP1.Y;ˇ/!M1;ˇ .Y /, .OX ! F / 7! F , is the morphism forgetting the section,
M1;ˇ .Y / is the moduli scheme of one-dimensional stable sheaves E on Y with ŒE� D ˇ
and �.E/ D 1. Then Conjecture 1.1 is easily reduced to our previous conjecture [13,
Conjecture 0.2]. Combined with computations in [6], we have

Theorem 1.7 (Propositions 4.4, 4.5). Let X D KY be as above. Then:

(1) Conjecture 1.1 is true for any irreducible curve class ˇ 2H2.X/ ŠH2.Y / provided
that (i) Y � P4 is a smooth hypersurface of degree d � 4, or (ii) Y D S � P1 for a
toric del Pezzo surface S .

(2) Conjecture 1.2 is true for an irreducible curve class ˇ 2 H2.X/ Š H2.Y / when
Y D P3.

Similarly for a smooth projective surface S , we consider the non-compact CY 4-fold

X D TotS .L1 ˚ L2/;
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where L1, L2 are line bundles on S satisfying L1 ˝ L2 Š KS . In particular, when ˇ is
irreducible and Li � ˇ < 0 (i D 1; 2), the moduli space Pn.X; ˇ/ of stable pairs on X is
compact and smooth (Lemma 4.6 and Proposition 4.7). So pair invariants are well-defined
and we can also study our conjectures in this case. In particular, we have

Proposition 1.8 (Proposition 4.8). Let S be a del Pezzo surface and L�11 , L�12 be ample
line bundles on S such that L1 ˝ L2 Š KS . Let ˇ 2 H2.X;Z/ Š H2.S;Z/ be an irre-
ducible curve class on X D TotS .L1˚L2/. Then Conjectures 1.1 and 1.2 are true for ˇ.

In fact such a del Pezzo surface must be P2 or P1 � P1 (see the proof of Proposi-
tion 4.8), and the corresponding X is given by

TotP2.O.�1/˚O.�2//; TotP1�P1.O.�1;�1/˚O.�1;�1//:

By using computations due to Kool and Monavari [26], one can check Conjectures 1.1
and 1.2 for small degree curve classes on such X (see Section 4.3 and [10] for details).

1.6. Verification of the conjectures, III: local curves

Let C be a smooth projective curve. We consider a CY 4-fold X given by

X D TotC .L1 ˚ L2 ˚ L3/;

where L1; L2; L3 are line bundles on C satisfying L1 ˝ L2 ˝ L3 Š !C . The three-
dimensional complex torus T D .C�/�3 acts on X fiberwise over C . The T -equivariant
GW invariants

GWg;dŒC �.X/ 2 Q.�1; �2; �3/

can be defined via equivariant residue. Here �i are the equivariant parameters with respect
to the T -action.

On the other hand, there is a two-dimensional subtorus T0 � .C�/3 which preserves
the CY 4-form on X . We may define equivariant pair invariants

Pn;dŒC �.X/ 2 Q.�1; �2/

as rational functions in terms of equivariant parameters of T0 following a localization
principle for DT4 invariants (see Section 5.2, [12], [13, Sect. 4.2]).

When C D P1 andX DOP1.l1; l2; l3/, we explicitly determine P1;dŒC �.X/ for d � 2
(Proposition 5.5). Note in this case P0;ŒP1�.X/ D 0 and there are no insertions, so an
equivariant analogue of Conjecture 1.1 is given by the following conjecture:

Conjecture 1.9 (Conjecture 5.6). Let X D OP1.l1; l2; l3/ for l1 C l2 C l3 D �2. Then

GW0;2.X/ D P1;2ŒP1�.X/C
1
8
P1;ŒP1�.X/:

We can verify the above equivariant conjecture in a large number of examples.

Theorem 1.10 (Theorem 5.7). Conjecture 1.9 is true if jl1j; jl2j � 10.
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When C is an elliptic curve and Li ’s are general degree 0 line bundles on C , one can
define pair invariants and explicitly compute them.

Theorem 1.11 (Theorem 5.10). Let C be an elliptic curve, Li 2 Pic0.C / .i D 1; 2; 3/
general line bundles satisfying L1 ˝ L2 ˝ L3 Š !C and X D TotC .L1 ˚ L2 ˚ L3/.
Then stable pair invariants P0;dŒC �.X/ are well-defined and fit into the generating seriesX

d�0

P0;dŒC �.X/ q
m
DM.q/;

where M.q/ WD
Q
k�1.1 � q

k/�k is the MacMahon function.

Similarly, if we have n1;ˇ (ˇ 2 H2.X;Z/) such elliptic curves, then they contribute
to pair invariants according to the formulaX

ˇ�0

P0;ˇq
ˇ
D

Y
ˇ>0

M.qˇ /n1;ˇ :

This calculation arises in the heuristic argument for our genus 1 conjecture (Conjec-
ture 1.2) in the ‘ideal’ situation as families of rational curves do not contribute to pair
invariants P0;ˇ (see Section 2.5 for more details).

1.7. Speculation on the generating series of stable pair invariants

As before, if we allow insertions, we can use the virtual class (3) and insertions to define
stable pair invariants of Pn.X; ˇ/ for any n.

For  2 H 4.X;Z/, we have �./ 2 H 2.Pn.X; ˇ/;Z/, so we may define

Pn;ˇ ./ WD

Z
ŒPn.X;ˇ/�vir

�./n:

Our computations and geometric arguments indicate that we may have the following for-
mula, which generalizes the formula in Conjecture 1.1:

Pn;ˇ ./ D
X

ˇ0Cˇ1C���CˇnDˇ
ˇ0;ˇ1;:::;ˇn�0

P0;ˇ0 �

nY
iD1

n0;ˇi ./: (6)

To group these invariants into a generating series, we introduce notation

PT.X/.exp.// WD
X
n;ˇ

Pn;ˇ ./

nŠ
ynqˇ :

Assuming Conjecture 1.2, (6) is equivalent to the following Gopakumar–Vafa type for-
mula:

PT.X/.exp.// D
Y
ˇ

�
exp.yqˇ /n0;ˇ./ �M.qˇ /n1;ˇ

�
;
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where n0;ˇ ./ and n1;ˇ are genus 0 and 1 GV type invariants of X (1), (2) respectively
and M.q/ D

Q
k�1.1 � q

k/�k is the MacMahon function. As mentioned before, GW
invariants on CY 4-folds vanish for g > 1, so they do not form a nice generating series as
in the 3-fold case. Here the advantage of considering stable pair invariants is that we can
use them to form a generating series which is conjecturally of GV form.

A heuristic explanation of the formula will be given in Section 2.5. Some more anal-
ysis will be pursued in a future work (see e.g. [15, 16]).

1.8. Notation and convention

In this paper, all varieties and schemes are defined over C. For a morphism � WX ! Y

of schemes, and for F ; G 2 Db.Coh.X //, we denote by RHom�.F ; G / the functor
R��RHomX .F ;G /. We also denote by exti .F ;G / the dimension of ExtiX .F ;G /.

A class ˇ 2 H2.X;Z/ is called irreducible (resp. primitive) if it is not the sum of
two non-zero effective classes (resp. if it is not a positive integer multiple of an effective
class).

2. Definitions and conjectures

Throughout this paper, unless stated otherwise, X is always a smooth projective Calabi–
Yau 4-fold, i.e. KX Š OX .

2.1. GW/GV conjecture on CY 4-folds

Let M g;n.X; ˇ/ be the moduli space of genus g, n-pointed stable maps to X with curve
class ˇ. Its virtual dimension is given by

�KX � ˇ C .dimX � 3/.1 � g/C n D 1 � g C n:

For integral classes

i 2 H
mi .X;Z/; 1 � i � n; (7)

the GW invariant is defined by

GWg;ˇ .1; : : : ; n/ D

Z
ŒMg;n.X;ˇ/�vir

nY
iD1

ev�i .i /; (8)

where evi WM g;n.X; ˇ/! X is the i -th evaluation map.
For g D 0, the virtual dimension of M 0;n.X; ˇ/ is nC 1, and (8) is 0 unless

nX
iD1

.mi � 2/ D 2: (9)
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In analogy with the Gopakumar–Vafa conjecture for CY 3-folds [18], Klemm–Pandhari-
pande [24] defined invariants n0;ˇ .1; : : : ; n/ on CY 4-folds by the identityX

ˇ>0

GW0;ˇ .1; : : : ; n/q
ˇ
D

X
ˇ>0

n0;ˇ .1; : : : ; n/

1X
dD1

dn�3qdˇ ;

and conjecture the following

Conjecture 2.1 ([24, Conjecture 0]). The invariants n0;ˇ .1; : : : ; n/ are integers.

For g D 1, the virtual dimension ofM 1;0.X; ˇ/ is 0, so no insertions are needed. The
genus 1 GW invariant

GW1;ˇ D

Z
ŒM1;0.X;ˇ/�vir

2 Q

is also expected to be described in terms of certain integer valued invariants.
Let S1; : : : ; Sk be a basis of the free part of H 4.X;Z/ andX

i;j

gij ŒSi ˝ Sj � 2 H
8.X �X;Z/

be the .4; 4/-component of the Künneth decomposition of the diagonal. For ˇ1; ˇ2 in
H2.X;Z/, the meeting number mˇ1;ˇ2 2 Z is introduced in [24] as a virtual number
of rational curves of class ˇ1 meeting rational curves of class ˇ2. They are uniquely
determined by the following rules:

(i) The meeting invariants are symmetric: mˇ1;ˇ2 D mˇ2;ˇ1 .
(ii) If either deg.ˇ1/ � 0 or deg.ˇ2/ � 0, then mˇ1;ˇ2 D 0.

(iii) If ˇ1 ¤ ˇ2, then

mˇ1;ˇ2 D
X
i;j

n0;ˇ1.Si /g
ijn0;ˇ2.Sj /Cmˇ1;ˇ2�ˇ1 Cmˇ1�ˇ2;ˇ2 :

(iv) If ˇ1 D ˇ2 D ˇ, then

mˇ;ˇ D n0;ˇ .c2.X//C
X
i;j

n0;ˇ .Si /g
ijn0;ˇ .Sj / �

X
ˇ1Cˇ2Dˇ

mˇ1;ˇ2 :

The invariants n1;ˇ are uniquely defined by the identityX
ˇ>0

GW1;ˇq
ˇ
D

X
ˇ>0

n1;ˇ

1X
dD1

�.d/

d
qdˇ C

1

24

X
ˇ>0

n0;ˇ .c2.X// log.1 � qˇ /

�
1

24

X
ˇ1;ˇ2

mˇ1;ˇ2 log.1 � qˇ1Cˇ2/;

where �.d/ D
P
i jd i .
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Conjecture 2.2 ([24, Conjecture 1]). The invariants n1;ˇ are integers.

For g � 2, GW invariants vanish for dimensional reasons, so the GW/GV type inte-
grality conjecture on CY 4-folds only applies for genus 0 and 1. In [24], GW invariants
are computed directly in many examples using localization or mirror symmetry to support
the conjectures.

2.2. Review of DT4 invariants

Let us first introduce the set-up of DT4 invariants. We fix an ample divisor ! on X and
take a cohomology class v 2 H�.X;Q/.

The coarse moduli space M!.v/ of !-Gieseker semistable sheaves E on X with
ch.E/ D v exists as a projective scheme. We always assume that M!.v/ is a fine moduli
space, i.e. any point ŒE� 2M!.v/ is stable and there is a universal family

E 2 Coh.X �M!.v//: (10)

In [4, 12], under certain hypotheses, the authors construct a DT4 virtual class

ŒM!.v/�
vir
2 H2��.v;v/.M!.v/;Z/; (11)

where �.�;�/ is the Euler pairing. Notice that this class may not necessarily be algebraic.
Roughly speaking, in order to construct such a class, one chooses at every point ŒE�

in M!.v/, a half-dimensional real subspace

Ext2C.E;E/ � Ext2.E;E/

of the usual obstruction space Ext2.E; E/, on which the quadratic form Q defined by
Serre duality is real and positive definite. Then one glues local Kuranishi-type models of
the form

�C D �C ı � W Ext1.E;E/! Ext2C.E;E/;

where � is a Kuranishi map of M!.v/ at E and �C is the projection according to the
decomposition

Ext2.E;E/ D Ext2C.E;E/˚
p
�1 � Ext2C.E;E/:

In [12], local models are glued in three special cases:
(1) when M!.v/ consists of locally free sheaves only;
(2) when M!.v/ is smooth;
(3) when M!.v/ is a shifted cotangent bundle of a derived smooth scheme.
And the corresponding virtual classes are constructed using either gauge theory or alge-
bro-geometric perfect obstruction theory.
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The general gluing construction is due to Borisov–Joyce [4]1, based on Pantev–
Töen–Vaquié–Vezzosi’s theory of shifted symplectic geometry [37] and Joyce’s theory
of derived C1-geometry. The corresponding virtual class is constructed using Joyce’s
D-manifold theory (a machinery similar to Fukaya–Oh–Ohta–Ono’s theory of Kuranishi
space structures used in defining Lagrangian Floer theory).

In this paper, all computations and examples will only involve the virtual class con-
structions in situations (2), (3) mentioned above. We briefly review them as follows:
� WhenM!.v/ is smooth, the obstruction sheaf Ob!M!.v/ is a vector bundle endowed

with a quadratic form Q via Serre duality. Then the DT4 virtual class is given by

ŒM!.v/�
vir
D PD.e.Ob;Q//:

Here e.Ob; Q/ is the half-Euler class of .Ob; Q/ (i.e. the Euler class of its real form
ObC), and PD.�/ is its Poincaré dual. Note that the half-Euler class satisfies

e.Ob;Q/2 D .�1/rk.Ob/=2e.Ob/ if rk.Ob/ is even;
e.Ob;Q/ D 0 if rk.Ob/ is odd:

� WhenM!.v/ is a shifted cotangent bundle of a derived smooth scheme, roughly speak-
ing, this means that at any closed point ŒF � 2M!.v/, we have a Kuranishi map of type

�WExt1.F; F /! Ext2.F; F / D VF ˚ V �F ;

where � factors through a maximal isotropic subspace VF of .Ext2.F; F /; Q/. Then
the DT4 virtual class of M!.v/ is, roughly speaking, the virtual class of the perfect
obstruction theory formed by ¹VF ºF 2M!.v/. When M!.v/ is furthermore smooth as a
scheme, it is simply the Euler class of the vector bundle ¹VF ºF 2M!.v/ over M!.v/.

