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Abstract. In this article, we establish the existence of a family of hypersurfaces .�.t//0<t�T
that evolve by the vanishing mean curvature flow in Minkowski space and that, as t tends to 0,
blow up towards a hypersurface that behaves like the Simons cone both near the origin and at
infinity. This issue amounts to singularity formation for a second-order quasilinear wave equation.
Our constructive approach consists in proving the existence of finite-time blow up solutions of this
hyperbolic equation of the form u.t; x/ � t�C1Q.x=t�C1/, whereQ is a stationary solution and �
an arbitrarily large positive irrational number. Our approach roughly follows that of Krieger, Schlag
and Tataru [22–24]. However, in contrast to these works, the equation to be handled in this article
is quasilinear. This brings about a number of difficulties to overcome.
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1. Introduction

1.1. Setting of the problem

In this article we address the question of singularity formation for the hyperbolic vanish-
ing mean curvature flow of surfaces that are asymptotic to Simons cones at infinity.

In [5], Bombieri, De Giorgi and Giusti proved that the Simons cone defined by

Cn D ¹X D .x; y/ 2 Rn �Rn W jxj2 D jyj2º (1.1)

is a globally minimizing surface if and only if n � 4. It is clear that the Simons cone has
dimension d D 2n � 1, is invariant under the action of the group O.n/ � O.n/, where
O.n/ is the orthogonal group of Rn, and can be parametrized in the following way:

RC � Sn�1 �Sn�1 ! Cn � R2n; .�; !1; !2/ 7! .�!1; �!2/: (1.2)

The Simons cones are linked to Bernstein’s problem,1 which can be stated as follows: if
the graph of a C2 function u on Rm�1 is a minimal surface in Rm, does this imply that
this graph is a hyperplane? This amounts to asking if the solution u to the equation

m�1X
jD1

@xj

�
uxjp

1C jruj2

�
D 0;

1This problem is named after Sergei Natanovich Bernstein, who solved it in the case of m D 3
in 1914.
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known as the minimal surface equation, is linear. This is true in dimensions m � 8, but
false form � 9. For further details on Bernstein’s problem and related issues, we refer for
instance to [1–3, 5, 8, 9, 27, 30, 34, 35] and the references therein.

From [5,38], it is known that for n� 4 the complement of the Simons cone (which has
two connected components jxj < jyj and jyj < jxj) is foliated by two families of smooth
globally minimizing surfaces .Ma/a>0 and . zMa/a>0, asymptotic to the Simons cone at
infinity. These families are scale invariant: Ma D aM and zMa D a zM with M and zM
admitting respectively the parametrizations

RC � Sn�1 �Sn�1 3 .�; !1; !2/ 7! .�!1;Q.�/!2/ 2 R2n; (1.3)

RC � Sn�1 �Sn�1 3 .�; !1; !2/ 7! .Q.�/!1; �!2/ 2 R2n; (1.4)

where Q is a positive radial function that belongs to C1.Rn/ and satisfies Q.0/ D 1,
Q.�/ > � for any positive real number �, and

Q.�/ D �C
d˛

�˛
.1C o.1//

as � tends to infinity, with d˛ some positive constant and

˛ D �1C 1
2
..2n � 1/ �

p
.2n � 1/2 � 16.n � 1//:

Minimal surfaces asymptotic to the Simons cone at infinity also exist for 2 � n � 3,
but they are no longer minimizing, which will be a crucial property for our analysis.

The minimal surface equation in Riemannian geometry has a natural hyperbolic ana-
logue in the Lorentzian framework. In particular, working in the Minkowski space R1;N

equipped with the standard metric dg D �dt2 C
PN
jD1 dx

2
j ; and considering surfaces

that, for fixed t , are graphs of functions u over RN�1, we find that u satisfies the equation

@t

�
utp

1 � .ut /2 C jruj2

�
�

N�1X
jD1

@xj

�
uxjp

1 � .ut /2 C jruj2

�
D 0:

There is a broad literature devoted to this model, including results both on the local well-
posedness of the corresponding Cauchy problem and on the stability of certain stationary
solutions (see for instance [6, 10, 13, 16, 19, 25, 26] and the references therein).

In this paper, we focus on the case of time-like surfaces in the Minkowski space R1;2n

that, for fixed t , can be parametrized in the following way:

�.t/ W Rn � Sn�1 3 .x; !/ 7! .x; u.t; x/!/ 2 R2n; (1.5)

with some positive function u. This leads to the following quasilinear second-order wave
equation (see Appendix A for the corresponding computations):

@t

�
utp

1�.ut /2Cjruj2

�
�

nX
jD1

@xj

�
uxjp

1�.ut /2Cjruj2

�
C

n�1

u
p
1�.ut /2Cjruj2

D 0;
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which can also be rewritten as

.NW/u WD .1C jruj2/ut t � .1 � .ut /
2
C jruj2/�u

C

nX
j;kD1

uxj uxkuxj xk � 2ut .ru � rut /C
n � 1

u
.1 � .ut /

2
C jruj2/ D 0: (1.6)

Note that this equation is invariant with respect to the isometries of the Minkowski
space R1;n and also invariant under the scaling transform

ua.t; x/ D au.t=a; x=a/; (1.7)

in the sense that if u solves (1.6) then ua is also a solution to (1.6). In the framework of
Sobolev spaces2, PH .nC2/=2.Rn/ is invariant under the scaling (1.7).

In this paper, we shall consider the case of n D 4 and assume that u is radial, which
implies that for fixed t the surfaces we are considering are invariant under the action of
the group O.4/ �O.4/. We can readily check that in this case the function u satisfies the
following equation:

.1C u2�/ut t � .1 � u
2
t /u�� � 2utu�u�t C 3.1C u

2
� � u

2
t /

�
1

u
�
u�

�

�
D 0: (1.8)

Note that the Simons cone and the minimal surfaces Ma are stationary solutions of our
model with u.t; �/ D � in the case of the Simons cone and u.t; �/ D Qa.�/, Qa.�/ D
aQ.�=a/ in the case of Ma. Let us also emphasize that in the case of n D 4, we have

Q.�/ D �C
d2

�2
.1C o.1// (1.9)

as � tends to infinity, with d2 some positive constant.
We shall be interested in time-like surfaces of the form (1.5) that are asymptotic to the

Simons cone as jxj!1. To handle this asymptotic behavior we introduce the spacesXL,
with L a sufficiently large integer, that we define as being the set of functions .u0; u1/
such that r.u0 �Q/ and u1 belong to HL�1.R4/, and which satisfy

infu0 > 0 and inf.1C jru0j2 � .u1/2/ > 0: (1.10)

The Cauchy problem for the quasilinear wave equation (1.6) is locally well-posed in XL
provided that L is sufficiently large. More precisely one has the following theorem, the
proof of which is given in Appendix C.

2Throughout this article, we shall denote by H s.Rn/ the non-homogeneous Sobolev space and
by PH s.Rn/ the homogeneous Sobolev space. We refer to [4] and the references therein for all the
necessary definitions and properties of these spaces.
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Theorem 1.1. Consider the Cauchy problem8̂<̂
:

(1.6)u D 0;
ujtD0 D u0;

.@tu/jtD0 D u1:

(1.11)

Assume that the Cauchy data .u0; u1/ belongs to the space XL with L > 4. Then there
exists a unique maximal solution u of (1.11) on Œ0; T �Œ such that

.u; @tu/ 2 C.Œ0; T �Œ; XL/: (1.12)

Furthermore, if the maximal time T � of existence of such a solution is finite .we then say
that the solution blows up/, then

lim sup
t%T �

� 1

u.t; �/


L1
C

 1

.1Cjruj2�.@tu/2/.t; �/


L1
C sup
j j�1

@xrt;xuL1� D1:
(1.13)

The question we would like to address in this paper is that of blow up, i.e., the descrip-
tion of possible singularities that smooth hypersurfaces may develop as they evolve by
the Minkowski zero mean curvature flow. This amounts to investigating blow up dynam-
ics for the corresponding quasilinear wave equations. There is by now a considerable
literature dealing with the construction of type II blow up solutions for energy criti-
cal and energy supercritical semilinear heat, wave and Schrödinger type equations that
become singular via a concentration of a stationary state profile (see for instance the arti-
cles [7, 11, 12, 15, 17, 18, 20–24, 28, 29, 31–33, 37, 38] and the references therein). In the
hyperbolic setting, the first constructions of such blow up solutions go back to the semi-
nal works of Krieger, Schlag and Tataru [22,24] and Rodnianski and Sterbenz [33] on the
energy critical wave equation in dimension 3 and on the energy critical wave map prob-
lem. The goal of the present paper is to extend the approach initiated by Krieger, Schlag
and Tataru [22,24] to the quasilinear setting under consideration in order to show that this
blow up mechanism exists as well for the wave equation (1.6).

