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Abstract. We establish a new family of Carleman inequalities for wave operators on cylindrical
spacetime domains involving a potential that is critically singular, diverging as an inverse square
on all the boundary of the domain. These estimates are sharp in the sense that they capture both
the natural boundary conditions and the natural H1-energy. The proof is based around three key
ingredients: the choice of a novel Carleman weight with rather singular derivatives on the boundary,
a generalization of the classical Morawetz inequality that allows for inverse-square singularities,
and the systematic use of derivative operations adapted to the potential. As an application of these
estimates, we prove a boundary observability property for the associated wave equations.
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1. Introduction

Our objective in this paper is to derive Carleman estimates for wave operators with crit-
ically singular potentials, that is, with potentials that scale like the principal part of the
operator. More specifically, we are interested in the case of potentials that diverge as an
inverse square on a convex hypersurface.

For the present paper, we consider the model operator

�� WD �C
�.1 � �/

.1 � jxj/2
; (1.1)

where � WD �@t t C� is the wave operator, the spatial domain is the unit ball B1 of Rn,
and the constant parameter � 2 R measures the strength of the potential.
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1.1. Background

To understand why we say “sharp”, let us consider the Cauchy problem associated with
this operator,

��u D 0 in .�T; T / � B1;
u.0; x/ D u0.x/; @tu.0; x/ D u1.x/: (1.2)

In spherical coordinates, the equation reads

�@t tuC @rruC
n � 1

r
@ruC

�.1 � �/

.1 � r/2
uC

1

r2
�Sn�1u D 0;

where�Sn�1 denotes the Laplacian on the unit sphere. The potential is critically singular
at r D 1, where, according to the classical theory of Frobenius for ODEs, the characteristic
exponents of this equation are � and 1 � �. Therefore, if � is not a half-integer (which
ensures that logarithmic branches will not appear), solutions to the equation are expected
to behave like either .1 � r/� or .1 � r/1�� as r % 1.

As one can infer by plugging these powers in the energy associated with (1.2),Z
¹tº�B1

¹.@tu/
2
C .1 � r/2� jrx Œ.1 � r/

��u�j2º; (1.3)

the equation admits exactly one finite-energy solution when � � �1=2, no finite-energy
solutions when � � 1=2, and infinitely many finite-energy solutions when

� 1=2 < � < 1=2: (1.4)

In the range (1.4), which we consider in this paper, one must impose a (Dirichlet,
Neumann, or Robin) boundary condition on .�T; T / � @B1. This is done in terms of the
natural Dirichlet and Neumann traces, which now include weights and are defined as the
limits

D�u WD .1 � r/
��ujrD1;

N�u WD �.1 � r/
2�@r Œ.1 � r/

��u�jrD1:
(1.5)

Notice that singular weights depending on � appear everywhere in this problem, and
all the associated quantities reduce to the standard ones in the absence of the singular
potential, i.e., when � D 0. A more detailed discussion of the boundary asymptotics of
solutions to (1.2) is given in the next section.

The Carleman estimates that we will derive in this paper are sharp, in that the weights
that appear capture both the optimal decay rate of the solutions near the boundary, as well
as the natural energy (1.3) that appears in the well-posedness theory for the equation. As
we will see, this property is not only desirable but also essential for applications such as
boundary observability.
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1.2. Some existing results

The dispersive properties of wave equations with potentials that diverge as an inverse
square at one point [5, 10] or on a (timelike) hypersurface [4] have been thoroughly
studied, as critically singular potentials are notoriously difficult to analyze. Moreover,
a well-posedness theory for a diverse family of boundary conditions was developed for
the range (1.4) in [40].

In the case of one spatial dimension, the observability and controllability of wave
equations with critically singular potentials have also received considerable attention, in
the guise of the degenerate wave equation

@t tv � @z.z
˛@zv/ D 0;

where the variable z takes values in the positive half-line and the parameter ˛ ranges
over the interval .0; 1/; see [18] and the references therein. Indeed, it is not difficult to
show that one can relate equations in this form to the operator �� in one dimension
through a suitable change of variables, with the parameter � being now some function
of the power ˛. The methods employed in those references, which rely on the spectral
analysis of a one-dimensional Bessel-type operator, provide very precise observability
and controllability results.

Another fruitful strategy for obtaining observability inequalities for a wide variety of
PDEs is via Carleman-type estimates; see [35, 36] for some earliest applications, as well
as [27, 41] for wave equations. On the other hand, no related Carleman estimates that are
applicable to observability results for �� have been found. This manifests itself in two
important limitations: firstly, the available inequalities are not robust under perturbations
of the coefficients of the equation, and secondly, the method of proof cannot be extended
to higher-dimensional situations.

Recent results for different notions of observability for parabolic equations with
inverse square potentials, which are based on Carleman and multiplier methods, can be
found, e.g., in [8,39]. Related questions for wave equations with singularities all over the
boundary have been presented as very challenging in the open problems section of [8]. As
stressed there, the boundary singularity makes the multiplier approach extremely tricky.

In general, one would not expect Carleman estimates to behave well with singular
potentials such as �.1 � �/.1 � r/�2. Since the singularity in the potential scales just
like �, there is no hope of absorbing it into the estimates by means of a perturbative
argument. Indeed, Carleman estimates generally assume [12, 24, 38] that the potential is
at least in L.nC1/=2, which is not satisfied here.

Consequently, we must view this singular potential as a principal term and instead
derive a Carleman estimate for the modified wave operator �� in (1.1). Such estimates
for other modified wave operators involving lower-derivative terms have been obtained,
for instance, in [7, 29]. However, a key difference in the present situation is the specially
weighted forms (1.5) of our natural boundary traces. In particular, to capture the Neu-
mann trace, our Carleman estimates must also involve weights that become singular at
the boundary .�T; T / � @B1.



A. Enciso, A. Shao, B. Vergara 3462

Carleman estimates with degenerating weights have been applied extensively in the
context of strong unique continuation problems for PDEs. Examples in the literature
include [3, 11, 23, 33] for elliptic equations and [17, 25, 26] for parabolic equations; see
also [1,2] for analogous problems for hyperbolic equations. On the other hand, the weights
used here will be very different in nature to those from strong unique continuation res-
ults, since we will require degeneracies at a very specific power in order to pick out the
Neumann traces described in (1.5).

Finally, let us mention that a setting closely related to ours is that of linear wave equa-
tions on asymptotically anti-de Sitter spacetimes, which are conformally equivalent to
analogues of (1.1) on curved backgrounds. It is worth mentioning that waves on anti-de
Sitter spaces have attracted considerable attention in the recent years due to their connec-
tion to cosmology; see e.g. [4, 14–16, 19, 40] and the references therein.

Carleman estimates for linear waves were established in the asymptotically anti-de
Sitter setting in [19, 20], in order to study the unique continuation properties from the
conformal boundary. In particular, these estimates capture the natural Dirichlet and Neu-
mann data (i.e., the analogues of (1.5)). On the other hand, the Carleman estimates in
[19, 20] are local in nature and apply only to a neighborhood of the conformal boundary,
and they do not capture the naturally associated H 1-energy. As a result, these estimates
would not translate into corresponding observability results.

1.3. The Carleman estimates

The main result of the present paper is a novel family of Carleman inequalities for the
operator (1.1) that capture both the natural boundary weights and the natural H 1-energy
described above. To the best of our knowledge, these are the first available Carleman
estimates for an operator with such a strongly singular potential that also captures the
natural boundary data and energy. Moreover, our estimates hold in all spatial dimensions,
except for n D 2.

A simplified version of our main estimates can be stated as follows:

Theorem 1.1. Let B1 denote the unit ball in Rn, with n ¤ 2, and fix �1=2 < � < 0.
Moreover, let

u W .�T; T / � B1 ! R

be a smooth function, and assume:

(i) The Dirichlet trace D�u of u vanishes.

(ii) u “has the boundary asymptotics of a sufficiently regular, finite energy solution of
(1.2)”. In particular, the Neumann trace N�u of u exists and is finite.

(iii) There exists ı > 0 such that

u.t/ D 0 for all T � ı � jt j < T .
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Then, for �� 1 large enough, independent of u,

�

Z
.�T;T /�@B1

e2�f .N�u/
2
C

Z
.�T;T /�B1

e2�f .��u/2

& �
Z
.�T;T /�B1

e2�f
�
.@tu/

2
C .1 � jxj/2�

ˇ̌
rx Œ.1 � jxj/

��u�
ˇ̌2�

C j�j�3
Z
.�T;T /�B1

e2�f .1 � jxj/6��1u2; (1.6)

where f is the weight

f .t; x/ WD �
1

1C 2�
.1 � jxj/1C2� � ct2; (1.7)

with a suitably chosen positive constant c.

A more precise, and slightly stronger, statement of our main Carleman estimates is
given in Theorem 4.1.

Remark 1.2. Note that in Theorem 1.1, we restricted our strength parameter � to the
range �1=2 < � < 0. This was done for several reasons:

(i) First, a restriction to the values (1.4) was needed, as this is the range for which a
robust well-posedness theory exists [40] for the equation (1.2).

(ii) The case � D 0 is simply the standard free wave equation, for which the existence of
Carleman and observability estimates is well-known.

(iii) On the other hand, the aforementioned spectral results [18] in the .1 C 1/-dimen-
sional setting suggest that the analogue of (1.6) is false when � > 0.