On orientations. To construct the above virtual class (11) with coefficients in Z (instead
of Z2), we need an orientability result for M!.v/, which is stated as follows. Let

L WD det.RHom�M .E;E// 2 Pic.M!.v//; �M WX �M!.v/!M!.v/; (12)

be the determinant line bundle of M!.v/, equipped with a symmetric pairing Q induced
by Serre duality. An orientation of .L; Q/ is a reduction of its structure group (from
O.1;C/) to SO.1;C/ D ¹1º; in other words, we require a choice of square root of the
isomorphism

Q W L˝L! OM!.v/ (13)

to construct the virtual class (11). An orientability result was first obtained for M!.v/

when the CY 4-fold X satisfies Hol.X/ D SU.4/ and H odd.X;Z/ D 0 [11, Thm. 2.2]
and it has recently been generalized to arbitrary CY 4-folds by [7]. Notice that if an
orientation exists, the set of orientations forms a torsor for H 0.M!.v/;Z2/.

1One needs to assume that M!.v/ can be given a .�2/-shifted symplectic structure as in [4,
Claim 3.29] to apply their constructions. In the stable pair case, we show this can be done in
Lemma 2.3.
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2.3. Stable pair invariants on CY 4-folds

The notion of stable pairs on a CY 4-foldX can be defined similarly to the case of 3-folds
[34]. It consists of data

.F; s/; F 2 Coh.X/; sWOX ! F;

where F is a pure one-dimensional sheaf and s is surjective in dimension 1.
For ˇ 2 H2.X;Z/ and n 2 Z, let

Pn.X; ˇ/ (14)

be the moduli space of stable pairs .F; s/ on X such that ŒF � D ˇ and �.F / D n. It is
a projective scheme parametrizing two-term complexes

I D .OX
s
�! F / 2 Db.Coh.X//

in the derived category of coherent sheaves on X .
Similar to moduli spaces of stable sheaves, the stable pair moduli space (14) admits

a deformation-obstruction theory, whose tangent, obstruction and ‘higher’ obstruction
spaces are given by

Ext1.I; I /0; Ext2.I; I /0; Ext3.I; I /0;

where .�/0 denotes the trace-free part. Note that Serre duality gives an isomorphism
Ext10 Š .Ext30/

_ and a non-degenerate quadratic form on Ext20. Moreover, we have

Lemma 2.3. The stable pair moduli space Pn.X;ˇ/ can be given the structure of a .�2/-
shifted symplectic derived scheme in the sense of Pantev–Töen–Vaquié–Vezzosi [37].

Proof. By [34, Thm. 2.7], Pn.X; ˇ/ is a disjoint union of connected components of the
moduli stack of perfect complexes of coherent sheaves of trivial determinant onX , whose
.�2/-shifted symplectic structure is constructed by [37, Thm. 0.1] (see [37, Sect. 3.2,
p. 48] for pull-back to determinant fixed substack).

Let I D .OX�Pn.X;ˇ/ ! F/ be the universal pair. The determinant line bundle

L WD det.RHom�P .I; I/0/ 2 Pic.Pn.X; ˇ//

is endowed with a non-degenerate quadratic form Q defined by Serre duality, where
�P WX � Pn.X; ˇ/! Pn.X; ˇ/ is the projection. As before, the orientability issue for
the pair moduli space Pn.X; ˇ/ is whether the structure group of the quadratic line bun-
dle .L;Q/ can be reduced fromO.1;C/ to SO.1;C/D ¹1º. By [7], these moduli spaces
are always orientable.

Theorem 2.4. Let X be a CY 4-fold, ˇ 2 H2.X;Z/ and n 2 Z. Then Pn.X; ˇ/ has a
virtual class

ŒPn.X; ˇ/�
vir
2 H2n.Pn.X; ˇ/;Z/; (15)

in the sense of Borisov–Joyce [4], depending on the choice of orientation.
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Proof. By Lemma 2.3, Pn.X; ˇ/ has a .�2/-shifted symplectic structure. By [7],
Pn.X; ˇ/ is orientable in the sense stated above. Then we may apply [4, Thm. 1.1] to
Pn.X; ˇ/.

When n D 0, the virtual dimension of the virtual class (15) is zero. We define the
stable pair invariant

P0;ˇ :D
Z
ŒP0.X;ˇ/�vir

1 2 Z;

as the degree of the virtual class.
When n D 1, the (real) virtual dimension of the virtual class (15) is 2, so we consider

insertions as follows. For integral classes i 2 Hmi .X;Z/, 1 � i � n, let

� WHm.X/! Hm�2.P1.X; ˇ//;

�./ WD .�P /�.�
�
X [ ch3.F//;

where �X , �P are the projections from X � P1.X; ˇ/ to the corresponding factors, I D
.��XOX ! F/ is the universal pair and ch3.F/ is the Poincaré dual to the fundamental
cycle of F .

We define the stable pair invariant

P1;ˇ .1; : : : ; n/ WD

Z
ŒP1.X;ˇ/�vir

nY
iD1

�.i /:

2.4. Relations to GW/GV conjecture on CY4

We use the stable pair invariants defined in Section 2.3 to give a sheaf-theoretic approach
to the GW/GV conjecture of Section 2.1.

Conjecture 2.5 (Genus 0). For a suitable choice of orientation, we have

P1;ˇ .1; : : : ; n/ D
X

ˇ1Cˇ2Dˇ
ˇ1;ˇ2�0

n0;ˇ1.1; : : : ; n/ � P0;ˇ2 ;

where the sum is over all possible effective classes, and we set n0;0.1; : : : ; n/ WD 0 and
P0;0 WD 1.

Conjecture 2.6 (Genus 1). For a suitable choice of orientation, we haveX
ˇ�0

P0;ˇ q
ˇ
D

Y
ˇ>0

M.qˇ /n1;ˇ ;

where M.q/ D
Q
k�1.1 � q

k/�k is the MacMahon function and P0;0 WD 1.
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2.5. Heuristic approach to conjectures

In this subsection, we give a heuristic argument to explain why we expect Conjectures 2.5
and 2.6 (and equality (6)) to be true. Even in this heuristic discussion, we ignore questions
of orientation.

Let X be an ‘ideal’ CY4 in the sense that all curves of X deform in families of
expected dimensions, and have expected generic properties, i.e.:
1. Any rational curve inX is a chain of smooth P1’s with normal bundle OP1.�1;�1;0/,

and moves in a compact 1-dimensional smooth family of embedded rational curves,
whose general member is smooth with normal bundle OP1.�1;�1; 0/.

2. Any elliptic curve E in X is smooth, super-rigid, i.e. the normal bundle is L1 ˚L2 ˚
L3 for general degree 0 line bundle Li on E satisfying L1 ˝ L2 ˝ L3 D OE . Fur-
thermore any two elliptic curves are disjoint and disjoint from all families of rational
curves on X .

3. There is no curve in X with genus g � 2.

P0.X; ˇ/ and genus 1 conjecture. Under our ideal assumptions, a one-dimensional
Cohen–Macaulay schemeC supported in one of our families of rational curves has �.OC /
� 1, so for any stable pair I D .OX ! F / 2 P0.X;ˇ/, the sheaf F can only be supported
on some rigid elliptic curves in X . For a rigid elliptic curve E with ŒE�D ˇ and ‘general’
normal bundle (i.e. direct sum of three degree 0 general line bundles on E), its contribu-
tion to the pair invariant isX

m�0

P0;mŒE�q
m
DM.q/; where M.q/ D

Y
k�1

.1 � qk/�k ;

by a localization calculation (see Theorem 5.10). Similarly, if we have n1;ˇ (ˇ 2
H2.X;Z/) many such elliptic curves, then they contribute to pair invariants according
to the formula X

ˇ�0

P0;ˇq
ˇ
D

Y
ˇ>0

M.qˇ /n1;ˇ :

P1.X; ˇ/ and genus 0 conjecture. Given a stable pair I D .OX ! F / 2 P1.X; ˇ/,
F may be supported on a union of rational curves and elliptic curves. Let C WD supp.F /.
Then C D C1 t C2 is a disjoint union of ‘rational curve components’ and ‘elliptic curve
components’. Note that a Cohen–Macaulay scheme D in TotP1.�1; �1; 0/ (resp. in
TotE .L1 ˚ L2 ˚ L3/, where E a smooth elliptic curve and Li ’s are degree 0 general
line bundles on E) satisfies �.OD/ � 1 (resp. �.OD/ � 0).

Thus from the exact sequence

0! OC ! F ! Q! 0;

we know that if C1 ¤ ;, then Q D 0 and F Š OC1tC2 (with �.OC1/ D 1, �.OC2/ D 0).
Note that when C1 D ;, i.e. when F is supported on elliptic curves, once we include
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insertions, these stable pairs do not contribute to the invariantZ
ŒP1.X;ˇ/�vir

�./:

So we only consider the case when F Š OC1tC2 with C1 supported on rational curves in
a one-dimensional family ¹Ctºt2T . We may further assume the support of C1 is smooth
with normal bundle OP1.�1;�1; 0/ due to the presence of insertions, at which point it
must have multiplicity 1 as well.

Since the families of rational curves are disjoint from the elliptic curves, the moduli
space P1.X; ˇ/ of stable pairs is a disjoint union of products of rational curve families
(with curve class ˇ1) and P0.X; ˇ2/ (where ˇ1 C ˇ2 D ˇ). And a direct calculation
shows the corresponding virtual class factors as the product of the fundamental class of
those rational curve families and ŒP0.X; ˇ2/�vir. For  2 H 4.X/, we then haveZ

ŒP1.X;ˇ/�vir
�./ D

X
ˇ1Cˇ2Dˇ
ˇ1;ˇ2�0

n0;ˇ1./ � P0;ˇ2 :

Pn.X; ˇ/ and generating series. For the moduli space Pn;ˇ .X/ of stable pairs with
n � 1, we want to computeZ

ŒPn.X;ˇ/�vir
�./n;  2 H 4.X;Z/;

when X is an ideal CY 4-fold. Let ¹ZiºniD1 be 4-cycles which represent the class  . For
dimensional reasons, we may assume for any i ¤ j the rational curves which meet Zi
are disjoint from those which meet Zj . The insertions cut out the moduli space and pick
up stable pairs whose support intersects all ¹ZiºniD1. We denote the moduli space of such
‘incident’ stable pairs by

Qn.X; ˇI ¹Ziº
n
iD1/ � Pn.X; ˇ/:

Then we claim that

Qn.X; ˇI ¹Ziº
n
iD1/

D

a
ˇ0Cˇ1C���CˇnDˇ

P0.X; ˇ0/ �Q1.X; ˇ1IZ1/ � � � � �Q1.X; ˇnIZn/; (16)

where Q1.X; ˇi IZi / is the moduli space of stable pairs supported on rational curves (in
class ˇi ) which meet Zi .

Indeed, take a stable pair .OX ! F / in Qn.X; ˇI ¹ZiºniD1/. Then F decomposes
into a direct sum

Ln
iD0 Fi , where F0 is supported on elliptic curves and each Fi for

1 � i � n is supported on rational curves which meet Zi . As explained before, a Cohen–
Macaulay scheme C supported in the family of rational curves (resp. elliptic curves)
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satisfies �.OC / � 1 (resp. �.OC / � 0), so �.F0/ � 0 and �.Fi / � 1 for 1 � i � n.
Hence �.F0/ D 0 and �.Fi / D 1 for 1 � i � n. Therefore (16) holds.

Moreover eachQ1.X;ˇi IZi / consists of finitely many rational curves which meetZi ,
whose number is exactly n0;ˇi ./. By counting the number of points in P0.X; ˇ0/ and
Q1.X; ˇi IZi /’s, we obtain

Pn;ˇ ./ WD

Z
ŒPn.X;ˇ/�vir

�./n D

Z
ŒQn.X;ˇ I/�vir

1 D
X

ˇ0Cˇ1C���CˇnDˇ
ˇ0;ˇ1;:::;ˇn�0

P0;ˇ0 �

nY
iD1

n0;ˇi ./:

The above arguments give a heuristic explanation for the formulaX
n;ˇ

Pn;ˇ ./

nŠ
ynqˇ D

Y
ˇ

�
exp.yqˇ /n0;ˇ./ �M.qˇ /n1;ˇ

�
mentioned in Section 1.7.

3. Compact examples

In this section, we verify Conjectures 2.5 and 2.6 for certain compact Calabi–Yau 4-folds.

3.1. Sextic 4-folds

Let X be a smooth sextic 4-fold, i.e. a smooth degree 6 hypersurface of P5. By the
Lefschetz hyperplane theorem, H2.X;Z/ Š H2.P5;Z/ Š Z. In order to verify our con-
jectures, we may use deformation invariance and assume X is general in the (projective)
space P .H 0.P5;O.6/// of degree 6 hypersurfaces.

Genus 0. For the genus 0 conjecture, we have:

Proposition 3.1. Let X be a smooth sextic 4-fold and Œl � 2 H2.X;Z/ be the line class.
Then Conjecture 2.5 is true for ˇ D Œl �; 2Œl�.