1.2. Statement of the main result

Our main result is given by the following theorem.

Theorem 1.2. For any irrational number � > 1=2 and any positive real number ı suffi-
ciently small, there exist a positive time T and a radial solution u to (1.6) such that3

.u; @tu/ 2 C.�0; T �; XL0/ with L0 WD 2M C 1; M D
�
3
2
� C 5

4

�
; (1.14)

3Throughout this paper, Œx� denotes the integer part of x.
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and such that it blows up at t D 0 by concentrating the soliton profile: there exist two
radial functions g0 2 PH

sC1.R4/ and g1 2 PH
s.R4/, where 0 � s < 3� C 2, such that

u.t; x/ D t�C1Q.x=t�C1/C g0.x/C �.t; x/;

ut .t; x/ D g1.x/C �1.t; x/;

with
kr�.t; �/k

H2.R4/ C k�1.t; �/kH2.R4/
t!0
���! 0:

Moreover, writing

u.t; x/ D t�C1.Q.x=t�C1/C �.t; x=t�C1//;

ut .t; x/ D �1.t; x=t
�C1/;

we have

kr�.t; �/k PH s.R4/ C k�1.t; �/k PH s.R4/
t!0
���! 0; 8 2 < s � L0 � 1:

Additionally, g0, g1 are compactly supported, belong to C1.R4 n ¹0º/ and satisfy

krg0kH s.R4/ C kg1kH s.R4/ � Csı
3�C2�s; 8 0 � s < 3� C 2;

g0.x/ �
d2

3� C 4
j
p
2 xj3�C1; g1.x/ � d2j

p
2 xj3� ; as x ! 0;

where d2 denotes the constant involved in (1.9).

Corollary 1.1. There exists a family .�.t//0<t�T of hypersurfaces in R8 that evolve by
the hyperbolic vanishing mean curvature flow, and that, as t tends to 0, blow up towards
a hypersurface that behaves asymptotically like the Simons cone, both as x ! 0 and as
jxj ! 1. Moreover,

t�.�C1/�.t/
t!0
���!M;

uniformly on compact sets, where M denotes the hypersurface defined by (1.3).

Remark 1.1.
� Combining Theorem 1.2 with the asymptotics (1.9), we readily gather that the blow

up solution u to (1.6) given by Theorem 1.2 satisfies
(1) kr.u.t; �/ �Q/k

L1..0;T �; PH s.R4// . 1, 8 0 � s < 2,

(2) kr.u.t; �/ � jxj � g0/k PH s.R4/
t!0
���! 0, 8 0 � s < 2,

(3) kr.u.t; �/ �Q/k PH s.R4/
t!0
���!1, 8 2 � s � L0 � 1.

� Theorem 1.2 gives the existence of blow up solutions with the prescribed pure power
blow up rate t�1�� for any irrational � > 1=2, in the spirit of the original results of
Krieger, Schlag and Tataru [22–24]. The blow up rate is related both to the singular
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behavior of the solution near the light cone that determines its finite degree of reg-
ularity (1.14) (see Section 4 for the details) and to the asymptotics of the radiation
part g0, g1 as x ! 0. Let us mention a recent work of Jendrej, Lawrie and Rodriguez
[16] on the energy critical one-equivariant wave maps that provides an explicit link
between the asymptotic behavior of the radiation near the origin and the blow up rate
in the context of general one-bubble blow up solutions.
� The assumption that � is irrational allows one to prevent the formation of additional

logarithms in the construction of an approximate solution to (1.6), while the limitation
to � > 1=2 is related to the local well-posedness result given by Theorem 1.1, which
is not optimal.
� For the mean curvature flow which is a parabolic analogue of the flow we are consid-

ering in this paper, a similar result4 was established by Velázquez [38] for all n � 4.
We expect that our result also holds for any n � 4. However, we limit ourselves here
to the case of n D 4 in order to avoid some additional technical difficulties related to
a more complicated behavior of Q at infinity for n � 5.
� The mechanism of singularity formation described by Theorem 1.2 is not the only

possible one for the model under consideration: (1.6) also admits finite-time blow up
solutions of self-similar type (see Appendix A).

1.3. Strategy of the proof

We shall prove Theorem 1.2 by a two-step procedure, first building an arbitrary good
approximate solution (Sections 3–5), and then completing it to an exact solution by means
of energy estimates and compactness arguments (Section 7). As we shall see, the blow up
result we establish in this article heavily relies on the asymptotic behavior of the solitonQ
at infinity. Therefore we shall focus on its analysis in Section 2.

To build an appropriate approximate solution, we shall analyze separately the three
regions that correspond to three different space scales: the inner region correspond-
ing to �=t � t�1 , the self-similar region where 1

10
t�1 � �=t � 10t��2 , and the remote

region defined by �=t � t��2 , where 0 < �1 < � and 0 < �2 < 1 are two fixed posi-
tive real numbers. The inner region is the one where the blow up concentrates. In this
region the solution will be constructed as a perturbation of the concentrating soliton pro-
file t�C1Q.x=t�C1/. In the self-similar region, the profile of the solution is determined
uniquely by the matching conditions coming from the inner region, while in the remote
region the profile remains essentially a free parameter of the construction.

Compared to the corresponding constructions in the semilinear setting, there are some
modifications that we introduce in order to take care of the quasilinear character of (1.8).
This concerns on the one hand the construction of the approximate solution in the self-
similar region where we need to build up the solution at the same time as its characteristic
set (see the discussion below), and on the other hand the energy estimates that we establish

4But with a countable family of blow up rates.
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in Section 7, where we have to use the nonlinear energies tracing carefully the contribution
of the quasilinear terms.

In Section 3, we investigate the equation in the inner region �=t � t�1 . In this region,
we shall look for an approximate solution as a power expansion in t2� of the form

u
.N/
in .t; �/ D t�C1

NX
kD0

t2�kVk.�=t
�C1/; (1.15)

where V0 is the soliton Q, and the functions Vk , for 1 � k � N , are obtained recursively,
by solving a recurrent system´

LVk D Fk.V0; : : : ; Vk�1/;

Vk.0/ D 0 and V 0
k
.0/ D 0;

where L is the operator defined by

L D @2y C

�
3

y
C B1

�
@y C B0 (1.16)

with 8̂̂̂<̂
ˆ̂:
B1.y/ D 9

Q2
y

y
� 6

Qy

Q
;

B0.y/ D 3
1CQ2

y

Q2
:

(1.17)

As will be established in §3.2, these functions Vk grow at infinity as follows:

Vk.y/ D

kX
`D0

.logy/`
X

n�2�2.k�`/

dn;k;`y
�n:

To obtain a meaningful approximate solution, we are then constrained to restrict the con-
struction to the region �=t � t�1 .