Remark 1.3. The constant c in (1.7) is closely connected to the total timespan needed for
an observability estimate to hold; see Theorem 1.8 below. In Theorem 1.1, this c depends
on n, as well as on � when n D 3.

Remark 1.4. The precise formulation of u in Theorem 1.1 having the “expected bound-
ary asymptotics of a solution of (1.2)” is given in Definition 2.2 and is briefly justified in
the discussion following Definition 2.2.

Remark 1.5. One can further strengthen (1.6) to include additional positive terms on the
right-hand side that depend on n; see Theorem 4.1.

1.4. Ideas of the proof

We now discuss the main ideas behind the proof of Theorem 1.1 (as well as the more
precise Theorem 4.1). In particular, the proof is primarily based around three ingredients.

The first ingredient is to adopt derivative operations that are well-adapted to our oper-
ator �� . In particular, we make use of the “twisted” derivatives that were pioneered
in [40]. The main observation here is that�� can be written as

�� D � NDD C l.o.t.;
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where D is the conjugated (spacetime) derivative operator,

D D Dt;x D .1 � jxj/
�
rt;x.1 � jxj/

�� ;

where � ND is the (L2-)adjoint of D, and where “l.o.t.” represents lower-order terms that
can be controlled by more standard means.

As a result, we can view D as the natural derivative operation for �� . For instance,
the twisted H 1-energy (1.3) associated with the Cauchy problem (1.2) is best expressed
purely in terms of D (in fact, this energy is conserved for the equation NDDu D 0).
Similarly, in our Carleman estimates (1.6) and their proofs, we will always work with
D-derivatives, rather than the usual derivatives, of u. This helps us to better exploit the
structure of�� .

The second main ingredient in the proof of Theorem 1.1 is the classical Morawetz
multiplier estimate for the wave equation. This estimate was originally developed in [31]
in order to establish integral decay properties for waves in three spatial dimensions. Ana-
logous estimates hold in higher dimensions as well; see [34], as well as [32] and references
therein for more recent extensions of Morawetz estimates.

At the heart of the proof of Theorem 1.1 lies a generalization of the classical Morawetz
estimate from� to�� . In keeping with the preceding ingredient, we derive this inequality
by using the aforementioned twisted derivatives in place of the usual derivatives. This
produces a number of additional singular terms, which we must arrange so that they have
the required positivity.

Finally, our generalized Morawetz bound is encapsulated within a larger Carleman
estimate, which is proved using geometric multiplier arguments (see, e.g., [2, 19, 20, 22,
27]). Again, we adopt twisted derivatives throughout this process, and we must obtain
positivity for many additional singular terms that now appear.

Remark 1.6. That Theorem 1.1 fails to hold for n D 2 can be traced to the fact that the
classical Morawetz breaks down for nD 2. In this case, the usual multiplier computations
yield a boundary term at r D 0 that is divergent.

Remark 1.7. Both the Carleman estimates (1.6) and the underlying Morawetz estimates
crucially depend on the domain being spherically symmetric. As a result, Theorem 1.1
only holds when the spatial domain is an open ball. We defer to future papers the question
of whether Theorem 1.1 extends to more general domains.

1.5. The Carleman weight

For our estimate (1.6), we make use of a novel Carleman weight (1.7) that is specifically
adapted to the operator�� .

Recall that in the standard Carleman-based proofs of observability for wave equations,
one employs Carleman weights of the form

f�.t; x/ D jx � x0j
2
� ct2; 0 < c < 1:

Here, the term jx � x0j2 can be roughly interpreted as the estimate being centered about
the point x0. In contrast, in (1.7), the spatial term of f is replaced by a power of 1 � jxj.
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This can be viewed as our estimate being centered about the whole boundary @B1, where
�� becomes singular.

The next point of interest is the exponent 1C 2� in (1.7). Such a power, which leads
to rather singular terms at r D 1, seems necessary in our estimates in order to extract the
Neumann boundary data, which contains a specific power of 1 � jxj.

We also remark that the weight f in (1.7) is strongly pseudo-convex (as defined in
[21, Definition 28.3.1]) with respect to the standard wave operator �. As is well-known,
this is necessary in order for such a Carleman-type estimate to hold. In our current context,
the pseudo-convexity is captured by the quantity r2f C z � g from our multiplier identity
(3.4), which can be shown to be positive-definite in the directions tangent to the level sets
of f ; see also Remark 3.4.

In fact, the most difficult obstructions to our Carleman estimate arise not from
pseudo-convexity. (One can see that f becomes infinitely pseudo-convex at the boundary
.�T; T / � @B1.) Rather, the main difficulty comes from ensuring that the key singular
bulk terms arising from the generalized multiplier estimates all possess good sign. For
this, we need more than the pseudo-convexity of the Carleman weight; this is the reason
we restrict our analysis to the spatial domain B1.

1.6. Observability

The breadth of applications of Carleman estimates to a wide range of PDEs [13, 37] is
remarkable. Examples include unique continuation, control theory, inverse problems, as
well as showing the absence of embedded eigenvalues in the continuous spectrum of
Schrödinger operators.

In this paper, we demonstrate one particular consequence of Theorem 1.1: the bound-
ary observability of linear waves involving a critically singular potential. Roughly speak-
ing, a boundary observability estimate shows that the energy of a wave confined to a
bounded region can be estimated quantitatively only by measuring its boundary data over
a large enough time interval.

The key point is again that our Carleman estimates (1.6) capture the natural bound-
ary data and energy associated with our singular wave operator. As a result, Theorem 1.1
can be combined with standard arguments in order to prove the following rough state-
ment: solutions to the wave equation with a critically singular potential on the boundary
of a cylindrical domain satisfy boundary observability estimates, provided that the obser-
vation is made over a large enough timespan.

A rigorous statement of this observability property is given in the subsequent theorem.
Notice that, due to energy estimates that we will show later, it is enough to control the
twisted H 1-norm of the solution at time zero:

Theorem 1.8. Let B1, n, and � be as in Theorem 1.1. Moreover, let u be a smooth and
real-valued solution of the wave equation

��u D X �DuC V u (1.8)

on the cylinder .�T; T / � B1, where X is a bounded .spacetime/ vector field, and where
V is a bounded scalar potential. Furthermore, suppose u satisfies:
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(i) D�u D 0.

(ii) u “has the boundary asymptotics of a sufficiently regular, finite energy solution of
(1.8)”. In particular, the Neumann trace N�u of u exists and is finite.

Then, for sufficiently large T , the following observability estimate holds for u:Z
.�T;T /�@B1

.N�u/
2 &

Z
¹0º�B1

�
.@tu/

2
C j.1 � jxj/�rx Œ.1 � jxj/

��u�j2 C u2
�
: (1.9)

Again, a more precise (and slightly more general) statement of the observability prop-
erty can be found in Theorem 5.1.

Remark 1.9. The required timespan 2T in Theorem 1.8 can be shown to depend on n,
as well as on � when n D 3. This is in direct parallel to the dependence of c in Theorem
1.1. See Theorem 5.1 for more precise statements.

Remark 1.10. Once again, a precise statement of the expected boundary asymptotics for
u in Theorem 1.8 is given in Definition 2.2.

Remark 1.11. If �� in Theorem 1.8 is replaced by � (that is, we consider non-singular
wave equations), then observability holds for any T > 1. This can be deduced either
from the geometric control condition of [6] (see also [9, 30]) or from standard Carleman
estimates [7, 27, 41]. To our knowledge, the optimal timespan for the observability result
in Theorem 1.8 is not known.

Remark 1.12. For non-singular wave equations, standard observability results also
involve observation regions that contain only part of the boundary [6, 9, 27, 28]. On the
other hand, as our Carleman estimates (1.6) are centered about the origin, they only yield
observability results from the entire boundary. Whether partial boundary observability
results also hold for the singular wave equation in Theorem 1.8 is a topic for further
investigation.

1.7. Outline of the paper

In Section 2, we list some definitions pertinent to our setting, and we establish some
general properties that will be useful later on. Section 3 is devoted to the multiplier
inequalities that are fundamental to our main Theorem 1.1. In particular, these generalize
the classical Morawetz estimates to wave equations with critically singular potentials. In
Section 4, we give a precise statement and a proof of our main Carleman estimates (see
Theorem 4.1). Finally, our main boundary observability result (see Theorem 5.1) is stated
and proved in Section 5.

2. Preliminaries

In this section, we record some basic definitions, and we establish the notations that we
will use in the rest of the paper. In particular, we define weights that capture the boundary
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behavior of solutions to wave equations involving �� . We also define twisted derivatives
constructed using the above weights, and we recall their basic properties. Furthermore,
we prove pointwise inequalities in terms of these twisted derivatives that will later lead to
Hardy-type estimates.

2.1. The geometric setting

Our background setting is the spacetime R1Cn. As usual, we let t and x denote the pro-
jections to the first and the last n components of R1Cn, respectively, and we let r WD jxj
denote the radial coordinate.