Proof. In such cases, P0;ˇ .X/ D 0 by Proposition 3.2. So we only need to show

P1;ˇ .X/.1; : : : ; n/ D n0;ˇ .1; : : : ; n/:

We consider ˇ D 2Œl�, since the degree 1 case follows from the same argument. A Cohen–
Macaulay curve C in X with ŒC � D ˇ has �.OC / D 1. For a stable pair .OX ! F / in
P1.X; ˇ/, there is an exact sequence

0! OC ! F ! Q! 0;

where C is the support of F . Since 1 D �.F / D �.OC /C �.Q/, we must have Q D 0
and F Š OC .
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WhenX is a general sextic, C is either a smooth conic or a pair of distinct intersecting
lines (see e.g. [5, Prop. 1.4]). The morphism2

P1.X; ˇ/!M1;ˇ .X/; I D .OX ! F / 7! F;

to the moduli space M1;ˇ .X/ of one-dimensional stable sheaves, with ŒF � D ˇ and
�.F / D 1, is an isomorphism. Furthermore, under the isomorphism, we have identifi-
cations

Ext1.I; I /0 Š Ext1.F; F / Š C; Ext2.I; I /0 Š Ext2.F; F / D 0;

of deformation and obstruction spaces [5, Prop. 2.2]). So one can identify the virtual
classes

ŒP1.X; ˇ/�
vir
D ŒM1;ˇ .X/�

vir;

for a certain choice of orientation. Then Conjecture 2.5 reduces to our previous conjecture
[13, Conjecture 0.2], which has been verified in this setting in [5, Thm. 2.4].

Genus 1. From [24, Table 2, p. 33], we know genus 1 GV type invariants of X are 0 for
degree 1 and 2 classes. In these cases, pair invariants are obviously 0.

Proposition 3.2. Let X be a smooth sextic 4-fold and Œl � 2 H2.X;Z/ be the line class.
Then Conjecture 2.6 is true for ˇ D Œl �; 2Œl�.

Proof. Let ˇ D Œl �; 2Œl�. For a stable pair .OX ! F / 2 P0.X; ˇ/, there is an exact
sequence

0! OC ! F ! Q! 0;

where C is the support of F and Q is zero-dimensional. A Cohen–Macaulay curve C
in X with ŒC � D ˇ has �.OC / � 1, contradicting �.F / D 0. So P0.X; ˇ/ D ;.

3.2. Elliptic fibration

For Y D P3, we take general elements

u 2 H 0.Y;OY .�4KY //; v 2 H 0.Y;OY .�6KY //:

Let X be a CY 4-fold with an elliptic fibration

� WX ! Y (17)

given by the equation

zy2 D x3 C uxz2 C vz3

2The map is well-defined as OC is stable [5, Prop. 2.2].
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in the P2-bundle

P .OY .�2KY /˚OY .�3KY /˚OY /! Y;

where Œx W y W z� is the homogeneous coordinate of the above projective bundle. A general
fiber of � is a smooth elliptic curve, and any singular fiber is either a nodal or a cuspidal
plane curve. Moreover, � admits a section � whose image corresponds to the fiber point
Œ0 W 1 W 0�.

Let h be a hyperplane in P3, let f be a general fiber of � WX ! Y and set

B D ��h; E D �.P3/ 2 H6.X;Z/: (18)

Genus 0. We consider the stable pair moduli space P1.X; Œf �/ for the fiber class of �
and verify Conjecture 2.5 in this case.

Lemma 3.3. Let Œf � be the fiber class of the elliptic fibration (17). Then we have an
isomorphism

P1.X; Œf �/! X;

under which the virtual class satisfies

ŒP1.X; Œf �/�
vir
D ˙PD.c3.X//;

where the sign corresponds to the choice of orientation in defining the LHS.

Proof. Since Œf � is irreducible, we have a morphism

� W P1.X; Œf �/!M1;Œf �.X/ Š X

to the moduli space M1;Œf �.X/ of one-dimensional stable sheaves on X with Chern char-
acter .0; 0; 0; Œf �; 1/ (which is isomorphic to X by [13, Lem. 2.1]). The fiber of � over F
is P .H 0.X; F // [36, p. 270].

By [13, Lem. 2.2], any F 2 M1;Œf �.X/ is scheme-theoretically supported on a fiber,
and F D .it /�m_x for some x 2 Xt WD ��1.t/, where it W Xt ! X is the inclusion and
mx is the maximal ideal sheaf of x in Xt . By Serre duality, we have

H 1.X; F / Š H 1.Xt ; m
_
x / Š H

0.Xt ; mx/
_
D 0:

Hence H 0.X; F / Š C, and � is an isomorphism.
Next, we compare the obstruction theories. Let I D .OX ! F / 2 P1.X; Œf �/ be a

stable pair. By applying RHomX .�; F / to I ! OX ! F , we obtain a distinguished
triangle

RHomX .F; F /! RHomX .OX ; F /! RHomX .I; F /;

whose cohomology gives an exact sequence

0 D H 1.X; F /! Ext1X .I; F /! Ext2X .F; F /! H 2.X; F / D 0: (19)
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From the distinguished triangle

F ! I Œ1�! OX Œ1�;

we have the diagram

R�.OX /Œ1�

��

R�.OX /Œ1�

��
RHomX .I; F / // RHomX .I; I /Œ1� //

��

RHomX .I;OX /Œ1�

��
RHomX .I; I /0Œ1� RHomX .F;OX /Œ2�

where the horizontal and vertical arrows are distinguished triangles. By taking cones, we
obtain a distinguished triangle

RHomX .I; F /! RHomX .I; I /0Œ1�! RHomX .F;OX /Œ2�;

whose cohomology gives an exact sequence

0! Ext1X .I; F /! Ext2X .I; I /0 ! H 1.X; F /_ D 0: (20)

Combining (19) and (20), we can identify the obstruction spaces

Ext2X .I; I /0 Š Ext2X .F; F /:

Then under the isomorphism �, their virtual classes can be identified. The identification
of the virtual class of M1;Œf �.X/ with the Poincaré dual of the third Chern class of X can
be found in [13, Lem. 2.1].

Then by [13, Prop. 2.3], we have the following

Proposition 3.4. Let � WX ! Y be the elliptic fibration (17). Then Conjecture 2.5 is true
for the fiber class ˇ D Œf � and  D B2, B �E .see (18)/.

Genus 1. We consider the stable pair moduli space P0.X; rŒf �/ for multiple fiber classes
rŒf � (r � 1) of � and confirm Conjecture 2.6 in this case.

Lemma 3.5. For any r 2 Z�1, there exists an isomorphism

P0.X; rŒf �/ Š Hilbr .P3/;

under which the virtual class is given by

ŒP0.X; rŒf �/�
vir
D .�1/r � ŒHilbr .P3/�vir

for a certain choice of orientation in defining the LHS, where ŒHilbr .P3/�vir is the DT3
virtual class [40].
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Proof. The proof is similar to the one in [41, Prop. 6.8]. We show that the natural mor-
phism

��WHilbr .P3/! P0.X; rŒf �/ (21)

is an isomorphism. Let .s W OX ! F / 2 P0.X; rŒf �/ be a stable pair. By the Harder–
Narasimhan and Jordan–Hölder filtrations, we have

0 D F0 � F1 � � � � � Fn D F;

where the quotients Ei D Fi=Fi�1 are non-zero stable sheaves with decreasing slopes

�.E1/

r1
� � � � �

�.En/

rn
:

Here the slope of a zero-dimensional sheaf is defined to be infinity.
Since F is a pure one-dimensional sheaf, so E1 D F1 cannot be zero-dimensional

(r1 � 1). Therefore ch.Ei / D .0; 0; 0; ri Œf �; �.Ei // for some ri � 1. The stability of Ei
implies that it is scheme-theoretically supported on some fiber Xpi D �

�1.pi / of � , i.e.
Ei D .�pi /�.E

0
i / for some �pi W Xpi ,! X and stable sheaf E 0i 2 Coh.Xpi /.

Since s WOX ! F is surjective in dimension 1, so is the composition OX ! F�En.
By adjunction, there is an isomorphism

HomX .OX ; En/ Š HomXpn .OXpn ; E
0
n/ ¤ 0;

which implies that �.E 0n/ � 0, hence �.En/ � 0. Then

0 D �.F / D

nX
iD1

�.Ei / � 0 (22)

implies that �.Ei / D 0 for any i , and hence E 0n Š OXpn [19, Prop. 1.2.7].
By diagram chasing, we obtain a morphism IXpn ! Fn�1 for the ideal sheaf IXpn

� OX of Xpn , which is surjective in dimension 1. Then so is the composition

IXpn ! Fn�1� En�1: (23)

We have the isomorphism

HomX .IXpn ; En�1/ Š HomXpn�1 .�
�
pn�1

IXpn ; E
0
n�1/ ¤ 0:

Notice that IXpn Š �
�Ipn for the ideal sheaf Ipn � OP3 of pn 2 P3 by the flatness of � ,

so

��pn�1IXpn Š

´
��N_

¹pn�1º=P3
Š .OXpn�1 /

˚3 if pn�1 D pn;

OXpn�1 if pn�1 ¤ pn:

In either case, as before, we have E 0n�1 Š OXpn�1 . Moreover the morphism (23) is the
pull-back of a surjection Ipn ! Opn�1 by ��.
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By repeating the above argument, we see that each Ei is isomorphic to OXpi ,
sWOX ! F is surjective and given by the pull-back of a surjection OP3 ! OZ by ��

for some zero-dimensional subscheme Z � P3 with length n. Using the section � of
� WX ! P3, we have the morphism ��WP0.X; rŒf �/! Hilbr .P3/, which gives an inverse
of (21). Therefore the morphism (21) is an isomorphism.

It remains to compare the virtual classes. We take IZ 2Hilbr .P3/ and use the spectral
sequence

Ext�P3.IZ ; IZ ˝R
���OX /) Ext�X .�

�IZ ; �
�IZ/;

where R���OX Š OP3 ˚KP3 Œ�1�. This gives canonical isomorphisms

Ext1X .�
�IZ ; �

�IZ/ Š Ext1P3.IZ ; IZ/;

Ext2X .�
�IZ ; �

�IZ/ Š Ext2P3.IZ ; IZ/˚ Ext2P3.IZ ; IZ/
_:

Furthermore, Kuranishi maps for deformations of ��IZ on X can be identified with
Kuranishi maps for deformations of IZ on P3. Similar to [12, Thm. 6.5], we are done.

Proposition 3.6. Let � W X ! Y be the elliptic fibration (17) and Œf � be the fiber class.
Then Conjecture 2.6 is true for ˇ D rŒf � .r � 1/, i.e.

1X
rD0

P0;rŒf �q
r
DM.q/�20

for a certain choice of orientation in defining the LHS, where M.q/ D
Q
k�1.1 � q

k/�k

is the MacMahon function and we define P0;0Œf � D 1.

Proof. Combining Lemma 3.5 (where we choose the sign to be .�1/r according to the
parity of r) and the generating series for zero-dimensional DT invariants [27, 28, 32], we
obtain the formula. Notice that from [24, Table 7], we have n1;Œf � D �20 and n1;kŒf � D 0
for k ¤ 1 (which can also be checked from GW theory).

3.3. Quintic fibration

We consider a compact Calabi–Yau 4-foldX which admits a quintic 3-fold fibration struc-
ture � W X ! P1, i.e. � is a proper morphism whose general fiber is a smooth quintic
3-fold Y � P4. Examples of such CY 4-folds include a resolution of degree 10 orbifold
hypersurface in P5.1; 1; 2; 2; 2; 2/ and hypersurface of bidegree .2; 5/ in P1 � P4 (see
[24, pp. 33–37]).

In this section, we discuss the irreducible curve class in a quintic fiber for these two
examples. Here we only consider genus 1 invariants.

Genus 1. Conjecture 2.6 predicts that for an irreducible class ˇ and a suitable choice of
orientation, we have

P0;ˇ D n1;ˇ WD GW1;ˇ C
1
24

GW0;ˇ .c2.X//:



Y. Cao, D. Maulik, Y. Toda 550

Note that the genus 1 invariants n1;ˇ for irreducible ˇ are 0 for both quintic fibration
examples in [24], where the computations of GW1;ˇ are based on BCOV theory [3]. The
pair invariant P0;ˇ is obviously 0 in this case since we have

Lemma 3.7. Let ˇ 2 H2.X;Z/ be an irreducible class. The pair moduli space P0.X; ˇ/
is empty if and only if any curve C 2 Chowˇ .X/ in the Chow variety is a smooth rational
curve.

Proof. (/Given a stable pair .s WOX ! F / 2 P0.X;ˇ/, F is a torsion-free sheaf (in fact
a line bundle) over a curveC ŠP1. Since �.F /D 0, we have F DOC .�1/, contradicting
the surjectivity of s in dimension 1.
)/ For C 2 Chowˇ .X/ in an irreducible class ˇ, the restriction map .OX ! OC /

gives a stable pair. Since P0.X; ˇ/ is empty, we have

�.OC / D 1 � h
1.C;OC / > 0;

i.e. h1.C;OC / D 0, which implies that C is a smooth rational curve.

With this lemma, we can verify Conjecture 2.6 for an irreducible classes in more
examples.

Proposition 3.8. Conjecture 2.6 is true for irreducible class ˇ 2 H2.X;Z/ when X is
either

(1) one of the quintic fibrations in [24];
(2) a smooth complete intersection in a projective space;

(3) one of the complete intersections in Grassmannian varieties in [17].

Proof. In all the above cases, any curve C in an irreducible class ŒC �D ˇ is a smooth P1,
by Lemma 3.7, P0;ˇ .X/ D ; and hence P0;ˇ D 0. Meanwhile for those examples in (1)
and (3), Klemm–Pandharipande [24] and Gerhardus–Jockers [17] used BCOV theory [3]
to compute genus 1 GW invariants and found that n1;ˇ D 0. As for (2), we have Popa’s
computation of genus 1 GW invariants using hyperplane principle developed by Li–
Zinger [38, 43].

3.4. Product of an elliptic curve and a CY 3-fold

In this subsection, we consider a CY 4-fold of type X D Y � E, where Y is a projective
CY 3-fold and E is an elliptic curve.