The aim of Section 4 is to extend the approximate solution built in Section 3 to the
self-similar region 1

10
t�1 � �=t � 10t��2 . Taking into account the matching conditions

coming from the inner region, we seek this extension in the following form:

u.t; �/ D �.t/.z CW.t; z//; z D �=�.t/; (1.18)

with

W.t; z/ D
X
k�3

t�k
`.k/X
`D0

.log t /`wk;`.z/;

�.t/ D t
�
1C

X
k�3

`.k/X
`D0

�k;` t
�k.log t /`

�
; (1.19)

where `.k/ D Œ.k � 3/=2�.
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Substituting (1.18) into (1.8), we get the following equation for W :

.2z2 � 1C A0/Wzz C A1 D 0; (1.20)

where A0 and A1 can be explicitly expressed by means of W and �.t/ as well as their
derivatives.5

The introduction of the modified self-similar variable z D �=�.t/ in (1.18) instead
of the semilinear one �=t , is related to the quasilinear nature of (1.8): taking �.t/ D t

gives a recurrent system for wk;` leading to a loss of regularity at each step, which is
not surprising since to propagate the regularity properly one has to follow the light cone
of (1.8) that depends on the solution itself. Technically, this amounts to constructing W
simultaneously with �.t/ by requiring

A0jzD1=
p
2 D 0: (1.21)

Substituting (1.19) into (1.20) and (1.21), we get a recurrent system that allows us to suc-
cessively determine the coefficients �k;` and the functions wk;` without loss of regularity.
It will be shown in §4.2.1 that the functions wk;` obtained in this way are C1 away from
the light cone z D 1=

p
2; and behave near z D 1=

p
2 like .1=

p
2 � z/3�C4.1 C o.1//

plus a regular function, which explains the finite degree of smoothness of our solutions.
Furthermore, at infinity the functions wk;` have the following asymptotic behavior:

wk;`.z/ � ck;` z
k�C1.log z/.k�3/=2�`:

This forces us to restrict the self-similar region to �=t . t��2 with 0 < �2 < 1.
In Section 5, we construct an approximate solution u.N/out , which extends the approx-

imate solution built in Sections 3, 4 to the whole space. This is done by solving the
quasilinear wave equation (1.8) by means of the following ansatz:

u
.N/
out .t; �/ D �C g0.�/C tg1.�/C

NX
kD2

tkgk.�/; (1.22)

where the Cauchy data .� C g0; g1/ are determined by the matching conditions coming
from the self-similar region. Substituting (1.22) into (1.8), we get a recurrent relation

gk D Gk.gj ; j � k � 1/;

which allows us to successively determine gk for k � 2. As will be seen in §5.2, the func-
tions gk , k � 0, are compactly supported and behave like �1�kC3� close to 0, which
ensures that (1.22) provides a meaningful approximate solution in the remote region
�=t � t�"2 .

The aim of Section 7 is to complete the approximate solution u.N/ constructed in
Sections 3– 5 to an exact solution. This is achieved by considering a sequence .un/ of

5The computation of A0 and A1 will be performed in Section 4.
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solutions of (1.8) with initial data unjtDtn D u
.N/.tn/, .@tun/jtDtn D .@tu

.N//.tn/, where
tn& 0. Performing energy estimates of the remainder ".N/Du�u.N/, we obtain uniform
control of this sequence on time intervals Œtn;T �, with T > 0 independent of n. This allows
us to conclude the proof of Theorem 1.2 by passing to the limit tn ! 0. The proof of the
energy estimates for ".N/ relies heavily on the positivity property (2.12) of the operator L,
which will be proved in Appendix B and which is closely related to the minimality of the
surfaces Ma and zMa.

For the sake of simplicity, we shall omit in this text the dependence of all the functions
on the parameter �. All along this article, T and C will denote respectively a positive time
and a constant that depend on several parameters, and that may vary from line to line. We
also use A . B to denote an estimate of the form A � CB for some absolute constant C .

2. Analysis of the stationary solution

2.1. Asymptotic behavior of the stationary solution

Our analysis in this paper is intimately connected to the behavior at infinity of the sta-
tionary solution to the quasilinear wave equation (1.8). In this subsection, we collect the
properties of Q that we will use throughout this paper.

Lemma 2.1. The Cauchy problem8<:�Q�� C 3.1CQ2
�/

�
1

Q
�
Q�

�

�
D 0;

Q.0/ D 1 and Q�.0/ D 0;

(2.1)

has a unique solution6 Q 2 C1.RC/ which satisfies the following properties:

� Q has an even Taylor expansion7 at 0:

Q.�/ D
X
n�0

2n�
2n (2.2)

with some constants 2n such that 0 D 1,

� Q enjoys the following bounds for any � in RC:

Q.�/ > � and Q00.�/ > 0; (2.3)

� Q has the following asymptotic expansion as � tends to infinity:

Q.�/ D �C
X
n�2

dn�
�n; (2.4)

with some constants dn such that d2 > 0 and d4 D 0.

6All along this paper, we identify radial functions on Rn with functions on RC.
7All the asymptotic expansions throughout this paper can be differentiated any number of times.
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Proof. It is well-known (see for instance [5, 38] and the references therein) that the
Cauchy problem (2.1) admits a unique solution Q in C1.RC/ satisfying (2.2), (2.3) and
which behaves like

Q.�/ D �C
d2

�2
.1C o.1// as �!1;

with d2 > 0.
Writing Q.�/ D � v.log �/, we get the following equation for v:

�.vyy C vy/C 3.1C .v C vy/
2/.1=v � v � vy/ D 0: (2.5)

Observe that the function v � 1 solves (2.5) and the linearization of (2.5) around v � 1is

�wyy � 7wy � 12w D 0: (2.6)

The characteristic equation of (2.6) has two real distinct roots r1 D �3 and r2 D �4. This
ensures that Q admits an asymptotic expansion of the form (2.4) as � tends to infinity,
with d4 D 0.

Finally, one can easily check that the formulae (2.2) and (2.4) can be differentiated to
any order with respect to the variable �, which completes the proof of the lemma.

2.2. Properties of the linearized operator of the quasilinear wave equation around the
ground state

The blow up solution we construct in this paper is a small perturbation of the pro-
file t�C1Q.�=t�C1/, and thus the linearization of the quasilinear wave equation (1.8)
around Q will play an important role. This linearized equation has the form

.1CQ2
�/wt t �Lw D 0; (2.7)

where L denotes the operator introduced in (1.16). We claim that the kernel of L contains
the function ƒQ WD Q � �Q�, which is positive. Indeed, by Lemma 2.1, ƒQ tends to 0
at infinity and satisfies .ƒQ/� D ��Q��. Recalling that Q��.�/ > 0, we get the claim.

Setting w D Hg with

H WD
.1CQ2

�/
1=4

Q3=2
; (2.8)

one can rewrite the above equation (2.7) in the following way:

gt t C Lg D 0; (2.9)

where
L D �q�q CP ; q D

1

.1CQ2
�/
1=2
; (2.10)

and P is a C1rad potential satisfying

P .�/ D �
3

8�2
.1C o.1// as �!1: (2.11)
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The operator L is self-adjoint onL2.R4/with domainH 2.R4/. Its spectral properties
which are investigated in Appendix B rely on the asymptotic behavior P at infinity of the
potential P given by (2.11). It follows from this spectral analysis that

.Lf jf /
L2.R4/ � ckrf k

2

L2.R4/
; 8f 2 PH 1

rad.R
4/; (2.12)

with some positive constant c.

3. Approximate solution in the inner region

3.1. General scheme of construction of the approximate solution in the inner region

In this section, we shall build, in the region �=t � t�1 (where 0 < �1 < � is a fixed positive
real number), a family of approximate solutions u.N/in to the quasilinear wave equation
(1.8) as a perturbation of the profile t�C1Q.x=t�C1/. Writing

u.t; �/ D t�C1V.t; �=t�C1/; (3.1)

by straightforward computations we get

u�.t; �/ D Vy.t; �=t
�C1/;

u��.t; �/ D
1

t�C1
Vyy.t; �=t

�C1/;

ut .t; �/ D t
�C1 Vt .t; �=t

�C1/C .� C 1/ t� ƒV.t; �=t�C1/ DW t�.�V /.t; �=t�C1/;

ut�.t; �/ D t
�1.�V /y.t; �=t

�C1/;

t�C1ut t .t; �/ D t
2� Œ�2V � �V �.t; �=t�C1/;

where we denote

�V WD t@tV C .� C 1/ƒV with ƒV D V � yVy and y D �=t�C1: (3.2)

Substituting (3.1) into (1.8) and multiplying by t�C1, we get

.1C V 2y /t
2� Œ�2V � �V � � .1 � t2�.�V /2/Vyy

� 2t2�Vy.�V /.�V /y C 3.1C V
2
y � t

2�.�V /2/

�
1

V
�
Vy

y

�
D 0: (3.3)

Observe that the equation (3.3) multiplied by V=Q is polynomial of order 4 with respect
to .V; Vy ; Vyy ; �V; .�V /y ; �2V /.