In addition, we let g denote the Minkowski metric on R1Cn. Recall that with respect
to polar coordinates, we have

g D �dt2 C dr2 C r2gSn�1 ;

where gSn�1 denotes the metric of the .n � 1/-dimensional unit sphere. Henceforth, we
use the symbol r to denote the g-covariant derivative, while =r represents the induced
angular covariant derivative on level spheres of .t; r/. As before, the wave operator (with
respect to g) is defined as

� D g˛ˇr˛ˇ :

As is customary, we use lowercase Greek letters for spacetime indices over RnC1

(ranging from 0 to n), lowercase Latin letters for spatial indices over Rn (ranging from 1

to n), and uppercase Latin letters for angular indices over Sn�1 (ranging from 1 to n� 1).
We always raise and lower indices using g, and we use the Einstein summation convention
for repeated indices.

As in the previous section, we use B1 to denote the open unit ball in Rn, representing
the spatial domain for our wave equations. We also set

C WD .�T; T / � B1; T > 0; (2.1)

corresponding to the cylindrical spacetime domain. In addition, we let

� WD .�T; T / � @B1 (2.2)

denote the timelike boundary of C .
To capture singular boundary behavior, we will make use of weights depending on the

radial distance from @B1. Toward this end, we define the function

y W R1Cn ! R; y WD 1 � r: (2.3)

From direct computations, we obtain the following identities for y:

r
˛yr˛y D 1; r

˛ˇyr˛yrˇy D 0;

�y D �.n � 1/r�1; r
˛yr˛.�y/ D �.n � 1/r�2; (2.4)

�2y D .n � 1/.n � 3/r�3; r
˛ˇyr˛ˇy D .n � 1/r

�2:
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2.2. Twisted derivatives

From now on, let us fix a constant

� 1=2 < � < 0; (2.5)

and let us define the twisted derivative operators

Dˆ WD y�r.y��ˆ/ D rˆ �
�

y
ry �ˆ;

NDˆ WD y��r.y�ˆ/ D rˆC
�

y
ry �ˆ;

(2.6)

where ˆ is any spacetime tensor field. Observe that � ND is the formal (L2-)adjoint of D.
Moreover, the following (tensorial) product rules hold for D and ND:

D.ˆ˝‰/ D rˆ˝‰ Cˆ˝D‰; ND.ˆ˝‰/ D rˆ˝‰ Cˆ˝ ND‰: (2.7)

In addition, let�y denote the y-twisted wave operator:

�y WD g˛ˇ ND˛Dˇ : (2.8)

A direct computation shows that �y differs from the singular wave operator �� from
(1.1) by only a lower-order term. More specifically, by (2.4) and (2.6),

�y D �C
�.1 � �/ � r˛yr˛y

y2
�
� ��y
y
D �� C

.n � 1/�

ry
: (2.9)

In particular, (2.9) shows that, up to a lower-order correction term, �y and �� can
be used interchangeably. In practice, the derivation of our estimates will be carried out in
terms of�y , as it is better adapted to the twisted operators.

Finally, we remark that since y is purely radial,

Dt� D rt� D @t�; DA� D =rA� D @A�

for scalar functions �. Thus, we will use the above notations interchangeably whenever
convenient and whenever there is no risk of confusion. Moreover, we will write

DX� D X
˛D˛�

to denote derivatives along a vector field X .

2.3. Pointwise Hardy inequalities

Next, we establish a family of pointwise Hardy-type inequalities in terms of the twisted
derivative operator D:
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Proposition 2.1. For any q 2 R and any u 2 C 1.C/,

yq�1.Dru/
2
�
1

4
.2� C q � 2/2yq�3 � u2 � .n � 1/

�
� C

q � 2

2

�
yq�2r�1 � u2

� r
ˇ

��
� C

q � 2

2

�
yq�2rˇy � u

2

�
: (2.10)

Proof. First, for any p; b 2 R, we have the inequality

0 � .yp � r˛yD˛uC by
p�1
� u/2

D y2p � .r˛yD˛u/
2
C b2y2p�2 � u2 C 2by2p�1 � ur˛yD˛u

D y2p � .Dru/
2
C b.b � 2� � 2p C 1/y2p�2 � u2

� by2p�1�y � u2 Crˇ .by2p�1rˇy � u2/;

where we use (2.6) in the last step. Setting 2p D q � 1, the above becomes

yq�1.Dru/
2
� �b.b � 2� � q C 2/yq�3 � u2 C byq�2�y � u2

� r
ˇ .byq�2rˇy � u

2/:

Taking b D � C q�2
2

(which extremizes the above) yields (2.10).

2.4. Boundary asymptotics

We conclude this section by discussing the precise boundary limits for our main results.
First, given u 2 C 1.C/, we define its Dirichlet and Neumann traces on � with respect
to�y (or equivalently��) by

D�u W � ! R; D�u WD lim
r%1

y��u;

N�u W � ! R; N�u WD lim
r%1

y2�@r .y
��u/:

(2.11)

Note in particular that the formulas (2.11) are directly inspired from (1.5).
Now, the subsequent definition lists the main assumptions we will impose on boundary

limits in our Carleman estimates and observability results:

Definition 2.2. A function u 2 C 1.C/ is called boundary admissible with respect to �y
(or��) when the following conditions hold:
(i) N�u exists and is finite.

(ii) The following Dirichlet limits hold for u:

.1 � 2�/D�.y
�1C2�u/ D �N�u; D�.y

2�@tu/ D 0: (2.12)

Here, the Dirichlet and Neumann limits are in the L2-sense on .�T; T / � Sn�1.
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The main motivation for Definition 2.2 is that it captures the expected boundary
asymptotics for solutions of the equation �yu D 0 that have vanishing Dirichlet data.
(In particular, note that u being boundary admissible implies D�u D 0.) To justify this
statement, we must first recall some results from [40].

For u 2 C 1.C/ and � 2 .�T; T /, we define the following twisted H 1-norms:

E1Œu�.�/ WD

Z
C\¹tD�º

.j@tuj
2
C jDruj

2
C j=ruj2 C u2/; (2.13)

NE1Œu�.�/ WD

Z
C\¹tD�º

.j@tuj
2
C j NDruj

2
C j=ruj2 C u2/: (2.14)

Moreover, if u 2 C 2.C/ as well, then we define the twisted H 2-norm

E2Œu�.�/ WD NE1ŒDru�.�/CE1Œ@tu�.�/CE1Œ =r tu�.�/CE1Œu�.�/: (2.15)

The results of [40] show that both E1Œu� and E2Œu� are natural energies associated with
the operator�y , in that their boundedness is propagated in time for solutions of�yuD 0
with Dirichlet boundary conditions.

The following proposition shows that functions with uniformly bounded E2-energy
are boundary admissible, in the sense of Definition 2.2. In particular, the preceding dis-
cussion then implies that boundary admissibility is achieved by sufficiently regular (in
a twisted H 2-sense) solutions of the singular wave equation �yu D 0 with Dirichlet
boundary conditions.

Proposition 2.3. Let u 2 C 2.C/, and assume that:

(i) D�u D 0.

(ii) E2Œu�.�/ is uniformly bounded for all � 2 .�T; T /.

Then u is boundary admissible with respect to�y , in the sense of Definition 2.2.

Proof. Fix � 2 .�T;T / and! 2Sn�1, and let 0<y1<y0� 1. Applying the fundamental
theorem of calculus and integrating in y yields

y2�@r .y
��u/j.�;1�y1;!/ � y

2�@r .y
��u/j.�;1�y0;!/ D

Z y0

y1

y� NDr .Dru/j.�;1�y;!/ dy;

where we have described points in NC using polar .t; r; !/-coordinates.
We now integrate the above over � D .�T; T / � Sn�1, and we let y1 & 0. In partic-

ular, observe that for N�u to be finite, it suffices to show that

I WD

Z
�

�Z y0

0

y� NDr .Dru/j.�;1�y;!/ dy

�2
d� d! <1:

However, by Hölder’s inequality and (2.5), we have

I �

Z
�

�Z y0

0

y2� dy �

Z y0

0

j NDr .Dru/j
2
j.�;1�y;!/ dy

�
d� d! .

Z T

�T

E2Œu�.�/ d�:

Thus, the assumptions of the proposition imply that I , and hence N�u, is finite.
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Next, to prove the first limit in (2.12), it suffices to show that

Jy0 WD

Z
�

�
y�1C�uj.�;1�y0;!/ C

1

1C 2�
N�uj.�;!/

�2
d� d! ! 0 (2.16)

as y0 & 0. Since Dku D 0, the fundamental theorem of calculus implies

Jy0 D

Z
�

�
�y�1C2�0

Z y0

0

y�2�y2�@r .y
��u/j.�;1�y;!/ dy C

1

1C 2�
N�uj.�;!/

�2
d� d!

D

Z
�

²
y�1C2�0

Z y0

0

y�2� Œy2�@r .y
��u/j.�;1�y;!/ �N�uj.�;!/� dy

³2
d� d!:

Moreover, the Minkowski integral inequality yieldsp
Jy0 � y

�1C2�
0

Z y0

0

y�2�
²Z

�

Œy2�@r .y
��u/j.�;1�y;!/ �N�uj.�;!/�

2 d� d!

³1=2
dy

. sup
0<y<y0

²Z
�

Œy2�@r .y
��u/j.�;1�y;!/ �N�uj.�;!/�

2 d� d!

³1=2
:

By the definition of N�u, the right-hand side of the above converges to 0 as y0& 0. This
implies (2.16), and hence the first part of (2.12).