Genus 0. We study Conjecture 2.5 for an irreducible curve class of X D Y � E. If
ˇ D ŒE�, P1;ˇ D 0, the conjecture is obviously true (in fact for any r � 1, one can show
Conjecture 2.5 is true for ˇ D rŒE�). Below we consider curve classes coming from the
CY 3-fold.
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Lemma 3.9. Let ˇ 2 H2.Y;Z/ be an irreducible curve class on a CY 3-fold Y . Then the
pair deformation-obstruction theory of Pn.Y; ˇ/ is perfect in the sense of [1, 29]. Hence
we have an algebraic virtual class

ŒPn.Y; ˇ/�
vir
pair 2 An�1.Pn.Y; ˇ/;Z/:

Proof. For any stable pair IY D .s W OY ! F / 2 Pn.Y; ˇ/ with ˇ irreducible, we know
F is stable [36, p. 270], hence

Ext3Y .F; F / Š HomY .F; F /
_
Š C:

Applying RHomY .�; F / to IY ! OY ! F , we obtain a distinguished triangle

RHomY .F; F /! RHomY .OY ; F /! RHomY .IY ; F /; (24)

whose cohomology gives an exact sequence

0 D H 2.Y; F /! Ext2Y .IY ; F /! Ext3Y .F; F /! 0! Ext3Y .IY ; F /! 0:

Hence ExtiY .IY ; F / D 0 for i � 3 and Ext2Y .IY ; F / Š Ext3Y .F; F / Š C. By truncating
Ext2Y .IY ; F / D C, the pair deformation theory is perfect.

In particular, when n D 1, the virtual class ŒP1.Y; ˇ/�vir
pair has zero degree. We show

the following virtual push-forward formula.

Proposition 3.10. Let ˇ 2 H2.Y;Z/ be an irreducible curve class on a CY 3-fold Y .
Then Z

ŒP1.Y;ˇ/�
vir
pair

1 D

Z
ŒM1;ˇ.Y /�

vir
1;

whereM1;ˇ .Y / is the moduli scheme of one-dimensional stable sheaves on Y with Chern
character .0; 0; 0; ˇ; 1/.

Proof. Since ˇ is irreducible, there is a morphism

f W P1.Y; ˇ/!M1;ˇ .Y /; .OY ! F / 7! F; (25)

whose fiber over ŒF � is P .H 0.Y;F //. Let F!M1;ˇ .Y /� Y be the universal sheaf. Then
the above map identifies P1.Y; ˇ/ with P .�M�F/ where �M WM1;ˇ .Y / � Y !M1;ˇ .Y /

is the projection. Then the universal stable pair is given by

I D .OY�P1.Y;ˇ/
s
�! F�/; F� WD .idY � f /�F ˝O.1/;

where O.1/ is the tautological line bundle on P .�M�F/ and s is the tautological map.
Let �P W P1.Y; ˇ/ � Y ! P1.Y; ˇ/ be the projection. There exists a distinguished

triangle

.RHom�P .F
�;F�/Œ1�/_ ! .RHom�P .I;F

�//_ ! .RHom�P .OY�P1.Y;ˇ/;F
�//_:

(26)
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By considering a derived extension of the morphism f of (25), the first two terms in (26)
are the restriction of cotangent complexes of the corresponding derived schemes to the
classical underlying schemes. They are obstruction theories (see [39, Sect. 1.2]), which fit
into a commutative diagram

.RHom�P .F
�;F�/Œ1�/_ //

��

.RHom�P .I;F
�//_ //

��

.RHom�P .OY�P1.Y;ˇ/;F
�//_

��
f �LM1;ˇ.Y /

��

// LP1.Y;ˇ/
//

��

LP1.Y;ˇ/=M1;ˇ.Y /

��
���1.f �LM1;ˇ.Y //

// ���1LP1.Y;ˇ/
// ���1LP1.Y;ˇ/=M1;ˇ.Y /

where the bottom vertical arrows are truncation functors.
Note the above obstruction theories are not perfect. To kill h�2, as in [20, Sect. 4.4],

we consider the top part of the trace map

t W RHom�P .F
�;F�/Œ1�! R3�P�.OY�P1.Y;ˇ//Œ�2�;

whose cone is .��1.RHom�P .F
�; F�/Œ1�//Œ1�. Then we have a commutative diagram

.R3�P�.OY�P1.Y;ˇ//Œ�2�/
_

t_

��

.R3�P�.OY�P1.Y;ˇ//Œ�2�/
_

˛

��
.RHom�P .F

�;F�/Œ1�/_ //

��

.RHom�P .I;F
�//_ //

��

.RHom�P .OY�P1.Y;ˇ/;F
�//_

�
��1.RHom�P .F

�;F�/Œ1�/
�_ // Cone.˛/

By taking cones, we obtain a distinguished triangle�
��1.RHom�P .F

�;F�/Œ1�/
�_
! Cone.˛/! .RHom�P .OY�P1.Y;ˇ/;F

�//_:

Since .R3�P�.OY�P1.Y;ˇ//Œ�2�/
_ is a vector bundle concentrated in degree �2 and

���1.�/ has cohomology in degree greater than �2, so we have a commutative diagram�
��1.RHom�P .F

�;F�/Œ1�/
�_ //

��

Cone.˛/ //

��

.RHom�P .OY�P1.Y;ˇ/;F
�//_

��
���1.f �LM1;ˇ.Y //

// ���1LP1.Y;ˇ/
// ���1LP1.Y;ˇ/=M1;ˇ.Y /

To kill h1 of the left upper term, we consider the inclusion

OP1.Y;ˇ/Œ1�! ��1.RHom�P .F
�;F�/Œ1�/;
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whose restriction to a closed point I D .OY ! F / induces an isomorphism C !
Hom.F; F /. The cone of the inclusion is � Œ0;1�.RHom�P .F

�;F�/Œ1�/.
Then we have a commutative diagram

Cone.ˇ/ //

��

�
� Œ0;1�.RHom�P .F

�;F�/Œ1�/
�_

��
.RHom�P .OY�P1.Y;ˇ/;F

�//_Œ�1�

ˇ

��

//
�
��1.RHom�P .F

�;F�/Œ1�/
�_ //

��

Cone.˛/

.OP1.Y;ˇ/Œ1�/
_ .OP1.Y;ˇ/Œ1�/

_

As .OP1.Y;ˇ/Œ1�/
_ is a vector bundle concentrated in degree 1, we get a commutative

diagram

.� Œ0;1�
�
RHom�P .F

�;F�/Œ1�/
�_ //

�1

��

Cone.˛/ //

�2

��

Cone.ˇ/Œ1�

�3

��
���1.f �LM1;ˇ.Y //

// ���1LP1.Y;ˇ/
// ���1LP1.Y;ˇ/=M1;ˇ.Y /

It is easy to see that �1 and �2 define perfect obstruction theories. By diagram chasing on
cohomology, �3 defines a perfect relative obstruction theory. Then we apply Manolache’s
virtual push-forward formula [30]:

f�ŒP1.Y; ˇ/�
vir
pair D c � ŒM1;ˇ .Y /�

vir;

where the coefficient c is the degree of the virtual class of the relative obstruction the-
ory �3 and can be shown to be 1 by base-change to a closed point.

Now we come back to the CY 4-fold X D Y � E and show the virtual class
ŒP1.Y; ˇ/�

vir
pair defined using pair deformation-obstruction theory naturally arises in this

setting.

Proposition 3.11. Let X D Y � E be a product of a CY 3-fold Y with an elliptic curve
E. For an irreducible curve class ˇ 2 H2.Y;Z/ � H2.X;Z/, we have an isomorphism

Pn.X; ˇ/ Š Pn.Y; ˇ/ �E:

The virtual class of Pn.X; ˇ/ satisfies

ŒPn.X; ˇ/�
vir
D ŒPn.Y; ˇ/�

vir
pair ˝ ŒE�

for a certain choice of orientation in defining the LHS. Here ŒPn.Y; ˇ/�
vir
pair 2

An�1.Pn.Y; ˇ/;Z/ is the virtual class defined in Lemma 3.9.
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Proof. As ˇ is irreducible, for IX D .s W OX ! E/ 2 Pn.X; ˇ/, E is stable [36, p. 270],
hence E is scheme-theoretically supported on some Y � ¹tº, t 2 E (e.g. [13, Lem. 2.2]).

Let it W Y � ¹tº ! X be the inclusion. Then E D .it /�F for some F 2 Coh.Y /. By
adjunction, we have

HomX .OX ; E/ Š HomY .OY ; F /:

Hence, the morphism

Pn.Y; ˇ/ �E ! Pn.X; ˇ/; (27)
.IY WD .s W i

�
t OX ! F /; t/ 7! .s W OX ! .it /�F / DW IX

is bijective on closed points. Next, we compare their deformation-obstruction theories.
Denote i D it . From the distinguished triangle

i�F ! IX Œ1�! OX Œ1�; (28)

we have the diagram

R�.OX /Œ1�

��

R�.OX /Œ1�

��
RHomX .IX ; i�F / // RHomX .IX ; IX /Œ1� //

��

RHomX .IX ;OX /Œ1�

��
RHomX .IX ; IX /0Œ1� RHomX .i�F;OX /Œ2�

where the horizontal and vertical arrows are distinguished triangles. By taking cones, we
obtain a distinguished triangle

RHomX .IX ; i�F /! RHomX .IX ; IX /0Œ1�! RHomX .i�F;OX /Œ2�: (29)

On the other hand, from the distinguished triangle

IX ! OX ! i�F

and the isomorphism (see e.g. [13, Proposition-Definition 3.3])

Li�i�F Š F ˚ .F ˝N_Y�¹tº=X /Œ1�; where NY�¹tº=X D OY�¹tº;

we can obtain the isomorphism

Li�IX Š IY ˚ F; (30)

which implies that

RHomX .IX ; i�F / Š RHomY .IY ; F /˚ RHomY .F; F /:
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Therefore by (29), we have the distinguished triangle

RHomY .IY ; F /˚ RHomY .F; F /! RHomX .IX ; IX /0Œ1�! RHomX .i�F;OX /Œ2�:

It follows that we have the distinguished triangle

RHomY .IY ; F /! RHomX .IX ; IX /0Œ1�! T; (31)

where T fits into the distinguished triangle

RHomY .F; F /! T ! RHomX .i�F;OX /Œ2�: (32)

By Serre duality, adjunction and degree shift, (32) becomes

T ! RHomY .OY ; F /
_Œ�2�! RHomY .F; F /

_Œ�2�;

whose dual gives a distinguished triangle

RHomY .F; F /Œ2�! RHomY .OY ; F /Œ2�! T _: (33)

Combining (24) and (33), we obtain

T Š RHomY .IY ; F /
_Œ�2�:

Combining this with (31) and taking the cohomological long exact sequence, we have

! Ext1Y .IY ; F /! Ext2X .IX ; IX /0 ! Ext1Y .IY ; F /
_
! :

We claim that the above exact sequence breaks into short exact sequences

0! Ext0Y .IY ; F /! Ext1X .IX ; IX /0 ! C ! 0;

0! Ext1Y .IY ; F /! Ext2X .IX ; IX /0 ! Ext1Y .IY ; F /
_
! 0;

since Ext2Y .IY ;F /ŠC (see the proof of Lemma 3.9) and in view of a dimension counting
by Riemann–Roch. The first exact sequence above implies that the map (27) induces an
isomorphism on tangent spaces. The second exact sequence implies that the obstructions
to deforming stable pairs on LHS of (27) vanish if and only if those on RHS of (27) van-
ish. Therefore, the map (27) induces an isomorphism on formal completions of structure
sheaves of both sides at any closed point. So (27) must be a scheme-theoretical isomor-
phism.

Next, we show Ext1Y .IY ; F / � Ext2X .IX ; IX /0 is a maximal isotropic subspace with
respect to the Serre duality pairing on Ext2X .IX ; IX /0. For u 2 Ext1Y .IY ; F /, the corre-
sponding element in Ext2X .IX ; IX /0 is given by the composition

IX
˛
�! i�IY

i�u
��! i�F Œ1�

ˇŒ1�
��! IX Œ2�;
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where ˛ is the canonical morphism and ˇ is given by (28). For another u0 2 Ext1Y .IY ; F /,
it is enough to show the vanishing of the composition

IX
˛
�! i�IY

i�u
��! i�F Œ1�

ˇŒ1�
��! IX Œ2�

˛Œ2�
��! i�IY Œ2�

i�u
0Œ2�

����! i�F Œ3�
ˇŒ3�
��! IX Œ4�: (34)

Since Ext0Y .F; IY ˝KY / Š Ext3Y .IY ; F /
_ D 0 (see the proof of Lemma 3.9), the com-

position i�F Œ1�
ˇŒ1�
��! IX Œ2�

˛Œ2�
��! i�IY Œ2� can be written as i� . Therefore the composition

i�IY
i�u
��! i�F Œ1�

ˇŒ1�
��! IX Œ2�

˛Œ2�
��! i�IY Œ2�

i�u
0Œ2�

����! i�F Œ3�

vanishes, again because Ext3Y .IY ; F / D 0.
Moreover, a local Kuranishi map of Pn.X; ˇ/ at IX can be identified as

.�IY ; 0/ W Ext0Y .IY ; F / � TtE ! Ext1Y .IY ; F /;

where �IY is a local Kuranishi map of Pn.Y; ˇ/ at IY . Similarly to [12, Thm. 6.5], we
have the desired equality on virtual classes.

Combining the above result with Proposition 3.10, our genus 0 conjecture can be
reduced to Katz’s conjecture [22].

Corollary 3.12. Let X D Y �E be a product of a CY 3-fold Y with an elliptic curve E.
Then Conjecture 2.5 holds for an irreducible curve class ˇ 2 H2.Y;Z/ � H2.X;Z/ if
and only if Katz’s conjecture holds for ˇ.