In what follows, we shall look for solutions V to (3.3) of the form

V.t; y/ D
X
k�0

t2�kVk.y/ (3.4)

with V0 D Q, where Q is the stationary solution introduced in Lemma 2.1.
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Substituting this ansatz into (3.3) multiplied by V=Q; we obtain the recurrent system

LVk D Fk.V0; : : : ; Vk�1/; (3.5)

where k � 1 and where Fk depends on Vj , j D 0; : : : ; k � 1; only.
Here L is defined by (1.16). The asymptotic formula (2.4) leads to the following

asymptotic expansions of B1 and B0 as y !1:8̂̂̂<̂
ˆ̂:
B1.y/ D

3

y
C

X
n�4

ˇny
�n;

B0.y/ D
6

y2
C

X
n�5

˛ny
�n;

(3.6)

with some constants ˇn and ˛n that can be computed in terms of the coefficients dn
involved in (2.4).

Along the same lines, in view of (2.2) we find the following asymptotic formulae
when y is close to 0: 8̂̂<̂

:̂
B1.y/ D

X
n�0

a2nC1 y
2nC1;

B0.y/ D 3C
X
n�1

b2n y
2n;

(3.7)

with some constants .a2nC1/ and .b2n/ that can be expressed in terms of the coeffi-
cients 2n appearing in (2.2).

The source term Fk can be split as

Fk D F
.1/

k
C F

.2/

k
;

with F .1/1 D 0, where F .1/
k

comes from the expansion of the expression

�
V

Q
Vyy C 3.1C V

2
y /

�
1

Q
�
V Vy

yQ

�
;

while F .2/
k

comes from the terms containing �V and �2V :

�
V

Q
Vyy C 3.1C V

2
y /

�
1

Q
�
V Vy

yQ

�
D

X
k�1

.�LVk C F
.1/

k
/t2�k ;

V

Q
.1C V 2y /Œ�

2V � �V �C
V

Q
.�V /2Vyy � 2

V

Q
Vy.�V /.�V /y � 3.�V /

2

�
1

Q
�
V Vy

yQ

�
D

X
k�1

F
.2/

k
t2�.k�1/:
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According to (3.4), this gives explicitly8

F
.1/

k
D �

1

Q

X
j1Cj2Dk
ji�1

Vj1

�
.Vj2/yyC3

.Vj2/y

y

�

�
3

yQ

X
j1Cj2Cj3Cj4Dk

ji�k�1

.Vj1/y.Vj2/y.Vj3/yVj4C
3

Q

X
j1Cj2Dk
ji�1

.Vj1/y.Vj2/y ; (3.8)

and

F
.2/

k
D

X
j1Cj2Cj3Cj4Dk�1

ji�0

Vj1
Q
.�j2Vj2/.�j3Vj3/

�
.Vj4/yy C

3.Vj4/y

y

�

C

X
j1Cj2Dk�1

ji�0

Vj1
Q
.�2j2 � �j2/Vj2 C

X
j1Cj2Cj3Cj4Dk�1

ji�0

Vj1.Vj2/y.Vj3/y

Q
.�2j4 � �j4/Vj2

� 2
X

j1Cj2Cj3Cj4Dk�1
ji�0

Vj1.Vj2/y

Q
.�j3Vj3/.�j4Vj4/y �

X
j1Cj2Dk�1

ji�0

3

Q
.�j1Vj1/.�j2Vj2/;

(3.9)

where �k D 2�k C .1C �/ƒ, so that

�.t2�kVk/ D t
2�k�kVk : (3.10)

We subject (3.5) to the initial conditions

Vk.0/ D 0 and V 0k.0/ D 0: (3.11)

3.2. Analysis of the functions Vk

The goal of the present subsection is to prove the following result:

Lemma 3.1. The recurrent system (3.5)–(3.11) has a unique solution .Vk/k�1 such that
for any k � 1, the function Vk is in C1.RC/ and has the following asymptotic behavior:

Vk.y/ D
X
n�1

c2n;ky
2n as y � 0; (3.12)

Vk.y/ D

kX
`D0

.logy/`
X

n�2�2.k�`/

dn;k;`y
�n as y � 1; (3.13)

with
d�2.k�2/;k;1 D 0: (3.14)

8Here and below, we use the convention that the sum is null if it is over an empty set.
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Proof. Let us first emphasize that by classical techniques of ordinary differential equa-
tions, for any regular function g, the solution to the Cauchy problem´

Lf D g;

f .0/ D 0 and f 0.0/ D 0;
(3.15)

can be written in the form

f .y/ D �.ƒQ/.y/

Z y

0

.1C .Qr .r//
2/3=2

Q3.r/r3.ƒQ/2.r/

Z r

0

Q3.s/s3.ƒQ/.s/

.1C .Qs.s//2/3=2
g.s/ ds dr (3.16)

(see Appendix D).
Let us start by considering the case when k D 1. With notations (3.2) and in light of

(3.8) and (3.9), we have

F1.Q/ D F
.2/
1 .Q/ D .1CQ2

y/
�
.1C �/2ƒ2 � .1C �/ƒ

�
Q

� 2.1C �/2Qy.ƒQ/.ƒQ/y C .1C �/
2.ƒQ/2

Qyy.Qy/
2

1CQ2
y

: (3.17)

According to (2.2), this implies that for y close to 0 the following asymptotic formula
holds:

F1.Q/ D
X
n�0

g2n;1y
2n: (3.18)

Moreover, in view of (2.4), we get the following expansion as y !1:

F1.Q/ D
X
n�2

cn;1;0y
�n: (3.19)

By Lemma 2.1 which asserts that9 d4;0;0 DW d4 D 0, we find that c4;1;0 D 0. Indeed,
invoking (2.4) together with (3.17), we easily check that

c4;1;0 D 10.1C �/.4C 5�/d4;0;0;

which implies that the coefficient c4;1;0 is zero.
This ensures in view of the Duhamel formula (3.16) that for k D 1, the Cauchy

problem (3.5), (3.11) has a unique solution V1 in C1.RC/ admitting the asymptotic
expansions (3.12) and (3.13) respectively close to 0 and at infinity.

Regarding the expansion coefficients dn;1;` of V1 at infinity, we can find them by
substituting

V1.y/ D

1X
`D0

.logy/`
X
n�2`

dn;1;`y
�n

9In what follows, the coefficients dp introduced in (2.4) will be denoted by dp;0;0.
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into (3.5) and taking into account (3.6) and (3.19). This gives rise to

2d1;1;0

y3
�

X
n�2

..2nC 1/dn;1;1 � n.nC 1/dn;1;0/y
�n�2

C

�
6

y
C

X
n�4

ˇny
�n

��
�
d1;1;0

y2
C

X
n�2

.dn;1;1�ndn;1;0/y
�n�1
�

X
n�2

ndn;1;1.logy/y�n�1
�

C

�
6

y2
C

X
n�5

˛ny
�n

��
d0;1;0 C

d1;1;0

y
C

X
n�2

dn;1;0y
�n
C

X
n�2

dn;1;1.logy/y�n
�

C

X
n�2

n.nC 1/dn;1;1.logy/y�n�2 D
X
n�2

cn;1;0y
�n: (3.20)

In particular, the identification of the coefficient of y�4 in (3.20) gives

d2;1;1 D c4;1;0 D 0; (3.21)

which proves that (3.14) is fulfilled for k D 1.
Now using the fact that the coefficient of .log y/y�n�2 in (3.20) is null, we find that

for any integer n � 2,

dn;1;1.n
2
� 5nC 6/C

X
k1Ck2DnC2
k1�5; k2�2

dk2;1;1˛k1 �
X

k1Ck2DnC1
k1�4; k2�2

k2dk2;1;1ˇk1 D 0:

Along the same lines, by computing the coefficients of y�n�2 we get

dn;1;0.n
2
� 5nC 6/C .5 � 2n/dn;1;1 C

X
k1Ck2DnC1
k1�4; k2�2

ˇk1.dk2;1;1 � k2dk2;1;0/

C

X
k1Ck2DnC2
k1�5; k2�2

˛k1dk2;1;0 D cnC2;1;0:

This implies that all the coefficients dn;1;` can be determined successively in terms of
the coefficients of F1.Q/ involved in (3.19) and the coefficients d2;1;0 and d3;1;0 that are
fixed by the initial data.

We next turn our attention to the general case of any index k � 2. To this end, we shall
proceed by induction assuming that, for any integer 1 � j � k � 1, the Cauchy problem
(3.5), (3.11) has a unique solution Vj in C1.RC/ satisfying formulae (3.12) and (3.13)
as well as condition (3.14).