For the remaining limit in (2.12), we first claim that D�.@tu/ exists and is finite. This
argument is analogous to the first part of the proof. Note that since

y��@tuj.�;1�y1;!/ � y
��@tuj.�;1�y0;!/ D

Z y0

y1

y��Dr@tuj.�;1�y;!/ dy;

the claim immediately follows from the fact thatZ
�

�Z y0

0

y��Dr@tuj.�;1�y;!/ dy

�2
d� d! .

Z T

�T

E2Œu�.�/ d� <1:

Moreover, to determine D�.@tu/, we see that for any test function ' 2 C10 .�/,Z
�

D�.@tu/ � ' D � lim
y&0

Z
�

y��ujrD1�y � @t' D �

Z
�

D�u � @t' D 0:

It then follows that
D�.@tu/ D 0:

Finally, to prove the second limit of (2.12), it suffices to show

Ky0 WD

Z
�

.y�1=2@tu/
2
j.�;1�y0;!/ d� d! ! 0; y0 & 0: (2.17)
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Using D�.@tu/ D 0 along with the fundamental theorem of calculus yields

Ky0 D

Z
�

�
y
�1=2C�
0

Z y0

0

y��Dr@tuj.�;1�y;!/ dy

�2
d� d!

� y�1C2�0

Z
�

�Z y0

0

y�2� dy

Z y0

0

.Dr@tu/
2
j.�;1�y;!/ dy

�
d� d!

.
Z y0

0

Z
�

.Dr@tu/
2
j.�;1�y;!/ d� d! dy:

The integral on the right-hand side is (the time integral of) E2Œu�.�/, restricted to the
region 1 � y0 < r < 1. Since E2Œu�.�/ is uniformly bounded, it follows that Ky0 indeed
converges to zero as y0 & 0, completing the proof.

Remark 2.4. From the intuitions of [18], one may conjecture that Proposition 2.3 could
be further strengthened, with the boundedness assumption on E2Œu� replaced by a sharp
boundedness condition on an appropriate fractional H 1C�-norm. However, we will not
pursue this question in the present paper.

3. Multiplier inequalities

In this section, we derive some multiplier identities and inequalities, which form the
foundations of the proof of the main Carleman estimates, Theorem 4.1. As mentioned
before, these can be viewed as extensions to singular wave operators of the classical Mor-
awetz inequality for wave equations.

In what follows, we fix 0 < "� 1, and we define the cylindrical region

C" WD .�T; T / � ¹" < r < 1 � "º: (3.1)

Moreover, let �" denote the timelike boundary of C":

�" WD �
�
" [ �

C
"

WD Œ.�T; T / � ¹r D "º� [ Œ.�T; T / � ¹r D 1 � "º�: (3.2)

We also let � denote the unit outward-pointing (g-)normal vector field on �".
Finally, we fix a constant c > 0, and we define the functions

f WD �
1

1C 2�
� y1C2� � ct2;

z WD �4c;

(3.3)

which will be used to construct the multiplier for our upcoming inequalities.
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3.1. A preliminary identity

We begin by deriving a preliminary form of our multiplier identity, for which the multi-
plier is defined using f and z:

Proposition 3.1. Let u 2 C1.C/, and assume u is supported on C \ ¹jt j < T � ıº for
some 0 < ı � 1. Then

�

Z
C"

�yu � Sf;zu D
Z

C"

.r˛ˇf C z � g˛ˇ /D˛uDˇuC

Z
C"

Af;z � u
2

�

Z
�"

Sf;zu �D�uC
1

2

Z
�"

r�f �DˇuD
ˇu

C
1

2

Z
�"

r�wf;z � u
2 (3.4)

for any 0 < "� 1, where

wf;z WD
1

2

�
�f C

2�

y
r˛yr

˛f

�
C z;

Af;z WD �
1

2

�
�wf;z C

2�

y
r˛yr

˛wf;z

�
;

Sf;z WD r
˛f �D˛ C wf;z :

(3.5)

Proof. Integrating the left-hand side of (3.4) by parts twice reveals that

�

Z
C"

�yu � r˛fD˛u D
Z

C"

Dˇu �D
ˇ .r˛fD˛u/ �

Z
�"

r
˛fD˛u �D�u

D

Z
C"

r
˛ˇf �D˛uDˇuC

Z
C"

r
˛f �DˇuD˛

ˇu

�

Z
�"

r
˛fD˛u �D�u

D

Z
C"

r
˛ˇf �D˛uDˇuC

1

2

Z
C"

r
˛f � r˛.DˇuD

ˇu/

�

Z
C"

�

y
r˛yr

˛f �DˇuD
ˇu �

Z
�"

r
˛fD˛u �D�u

D

Z
C"

�
r
˛ˇf �

1

2

�
�f C

2�

y
r˛yr

˛f

�
g˛ˇ

�
�D˛uDˇu

�

Z
�"

r
˛fD˛u �D�uC

1

2

Z
�"

r�f �DˇuD
ˇu;

where we have applied the identities (2.6)–(2.8), as well as the observation that ND is the
adjoint of D.



A. Enciso, A. Shao, B. Vergara 3474

Similar computations also yield

�

Z
C"

�yu � wf;zu D
Z

C"

D˛uD˛.wf;zu/ �

Z
�"

wf;z � uD�u

D

Z
C"

r˛wf;z � uD
˛uC

Z
C"

wf;z �D
˛uD˛u �

Z
�"

wf;z � uD�u

D

Z
C"

wf;z �D
˛uD˛uC

1

2

Z
C"

r˛wf;z � r
˛.u2/

�

Z
C"

�

y
r
˛yr˛wf;z � u

2
�

Z
�"

wf;z � uD�u

D

Z
C"

wf;z �D
˛uD˛u �

1

2

Z
C"

�
�wf;z C

2�

y
r
˛yr˛wf;z

�
� u2

�

Z
�"

wf;z � uD�uC
1

2

Z
�"

r�wf;z � u
2:

Adding the above two identities results in (3.4).

3.2. Computations for f and z

In the following proposition, we collect some computations involving the functions f and
z that will be useful later on.

Proposition 3.2. f , wf;z , and Af;z .defined in (3.3) and (3.5)/ satisfy

r˛ˇf D y
2�
� r˛ˇ r � 2�y

2��1
� r˛rrˇ r � 2c � r˛trˇ t;

wf;z D �2� � y
2��1
C

1
2
.n � 1/ � y2�r�1 � 3c;

Af;z D 2�.2� � 1/
2
� y2��3 � 1

2
.n � 1/�.8� � 3/ � y2��2r�1

C
1
2
.n � 1/.n � 4/� � y2��1r�2 C 1

4
.n � 1/.n � 3/ � y2�r�3:

(3.6)

Proof. First, we fix q 2 R n ¹�1º, and we let

fq WD �
y1Cq

1C q
: (3.7)

Note that fq satisfies

r˛fq D �y
q
� r˛y;

r˛ˇfq D �y
q
� r˛ˇy � qy

q�1
� r˛yrˇy;

�fq D �yq ��y � qyq�1 � r˛yr˛y;
2�

y
� r

˛yr˛fq D �2�y
q�1
� r

˛yr˛y:

(3.8)
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Next, using the notations from (3.5), along with (2.4) and (3.8), we have

wfq ;0 D �
1

2
yq ��y �

�
� C

q

2

�
yq�1 � r˛yr˛y

D �

�
� C

q

2

�
� yq�1 C

n � 1

2
� yqr�1: (3.9)

Moreover, further differentiating (3.9) and again using (2.4), we see that

�wfq ;0 D �
1
2
.q C 2�/.q � 1/.q � 2/yq�3 � .r˛yr˛y/

2

� .q � 1/Œ.q C �/�yr˛yr˛y C 2.q C 2�/r˛ˇyr˛yrˇy� � yq�2

� 2.q C �/yq�1 � r˛yr˛.�y/ � .q C 2�/yq�1 � r˛ˇyr˛ˇy
�
1
2
qyq�1 � .�y/2 � 1

2
yq ��2y;

2�

y
r
˛yr˛wfq ;0 D ��.q C 2�/.q � 1/y

q�3
� .r˛yr˛y/

2
� �qyq�2 ��yr˛yr˛y

� 2�.q C 2�/yq�2 � r˛ˇyr˛yrˇy � �y
q�1
� r

˛yr˛.�y/:

We can then use the above to compute the coefficient Afq ;0:

Afq ;0 D
1
4
.q C 2�/.q C 2� � 2/.q � 1/yq�3 � .r˛yr˛y/

2

C
1
2
.q2 � q C 2�q � �/yq�2 ��yr˛yr˛y

C .q C 2�/.q C � � 1/yq�2 � r˛ˇyr˛yrˇy

C
1
2
.2q C 3�/yq�1 � r˛yr˛.�y/C 1

2
.q C 2�/yq�1 � r˛ˇyr˛ˇy

C
1
4
qyq�1 � .�y/2 C 1

4
yq ��2y

D
1
4
.q C 2�/.q C 2� � 2/.q � 1/ � yq�3

�
1
2
.n � 1/.q2 � q C 2�q � �/ � yq�2r�1

C
1
4
.n � 1/Œq.n � 3/ � 2�� � yq�1r�2 C 1

4
.n � 1/.n � 3/ � yqr�3: (3.10)

Notice from (3.3) and (3.7) that we can write

f D f2� � ct
2:

Thus, substituting q D 2� in (3.7), we see that the Hessian of f satisfies

r˛ˇf D r˛ˇf2� � cr˛ˇ t
2

D y2� � r˛ˇ r � 2�y
2��1
� r˛rrˇ r � 2cr˛trˇ t;

which is precisely the first part of (3.6).
Moreover, noting that w�ct2;0 D c, we also have

wf;z D wf2� ;0 C w�ct2;0 C z D �2� � y
2��1
C

1
2
.n � 1/ � y2�r�1 � 3c;
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which gives the second equation in (3.6). Finally, noting that

A�ct2;0 D 0; �
1

2

�
�z C

2�

y
� r

˛yr˛z

�
D 0;

we obtain, with the help of (2.4), the last equation of (3.6):

Af;z D Af2� ;0 CA�ct2;0 �
1

2

�
�z C

2�

y
� r

˛yr˛z

�
D 2�.2� � 1/2y2��3 � .r˛yr˛y/

2
C

1
2
�.8� � 3/y2��2 ��yr˛yr˛y

C 4�.3� � 1/y2��2 � r˛ˇyr˛yrˇy C
7
2
�y2��1 � r˛yr˛.�y/

C 2�y2��1 � r˛ˇyr˛ˇy C
1
2
�y2��1 � .�y/2 C 1

4
y2� ��2y

D 2�.2� � 1/2 � y2��3 � 1
2
.n � 1/�.8� � 3/ � y2��2r�1

C
1
2
.n � 1/.n � 4/� � y2��1r�2 C 1

4
.n � 1/.n � 3/ � y2�r�3:

3.3. The main inequality

We conclude this section with the multiplier inequality that will be used to prove our main
Carleman estimate:

Proposition 3.3. Let f and z be as in (3.3), and let u 2 C1.C/ be supported on the set

C \ ¹jt j < T � ıº

for some 0 < ı � 1. Then

�

Z
C"

�yu � Sf;zu �
Z

C"

Œ.1 � 4c/ � j=ruj2 C 2c � .@tu/
2
� 4c � .Dru/

2�

�
1

2
.n � 1/�

Z
C"

y2��2r�2Œr � .n � 4/y� � u2

C
1

4
.n � 1/.n � 3/

Z
C"

y2�r�3 � u2 �

Z
�"

Sf;zu �D�u

C
1

2

Z
�"

r�f �DˇuD
ˇuC

1

2

Z
�"

r�wf;z � u
2

C 2�.2� � 1/

Z
�"

y2��2r�y � u
2 (3.11)

for any 0 < "� 1, where wf;z and Sf;z are defined in (3.5).

Proof. Applying the multiplier identity (3.4), with f and z from (3.3), and recalling the
formulas (3.6) for r2f , wf;z ; and Af;z , we find that

I WD �

Z
C"

�yu � Sf;zu
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satisfies the identity

I D

Z
C"

.y2�r˛ˇ r � 2�y�1C2�r˛rrˇ r � 2cr˛trˇ t � 4cg˛ˇ /D˛uDˇu

C 2�.2� � 1/2
Z

C"

y2��3u2 �
1

2
.n � 1/�.8� � 3/

Z
C"

y2��2r�1u2

C
1

2
.n � 1/.n � 4/�

Z
C"

y2��1r�2u2 C
1

4
.n � 1/.n � 3/

Z
C"

y2�r�3u2

�

Z
�"

Sf;zu �D�uC
1

2

Z
�"

r�f �DˇuD
ˇuC

1

2

Z
�"

r�wf;z � u
2: (3.12)

For the first-order terms in the multiplier identity, we notice that

r
˛ˇ r �D˛uDˇu D r

�1
j=ruj2;

j=ruj2 D gAB =rAu=rBu;

and hence we expand

.y2� � r˛ˇ r � 2�y�1C2�r˛rrˇ r � 2c � r˛trˇ t � 4c � g˛ˇ /D˛uDˇu

� �2�y�1C2�.Dru/
2
C .y2�r�1 � 4c/j=ruj2 C 2c.@tu/

2
� 4c.Dru/

2

� �2�y�1C2�.Dru/
2
C .1 � 4c/j=ruj2 C 2c.@tu/

2
� 4c.Dru/

2: (3.13)

Moreover, applying the Hardy inequality (2.10) with q D 2� yields

�2�y2��1.Dru/
2
� �2�.2� � 1/2y2��3u2 C .n � 1/2�.2� � 1/y2��2r�1u2

C 2�.2� � 1/rˇ .y2��2rˇy � u
2/: (3.14)

The desired inequality (3.11) now follows by combining (3.12)–(3.14) and applying
the divergence theorem to the last term in (3.14).

Remark 3.4. We note that the pseudo-convexity of the function f (with respect to �)
is implicit from the proof of Proposition 3.3. While this was not shown directly, one can,
with some more computations, observe that the quantity

r
2f C z � g

is positive-definite when restricted to the directions tangent to the level sets of f . Of
course, this is a necessary condition for our upcoming Carleman estimates.

4. The Carleman estimates

In this section, we apply the preceding multiplier inequality to obtain our main Carleman
estimates. Their precise statement is the following:
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Theorem 4.1. Assume n ¤ 2, and fix �1=2 < � < 0. Also, let u 2 C1.C/ satisfy:

(i) u is boundary admissible .see Definition 2.2/.
(ii) u is supported on C \ ¹jt j < T � ıº for some ı > 0.

Then there exists some sufficiently large �0 > 0, depending only on n and �, such that the
following Carleman inequality holds for all � � �0:

�

Z
�

e2�f .N�u/
2
C

Z
C

e2�f .��u/2

� C0�

Z
C

e2�f Œ.@tu/
2
C j=ruj2 C .Dru/

2�

C C0�
3

Z
C

e2�f y6��1u2

C C0� �

8̂<̂
:
R

C
e2�f y2��2r�3u2; n � 4;R

C
e2�f y2��2r�2u2; n D 3;

0; n D 1;

(4.1)

where the constant C0 > 0 depends on n and �, where

f D �
1

1C 2�
� y1C2� � ct2;

as in (3.3), and where the constant c satisfies

0 < c < 1=5;

8̂̂<̂
:̂
c � 1

4
p
3�T
; n � 4;

c � min
®

1

4
p
15�T

; j�j
120

¯
; n D 3;

c � 1

4
p
15�T

; n D 1:

(4.2)

The proof of Theorem 4.1 is carried out in the remainder of this section.

Remark 4.2. We note that parts of this proof will treat the cases nD 1, nD 3, and n � 4
separately. This accounts for the difference in the assumptions for c in (4.2), which will
affect the required timespan in our upcoming observability inequalities.

4.1. The conjugated inequality

From now on, let us assume the hypotheses of Theorem 4.1 to hold. Let us also suppose
that �0 is sufficiently large, with its precise value depending only on n and �. In addition,
we define

v WD e�f u; Lv WD e�f�y.e��f v/: (4.3)

The objective of this subsection is to establish the following inequality for v:
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Lemma 4.3. For any � � �0,

1

4�

Z
C"

.Lv/2 �
c

2

Z
C"

Œ.@tv/
2
C j=rvj2 C .Drv/

2� �
1

2
��2

Z
C"

y6��1v2

C
1

2

Z
�"

r�f �DˇvD
ˇv �

Z
�"

Sf;zv �D�v

�
1

2

Z
�"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2

C
1

2

Z
�"

r�wf;z � v
2
C 2�.2� � 1/

Z
�"

y2��2r�y � v
2

C

8̂<̂
:
c1
R

C"
y2��2r�3 � v2; n � 4;

c1
R

C"
y2��2r�2 � v2 C c2

R
�"
y4��1r�y � v

2; n D 3;

c2
R
�"
y4��1r�y � v

2; n D 1;

(4.4)

where Sf;z and wf;z are defined as in (3.5) and (3.6), where the constant c1 > 0 depends
on n and �, and where the constant c2 > 0 depends on n.

Proof. First, observe that by (2.6)–(2.8), we can expand Lv as follows:

Lv D e�f ND˛D˛.e
��f v/ D e�f ND˛.e��fD˛v/ � �e

�f ND˛.e��f r˛f � v/

D �yv � �r˛f .D˛ C ND˛v/ � ��f � v C �2r˛f r˛f � v
D �yv � 2�Sf;zv CA0v; (4.5)

where A0 is given by

A0 WD �
2
r
˛f r˛f C 2�z D �

2.y4� � 4c2t2/ � 8c�: (4.6)

Multiplying (4.5) by Sf;zv yields

�LvSf;zv D ��yvSf;zv C 2�.Sf;zv/2 �A0 � vSf;zv: (4.7)

For the last term, we apply (2.6) and the product rule:

�A0 � vSf;zv D �A0 � v.r
˛fD˛v C wf;zv/

D �A0 �

�
1

2
r
˛f r˛.v

2/ �
�

y
r
˛f r˛y � v

2
C wf;zv

2

�
D �r

˛

�
1

2
A0r˛f � v

2

�
C
1

2
r
˛f r˛A0 � v

2
� zA0 � v

2: (4.8)

Moreover, recalling (3.3) and (4.6) yields

�zA0 D 4c�
2.y4� � 4c2t2/ � 32�c2;

1
2
r
˛f r˛A0 D �

2.�2�y6��1 � 8c3t2/:
(4.9)
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Combining (4.7)–(4.9) results in the identity

�LvSf;zv D ��yvSf;zv C 2�.Sf;zv/2 CBf;z � v
2
� r

˛
�
1
2
A0r˛f � v

2
�
; (4.10)

where the coefficient Bf;z is given by

Bf;z WD
1
2
r
˛f r˛A0 � zA0 D �

2.�2�y6��1 C 4cy4� � 24c3t2/ � 32�c2: (4.11)

Integrating (4.10) over C" and recalling (4.11) then yields

�

Z
C"

LvSf;zv D �

Z
C"

�yvSf;zv C 2�
Z

C"

.Sf;zv/
2

C

Z
C"

Œ�2.�2�y6��1 C 4cy4� � 24c3t2/ � 32�c2� � v2

�
1

2

Z
�"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2: (4.12)

Notice that the bound (4.2) for c implies (for all values of n)

48c2t2 � 48c2T 2 � 1 � y4� : (4.13)

Then, with large enough �0 (depending on n and �), we obtain

�2.�2�y6��1 C 4cy4� � 24c3t2/ � 32�c2 � �2��2 � y6��1 � 32�c2

� ���2 � y6��1: (4.14)

Noting in addition that

jLvSf;zvj �
1

4�
.Lv/2 C �.Sf;zv/

2;

(4.12) and (4.14) together imply

1

4�

Z
C"

.Lv/2 � �

Z
C"

�yvSf;zv C �
Z

C"

.Sf;zv/
2
� ��2

Z
C"

y6��1 � v2

�
1

2

Z
�"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2: (4.15)

At this point, the proof splits into different cases, depending on n.