Proof. To have non-trivial invariants, we only need to consider insertions of the form

 D .1; Œpt�/ 2 H 2.Y;Z/˝H 2.E;Z/:

By Propositions 3.10 and 3.11, we have

P1;ˇ ./ D .1 � ˇ/

Z
ŒP1.Y;ˇ/�

vir
pair

1 D .1 � ˇ/

Z
ŒM1;ˇ.Y /�

vir
1:

Thus Conjecture 2.5 reduces to Katz’s conjecture.

Katz’s conjecture has been verified for primitive classes in complete intersection CY
3-folds [13, Cor. A.6]. So we obtain

Theorem 3.13. Let Y be a complete intersection CY 3-fold in a product of projective
spaces, and X D Y � E be the product of Y with an elliptic curve E. Then Conjecture
2.5 is true for an irreducible curve class ˇ 2 H2.Y;Z/ � H2.X;Z/.

Genus 1. Similar to Lemma 3.5, for X D Y �E and ˇ D rŒE�, we have
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Lemma 3.14. For any r 2 Z�1, there exists an isomorphism

P0.X; rŒE�/ Š Hilbr .Y /;

under which the virtual class is given by

ŒP0.X; rŒE�/�
vir
D .�1/r � ŒHilbr .Y /�vir

for a certain choice of orientation in defining the LHS. Furthermore, their degrees fit into
the generating series

1X
rD0

P0;rŒE�q
r
DM.q/�.Y /;

where M.q/ D
Q
k�1.1 � q

k/�k is the MacMahon function and we define P0;0ŒE� D 1.

We check Conjecture 2.6 for this case.

Theorem 3.15. LetX D Y �E be the product of a CY 3-fold Y with an elliptic curve E.
Then Conjecture 2.6 is true for ˇ D rŒE� 2 H2.X;Z/ for any r � 1.

Proof. By Lemma 3.14, it remains to show n1;ŒE� D �.Y / and n1;rŒE� D 0 if r � 2. Since
genus 0 Gromov–Witten invariants GW0;rŒE�.X/ are 0 for any r � 1, this is equivalent to

1X
rD1

GW1;rŒE�.X/q
r
D �.Y / �

1X
dD1

�.d/

d
qd ;

where �.d/ D
P
i jd i . We have an isomorphism

M 1;0.X; rŒE�/ ŠM 1;0.E; rŒE�/ � Y

for the moduli spaceM 1;0.X;rŒE�/ of genus 1 stable maps toX . Note thatM 1;0.E;rŒE�/

is smooth of expected dimension and consists of �.r/=r points (modulo automorphisms)
(see e.g. [33]). And the genus 1 invariant for the constant map to Y is �.Y /. So
GW1;rŒE�.X/ D �.Y / � �.r/=r .

When the curve class ˇ 2 H2.Y / � H2.X/ comes from Y , we have

Lemma 3.16. Let X D Y �E be the product of a CY 3-fold Y with an elliptic curve E.
Then for ˇ 2 H2.Y / � H2.X/, we have

GW0;ˇ ./ D degŒM 0;0.Y; ˇ/�
vir
�

Z
ˇ

1 �

Z
E

2 if  D 1 ˝ 2 2 H 2.Y /˝H 2.E/I

GW0;ˇ ./ D 0 if  2 H 4.Y / � H 4.X/I GW1;ˇ D 0:
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Proof. We have an isomorphism

M 0;1.X; ˇ/ ŠM 0;1.Y; ˇ/ �E; (35)

under which the virtual class satisfies

ŒM 0;1.X; ˇ/�
vir
Š ŒM 0;1.Y; ˇ/�

vir
˝ ŒE�:

By the divisor equation, one can compute genus 0 GW invariants. M 1;0.X; ˇ/ has a
similar product structure to (35). The obstruction sheaf has a trivial factor TE D OE
in E direction. So genus 1 GW invariants vanish.

Then it is easy to show the following:

Proposition 3.17. Let X D Y � E be the product of a CY 3-fold Y with an elliptic
curve E. Then Conjecture 2.6 is true for any irreducible class ˇ 2 H2.Y / � H2.X/.

Proof. By Lemma 3.16, we know n1;ˇ D 0. By Proposition 3.11, the virtual dimension
of ŒP0.Y; ˇ/�vir

pair is negative, so P0;ˇ D 0.

3.5. Hyperkähler 4-folds

When the CY 4-fold X is hyperkähler, GW invariants on X vanish as they are
deformation-invariant and there are no holomorphic curves for generic complex structures
in the S2-twistor family. Another way to see the vanishing is via the cosection localization
technique developed by Kiem–Li [23].

Roughly speaking, given a perfect obstruction theory [1, 29] on a Deligne–Mumford
moduli stack M , the existence of a cosection

' W ObM ! OM

of the obstruction sheaf ObM makes the virtual class ofM localize to the closed subspace
Z.'/ � M where ' is not surjective. In particular, if ' is surjective everywhere (in GW
theory this is guaranteed by the existence of holomorphic symplectic forms), then the
virtual class ofM vanishes. Moreover, by truncating the obstruction theory to remove the
trivial factor OM , one can define a reduced obstruction theory and reduced virtual class.

To verify Conjectures 2.5 and 2.6 for hyperkähler 4-folds, we only need to show the
vanishing of stable pair invariants of P0.X; ˇ/ and P1.X; ˇ/.

Cosection and vanishing of DT4 virtual classes. Fix a stable pair I 2 Pn.X; ˇ/. By
taking wedge product with the square At.I /2 of the Atiyah class and contraction with the
holomorphic symplectic form � , we get a surjective map

� W Ext2.I; I /0
^

At.I/2
2

�����! Ext4.I; I ˝�2X /
y�
�! Ext4.I; I /

tr
�! H 4.X;OX /:
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In fact, we have

Proposition 3.18. LetX be a projective hyperkähler 4-fold, I be a perfect complex onX
and Q be the Serre duality quadratic form on Ext2.I; I /0. Then the composition map

� W Ext2.I; I /0
^

At.I/2
2

�����! Ext4.I; I ˝�2X /
y�
�! Ext4.I; I /

tr
�! H 4.X;OX /

is surjective if either ch3.I / ¤ 0 or ch4.I / ¤ 0. Moreover,

(1) if ch4.I / ¤ 0, then we have a Q-orthogonal decomposition

Ext2.I; I /0 D Ker.�/˚ChAt.I /2y �i;

where Q is non-degenerate on each subspace;

(2) if ch4.I / D 0 and ch3.I / ¤ 0, then we have a Q-orthogonal decomposition

Ext2.I; I /0 D ChAt.I /2y �; �X ı At.I /i

˚ .ChAt.I /2y �; �X ı At.I /i/?;

where Q is non-degenerate on each subspace. Here �X is the Kodaira–Spencer class
which is Serre dual to ch3.I /.

Proof. See [13, proof of Prop. 2.9].

We claim that the surjectivity of cosection maps leads to the vanishing of virtual
classes for stable pair moduli spaces (it also applies to other moduli spaces, e.g. Hilbert
schemes of curves/points used in DT/PT correspondence [8, 9]).

Claim 3.19. Let X be a projective hyperkähler 4-fold and Pn.X; ˇ/ be the moduli space
of stable pairs with n ¤ 0 or ˇ ¤ 0. Then the virtual class satisfies

ŒPn.X; ˇ/�
vir
D 0:

At the moment, a Kiem–Li type theory of cosection localization for D-manifolds is
not available in the literature. We believe that when such a theory is established, our claim
should follow automatically. Nevertheless, we have the following evidence for the claim.
1. At least when Pn.X; ˇ/ is smooth, Proposition 3.18 gives the vanishing of the virtual

class.
2. If there is a complex analytic version of .�2/-shifted symplectic geometry [37] and

the corresponding construction of virtual classes [4], one could prove the vanishing
result as in GW theory, i.e. taking a generic complex structure in the S2-twistor family
of the hyperkähler 4-fold which does not support coherent sheaves and then vanishing
of virtual classes follows from their deformation invariance.
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4. Non-compact examples

4.1. Irreducible curve classes on local Fano 3-folds

Let Y be a Fano 3-fold. When Y embeds into a CY 4-fold X , the normal bundle of
Y � X is the canonical bundleKY of Y . By the negativity ofKY , there exists an analytic
neighborhood of Y in X which is isomorphic to an analytic neighborhood of Y in KY .
Here we simply consider non-compact CY 4-folds of the form X D KY .

Similar to Lemma 3.9, we have

Lemma 4.1. Let ˇ 2H2.Y;Z/ be an irreducible curve class on a Fano 3-fold Y . Then the
pair deformation-obstruction theory of Pn.Y; ˇ/ is perfect in the sense of [1, 29]. Hence
we have an algebraic virtual class

ŒPn.Y; ˇ/�
vir
pair 2 An.Pn.Y; ˇ/;Z/:

Proof. For any stable pair IY D .s W OY ! F / 2 Pn.Y; ˇ/ with ˇ irreducible, we know
F is stable [36, p. 270], hence

Ext3Y .F; F / Š HomY .F; F ˝KY /
_
D 0:

Applying RHomY .�; F / to IY ! OY ! F , we obtain a distinguished triangle

RHomY .F; F /! RHomY .OY ; F /! RHomY .IY ; F /; (36)

whose cohomology gives an exact sequence

0 D H 2.Y; F /! Ext2Y .IY ; F /! Ext3Y .F; F /! 0! Ext3Y .IY ; F /! 0:

Hence ExtiY .IY ; F / D 0 for i � 2. Then we can apply the construction of [1, 29].

When n D 1, similar to Proposition 3.10, we have

Proposition 4.2. Let ˇ 2 H2.Y;Z/ be an irreducible curve class on a Fano 3-fold Y .
Then

f�ŒP1.Y; ˇ/�
vir
pair D ŒM1;ˇ .Y /�

vir;

where f W P1.Y;ˇ/!M1;ˇ .Y /, .OX ! F / 7! F , is the morphism forgetting the section,
M1;ˇ .Y / is the moduli scheme of one-dimensional stable sheaves E on Y with ŒE� D ˇ
and �.E/ D 1.

Now we come back to the CY 4-fold X D KY . Similar to Proposition 3.11, we have

Proposition 4.3. Let Y be a Fano 3-fold and X D KY . For an irreducible curve class
ˇ 2 H2.X;Z/ Š H2.Y;Z/, we have an isomorphism

Pn.X; ˇ/ Š Pn.Y; ˇ/:

The virtual class of Pn.X; ˇ/ satisfies

ŒPn.X; ˇ/�
vir
D ŒPn.Y; ˇ/�

vir
pair

for a certain choice of orientation in defining the LHS, where ŒPn.Y; ˇ/�vir
pair is the virtual

class defined in Lemma 4.1.
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Proof. The proof is the same as the proof of Proposition 3.11. Just note that as in (29),
there is a distinguished triangle

RHomX .IX ; i�F /! RHomX .IX ; IX /0Œ1�! RHomX .i�F;OX /Œ2�;

where the cohomology of RHomX .IX ; IX /0Œ1� is finite-dimensional as F has compact
support (although X is non-compact) and we may work with a compactification of X .

Genus 0. Combining Propositions 4.2 and 4.3 shows that Conjecture 2.5 for irreducible
curve classes onKY is equivalent to the genus 0 GV=DT4 conjecture [13, Conjecture 0.2]
on KY (see also [6, Conjecture 1.2]), which has been verified in the following cases
[6, Prop. 2.1, 2.3, Thm. 2.7].

Proposition 4.4. Conjecture 2.5 is true for any irreducible curve class ˇ 2H2.KY ;Z/Š
H2.Y;Z/ provided that (i) Y � P4 is a smooth hypersurface of degree d � 4, or (ii)
Y D S � P1 for a toric del Pezzo surface S .

Genus 1. When any curve C in an irreducible class ˇ 2 H2.Y / is a smooth rational
curve, P0.Y; ˇ/ D ; by Lemma 3.7, so P0;ˇ .X/D 0 (by Proposition 4.3). In this case, to
verify Conjecture 2.6, we are reduced to computing GW invariants and show n1;ˇ D 0.

Proposition 4.5. Let Y D P3 and X D KY . Then Conjecture 2.6 is true for any irre-
ducible curve class ˇ 2 H2.X;Z/ Š H2.Y;Z/.

Proof. When Y D P3, n1;ˇ D 0 by [24, Table 1, p. 31].

4.2. Irreducible curve classes on local surfaces

Let .S;OS .1// be a smooth projective surface and

� WX D TotS .L1 ˚ L2/! S (37)

be the total space of the direct sum of two line bundles L1, L2 on S . If we assume that

L1 ˝ L2 Š KS ; (38)

then X is a non-compact CY 4-fold. For a curve class

ˇ 2 H2.X;Z/ Š H2.S;Z/;

we can consider the moduli space Pn.X;ˇ/ of stable pairs on X , which is in general non-
compact. In this section, we restrict to the case when the curve class ˇ is irreducible such
that Li � ˇ < 0, in which case Pn.X; ˇ/ is compact and smooth.

Lemma 4.6. Let S be a smooth projective surface and ˇ 2 H2.S;Z/ be an irreducible
curve class such that KS � ˇ < 0. Then the moduli space Pn.S; ˇ/ of stable pairs on S is
smooth.
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Proof. Similar to the proof of Lemma 4.1, for any stable pair IS D .s W OS ! F / 2

Pn.S; ˇ/ with ˇ irreducible, F is stable, hence

Ext2S .F; F / Š HomS .F; F ˝KS / D 0:

Applying RHomS .�; F / to IS ! OS ! F , we obtain a distinguished triangle

RHomS .F; F /! RHomS .OS ; F /! RHomS .IS ; F /; (39)

whose cohomology gives an exact sequence

0! HomS .F; F /! H 0.F /! HomS .IS ; F /! Ext1S .F; F /

! H 1.F /! Ext1S .IS ; F /! Ext2S .F; F / D 0;

and ExtiS .IS ; F / D 0 for i � 2. We claim the map

Ext1S .F; F /! H 1.F /

above is surjective; then Ext1S .IS ;F /D 0 follows from the exact sequence (so the smooth-
ness of moduli follows).