Invoking (3.8) together with (3.12) and (3.13), one can easily check that

F
.1/

k
.V0; : : : ; Vk�1/.y/ D

X
n�0

g
.1/

2n;k
y2n as y � 0; (3.22)

F
.1/

k
.V0; : : : ; Vk�1/.y/ D

kX
`D0

.logy/`
X

n�7�2.k�`/

c
.1/

n;k;`
y�n as y � 1: (3.23)
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Similarly from (3.9), (3.12) and (3.13), we deduce that

F
.2/

k
.V0; : : : ; Vk�1/.y/ D

X
n�0

g
.2/

2n;k
y2n as y � 0; (3.24)

and

F
.2/

k
.V0; : : : ; Vk�1/ D .1CQ

2
y/.�

2
k�1 � �k�1/Vk�1 C

zF
.2/

k
.V0; : : : ; Vk�1/; (3.25)

where zF .2/
k

has the following expansion at infinity:

zF
.2/

k
.V0; : : : ; Vk�1/.y/ D

k�1X
`D0

.logy/`
X

n�7�2.k�`/

zc
.2/

n;k;`
y�n: (3.26)

Recall that by definition

�k�1 D 2�.k � 1/C .1C �/ƒ DW ˛.�; k � 1/C .1C �/ƒ;

which by straightforward computations gives rise to10

.�2k�1 � �k�1/Vk�1 D ˛.˛ � 1/Vk�1 C .1C �/.2˛ � 1/ƒVk�1 C .1C �/
2ƒ2Vk�1:

Setting
ˇ WD ˛.˛ � 1/C .1C �/.2˛ � 1/C .1C �/2;

we easily gather that

.�2k�1 � �k�1/Vk�1 D ˇVk�1 � .1C �/.2˛ � 1/y@yVk�1 C .1C �/
2y2@2yVk�1:

It follows from (2.4) and (3.13) that the following expansion holds at infinity:

.1CQ2
y/.�

2
k�1 � �k�1/Vk�1.y/ D

k�1X
`D0

.logy/`
X

n�2�2.k�1�`/

c
.2/

n;k;`
y�n; (3.27)

where for any integer 0 � ` � k � 1;

2c
.2/

2�2.k�1�`/;k;`
D .ˇ C n.1C �/.2˛ � 1/C .1C �/2n.nC 1//d2�2.k�1�`/;k�1;`:

In view of the induction assumption (3.14) for the index k � 1, we get

c
.2/

2�2.k�2/;k;1
D 0: (3.28)

Combining (3.22) with (3.23), (3.24), (3.26), (3.27) and (3.28), we deduce that

Fk.V0; : : : ; Vk�1/ D F
.1/

k
.V0; : : : ; Vk�1/C F

.2/

k
.V0; : : : ; Vk�1/

10In order to make notations as light as possible, all along this proof we shall omit the dependence
of the function ˛ on the parameters � and k.



H. Bahouri, A. Marachli, G. Perelman 3818

admits the following asymptotic expansions:

Fk.V0; : : : ; Vk�1/.y/ D
X
n�0

g2n;ky
2n as y � 0; (3.29)

Fk.V0; : : : ; Vk�1/.y/ D

kX
`D0

.logy/`
X

n�4�2.k�`/

cn;k;`y
�n as y � 1; (3.30)

with
c2�2.k�2/;k;1 D 0: (3.31)

Therefore the Duhamel formula (3.16) implies that the Cauchy problem (3.5), (3.11)
admits a unique solution Vk in C1.RC/ satisfying the asymptotic formulae (3.12) and
(3.13) respectively close to 0 and at infinity. As for V1, we can determine all the coef-
ficients dn;k;` in terms of Fk and d2;k;0 and d3;k;0 that are fixed by the initial data, by
substituting the expansion

Vk.y/ D

kX
`D0

.logy/`
X

n�2�2.k�`/

dn;k;`y
�n

into (3.5). In particular, for 0 � ` � k � 1 and n D 2 � 2.k � `/ we get

.n2 � 5nC 6/dn;k;` D cnC2;k;`;

which by (3.31) ensures that
d�2.k�2/;k;1 D 0

and proves (3.14). This concludes the proof of the lemma.

3.3. Estimate of the approximate solution in the inner region

Under the above notations, for any integer N � 2 set

u
.N/
in .t; �/ D t�C1V

.N/
in .t; �=t�C1/ with V

.N/
in .t; y/ D

NX
kD0

t2�kVk.y/: (3.32)

Our aim in this subsection is to investigate the properties of V .N/in in the inner region

�in WD ¹Y 2 R4 W y D jY j � t�1��º: (3.33)

Thanks to Lemma 3.1, we easily gather that V .N/in satisfies the following L1 estimates
on �in:
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Lemma 3.2. For any multi-index ˛ in N4 and any integer ˇ � j˛j, there exist a positive
constant C˛;ˇ and a small positive time T D T .˛; ˇ;N / such that for all 0 < t � T ,

kh�i
ˇ
r
˛.V

.N/
in .t; �/ �Q/kL1.�in/ � C˛;ˇ t

2� ; (3.34)

kr
˛@tV

.N/
in .t; �/kL1.�in/ � C˛t

2��1; (3.35)

kh�i
ˇ
r
˛.�V

.N/
in /.t; �/kL1.�in/ � C˛;ˇ ; (3.36)

k@t .�V
.N/

in /.t; �/kL1.�in/ � Ct
2��1; (3.37)

kh�i
ˇ
r
˛..�2 � �/V

.N/
in /.t; �/kL1.�in/ � C˛;ˇ ; (3.38)

where as above � D t@t C .� C 1/ƒ.

Along the same lines, taking advantage of Lemma 3.1, we get the following L2 esti-
mates:

Lemma 3.3. With the previous notations, for all 0 < t � T we have

kr.V
.N/

in .t; �/ �Q/kL2.�in/
� Ct� ; (3.39)

kr
˛.V

.N/
in .t; �/ �Q/kL2.�in/

� C˛t
2� ; 8j˛j � 2; (3.40)

k.�`V
.N/

in /.t; �/kL2.�in/
� C log t; 8` D 1; 2; (3.41)

kr
˛.�`V

.N/
in /.t; �/kL2.�in/

� C˛; 8j˛j � 1;8` D 1; 2: (3.42)

Remark 3.1. Denoting

�xin WD ¹x 2 R4 W jxj � t1C�1º;

and combining (3.32) with the above lemma, we infer that the radial function u.N/in on�xin
satisfies for all 0 < t � T ,

kr
˛.u

.N/
in .t; �/ � t�C1Q.�=t�C1//kL2.�xin/

� C˛t
�C.j˛j�3/.�C1/; 8j˛j � 1; (3.43)

kr
˛@tu

.N/
in .t; �/kL2.�xin/

� C˛t
�C.j˛j�3/.�C1/; 8j˛j � 1; (3.44)

k@tu
.N/
in .t; �/kL2.�xin/

� Ct��3.�C1/ log t: (3.45)

Let us end this section by estimating the remainder term

R
.N/
in WD (3.3)V .N/in :

Lemma 3.4. For any multi-index ˛, there exist a positive constant C˛;N and a small
positive time T D T .˛;N / such that for all 0 < t � T ,

kh�i
3=2
r
˛R

.N/
in .t; �/kL2.�in/

� C˛;N t
2�C2N�1�

3
2 .���1/: (3.46)
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Proof. In view of the computations carried out in §3.1, we have

V

Q

h
(3.3)

�X
k�0

t2�kVk

�i
D

X
k�1

.�LVk C Fk/t
2�k :

Thus recalling that V
Q
Œ(3.3)V � is a polynomial of order four and taking into account

Lemma 3.1, we deduce that

zR
.N/
in D

V
.N/

in

Q
R
.N/
in D

X
NC1�k�4N

t2�kGk ; (3.47)

where Gk is defined, as the function Fk , by formulae (3.8) and (3.9), where we assume in
addition that the indices ji involved range from 0 to N .

This of course implies that the function Gk , N C 1 � k � 4N , admits the following
expansions, respectively close to 0 and at infinity:

Gk.y/ D
X
n�0

zg2n;ky
2n; (3.48)

Gk.y/ D

kX
`D0

.logy/`
X

n�4�2.k�`/

zcn;k;`y
�n; (3.49)

with some constants zg2n;k and zcn;k;` that can be determined recursively in terms of the
functions Vj with j D 0; : : : ; N .