Case 1: n � 4. First, note that for large �0, we have
1
9
�.Sf;zv/

2
� cy�4�.Sf;zv/

2

� c.Drv/
2
C c.2cty�2� � @tv C y

�2�wf;z � v/
2

C 2c.Drv/.2cty
�2�
� @tv C y

�2�wf;z � v/

�
1
2
c.Drv/

2
� c.2cty�2� � @tv C y

�2�wf;z � v/
2

�
1
2
c.Drv/

2
� 8c3t2y�4� � .@tv/

2
� 2cy�4�w2f;z � v

2

�
1
2
c.Drv/

2
�
1
6
c � .@tv/

2
� 2cy�4�w2f;z � v

2; (4.16)
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where we have also applied (4.13) and the definitions (3.3) and (3.5) of f , z, and Sf;z .
Moreover, recalling the formula (3.6) for wf;z , we obtain

� 18cy�4�w2f;z � v
2
� �C.y�2 C r�2/ � v2 (4.17)

for some constant C > 0, depending on n and �. Thus, for sufficiently large �0, it follows
from (4.16) and (4.17) that

�.Sf;zv/
2
�

9
2
c.Drv/

2
�
3
2
c � .@tv/

2
� C.y�2 C r�2/ � v2: (4.18)

Combining (4.15) with (4.18), we obtain

1

4�

Z
C"

.Lv/2 � �

Z
C"

�yvSf;zv C
9

2
c

Z
C"

.Drv/
2
�
3

2
c

Z
C"

.@tv/
2

� ��2
Z

C"

y6��1 � v2 � C

Z
C"

.y�2 C r�2/ � v2

�
1

2

Z
�"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2: (4.19)

Applying the multiplier inequality (3.11) to (4.19) then results in the bound

1

4�

Z
C"

.Lv/2 �

Z
C"

�
.1 � 4c/ � j=rvj2 C

1

2
c � .@tv/

2
C
1

2
c � .Drv/

2

�
� ��2

Z
C"

y6��1 � v2 �
1

2
.n � 1/�

Z
C"

y2��2r�1 � v2

C
1

4
.n � 1/.n � 3/

Z
C"

y2�r�3 � v2

� C

Z
C"

.y�2 C y2��1r�2/ � v2 �

Z
�"

Sf;zv �D�v

C
1

2

Z
�"

r�f �DˇvD
ˇv C

1

2

Z
�"

r�wf;z � v
2

�
1

2

Z
�"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2

C 2�.2� � 1/

Z
�"

y2��2r�y � v
2: (4.20)

(Here, C may differ from previous lines, but still depends only on n and �.)
Let d > 0, and define now the (positive) quantities

J WD dy2��2r�3 C C.y�2 C y2��1r�2/; J0 WD ���
2y6��1;

J1 WD �
1
2
.n � 1/�y2��2r�1; J2 WD

1
4
.n � 1/.n � 3/y2�r�3:

(4.21)

Observe that for sufficiently small d (depending on n and �), there is some 0 < ı � 1

(also depending on n and �) such that:
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(i) J � J2 whenever 0 < r < ı.
(ii) J � J1 whenever 1 � ı < r < 1.

(iii) For sufficiently large �0, we have that J � J0 whenever ı � r � 1 � ı.
Combining the above with (4.20) yields the desired bound (4.4) in the case n � 4.

Case 2: n � 3. For the cases n D 1 and n D 3, we first note that (4.2) implies

240c2t2 � 240c2T 2 � 1 � y4� : (4.22)

In this setting, we must deal with .Sf;zv/2 a bit differently. To this end, we use (3.5), the
fact that �0 is sufficiently large, and the inequality

.AC B/2 � .1 � 2"/A2 �
1

2"
.1 � 2"/B2

(with the values " WD 1
3

, A WD y2�Drv, and B WD 2ct.@tv/C wf;zv) in order to obtain

�.Sf;zv/
2
� 60c

�
1

3
y4�.Drv/

2
� 4c2t2.@tv/

2
� w2f;zv

2

�
: (4.23)

Moreover, expanding w2
f;z

using (3.6) and excluding terms with favorable sign yields

�.Sf;zv/
2
� 20cy4�.Drv/

2
� 240c3t2.@tv/

2
� 540c3v2

� 60c

�
4�2y4��2 C

.n � 1/2

4r2
y4� �

2�.n � 1/

r
y4��1

�
v2: (4.24)

The pointwise Hardy inequality (2.10), with q WD 4� C 1, yields

y4�.Drv/
2
�
1

4
.1 � 6�/2y4��2 � v2 C

.1 � 6�/.n � 1/

2r
y4��1 � v2

Cr
ˇ

�
1 � 6�

2
y4��1rˇy � v

2

�
:

Combining the above with (4.22) and (4.24), and noting that

15
4
.1 � 6�/2 > 240�2;

we obtain the bound

�.Sf;zv/
2
� 5c.Drv/

2
� c.@tv/

2
� 15c.n � 1/2y4�r�2v2

� C.n � 1/y4��1r�1v2 Crˇ
�
15c.1 � 6�/

2
y4��1rˇy � v

2

�
; (4.25)

where C > 0 depends on n and �.
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Now, applying the multiplier inequality (3.11) and (4.25) to (4.15), we see that

1

4�

Z
C"

.Lv/2 �

Z
C"

Œ.1 � 4c/j=rvj2 C c.@tv/
2
C c.Drv/

2�

� ��2
Z

C"

y6��1 � v2 �
1

2
.n � 1/�

Z
C"

y2��2r�1 � v2

C
1

2
.n � 1/.n � 4/�

Z
C"

y2��1r�2 � v2

� 15c.n � 1/2
Z

C"

y4�r�2 � v2 � C.n � 1/

Z
C"

y4��1r�1 � v2

�

Z
�"

Sf;zv �D�v C
1

2

Z
�"

r�f �DˇvD
ˇv

C
1

2

Z
�"

r�wf;z � v
2
C 2�.2� � 1/

Z
�"

y2��2r�y � v
2

�
1

2

Z
�"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2

C c2

Z
�"

y4��1r�y � v
2: (4.26)

For n D 1, the bound (4.26) immediately implies (4.4).
For the remaining case n D 3, we also note from (4.2) that

1
2
.n � 1/.n � 4/�y2��1r�2 � 15c.n � 1/2y4�r�2 � �1

2
�y2��1r�2: (4.27)

To control the remaining bulk integrand �C.n � 1/y4��1r�1 � v�2, we define

K WD dy2��2r�2 C C.n � 1/y4��1r�1; K0 WD ���
2y6��1;

K1 WD �
1
2
.n � 1/�y2��2r�1; K2 WD �

1
2
�y2��1r�2:

(4.28)

Just as for the n � 4 case, as long as d is sufficiently small (depending on n and �),
there exists 0 < ı � 1 (depending on n and �) such that:

(i) K � K2 whenever 0 < r < ı.
(ii) K � K1 whenever 1 � ı < r < 1.

(iii) For large enough �0, we have K � K0 whenever ı � r � 1 � ı.
Combining the above with (4.26) and (4.27) yields (4.4) for n D 3.