In fact, we only need to show the surjectivity of

H 1.OC /
id
�! H 1.Hom.F; F // � Ext1S .F; F /! H 1.F /;

where C is the scheme-theoretical support of F . However, the above map is simply mul-
tiplication by the section s, which fits into an exact sequence

H 1.OC /
s
�! H 1.F /! H 1.Q/ D 0;

where Q Š F=s.OS / is zero-dimensional.

Proposition 4.7. Let S be a smooth projective surface and L1, L2 be line bundles on S
such thatL1˝L2ŠKS . Then for any irreducible curve class ˇ 2H2.X;Z/ŠH2.S;Z/
such that Li � ˇ < 0 .i D 1; 2/, we have an isomorphism

Pn.X; ˇ/ Š Pn.S; ˇ/:

And the virtual class satisfies

ŒPn.X; ˇ/�
vir
D ŒPn.S; ˇ/� � e.�RHom�PS .F ;F � L1//

for a certain choice of orientation in defining the LHS. Here

IS D .OS�Pn.S;ˇ/ ! F/ 2 Db.S � Pn.S; ˇ//

is the universal stable pair and �PS WS � Pn.S; ˇ/! Pn.S; ˇ/ is the projection.
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Proof. Under assumptionLi �ˇ < 0 and ˇ is irreducible, as in the proof of [13, Prop. 3.1],
one can show, for the zero section i W S ! X , that the morphism

Pn.S; ˇ/! Pn.X; ˇ/;

IS WD .s W i
�OX ! F / 7! .s W OX ! i�F / DW IX ;

(40)

is bijective on closed points. And we have distinguished triangles

i�F ! IX Œ1�! OX Œ1�;

RHomX .IX ; i�F /! RHomX .IX ; IX /0Œ1�! RHomX .i�F;OX /Œ2�; (41)

Li�IX Š IS ˚ .F ˝ L�11 /˚ .F ˝ L
�1
2 /˚ .F ˝K

�1
S /Œ1�;

where the last isomorphism is deduced similarly to (30).
It follows that we have a distinguished triangle

RHomS .IS ; F /˚ RHomS .F; F ˝ L1/! RHomX .IX ; IX /0Œ1�! T; (42)

where T fits into the distinguished triangle

RHomS .F; F ˝ L2/˚ RHomS .F; F ˝KS /Œ�1�! T ! RHomX .i�F;OX /Œ2�:
(43)

By Serre duality, degree shift and taking duals, (43) becomes

RHomS .F; F ˝ L1/Œ1�˚ RHomS .F; F /Œ2�! RHomS .OS ; F /Œ2�! T _:

Combining this with (39), we obtain a distinguished triangle

RHomS .F; F ˝ L1/Œ1�! RHomS .IS ; F /Œ2�! T _;

whose dual is

T ! RHomS .IS ; F /
_Œ�2�! RHomS .F; F ˝ L1/

_Œ�1�: (44)

By taking cohomology of (44), we obtain exact sequences

0! H 0.T /! Ext2S .IS ; F /
_
! Ext1S .F; F ˝ L1/

_
! H 1.T /

! Ext1S .IS ; F /
_
! HomS .F; F ˝ L1/

_
D 0;

where Exti�1S .IS ; F / D 0 by the proof of Lemma 4.6. Hence

H 0.T / D 0; H 1.T / Š Ext1S .F; F ˝ L1/
_:

By taking cohomology of (42), we obtain

Ext0S .IS ; F / Š Ext1X .IX ; IX /0;

0!Ext1S .F; F˝L1/!Ext2X .IX ; IX /0!H
1.T /!Ext2S .IS ; F /˚Ext2S .F; F˝L1/D0;
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hence also the exact sequence

0! Ext1S .F; F ˝ L1/! Ext2X .IX ; IX /0 ! Ext1S .F; F ˝ L1/
_
! 0:

By the first isomorphism above, we know the map (40) induces an isomorphism on tan-
gent spaces. Moreover since Pn.S; ˇ/ is smooth (Lemma 4.6) and (40) is bijective on
closed points, the map (40) is an isomorphism.

As in Proposition 4.3, we can show Ext1S .F;F ˝L1/ is a maximal isotropic subspace
of Ext2X .IX ; IX /0 with respect to the Serre duality pairing on Ext2X .IX ; IX /0.

Since Ext0S .F;F ˝L1/ D Ext2S .F;F ˝L1/ D 0, Ext1S .F;F ˝L1/ is constant over
Pn.S; ˇ/, it forms a maximal isotropic subbundle of the obstruction bundle of Pn.X; ˇ/
whose fiber over IX 2 Pn.X; ˇ/ is Ext2X .IX ; IX /0. Then the virtual class has the desired
property [12].

It is easy to check Conjectures 2.5 and 2.6 for irreducible curve classes on
TotS .L1 ˚ L2/ in the following setting.

Proposition 4.8. Let S be a del Pezzo surface and L�11 , L�12 be ample line bundles on S
such that L1 ˝ L2 Š KS . Let ˇ 2 H2.X;Z/ Š H2.S;Z/ be an irreducible curve class
on X D TotS .L1 ˚ L2/. Then Conjectures 2.5 and 2.6 are true for ˇ.

Proof. We claim that S does not contain any .�1/ curve. In fact, if C is a .�1/ curve,
then

�2 � deg.L1jC /C deg.L2jC / D deg.KS jC / D �1:

So S is either P2 or P1 � P1, and any curve in an irreducible class is a smooth ratio-
nal curve. By Lemma 3.7, P0.S; ˇ/ D ;, so ŒP0.X; ˇ/�vir D 0 by Proposition 4.7. This
matches Klemm–Pandharipande’s computation [24, pp. 22, 24], i.e. Conjecture 2.6 is true
for ˇ.

As for the genus 0 conjecture, for any stable pair .s W OS ! F / 2 P1.S; ˇ/, F is
stable and supported on some C Š P1 in S . Then F D OC and the morphism

� W P1.S; ˇ/
Š
�!M1;ˇ .S/; .OS ! F / 7! F;

to the moduli space M1;ˇ .S/ of one-dimensional stable sheaves F on S with ŒF � D ˇ

and �.F / D 1 is an isomorphism.
As for the moduli space M 0;0.X; ˇ/ of stable maps, we have isomorphisms

M 0;0.X; ˇ/ ŠM 0;0.S; ˇ/ ŠM1;ˇ .S/;

where the first isomorphism is by the negativity of Li .i D 1; 2/ and the second one is
defined by mapping f W P1 ! S to Of .P1/.

Next, we compare obstruction theories. By Proposition 4.7, the ‘half’ obstruction
space of P1.X; ˇ/ at .s W OX ! OC / is Ext1S .OC ;OC ˝ L1/ which fits into the exact
sequence

0! H 1.C;L1jC /! Ext1S .OC ;OC ˝ L1/! H 0.C;L1jC ˝NC=S /! 0:
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Since S is either P2 or P1 � P1 and ˇ is irreducible, all stable maps are embeddings.
The obstruction space ofM 0;0.X;ˇ/ at f W P1! S isH 1.C;NC=X /ŠH

1.P1; f �TX/
with C D f .P1/, which fits into the exact sequence

0 D H 1.P1; f �TS/! H 1.P1; f �TX/! H 1.P1; f �.L1 ˚ L2//! 0:

Note that

H 1.P1; f �.L1 ˚ L2// Š H
1.C;L1jC /˚H

0.C;L1jC ˝NC=S /
�:

The family version of these computations shows the virtual classes satisfy

ŒP1.X; ˇ/�
vir
D ŒM0;0.X; ˇ/�

vir

up to sign (for each connected component of the moduli space). It is easy to match the
insertions and then verify Conjecture 2.5. More specifically, when S D P2, P1;1.Œpt�/ D
n0;1.Œpt�/ D �1 and when S D P1 � P1, P1;.1;0/.Œpt�/ D n0;.1;0/.Œpt�/ D P1;.0;1/.Œpt�/ D
n0;.0;1/.Œpt�/ D 1 for a certain choice of orientation.

4.3. Small degree curve classes on local surfaces

We learned from discussions with Kool and Monavari [26] (see also [10]) that by using
relative Hilbert schemes and techniques developed in Kool–Thomas [25], one can do
explicit computations of pair invariants in small degrees for non-compact CY 4-folds

TotP2.O.�1/˚O.�2//; TotP1�P1.O.�1;�1/˚O.�1;�1//:

We list the results as follows (where pair invariants are defined with respect to certain
choices of orientation).

If X D TotP2.O.�1/˚O.�2//, then
� P0;1 D P0;2 D 0, P0;3 D �1, P0;4 D 2,
� P1;1.Œpt�/ D �1, P1;2.Œpt�/ D 1, P1;3.Œpt�/ D �1, P1;4.Œpt�/ D 3.
If X D TotP1�P1.O.�1;�1/˚O.�1;�1//, then
� P0;.2;2/ D 1, P0;.2;3/ D 2, P0;.2;4/ D 5, P0;.3;3/ D 10,
� P1;.2;2/.Œpt�/ D 2, P1;.2;3/.Œpt�/ D 5.
Comparing with [24, pp. 22, 24], we see that our Conjectures 2.5 and 2.6 hold in all the
above cases.

5. Local curves

Let C be a smooth projective curve of genus g.C / D g, and

pWX D TotC .L1 ˚ L2 ˚ L3/! C (45)
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be the total space of a split rank 3 vector bundle on it. Assuming that

L1 ˝ L2 ˝ L3 Š !C ; (46)

the variety (45) is a non-compact CY 4-fold. Below we set li :D degLi and may assume
that l1 � l2 � l3 without loss of generality.

Let T D .C�/3 be the three-dimensional complex torus which acts on the fibers of X .
Its restriction to the subtorus

T0 D ¹t1t2t3 D 1º � T

preserves the CY 4-form on X and also the Serre duality pairing on Pn.X;ˇ/. In this sec-
tion, we aim to define equivariant virtual classes of Pn.X;ˇ/ using a localization formula
with respect to the T0-action [12, 13], and investigate their relations to equivariant GW
invariants.

Let � be the point Spec C with trivial T -action, C ˝ ti be the one-dimensional T -
representation with weight 1, and �i 2H�T .�/ be its first Chern class. They are generators
of equivariant cohomology rings:

H�T .�/ D CŒ�1; �2; �3�; H�T0.�/ D
CŒ�1; �2; �3�

.�1 C �2 C �3/
Š CŒ�1; �2�: (47)

5.1. Localization for GW invariants

Let j WC ,! X be the zero section of the projection (45). We have

H2.X;Z/ D ZŒC �;

where ŒC � is the fundamental class of j.C /. For m 2 Z>0, we consider the diagram

C
f //

�
��

C

M h.C;mŒC �/

where C is the universal curve and f is the universal stable map.
The T -equivariant GW invariant of X is defined by

GWh;dŒC �.X/ D GWh;d .X/ :D
Z
ŒMh.C;dŒC �/�

vir
e.�Rh�f �N/ 2 Q.�1; �2; �3/;

where N is the T -equivariant normal bundle of j.C / � X :

N D .L1 ˝ t1/˚ .L2 ˝ t2/˚ .L3 ˝ t3/: (48)

If g.C / > 0, the vanishing of genus 0 GW invariants

GW0;d .X/ D 0; g.C / > 0; d 2 Z>0

follows from M 0.C; d ŒC �/ D ;.



Stable pairs and GV type invariants for CY 4-folds 567

If g.C / D 0, we have

GW0;d .X/ D

Z
ŒM0.P1;d/�

e
�
�Rh�f �.OP1.l1/t1 ˚OP1.l2/t2 ˚OP1.l3/t3/

�
:

For example in the d D 1 case, M 0.P1; 1/ is one point and

GW0;1.X/ D �
�l1�1
1 �

�l2�1
2 �

�l3�1
3 : (49)

In the d D 2 case, a straightforward localization calculation with respect to the .C�/2-
action on P1 gives

GW0;2.X/ D
1

8
�
�2l1�1
1 �

�2l2�1
2 �

�2l3�1
3 ¹.l

2

1 � .l1 � 1/
2
C � � � /��21

C .l
2

2 � .l2 � 1/
2
C � � � /��22 C .l

2

3 � .l3 � 1/
2
C � � � /��23

C l1l2�
�1
1 �

�1
2 C l2l3�

�1
2 �

�1
3 C l1l3�

�1
1 �

�1
3 º: (50)

Here we write l D l for l � 0 and l D �l � 1 for l < 0.

5.2. Localization for stable pairs

Similarly, for m 2 Z�0, we want to define an (equivariant) stable pair invariant

Pn;mŒC�.X/ D ŒPn.X;mŒC �/
T0 �vir

� e.RHom�P .I; I/
mov
0 /1=2; (51)

where ID .OX�Pn.X;mŒC�/! F/ 2Db.X �Pn.X;mŒC �// is the universal stable pair and
�P W X � Pn.X;mŒC �/! Pn.X;mŒC �/ is the projection. Of course, the above equality
is not a definition as the virtual class of the fixed locus as well as the square root needs
justification. We will make this precise in specific cases where we compare with GW
invariants of X .