Recalling that by definition

R
.N/
in D

Q

V
.N/

in

zR
.N/
in ;

we deduce taking into account Lemma 3.2 and (3.33) that for any multi-index ˛, there
exist a positive constant C˛;N and a positive time T D T .˛;N / such that for any time 0 <
t � T , we have

kh�i
3=2
r
˛R

.N/
in .t; �/kL2.�in/

� C˛;N t
2�C2N�1�

3
2 .���1/:

This ends the proof of the lemma.

4. Approximate solution in the self-similar region

4.1. General scheme of construction of the approximate solution in the self-similar
region

Our aim in this section is to build, in the region 1
10
t�1 � �

t
� 10t��2 , an approximate

solution u.N/ss to (1.8) that extends the approximate solution u.N/in constructed in the inner
region �=t � t�1 . Here 0 < �2 < 1 is fixed.
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We shall look for this solution in the following form:

u.t; �/ D �.t/.z CW.t; z// with z D �=�.t/; (4.1)

where �.t/ is a function that behaves like t for t close to 0 and that will be constructed at
the same time as the profile W . In fact, �.t/ will be given by an expression of the form

�.t/ D t
�
1C

X
k�3

`.k/X
`D0

�k;`t
�k.log t /`

�
with `.k/ D Œ.k � 3/=2�: (4.2)

By straightforward computations, we find that

u�.t; �/ D 1CWz.t; �=�.t//;

u��.t; �/ D �.t/
�1Wzz.t; �=�.t//;

ut .t; �/ D �.t/Wt .t; �=�.t//C �
0.t/ƒW.t; �=�.t// DW W1.t; �=�.t//; (4.3)

ut�.t; �/ D �.t/
�1.@zW1/.t; �=�.t//;

�.t/ut t .t; �/ D W2.t; �=�.t//; (4.4)

with

W2.t; z/ WD �.t/�
00.t/ƒW C 2�.t/�0.t/ƒWt C �

2.t/Wt t C .�
0.t//2z2Wzz

D z2Wzz.t; z/C t
2Wt t .t; z/C 2tƒWt .t; z/C zW2.t; z/; (4.5)

where

zW2.t; z/ D ..�
0.t//2 � 1/z2Wzz C .�

2.t/ � t2/Wt t C 2.�.t/�
0.t/ � t /ƒWt

C �.t/�00.t/ƒW; (4.6)

and where as above ƒW D W � zWz .
Thus substituting (4.1) into (1.8) multiplied by �.t/, we find that the function W

solves the following equation:

.1C .1CWz/
2/W2 � .1 � .W1/

2/Wzz � 2.1CWz/W1.W1/z

� 3.1C .1CWz/
2
� .W1/

2/

�
LW

z2
C
Wz

z

�
D 0; (4.7)

where LW D W=.1CW=z/: Introducing the notations

W 02 WD W2 � .�
0/2z2Wzz D �

2Wt t C 2��
0ƒWt C ��

00ƒW;

W3 WD �Wtz ;
(4.8)

we readily gather that (4.7) can be rewritten as

.2z2 � 1C A0/Wzz C A1 D 0 (4.9)
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with

A0 D .�
0W C�Wt /

2
C2�0z.�0W C�Wt /C2..�

0/2�1/z2;

A1 D .1C .1CWz/
2/W 02�2.1CWz/W1W3�3

�
1C .1CWz/

2
� .W1/

2
�� LW
z2
C
Wz

z

�
:

(4.10)
Denoting by L the linear operator defined by

L D .2z2 � 1/@2z C 2t
2@2t C 4tƒ@t � 6z

�1@z � 6z
�2; (4.11)

we infer that (4.7) takes the form

LW D �A0Wzz � Œ2Wz C .Wz/
2�W 02 � 2

zW 02 C 2.1CWz/W1W3

�
6

z3
LWW C 3

�
2Wz C .Wz/

2
� .W1/

2
�� LW
z2
C
Wz

z

�
; (4.12)

where

zW 02 WD W
0
2 � t

2Wt t � 2tƒWt D zW2 � ..�
0/2 � 1/z2Wzz : (4.13)

It will be useful later on to notice that with the above notations, (4.12) can also be rewritten
as

LW D �2 zW2 � Œ2Wz C .Wz/
2�W2 � .W1/

2Wzz C 2.1CWz/W1.W1/z

�
6

z3
LWW C 3.2Wz C .Wz/

2
� .W1/

2/

�
LW

z2
C
Wz

z

�
: (4.14)

The asymptotics of the solution (4.1) at the origin has to be consistent with that of
(3.1) at infinity. To determine this asymptotics, we combine the expansion (4.2) with
formula (3.13), which gives

uin.t; �/ D �.t/
�
z C

X
k�3

t�k
`.k/X
`D0

.log t /`
X

0�˛�.k�3/=2�`

.log z/˛
X

ˇ�1�kC2.˛C`/

c
k;`
˛;ˇ
zˇ
�

(4.15)
as z ! 0, with the coefficients ck;`

˛;ˇ
admitting the representation

c
k;`
˛;ˇ
D c

k;`;0
˛;ˇ
C c

k;`;1
˛;ˇ

;

where ck;`;0
˛;ˇ

are independent of � and are given by

c
k;`;0
˛;ˇ
D

8<:0 if ˇ C k � 1 is odd;

.��/`
�
˛ C `

˛

�
d
�ˇ;ˇCk�12 ;˛C`

if ˇ C k � 1 is even;
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and where the coefficients ck;`;1
˛;ˇ

depend only on �p;q involved in (4.2) with 3� p � k � 3
and are zero if ˇ C k � 1 � 2.˛ C `/ � 2 or if k < 6 or if ` > .k � 6/=2.

Let us point out that taking into account Lemma 2.1 together with (3.14), which
respectively assert that d4;0;0 D 0 and d4�2m;m;1 D 0 for any integer m � 1, we infer
that

c
5;0
0;�4 D 0 and c

5;1
0;ˇ
D 0; 8ˇ: (4.16)

Formula (4.15) makes us look for the approximate solution in the self-similar region
in the form

u.t; �/ D �C �.t/W.t; �=�.t//; (4.17)

where

W.t; z/ D
X
k�3

t�k
`.k/X
`D0

.log t /`wk;`.z/: (4.18)

To fix �.t/, we require that the function A0 defined by (4.10) satisfies

A0jzD1=
p
2 D 0: (4.19)

One difficulty that we face in solving (4.12) is handling the degeneracy of the operator L
defined by (4.11) on the light cone z D 1=

p
2. The condition (4.19) ensures that the

coefficient of Wzz involved in the equation we deal with vanishes at z D 1=
p
2. This will

enable us to determine successively the functions wk;` involved in (4.18) without loss of
regularity at each step.

Invoking (4.2) together with (4.18), we infer that the functions W1, W2, zW2, W 02, zW 02,
W3, LW and A0 defined above admit expansions of the same form as W . More precisely,

Wi .t; z/ D
X
k�3

t�k
X

0�`�.k�3/=2

.log t /`wik;`.z/; i D 1; 2; 3;

zW2.t; z/ D
X
k�6

t�k
X

0�`�.k�6/=2

.log t /` zw2k;`.z/;

W 02.t; z/ D
X
k�3

t�k
X

0�`�.k�3/=2

.log t /`w.2;
0/

k;`
.z/;

zW 02.t; z/ D
X
k�6

t�k
X

0�`�.k�6/=2

.log t /` zw.2;
0/

k;`
.z/;

LW .t; z/ D
X
k�3

t�k
X

0�`�.k�3/=2

.log t /` Lwk;`.z/;