4.2. Boundary limits

In this subsection, we derive and control the limits of the boundary terms in (4.4) as "& 0.
More specifically, we show the following:
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Lemma 4.4. Let �˙" be as in (3.2). Then, for � � �0,

�c3

Z
�

e2�f .N�u/
2
� lim inf

"&0

�Z
�
C
"

r�f �DˇvD
ˇv � 2

Z
�
C
"

Sf;zvD�v

�
� lim
"&0

Z
�
C
"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2

C lim
"&0

Z
�
C
"

r�wf;z � v
2

C 4�.2� � 1/ lim
"&0

Z
�
C
"

y2��2r�y � v
2;

(4.29)
0 D lim

"&0

Z
�
C
"

y4��1r�y � v
2;

where the constant c3 > 0 depends on �. In addition, for � � �0,

0 � lim
"&0

�Z
��"

r�f �DˇvD
ˇv � 2

Z
��"

Sf;zvD�v

�
� lim
"&0

Z
��"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2

C lim
"&0

Z
��"

r�wf;z � v
2
C 4�.2� � 1/ lim

"&0

Z
��"

y2��2r�y � v
2;

(4.30)
0 � lim

"&0

Z
��"

y4��1r�y � v
2:

Proof. First, note that on �˙" we have

�j
�˙"
D ˙@r ; r�yj�˙"

D �1; r�f j�˙"
D ˙y2� j

�˙"
: (4.31)

Moreover, (3.3) and (3.5) imply

Sf;zv D y
2�Drv C 2ct � @tv C wf;z � v: (4.32)

We begin with the outer limits (4.29). The main observation is that by (3.3) and by the
assumption that u is boundary admissible (see Definition 2.2), we have

lim
"&0

Z
�
C
"

y2�.@tv/
2
D 0;

lim
"&0

Z
�
C
"

y2�.Drv/
2
D

Z
�

e2�f .N�u/
2;

lim
"&0

Z
�
C
"

y�2C2�v2 D .1 � 2�/�2
Z
�

e2�f .N�u/
2:

(4.33)

We also recall that we have assumed �1=2 < � < 0.



Carleman estimates with critically singular potentials 3485

For the first boundary term, we apply (4.31) and (4.33) to obtain

lim inf
"&0

Z
�
C
"

r�f �DˇvD
ˇv � lim

"&0

Z
�
C
"

y2� Œ�.@tv/
2
C .Drv/

2�

D

Z
�

e2�f .N�u/
2: (4.34)

Next, expanding Sf;zv using (4.32), noting from (3.6) that the leading-order behavior of
wf;z near � is �2� � y2��1, and applying (4.33), we obtain

�2 lim
"&0

Z
�
C
"

Sf;zvD�v D �2 lim
"&0

Z
�
C
"

Œy2�.Drv/
2
C 2ct@tvDrv C wf;zvDrv�

D �2

Z
�

e2�f .N�u/
2
C 4� lim

"&0

Z
�
C
"

y2��1vDrv

D

�
�2C

4�

1 � 2�

�Z
�

e2�f .N�u/
2: (4.35)

The remaining outer boundary terms are treated similarly. By (4.31) and (4.33),

� lim
"&0

Z
�
C
"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2
D � lim

"&0

Z
�
C
"

y6�v2 D 0;

4�.2� � 1/ lim
"&0

Z
�
C
"

y2��2r�y � v
2
D

4�

1 � 2�

Z
�

e2�f .N�u/
2:

(4.36)

Moreover, by (3.6) and (4.31), we see that the leading-order behavior of @rwf;z is given
by �2�.1 � 2�/y2��2. Combining this with (4.31) and (4.33) yields

lim
"&0

Z
�
C
"

r�wf;z � v
2
D �2�.1 � 2�/ lim

"&0

Z
�

y2��2v2

D �
2�

1 � 2�

Z
�

e2�f .N�u/
2: (4.37)

Summing (4.34)–(4.37) yields the first part of (4.29). The second part of (4.29) simil-
arly follows by applying (4.31) and (4.33).

Next, for the interior limits (4.30), we split into two cases:

Case 1: n � 3. In this case, we begin by noting that the volume of ��" satisfies

j��" j .T;n "
n�1: (4.38)

Furthermore, since u is smooth on C , (3.3) and (4.3) imply that @tv, =rv, Drv, and v are
all uniformly bounded whenever r is sufficiently small. Combining the above with (3.6),
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(4.31), (4.32), we obtain

0 D lim
"&0

�Z
��"

r�f �DˇvD
ˇv � 2

Z
��"

Sf;zvD�v

�
� lim
"&0

Z
��"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2

C 4�.2� � 1/ lim
"&0

Z
��"

y2��2r�y � v
2;

0 D lim
"&0

Z
��"

y4��1r�y � v
2: (4.39)

This leaves only one remaining limit in (4.30); for this, we note, from (3.6), that the
leading-order behavior of �@rwf;z near r D 0 is 1

2
.n � 1/r�2y2� . As a result,

lim
"&0

Z
��"

r�wf;z � v
2
D
n � 1

2
lim
"&0

Z
��"

r�2y2�v2

D

´
0; n > 3;

C
R T
�T
jv.t; 0/j2 dt; n D 3;

(4.40)

where the last integral is over the line r D 0, and where the constant C depends only on n.
Combining (4.39) and (4.40) yields (4.30) in this case.

Case 2: n D 1. Here, we can no longer rely on (4.38) to force most limits to vanish, so
we must examine all the terms more carefully.

First, from (3.6), (4.31), (4.32), we haveZ
��"

r�f �DˇvD
ˇv � 2

Z
��"

Sf;zvD�v

D

Z
��"

y2� Œ.@tv/
2
C .Drv/

2�C

Z
��"

Œ4ct � @tvDrv � 4�y
2��1vDrv�:

Recalling also our assumption (4.2) for c, we conclude from the above that

lim
"&0

�Z
��"

r�f �DˇvD
ˇv � 2

Z
��"

Sf;zvD�v

�
� �C lim

"&0

Z
��"

y2��2v2

D �C

Z T

�T

jv.t; 0/j2 dt; (4.41)

where the last integral is over the line r D 0, and where C depends only on �. Moreover,
letting �0 be sufficiently large and recalling (4.2) and (4.31), we obtain

� lim
"&0

Z
��"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2
� QC�2

Z T

�T

jv.t; 0/j2 dt (4.42)

for some constant QC > 0.
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Next, applying (3.6) and (4.31) in a similar manner, we obtain inequalities for the
remaining limits in the right-hand side of (4.30):

lim
"&0

Z
��"

r�wf;z � v
2
� �C

Z T

�T

jv.t; 0/j2 dt;

4�.2� � 1/ lim
"&0

Z
��"

y2��2r�y � v
2
� �C

Z T

�T

jv.t; 0/j2 dt;

lim
"&0

Z
��"

y4��1r�y � v
2
D 2

Z T

�T

jv.t; 0/j2 dt:

(4.43)

Here, C denotes various positive constants that depend on �. Finally, combining the
inequalities (4.41)–(4.43) and taking �0 sufficiently large results in (4.30).

4.3. Completion of the proof

We are now in a position to complete the proof of Theorem 4.1. First, recalling the defin-
itions (3.3) and (4.3) of f and v and the fact that c2t2 . 1 by our assumption (4.2), we
have

e2�f .@tu/
2 . .@tv/2 C �2c2t2v2 . .@tv/2 C �2y6��1v2;

e2�f .Dru/
2 . .Drv/2 C �2y4�v2 . .Drv/2 C �2y6��1v2;

e2�f j=ruj2 D j=rvj2:

(4.44)

Furthermore, by (2.9) and (4.3), we observe that

.Lv/2 � 2e2�f Œ.��u/2 C �.n � 1/y�2r�2 � u2�: (4.45)

Therefore, using these bounds in Lemma 4.3, it follows that

2

Z
C"

e2�f .��u/2 C 2�.n � 1/
Z

C"

e2�f y�1r�1 � u2

� C�

Z
C"

e2�f Œ.@tu/
2
C j=ruj2 C .Dru/

2�C C�3
Z

C"

e2�f y6��1u2

C 2�

Z
�"

r�f �DˇvD
ˇv � 4�

Z
�"

Sf;zv �D�v

� 2�

Z
�"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2

C 2�

Z
�"

r�wf;z � v
2
C 8��.2� � 1/

Z
�"

y2��2r�y � v
2

C

8̂<̂
:
C�

R
C"
e2�f y2��2r�3 � u2; n � 4;

C�
R

C"
e2�f y2��2r�2 � u2 C 4c2�

R
�"
y4��1r�y � v

2; n D 3;

4c2�
R
�"
y4��1r�y � v

2; n D 1;

(4.46)
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for some constant C > 0 depending on n and �. Note that if �0 is sufficiently large, then
the last term on the left-hand side of (4.46) can be absorbed into the last term on the
right-hand side of (4.46) (for all values of n). From this, we obtainZ

C"

e2�f .��u/2 � C�
Z

C"

e2�f Œ.@tu/
2
C j=ruj2 C .Dru/

2
C �2y6��1u2�

C

8̂<̂
:
C�

R
C"
e2�f y2��2r�3 � u2; n � 4;

C�
R

C"
e2�f y2��2r�2 � u2; n D 3;

0; n D 1;

C �

Z
�"

r�f �DˇvD
ˇv � 2�

Z
�"

Sf;zv �D�v

� �

Z
�"

Œ�2.y4� � 4c2t2/ � 8c��r�f � v
2

C �

Z
�"

r�wf;z � v
2
C 4��.2� � 1/

Z
�"

y2��2r�y � v
2

C

´
0; n � 4;

2c2�
R
�"
y4��1r�y � v

2; n � 3:
(4.47)

Finally, the desired inequality (4.1) follows by letting "& 0 in (4.47) and applying
all the inequalities from Lemma 4.4.

5. Observability

Our aim in this section is to show that the Carleman estimates of Theorem 4.1 imply
a boundary observability property for solutions to wave equations on the cylindrical
spacetime C containing potentials that are critically singular at the boundary � . More
specifically, we establish the following result, which is a precise and a slightly stronger
version of the result stated in Theorem 1.8.