Let us first describe stable pairs .sWOX ! F / 2 Pn.X;mŒC �/
T which are fixed by the

full torus T : decompose F into T -weight spaces,

p�F D
M

.i1;i2;i3/2Z3

F i1;i2;i3 ;

where the T -weight of F i1;i2;i3 is .i1; i2; i3/. We define an index set

� WD ¹.i1; i2; i3/ 2 Z3�0 W F
�i1;�i2;�i3 ¤ 0º: (52)

We also have the decomposition

p�OX D
M

.i1;i2;i3/2Z3
�0

L
�i1
1 ˝ L

�i2
2 ˝ L

�i3
3

into the direct sum of weight .�i1;�i2;�i3/ factors L�i11 ˝ L
�i2
2 ˝ L

�i3
3 .
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The T -equivariance of s induces morphisms

si1;i2;i3 WL
�i1
1 ˝ L

�i2
2 ˝ L

�i3
3 ! F �i1;�i2;�i3

in Coh.C /which are surjective in dimension 1. It follows that each F �i1;�i2;�i3 is either 0
or can be written as

F �i1;�i2;�i3 D L
�i1
1 ˝ L

�i2
2 ˝ L

�i3
3 ˝OC .Zi1;i2;i3/

for some effective divisor Zi1;i2;i3 � C . Moreover, the p�OX -module structure on F
gives a morphism

F �i1;�i2;�i3 ˝ L�11 ! F �i1�1;�i2;�i3

which commutes with si1;i2;i3 and si1C1;i2;i3 . Similar morphisms with L1 replaced by L2
and L3 exist and have similar commuting properties. Hence, for .i1; i2; i3/ 2 �, we have

Zi1�1;i2;i3 ; Zi1;i2�1;i3 ; Zi1;i2;i3�1 � Zi1;i2;i3 ;

as divisors in C . So the set � of (52) is a three-dimensional Young diagram, which is
finite by the coherence of F .

In general, it is difficult to explicitly determine T0-fixed stable pairs. In fact, a T0-fixed
stable pair is not necessarily T -fixed. Nevertheless, for a T0-fixed stable pair .sWOX!F /,
OCF WD Im s and the corresponding ideal sheaf ICF are actually T -fixed.

Lemma 5.1. Let I D .sW OX ! F / 2 Pn.X; mŒC �/
T0 be a T0-fixed stable pair and

OCF WD Im s � F . Then the ideal sheaf ICF � OX is T -fixed.

Proof. Since ICF equals H0.I /, it is T0-fixed. For t 2 T , we have the diagram

0 // ICF // OX

Š

��

// OCF // 0

0 // t�ICF // t�OX // t�OCF // 0

The above diagram induces a morphism u 2 Hom.ICF ; t
�OCF /. It is enough to show

u D 0. For a general point c 2 C , let Xc D p�1.c/ D C3 be the fiber of p at c. Then
ICF jXc is an ideal sheaf of T0-fixed zero-dimensional subscheme of C3. Then it is also
T -fixed by [2, Lemma 4.1]. This implies that the morphism restricted toXc is a zero map.
Then Imu� t�OCF is 0 on the general fiber of p, hence ImuD 0 by the purity of CF .

Another convenient way to determine T0-fixed stable pairs is when Pn.X;mŒC �/T is
smooth and HomX .I; F /T0 D HomX .I; F /T for any I D .OX ! F / 2 Pn.X;mŒC �/

T

(see e.g. [35, Sect. 3.3] on toric 3-folds). Then one has Pn.X;mŒC �/T D Pn.X;mŒC �/T0 .
In the examples below, we will explicitly determine the T0-fixed locus, mainly using
Lemma 5.1.
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5.3. P1;mŒC�.X/ and genus 0 conjecture

Let C D P1 be a smooth rational curve and X D OP1.l1; l2; l3/ with l1 C l2 C l3 D �2.
This serves as the local model for a neighborhood of a rational curve in a CY 4-fold.

For some special choice of .l1; l2; l3/, we can determine P1;mŒC�.X/ for all m.

Proposition 5.2. If X D OP1.�1;�1; 0/, then P1;mŒP1�.X/ is well-defined and satisfies

P1;ŒP1�.X/ D ˙�
�1
3 ; P1;mŒP1�.X/ D 0 when m > 1:

If X D OP1.�2; 0; 0/, then P1;mŒP1�.X/ is well-defined and satisfies

P1;ŒP1�.X/ D ˙
�1

�2�3
; P1;mŒP1�.X/ D 0 when m > 1:

Proof. Let .s W OX ! F / be a T0-fixed stable pair and OCF D Im.s/. Then

1 D �.F / D �.OCF /C �.F=OCF /:

So �.OCF / D 1 or 0. By Lemma 5.1, .s W OX � OCF / is T -fixed. From the characteri-
zation of T -fixed stable pairs, it is of the form

OX �
M

.i1;i2;i3/2�

OP1.l1/
�i1 ˝OP1.l2/

�i2 ˝OP1.l3/
�i3 ˝OP1.Zi1;i2;i3/:

If .l1; l2; l3/D .�1;�1;0/ or .�2;0;0/, it is obvious that the only possibility is �.OCF /D
1 (so F Š OCF ) and CF is the zero section of X . So P1.X;mŒP1�/ D ; unless m D 1.

By (51), we have

P1;ŒP1�.X/ D ˙

q
.�1/

1
2 ext2

X
.IP1 ;IP1 /0 � eT0.Ext2X .IP1 ; IP1/0/

eT0.Ext1X .IP1 ; IP1/0/

D ˙
eT0.H

1.P1; L1 ˝ t1 ˚ L2 ˝ t2 ˚ L3 ˝ t3//

eT0.H
0.P1; L1 ˝ t1 ˚ L2 ˝ t2 ˚ L3 ˝ t3//

:

Then the calculation is straightforward.

By comparing the above computations with the corresponding GW invariants, we
obtain the following equivariant analogue of Conjecture 2.5 (note that from the above
proof, we know P0;mŒC�.X/ D 0 for m � 1 since P0.X;mŒC �/ D ;).

Corollary 5.3. Let X be OP1.�1;�1; 0/ or OP1.�2; 0; 0/. Then

GW0;m.X/ D
X

kjm;k�1

1

k3
P1;.m=k/ŒP1�.X/

for suitable choices of orientation in defining the RHS.
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Proof. If X D OP1.�1;�1; 0/, by the Aspinwall–Morrison formula we have

GW0;m.X/ D
1

m3
��13 :

If X D OP1.�2; 0; 0/, from GW invariants of KP1 (e.g. [31, Thm 1.1]) we can conclude
that

GW0;m.X/ D
1

m3
�
�1

�2�3
:

Comparing this with Proposition 5.2, we are done.

For a general local curve X D OP1.l1; l2; l3/, we study P1.X; mŒP1�/ for m D 1; 2
as follows.

Degree 1 class. When m D 1, it is easy to show that the canonical section

.s W OX � OP1/

gives the only T0-fixed stable pair in P1.X; ŒP1�/. Similar to Proposition 5.2, we have

P1;ŒP1�.X/ D
eT0.H

1.P1; L1 ˝ t1 ˚ L2 ˝ t2 ˚ L3 ˝ t3//

eT0.H
0.P1; L1 ˝ t1 ˚ L2 ˝ t2 ˚ L3 ˝ t3//

D �
�l1�1
1 �

�l2�1
2 �

�l3�1
3 ;

which coincides with the corresponding GW invariant (49). Here we have chosen the plus
sign in defining P1;ŒP1�.X/.

Degree 2 class. When m D 2, let

.s W OX ! F / 2 P1.X; 2ŒP
1�/

be a T0-fixed stable pair. Then F is thickened in one of the Li -directions, i.e.

p�F D F0 ˚ .Fi ˝ t
�1
i /;

where F0, Fi are line bundles on P1, hence F is also T -fixed. As the T -weight of Fi
is not of the form .l; l; l/, T0-invariant sections of F are also T -invariant. So we have a
commutative diagram

OP1 ˝ L
�1
i

s0 //

D

��

F0 ˝ L
�1
i

�

��
L�1i

si // Fi ˝ t�1i

where s0 and si are injective, and surjective in dimension 1, � defines the p�OX -module
structure (which is also injective, and surjective in dimension 1 by the diagram).
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Denote F0 D OP1.d0/ and F 0i D Fi ˝ Li D OP1.di /. Then the above diagram is
equivalent to a commutative diagram

OP1
s0 //

D

��

OP1.d0/

�

��
OP1

si // OP1.di /

where s0, si and � are injective. These impose conditions

0 � d0 � di ; d0 C di D li � 1;

where the last equality is because �.F / D 1. It is not hard to show

Lemma 5.4. We have an isomorphism

P1.X; 2ŒP
1�/T0

Š
�!

3a
iD1

a
.d0;di /2Z2

d0CdiDli�1
0�d0�.li�1/=2

Pic.d0;di /.P1/ � P .H 0.OP1.d0///; (53)

where Pic.a;b/.P1/ denotes the moduli space of triples

.L;L0; �/; .L;L0/ 2 Pica.P1/ � Picb.P1/; �WL ,! L0;

and � is an inclusion of sheaves.

To determine the virtual class ŒP1.X; 2ŒP1�/T0 �vir and the square root in (51), we take
a T0-fixed stable pair I D .s W OX ! F / and view it as an element in the T0-equivariant
K-theory of X . Then

�.I; I /0 D �.F; F / � �.OX ; F / � �.F;OX / 2 KT0.pt/;

where both sides can be written using grading into T0-weight spaces.
Similar to [13, Sect. 4.4], we set

�.F; F /1=2 WD �.j�F0; j�F0/C �.j�F0; j�Fi /t
�1
i ;

�.I; I /
1=2
0 WD �.F; F /1=2 � �.OX ; F /;

(54)

where F D F0 C Fi ˝ t�1i 2 KT0.X/ and j is inclusion of the zero section of X .
The T0-fixed and movable part satisfies

�.I; I /
1=2;fix
0 D �.F; F /1=2;fix

� �.OP1 ;OP1.d0//;

�.I; I /
1=2;mov
0 D �.F; F /1=2;mov

� �.OP1 ;OP1.di � li // � t
�1
i ;

where �.F; F /1=2;fix and �.F; F /1=2;mov were computed in [13, Sect. 4.4]. In particular,

dimC �.F; F /
1=2;fix

D 1 � di C d0; dimC �.OP1 ;OP1.d0// D d0 C 1:
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So dimC.��.I; I /
1=2;fix
0 /D di is the dimension of P1.X; 2ŒP1�/T0 . Thus the virtual class

of the associated T0-fixed locus P1.X; 2ŒP1�/T0 may be defined to be its usual fundamen-
tal class.

We can now give a definition of P1;2ŒP1�.X/ 2 Q.�1; �2/ based on the localization
formula (51) and the above discussion. Denote by

.F0;F
0
i ; �/; �WF0 ,! F 0i ;

the universal object on Pic.d0;di /.P1/ � P1, where F0; F 0i are line bundles on
Pic.d0;di /.P1/� P1 and � is the universal injection. Let Fi :D F 0i �L

�1
i , and consider its

push-forward

j�Fi 2 Coh.Pic.d0;di /.P1/ �X/; i D 1; 2; 3:

From (51) and (54), we define P1;2ŒP1�.X/ as an element in Q.�1; �2/ by

P1;2ŒP1�.X/ WD

3X
iD1

X
.d0;di /2Z2

d0CdiDli�1
0�d0�.li�1/=2

�Z
Pic.d0;di /.P1/

eT0.N1/ �

Z
P.H0.OP1 .d0///

eT0.N2/

�
;

(55)
where

N1 WD RHom�1.j�F0; j�F0/
mov
C RHom�1.j�F0; j�Fi � t

�1
i /mov;

N2 WD �R.�2/�.OPd0�P1.1; di � li / � t
�1
i /:

Here �1 W Pic.d0;di /.P1/�X ! Pic.d0;di /.P1/ and �2 W Pd0 � P1! Pd0 are the natural
projections. and we have used the isomorphism (53).

In the above definition, the second integral can be easily shown to be 1 and the first
one has been explicitly determined before [13, Corollary 4.9]. So we obtain

Proposition 5.5. Let X D OP1.l1; l2; l3/ with l1 C l2 C l3 D �2 and l1 � l2 � l3. Then

P1;2ŒP1�.X/ D� �
�2l1�2
1 �

�2l2�2
2 .�1 C �2/

�2l3�2

�

� X
1�k�l1;

k�l1 .mod2/

A.l1; l2; l3; k/C
X

1�k�l2;
k�l2 .mod2/

B.l1; l2; l3; k/
�
;

where

A.l1; l2; l3; k/ WD ReshD0¹h�k.��1 C h/2.�2 C h/kCl2.��1 � �2 C h/kCl3

� .��1 C �2 C h/
l1�l2�k.�2�1 � �2 C h/

l1�l3�k.�2�1 C h/
k�2�2l1º;

B.l1; l2; l3; k/ WD ReshD0¹h�k.��2 C h/2.�1 C h/kCl1.��2 � �1 C h/kCl3

� .��2 C �1 C h/
l2�l1�k.�2�2 � �1 C h/

l2�l3�k.�2�2 C h/
k�2�2l2º:
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We pose the following equivariant version of Conjecture 2.5 (note in this case
P0;ŒP1�.X/ D 0 as �.OP1/ > 0). It is consistent with our previous conjecture on one-
dimensional stable sheaves [13, Conj. 4.10].

Conjecture 5.6. Let X D OP1.l1; l2; l3/ for l1 C l2 C l3 D �2. Then

GW0;2.X/ D P1;2ŒP1�.X/C
1
8
P1;ŒP1�.X/:

Combining Proposition 5.5 and [13, Thm. 4.12], we can verify the conjecture in a
large number of examples.

Theorem 5.7. Conjecture 5.6 is true if jl1j � 10 and jl2j � 10.

5.4. P0;mŒC�.X/ and genus 1 conjecture

To complete the heuristic argument for our genus 1 conjecture in Section 2.5, we consider
X D TotC .L1˚L2˚L3/ where C is an elliptic curve and L1˝L2˝L3 Š !C ŠOC .

Lemma 5.8. Let I �OX be the ideal sheaf of a closed subschemeZ �X with dimZ � 1.
Then we have canonical isomorphisms

Ext1X .I; I /0 Š H
0.X;Ext1X .I; I //; (56)

Ext2X .I; I /0 Š H
0.X;Ext2X .I; I //˚H

1.X;Ext1X .I; I //:

Furthermore, if p�Ext1X .I; I / and p�Ext2X .I; I / are locally free, then

H 1.X;Ext1X .I; I // Š H
0.X;Ext2X .I; I //

_:

And H 0.X; Ext2X .I; I // and H 1.X; Ext1X .I; I // are maximal isotropic subspaces of
Ext2X .I; I /0 with respect to the Serre duality pairing.