Theorem 5.1. Assume n ¤ 2, and fix �1=2 < � < 0. Let u be a solution to

��u D DXuC V u (5.1)

on NC , where the vector field X W C ! R1Cn and the potential V W C ! R satisfy

jX j . 1; jV j .
1

y
C
n � 1

r
: (5.2)

In addition, assume that:

(i) u is boundary admissible .in the sense of Definition 2.2/.
(ii) u has finite twisted H 1-energy for any � 2 .�T; T /:

E1Œu�.�/ D

Z
C\¹tD�º

..@tu/
2
C .Dru/

2
C j=ruj2 C u2/ <1: (5.3)



Carleman estimates with critically singular potentials 3489

Then, for sufficiently large observation time T satisfying

T >

8̂̂<̂
:̂
4
p
3

1C2�
; n � 4;

max
®
4
p
15

1C2�
; 2

p
30

p
j�j.1C2�/

¯
; n D 3;

4
p
15

1C2�
; n D 1;

(5.4)

we have the boundary observability inequalityZ
�

.N�u/
2 & E1Œu�.0/; (5.5)

where the implied constant depends on n, �, T , X , and V .

5.1. Preliminary estimates

In order to prove Theorem 5.1, we require preliminary estimates. The first is a Hardy
estimate to control singular integrands:

Lemma 5.2. Assume the hypotheses of Theorem 5.1. ThenZ
C\¹t0<t<t1º

�
1

y2
C
n � 1

r2

�
u2 .

Z
C\¹t0<t<t1º

.Dru/
2 (5.6)

for any �T � t0 < t1 � T , where the constant depends only on n and �.

Proof. The inequality (2.10) with q D 1 yields

.Dru/
2
�
1

8
.1 � 2�/2

u2

y2
C
n � 1

9

u2

r2
C
1 � 2�

2
r
ˇ .rˇy � y

�1u2/:

Taking 0 < "� 1 and integrating the above over C \ ¹t0 < t < t1º yieldsZ
C"\¹t0<t<t1º

.Dru/
2
� C

Z
C"\¹t0<t<t1º

�
1

y2
C
n � 1

r2

�
u2

�
1 � 2�

2

Z
�
C
" \¹t0<t<t1º

y�1u2 C
1 � 2�

2

Z
��" \¹t0<t<t1º

y�1u2

� C

Z
C"\¹t0<t<t1º

�
1

y2
C
n�1

r2

�
u2�

1�2�

2

Z
�
C
" \¹t0<t<t1º

y�1u2:

(Here, we have also made use of the identities (4.31).) Letting "& 0 and recalling that u
is boundary admissible results in the estimate (5.6).

We will also need the following energy estimate for solutions to (5.1):

Lemma 5.3. Assume the hypotheses of Theorem 5.1. Then

E1Œu�.t1/ � e
M jt1�t0jE1Œu�.t0/; t0; t1 2 .�T; T /; (5.7)

where the constant M depends on n, �, X , and V .
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Proof. We assume for convenience that t0 < t1; the opposite case can be proved analog-
ously. By a standard density argument, we can assume u is smooth within C . Fix now a
sufficiently small 0 < "� 1, and define

E1;"Œu�.�/ D

Z
C"\¹tD�º

..@tu/
2
C .Dru/

2
C j=ruj2 C u2/: (5.8)

Differentiating E1;"Œu� and integrating by parts we obtain, for any � 2 .�T; T /,

d

d�
E1;"Œu�.�/ D 2

Z
C"\¹tD�º

.@t tu@tuCD
juDj @tuC u@tu/

D �2

Z
C"\¹tD�º

@tu.�yu � u/C 2
Z
�"\¹tD�º

@tuD�u: (5.9)

Note that (2.9), (5.1), and (5.2) imply

j�yuj .
ˇ̌̌̌
DXuC V uC

.n � 1/�

ry
u

ˇ̌̌̌
. j@tuj C j=ruj C jDruj C

�
1

y
C
n � 1

r

�
juj:

Combining the above with (5.9) yields

d

d�
E1;"Œu�.�/ � C �E1Œu�.�/C C �E

1=2
1 Œu�.�/

�Z
C\¹tD�º

�
1

y2
C
n � 1

r2

�
u2
�1=2

C 2

Z
�"\¹tD�º

@tuD�u:

Next, integrating the above in � and applying Lemma 5.2, we obtain

E1;"Œu�.t1/ � E1Œu�.t0/C C

Z t1

t0

E1Œu�.�/ d� C 2

Z
�"\¹t0<t<t1º

@tuD�u: (5.10)

Since u is boundary admissible, it follows that

lim
"&0

Z
�
C
" \¹t0<t<t1º

@tuD�u D 0: (5.11)

Moreover, since � points radially along ��" , by symmetry we have

lim
"&0

Z
��" \¹t0<t<t1º

@tuD�u D 0: (5.12)

(Alternatively, when n > 1, we can also use (4.38).)
Letting "& 0 in (5.10) and applying (5.11)–(5.12), we conclude that

E1Œu�.t1/ � E1Œu�.t0/C C

Z t1

t0

E1Œu�.�/ d�:

The estimate (5.7) now follows from the Grönwall inequality.
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5.2. Proof of Theorem 5.1

Assume the hypotheses of Theorem 5.1, and set

c D

8̂̂<̂
:̂

1

4
p
3�T
; n � 4;

min
®

1

4
p
15�T

; j�j
120

¯
; n D 3;

1

4
p
15�T

; n D 1:

(5.13)

Note in particular that (5.13) and (5.4) imply that the conditions (4.2) hold.
Moreover, we define the function f as in the statement of Theorem 4.1, with c as in

(5.13). Then direct computations, along with (5.4), imply that

inf
C\¹tD0º

f � �.1C 2�/�1; sup
C\¹tD˙T º

f < �.1C 2�/�1:

Hence, one can find constants 0 < ı � T and �� > .1C 2�/�1 such that´
f � ��� when t 2 .�T;�T C ı/ [ .T � ı; T /;
f � ��� when t 2 .�ı; ı/:

(5.14)

In addition, we define the shorthands

Iı D Œ�T C ı; T � ı�;

Jı D .�T;�T C ı/ [ .T � ı; T /:
(5.15)

We also let � 2 C1. NC/ be a cutoff function satisfying:
(i) � depends only on t .

(ii) � D 1 when t 2 Iı .
(iii) � D 0 near t D ˙T .
We can then apply the Carleman inequality in Theorem 4.1 to the function �u, with the
choice (5.13) of c, in order to obtain

�

Z
�

e2�f �2.N�u/
2
C

Z
C

e2�f j��.�u/j2

& �
Z

C

e2�f Œj@t .�u/j
2
C �2j=ruj2 C �2.Dru/

2
C �2y�1C6��2u2�

& �
Z
Iı�B1

e2�f Œ.@tu/
2
C j=ruj2 C .Dru/

2
C �2y�1C6�u2�: (5.16)

Moreover, noting that

j��.�u/j . j���uj C j@t�j@tuj C j@2t �j juj
. j��uj C j@tuj C juj;
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and recalling (5.2) and (5.14), we derive thatZ
C

e2�f j��.�u/j2 .
Z
Iı�B1

e2�f j��uj2 C
Z
Jı�B1

e2�f .j��uj C j@tuj C juj/

.
Z
Iı�B1

e2�f .j@tuj
2
C jDruj

2
C j=ruj2/

C

Z
Iı�B1

�
1

y2
C
n � 1

r2

�
.e�f u/2

C e�2���
Z
Jı�B1

.j@tuj
2
C jDruj

2
C j=ruj2/

C e�2���
Z
Jı�B1

�
1

y2
C
n � 1

r2

�
u2;

where the implicit constants depend also on X and V . Applying Lemma 5.2 and recalling
the definition of f , the above becomesZ

C

e2�f j��.�u/j2 .
Z
Iı�B1

Œe2�f .j@tuj
2
C jDruj

2
C j=ruj2/C jDr .e

�f u/j2�

C e�2���
Z
Jı�B1

.j@tuj
2
C jDruj

2
C j=ruj2/

.
Z
Iı�B1

e2�f .j@tuj
2
C jDruj

2
C j=ruj2 C �2y4�u2/

C e�2���
Z
Jı

E1Œu�.�/ d�: (5.17)

Combining the inequalities (5.16) and (5.17) and letting � be sufficiently large
(depending also on X and V ), we then arrive at the bound

�

Z
�

e2�f .N�u/
2
C e�2���

Z
Jı

E1Œu�.�/ d�

& �
Z
Iı�B1

e2�f .j@tuj
2
C j=ruj2 C jDruj

2
C �2y6��1u2/:

Further restricting the domain of the integral on the right-hand side to .�ı; ı/ � B1 and
recalling the lower bound in (5.14), the above becomes

�

Z
�

e2�f .N�u/
2
C e�2���

Z
Jı

E1Œu�.�/ d� & �e�2���
Z ı

�ı

E1Œu�.�/ d�: (5.18)

Finally, the energy estimate (5.7) implies

e�MTE1Œu�.0/ � E1Œu�.t/ � e
MTE1Œu�.0/;
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which, when combined with (5.18), yields

�

Z
�

e2�f .N�u/
2
C ıe�2���eMT

�E1Œu�.0/ & �ıe�2���e�MT
�E1Œu�.0/: (5.19)

Taking � in (5.19) large enough such that e2MT � � results in (5.5).
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