Proof. We have the local-to-global spectral sequence

E
p;q
2 D Hp.X;Ext

q
X .I; I /0/) ExtpCqX .I; I /0:

And

Ext0X .I; I /0 D 0; Ext�1X .I; I /0 Š Ext�1X .I; I /

are supported on Z. Therefore Ep;02 D 0 and Ep;q2 D 0 for p � 2, q � 1. Then the
above spectral sequence degenerates and (56) holds. The latter statement follows from
the adjunction

ExtiX .p
�OC ;Ext

j
X .I; I // D ExtiC .OC ; p�Ext

j
X .I; I //;

and the Grothendieck duality

Rp�RHomX .I; I /0Œ4� Š RHomC .Rp�RHomX .I; I /0; !C Œ1�/

for the projection p W X ! C of (45).
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We describe the torus fixed locus P0.X;mŒC �/T0 as follows.

Lemma 5.9. Let C be an elliptic curve and Li 2 Pic0.C /. Then .OX ! F / 2

P0.X;mŒC �/ is T0-fixed if and only if it is of the form

OX �
M

.i1;i2;i3/2�

L
�i1
1 ˝ L

�i2
2 ˝ L

�i3
3 (57)

for some three-dimensional Young diagram � � Z3�0. In particular, in this case

P0.X;mŒC �/
T
D P0.X;mŒC �/

T0 :

Proof. The stable pair (57) is obviously T -fixed, hence T0-fixed. Conversely, for a T0-
fixed stable pair .sWOX ! F / with �.F / D 0, we denote OZ D Im s and then IZ is
T -fixed by Lemma 5.1. It follows that OX � OZ is of the form

OX �
M

.i1;i2;i3/2�

L
�i1
1 ˝ L

�i2
2 ˝ L

�i3
3 ˝OC .Zi1;i2;i3/:

Since c1.Li / D 0 and F=OZ is zero-dimensional, we have

0 D �.F / D �.OZ/C �.F=OZ/ � �.F=OZ/ � 0:

So F Š OZ and Zi1;i2;i3 D 0.

We determine stable pair invariants for X D TotC .L1 ˚ L2 ˚ L3/ when the line
bundles Li 2 Pic0.C / over the elliptic curve C are general.

Theorem 5.10. LetC be an elliptic curve,Li 2 Pic0.C / .i D 1;2;3/ general line bundles
satisfying L1 ˝ L2 ˝ L3 Š !C and X D TotC .L1 ˚ L2 ˚ L3/. Then the stable pair
invariants P0;mŒC�.X/ of (51) are well-defined and fit into a generating seriesX

m�0

P0;mŒC�.X/ q
m
DM.q/;

where M.q/ WD
Q
k�1.1 � q

k/�k is the MacMahon function.

Proof. By Lemma 5.9, P0.X; mŒC �/T0 is the finite set of three-dimensional partitions
of m, and any .s W OX ! F / 2 P0.X; mŒC �/

T0 satisfies F Š OW for some Cohen–
Macaulay curve W in X . We denote by I the ideal sheaf of W .

Let U � C be an open subset on which the Li are trivial. Then p�1.U / Š U � C3

and I jp�1.U / is isomorphic to ��IZ for the T -fixed zero-dimensional subschemeZ �C3

corresponding to �. Therefore we have an isomorphism of T -equivariant sheaves on U ,

p�Ext
k
X .I; I /jU Š ExtkC3.IZ ; IZ/˝C OU : (58)

Let

ExtkC3.IZ ; IZ/ D
M

.i1;i2;i3/2Z3

V ki1;i2;i3 ˝ t
i1
1 t

i2
2 t

i3
3
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be the decomposition into T -weight spaces. By (58), we have

p�Ext
k
X .I; I / Š

M
.i1;i2;i3/2Z3

V ki1;i2;i3 ˝ L
i1
1 ˝ L

i2
2 ˝ L

i3
3 ˝ t

i1
1 t

i2
2 t

i3
3 :

The relation (46) and Lemma 5.8 imply that

Ext1X .I; I /
T0
0 D

M
i2Z

V 1i;i;i ; Ext2X .I; I /
T0
0 D

M
i2Z

V 1i;i;i ˚ V
2
i;i;i :

By [2, Lemma 4.1], we have V 1i;i;i D V
2
i;i;i D 0 .note .V 2i;i;i /

_ Š V 1
�i;�i;�i /. Therefore

ŒP0.X;mŒC �/
T0 �vir

D ŒP0.X;mŒC �/�:

For the movable part, there are decompositions

Ext1X .I; I /
mov
0 D

M
.i1�i3;i2�i3/¤.0;0/

V 1i1;i2;i3 ˝H
0.L

i1�i3
1 ˝ L

i2�i3
2 /˝ t

i1�i3
1 t

i2�i3
2 ;

Ext2X .I; I /
mov
0

D

M
.i1�i3;i2�i3/¤.0;0/

.V 1i1;i2;i3 ˚ V
2
i1;i2;i3

/˝H 0.L
i1�i3
1 ˝ L

i2�i3
2 /˝ t

i1�i3
1 t

i2�i3
2 :

For a general choice of .L1; L2/, we have H 0.La1 ˝ L
b
2/ D H

1.La1 ˝ L
b
2/ D 0 for any

.a; b/ ¤ .0; 0/, so the movable part also vanishes. Thus

P0;mŒC�.X/ D ].P0.X;mŒC �/
T0/;

which is the number of three-dimensional partitions of m.

6. Appendices

6.1. Stable pairs and one-dimensional sheaves for irreducible curve classes

When ˇ 2 H2.X;Z/ is an irreducible curve class on a smooth projective CY 4-fold X ,
we have a morphism

�n W Pn.X; ˇ/!Mn;ˇ .X/

to the moduli scheme of one-dimensional stable sheaves with Chern character
.0;0;0;ˇ;n/ (e.g. [36, p. 270]), whose fiber over ŒF � is P .H 0.X;F //. Note thatMn;ˇ .X/

is in general a stack instead of scheme when ˇ is arbitrary. The virtual dimension of
Mn;ˇ .X/ satisfies

vir:dimR.Mn;ˇ .X// D 2;

by [4, 13]. One could use the virtual class to define invariants.
For integral classes i 2 Hmi .X;Z/, 1 � i � l , let

� WHm.X/! Hm�2.Mn;ˇ .X//; �./ D �P�.�
�
X [ ch3.F//;
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where �X , �M are the projections from X � Mn;ˇ .X/ to the corresponding factors,
F ! X �Mn;ˇ .X/ is the universal sheaf, and ch3.F/ is the Poincaré dual to the fun-
damental cycle of F .

Then we define the DT4 invariant by

DT4.n; ˇ j 1; : : : ; l / WD
Z
ŒMn;ˇ.X/�

vir

lY
iD1

�.i /:

We propose the following conjecture.

Conjecture 6.1. For an irreducible class ˇ 2 H2.X;Z/, the invariants

DT4.n; ˇ j 1; : : : ; l /

are independent of the choice of n for a certain choices of orientation in defining them.

In all compact examples studied in this paper, one can check that Conjecture 6.1 holds.
In particular, when X D Y � E is the product of a CY 3-fold Y with an elliptic curve E
and the irreducible class ˇ 2 H2.Y;Z/ � H2.X;Z/ sits inside Y , then Conjecture 6.1
reduces to a special case of the multiple cover formula ([21, Conjecture 6.20], [41, Con-
jecture 6.3])

Nn;ˇ D
X

k�1; kj.n;ˇ/

1

k2
N1;ˇ=k

for any ˇ in a CY 3-fold Y , where Nn;ˇ 2 Q is the generalized DT invariant [21] which
counts one-dimensional semistable sheaves E on Y with ŒE� D ˇ, �.E/ D n. The above
formula is proved when ˇ is primitive in [42, Lemma 2.12] (see also [13, Appendix A]).

It is an interesting question to define a ‘generalized DT4 type invariant’ counting
semistable sheaves on CY 4-folds and search for a similar multiple cover formula on CY
4-folds.

6.2. An orientability result for moduli spaces of stable pairs on CY 4-folds

Let X be a smooth projective CY 4-fold and c 2 H even.X/. For a moduli stack Mc of
coherent sheaves on X with Chern character c, we define

L WD det.R.pM /�RHom.F ;F//

to be the determinant line bundle, where F ! Mc � X is the universal sheaf of Mc and
pM WMc �X!Mc is the projection. By Serre duality, we have a non-degenerate pairing

Q W L �L! OMc ;

which defines an O.1;C/-structure on L. The quadratic line bundle .L; Q/ is called
orientable if its structure group can be reduced to SO.1; C/ D ¹1º. An orientability
result is recently proved on arbitrary CY 4-folds [7]; the proof uses involved tools like
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semi-topological K-theory. To be self-contained, we include here a simpler proof of an
orientability result for CY 4-folds with the technical assumptions Hol.X/ D SU.4/ and
H odd.X;Z/ D 0.

Lemma 6.2. LetX be a CY 4-fold with Hol.X/DSU.4/ andH odd.X;Z/D 0. LetMc be
a finite type open substack of the moduli stack of coherent sheaves with Chern character
c 2 H even.X/. Then the quadratic line bundle .L;Q/ is orientable.

Proof. By the work of Joyce–Song [21, Thm. 5.3], the moduli stack Mc is 1-isomorphic
to a finite type moduli stack of holomorphic vector bundles on X via Seidel–Thomas
twists, under which the universal family can be identified (so is the determinant line
bundle and Serre duality pairing). Thus we may assume Mc to be a moduli stack of
(rank n) holomorphic bundles without loss of generality.

Fix a base point x0 2 X . A framing � of a vector bundle E is an isomorphism

� W Ejx0 Š Cn:

There is a natural GL.n;C/-action on � changing the framing.
LetM framed

c denote the moduli stack of framed holomorphic bundles with Chern char-
acter c, on which GL.n;C/ acts by changing framings. Note that M framed

c is a scheme as
the stabilizer is trivial and we have a 1-isomorphism

ŒM framed
c =GL.n;C/� ŠMc ; .E; �/ 7! E;

of Artin stacks. The universal family

E !M framed
c �X

descends to the universal sheaf F of Mc . Let

L WD det.Rp�RHom.E;E//

be the determinant line bundle of M framed
c , where p WM framed

c � X !M framed
c is the pro-

jection. One may reduce the orientability problem of Mc to the orientability of (L; Q/,
where Q is the quadratic form on L defined by Serre duality.

We view a holomorphic bundle as an integrable @ connection on its underlying topo-
logical bundle. Then there is a natural embedding of M framed

c (with induced complex
analytic topology)

M framed
c ,! eBE

into the space eB WD A �G Ex0 of framed (not necessarily integrable) connections on the
underlying topological bundle E. The determinant line bundle L on M framed

c is the pull-
back of a line bundle LeB on eBE defined as the determinant of the index bundle of certain
twisted Dirac operators, and the quadratic form Q on L extends to LeB defined using the
spin structure of X (see [11, pp. 50–51]). By [11, Thm. 1.3], the quadratic line bundle
.LeB ;Q/ is orientable. Hence we are done.

Then orientability for moduli spaces of stable pairs follows from the orientability of
moduli stacks of one-dimensional sheaves.
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Theorem 6.3. Let X be a CY 4-fold with Hol.X/ D SU.4/ and H odd.X;Z/ D 0. Then
for any ˇ 2 H2.X;Z/ and n 2 Z, the quadratic line bundle .L; Q/ over Pn.X; ˇ/ is
orientable.

Proof. There is a morphism

� W Pn.X; ˇ/!M.0; 0; 0; ˇ; n/; �.F; s/ D F;

to the moduli stack of one-dimensional sheaves on X with Chern character .0; 0; 0; ˇ; n/.
Parallel to the quadratic line bundle .L D det.R.�P /�RHom.I; I/0/; Q/ over

Pn.X; ˇ/, there exists a determinant line bundle

LM D det.R.�M /�RHom.F ;F//

with a quadratic form QM over M.0; 0; 0; ˇ; n/, where �M W M.0; 0; 0; ˇ; n/ � X !
M.0; 0; 0; ˇ; n/ is the projection, and we use F to denote the universal sheaf for both
Pn.X; ˇ/ and M.0; 0; 0; ˇ; n/.

Via the morphism �, we have an isomorphism

��LM Š det.R.�P /�RHom.F ;F//; (59)

where �P W X � Pn.X; ˇ/! Pn.X; ˇ/ is the projection.
Since I D .OX�Pn.X;ˇ/ ! F/, we have a distinguished triangle

RHom.F ;F/! RHom.OX�Pn.X;ˇ/;F/! RHom.I;F/;

which gives an isomorphism

det.R.�P /�RHom.F ;F//˝ det.R.�P /�RHom.I;F//

Š det.R.�P /�RHom.OX�Pn.X;ˇ/;F// (60)

between determinant line bundles.
Similarly, from the distinguished triangle

RHom.I;F/! RHom.I; I/0Œ1�! RHom.F ;OX�Pn.X;ˇ//Œ2�;

we have an isomorphism

det.R.�P /�RHom.I;F//˝ det.R.�P /�RHom.F ;OX�Pn.X;ˇ///

Š .det.R.�P /�RHom.I; I/0//�1: (61)

Combining (60), (61) and Serre duality, we obtain

det.R.�P /�RHom.I; I/0/ Š det.R.�P /�RHom.F ;F//;

under which the natural quadratic forms on them are identified.
By Lemma 6.2, the structure group of the quadratic line bundle .LM ; QM / can be

reduced to SO.1;C/, and so can .L;Q/ via the pull-back (59).
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