A0.t; z/ D
X
k�3

t�k
X

0�`�.k�3/=2

.log t /`A0k;`.z/;

where wi
k;`

, i D 1; 2; 3, and w.2;
0/

k;`
depend only on wk0;`0 , 3 � k0 � k, and �k00;`00 , 3 �

k00 � k � 3, where zw2
k;`

and zw.2;
0/

k;`
depend on wk0;`0 and �k00;`00 , 3 � k0; k00 � k � 3, and

A0
k;`

on wk0;`0 and �k00;`00 with 3 � k0; k00 � k.
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Observe also that11

w1k;` D .�k Cƒ/wk;` C .`C 1/wk;`C1 C zw
1
k;`;

zw1k;` D
X

k1Ck2Dk; `1C`2D`

�k2;`2
�
�k1wk1;`1 C .`1 C 1/wk1;`1C1

�
C

X
k1Ck2Dk; `1C`2D`

Œ.1C �k2/�k2;`2 C .`2 C 1/�k2;`2C1�ƒwk1;`1 ; (4.20)

and

w3k;` D �k@zwk;` C .`C 1/@zwk;`C1 C zw
3
k;`;

zw3k;` D
X

k1Ck2Dk; `1C`2D`

�k2;`2
�
�k1@zwk1;`1 C .`1 C 1/@zwk1;`1C1

�
: (4.21)

In addition, one has12

w2k;`.z/ D z
2@2zwk;`C�k.�kC1�2z@z/wk;`

C .`C1/.2�kC1�2z@z/wk;`C1C .`C1/.`C2/wk;`C2C zw
2
k;`; (4.22)

and

w
.2;0/

k;`
D �k.�k C 1 � 2z@z/wk;` C .`C 1/.2�k C 1 � 2z@z/wk;`C1

C .`C 1/.`C 2/wk;`C2 C zw
.2;0/

k;`
: (4.23)

Now substituting expansions (4.2) and (4.18) into (4.12) and (4.19), we deduce the
following recurrent system for .wk;`; �k;`/k�3; 0�`�`.k/:´
zLkwk;` D Fk;`; 0 � ` � `.k/;

.1C �k/�k;` C .`C 1/�k;`C1 D �
�
.1C �k/wk;` C .`C 1/wk;`C1

�
jzD1=

p
2
C gk;`:

(4.24)
Here zLk is the operator

zLk D .2z
2
� 1/@2z �

�
4z�k C

6

z

�
@z C 2�k.1C �k/ �

6

z2
; (4.25)

and the source term Fk;` can be divided into a linear part and a nonlinear part as follows:

Fk;` D F
lin
k;` C F

nl
k;`; (4.26)

11With the convention all along this section that �k;`0 D 0 and wk;`0 � 0 if k < 3 or `0 >
Œ.k � 3/=2�.

12One can give explicit expressions for zw2
k;`

and zw.2;
0/

k;`
of the same type as for zw1

k;`
and zw3

k;`
,

but for simplicity, we will not specify them.
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where

F lin
k;` D �2.2�k C 1/.`C 1/wk;`C1 C 4z.`C 1/.wk;`C1/z � 2.`C 1/.`C 2/wk;`C2;

(4.27)

and F nl
k;`

depends only on wk0;`0 and �k00;`00 , for 3 � k0; k00 � k � 3. Similarly, the coef-
ficients gk;` depend only on the values of the functions wk0;`0 at z D 1=

p
2 and the

coefficients �k00;`00 for 3 � k0; k00 � k � 3 (F nl
k;`

and gk;` are identically null if k < 6

or ` > .k � 6/=2).
In other words, for any integer k � 3 the functions .wk;`/0�`�`.k/ satisfy

�kWk D F nl
k (4.28)

where �k denotes the matrix operator0BBBBBBBBBBBBB@

zLk Ak.0/CB.0; z/@z C.0/ 0 : : : : : : : : :

0 zLk Ak.1/CB.1; z/@z C.1/ 0 : : : : : :

: : : 0 zLk : : : : : : 0 : : :

: : : : : : : : : zLk : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : zLk Ak.`.k/�1/CB.`.k/�1; z/@z

: : : : : : : : : : : : : : : : : : zLk

1CCCCCCCCCCCCCA
with

Ak.`/ D �2.2�k C 1/.`C 1/;

B.`; z/ D 4z.`C 1/;

C.`/ D �2.`C 1/.`C 2/;

and

Wk D

0BBBBBB@
wk;0
:::

wk;`
:::

wk;`.k/

1CCCCCCA ; F nl
k D

0BBBBBB@
F nl
k;0
:::

F nl
k;`
:::

F nl
k;`.k/

1CCCCCCA :
Let us emphasize that we do not subject the above system to any Cauchy data as was
the case for the system (3.5) corresponding to the inner region. In order to get a unique
solution to (4.24), we shall take into account the matching conditions coming from the
inner region: we require that

wk;`.z/ D
X

0�˛�.k�3/=2�`
ˇ�1�kC2.˛C`/

c
k;`
˛;ˇ
.log z/˛zˇ as z ! 0; (4.29)

where ck;`
˛;ˇ
D c

k;`
˛;ˇ
.�/ are given by (4.15).
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In view of (4.12), one can write F nl
k;`

explicitly as follows:

F nl
k;` D F

nl;1
k;`
C F

nl;2
k;`
C F

nl;3
k;`
C F

nl;4
k;`
; (4.30)

where

F
nl;1
k;`
D �2 zw

.2;0/

k;`
; (4.31)

F
nl;2
k;`
D

X
j1Cj2Dk
`1C`2D`

6.wj1;`1/z

�
1

z
.wj2;`2/z C

1

z2
Lwj2;`2

�
� 2.wj1;`1/zw

.2;0/

j2;`2

C

X
j1Cj2Dk
`1C`2D`

2w1j1;`1w
3
j2;`2
�
6

z3
wj1;`1 Lwj2;`2 ; (4.32)

F
nl;3
k;`
D

X
j1Cj2Cj3Dk
`1C`2C`3D`

2w1j1;`1w
3
j2;`2

.wj3;`3/z � .wj1;`1/z.wj2;`2/zw
.2;0/

j3;`3

C 3
X

j1Cj2Cj3Dk
`1C`2C`3D`

..wj1;`1/z.wj2;`2/z � w
1
j1;`1

w1j2;`2/

�

�
Lwj3;`3
z2
C
.wj3;`3/z

z

�
; (4.33)

F
nl;4
k;`
D �

X
j1Cj2Dk
`1C`2D`

A0j1;`1.wj2;`2/zz : (4.34)

For our purpose, it will be useful to point out that, according to (4.14),

F nl
k;` D

zF
nl;1
k;`
C zF

nl;2
k;`
C zF

nl;3
k;`
; (4.35)

where

zF
nl;1
k;`
D �2 zw2k;`; (4.36)

zF
nl;2
k;`
D

X
j1Cj2Dk
`1C`2D`

6.wj1;`1/z

�
1

z
.wj2;`2/z C

1

z2
Lwj2;`2

�
� 2.wj1;`1/zw

2
j2;`2

C

X
j1Cj2Dk
`1C`2D`

2w1j1;`1.w
1
j2;`2

/z �
6

z3
wj1;`1 Lwj2;`2 ; (4.37)
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zF
nl;3
k;`
D �

X
j1Cj2Cj3Dk
`1C`2C`3D`

.wj1;`1/z.wj2;`2/zw
2
j3;`3
C w1j1;`1w

1
j2;`2

.wj3;`3/zz

C 2
X

j1Cj2Cj3Dk
`1C`2C`3D`

w1j1;`1.w
1
j2;`2

/z.wj3;`3/z

C 3
X

j1Cj2Cj3Dk
`1C`2C`3D`

..wj1;`1/z.wj2;`2/z � w
1
j1;`1

w1j2;`2/

�
Lwj3;`3
z2
C
.wj3;`3/z

z

�
:

(4.38)

4.2. Analysis of the vector functions Wk

4.2.1. Study of the linear system �k . In order to determine successively wk;` and �k;`,
let us start by investigating the homogeneous equation

�k X D 0: (4.39)

We will prove the following lemma:

Lemma 4.1. For j in ¹0; : : : ; `.k/º, define .f j;˙
k;`

/0�`�`.k/ by

f
j;˙

k;`
.z/ D

�
j

`

�
.log j1=

p
2˙ zj/j�`

j1=
p
2˙ zj˛.�;k/

z3
; (4.40)

f
j;˙

k;`
D 0 for j C 1 � ` � `.k/;

where ˛.�; k/ D �k C 4, and denote

f
j;˙

k
D

0BBBBBBBBB@

f
j;˙

k;0
:::

f
j;˙

k;j

0
:::

0

1CCCCCCCCCA
:

The vector functions .f j;˙
k

/0�j�`.k/ constitute a basis of solutions to the homogeneous
equation (4.39) on the intervals �0; 1=

p
2Œ and �1=

p
2;1Œ:

Proof. Consider the linearization of (1.8) around �:

2vt t � l�v D 0; (4.41)

where

l� D @
2
� C 6

�
@�

�
C

1

�2

�
� (4.42)
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Writing
v.t; �/ D tw.t; z/ with z D �=t;

we clearly get, with the notation (4.11),

Lw D 0:

Observe also that (4.41) is equivalent to

2.�3v/t t � .�
3v/�� D 0: (4.43)

Set

G.t; z/ D t�kC1.log t C log j1=
p
2˙ zj/j

j1=
p
2˙ zj˛.�;k/

z3
:

Since

G.t; z/ D .log jt=
p
2˙ �j/j

jt=
p
2˙ �j˛.�;k/

�3
D
F.jt=

p
2˙ �j/

�3

for some function F , we infer that L.t�1G/ D 0: This implies that

L

�
t�k.log t C log j1=

p
2˙ zj/j

j1=
p
2˙ zj˛.�;k/

z3

�
D 0:

Since

t�k.log t C log j1=
p
2˙ zj/j

j1=
p
2˙ zj˛.�;k/

z3
D t�k

jX
`D0

.log t /`f j;˙
k;`

.z/; (4.44)

we obtain the result, recalling that

L
�
t�k

jX
`D0

.log t /`f j;˙
k;`

.z/
�
D 0 () �kf

j;˙

k
D 0:

Remark 4.1. Note that in view of the above lemma, the homogeneous equation zLkf D 0

has the following basis of solutions:8̂̂<̂
:̂
f
0;C
k;0

.z/ D
.1=
p
2C z/˛.�;k/

z3
;

f
0;�
k;0

.z/ D
j1=
p
2 � zj˛.�;k/

z3
:

(4.45)

Before concluding this section, let us collect some useful properties of the basis
.f

j;˙

k
/0�j�`.k/ given above.
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Lemma 4.2. With the above notations, the following asymptotic expansions hold:

Œ�kCƒ�f
j;˙

k;`
.z/C.`C1/f

j;˙

k;`C1
.z/ D z�k

X
0�˛�j�`

X
p2N

kp;˛.log z/˛z�p as z !1;

(4.46)

Œz2@2z C �k.�k C 1 � 2z@z/�f
j;˙

k;`
.z/C .`C 1/ Œ2�k C 1 � 2z@z �f

j;˙

k;`C1
.z/

C .`C 1/.`C 2/f
j;˙

k;`C2
.z/ D z�k�1

X
0�˛�j�`

X
p2N

Okp;˛.log z/˛z�p as z !1;

(4.47)

for any integer k � 3 and any j; ` in ¹0; : : : ; `.k/º, for some constants kp;˛ and Okp;˛ .

Proof. In view of (4.44), for large � we have

.log.�˙ t=
p
2//j

.�˙ t=
p
2/˛.�;k/

�3
D t�kC1

jX
`D0

.log t /`f j;˙
k;`

.�=t/: (4.48)

Therefore taking the derivative of the above identity with respect to t , we deduce that

1
p
2

�
j.log.�˙ t=

p
2//j�1

.�˙ t=
p
2/˛.�;k/�1

�3

C ˛.�; k/.log.�˙ t=
p
2//j

.�˙ t=
p
2/˛.�;k/�1

�3

�
D t�k

jX
`D0

.log t /`..�k Cƒ/f j;˙
k;`
C .`C 1/f

j;˙

k;`C1
/.�=t/: (4.49)

Performing the change of variables z D �=t; we infer that

t�k
p
2

.z˙1=
p
2/˛.�;k/�1

z3

�
j.log tClog.z˙1=

p
2//j�1C˛.�; k/.log tClog.z˙1=

p
2//j

�
D t�k

jX
`D0

.log t /`
�
.�k Cƒ/f

j;˙

k;`
C .`C 1/f

j;˙

k;`C1

�
.z/; (4.50)

which concludes the proof of (4.46).
Along the same lines, taking the derivative with respect to t of (4.49) ensures (4.47),

which ends the proof of the lemma.

4.2.2. Study of the functions wk;`. The goal of this subsection is to prove by induction
that the system (4.24) has a solution satisfying the matching conditions (4.29).
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For this purpose, let us start with the following useful lemma, which stems from stan-
dard techniques of ordinary differential equations. For the sake of completeness and the
convenience of the reader, we outline its proof in Appendix D.

Lemma 4.3. With the above notations,13 the following properties hold:

� For any function g in C1.R�C/, the equation zLkf D g admits a unique solution f
in C1.R�C/ satisfying f .1=

p
2/ D 0:

� For any function h in C1.�0; 1=
p
2�/, any  > 0, and any integer q, the equation

zLkf .z/ D .1=
p
2 � z/ .log.1=

p
2 � z//qh.z/ (4.51)

has a unique solution f of the form

f .z/ D .1=
p
2 � z/C1

X
0�`�q

.log.1=
p
2 � z//` h`.z/;

where for all 0 � ` � q, the function h` is in C1.�0; 1=
p
2�/; provided that the expo-

nent  satisfies
�k C 4 �  … N� : (4.52)

� Let g be a function in C1.�0; 1=
p
2Œ/ with an asymptotic expansion at 0 of the form

g.z/ D .log z/˛0
X
ˇ�ˇ0

gˇz
ˇ�2;

for some integers ˛0; ˇ0, then any solution f of the equation

zLkf D g (4.53)

belongs to C1.�0; 1=
p
2Œ/ and has for z close to 0 an asymptotic expansion

f .z/ D
X
ˇ��3

f0;ˇz
ˇ
C

X
1�˛�˛0

X
ˇ�ˇ0

f˛;ˇ .log z/˛zˇ

when ˇ0 � �1, and

f .z/ D
X

ˇ�min.ˇ0;�3/

f0;ˇz
ˇ
C

X
1�˛�˛0

X
ˇ�ˇ0

f˛;ˇ .log z/˛zˇ

C

X
ˇ�max.ˇ0;�3/

f˛0C1;ˇ .log z/˛0C1zˇ ;

when ˇ0 � �2.

13Again with the convention that the sum is null if it is over an empty set.
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� If g 2 C1.�1=
p
2;1Œ/ has at infinity an asymptotic expansion

g.z/ D
X

0�˛�˛0

X
p2N

Og˛;p.log z/˛zA�p

for some real A < �k and some integer ˛0, then the equation

zLkf D g (4.54)

has a unique solution f in C1.�1=
p
2;1Œ/ such that

f .z/ D
X

0�˛�˛0

X
p2N

Of k˛;p.log z/˛zA�p as z !1:

The key result of this subsection is the following proposition:

Proposition 4.1. With the above notations, the following properties hold:

(1) (Existence) The system (4.24) a solution .wk;`; �k;`/k�3;0�`�`.k/ such that for any
integer k � 3 and any ` 2 ¹0; : : : ; `.k/º, the functionwk;` belongs to C Œ˛.�;k/�.R�C/\

C1.R�C n ¹1=
p
2º/ and has the form14

wk;`.z/ D a
reg
k;`
.z/

C .1=
p
2 � z/k�C4

X
0�˛�.k�3/=2�`

b
reg
k;`;˛

.z/.log.1=
p
2 � z//˛��0;1=

p
2�.z/

C

X
3�ˇ�k�3

0�˛�.k�6/=2�`

b
reg
k;`;˛;ˇ

.z/.1=
p
2 � z/ˇ�C4.log.1=

p
2 � z//˛��0;1=

p
2�.z/;

(4.55)

where

��0;1=
p
2�.z/ D

´
1 for z � 1=

p
2;

0 for z > 1=
p
2:

In addition, the following asymptotics hold:

wk;`.z/ D
X

0�˛�.k�3/=2�`
ˇ�1�kC2.˛C`/

d
k;`
˛;ˇ
.log z/˛zˇ as z ! 0; (4.56)

with
d
k;`
0;�2 D c

k;`
0;�2.�/; d

k;`
0;�3 D c

k;`
0;�3.�/; (4.57)

where ck;`
0;ˇ
.�/ are the coefficients introduced in (4.15).

14Here and below, the notation reg means that the corresponding function belongs to C1.R�C/.
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Moreover, for z > 1=
p
2; wk;` can be split as

wk;`.z/ D w
nl
k;` C w

lin
k;`; (4.58)

where the nonlinear part wnl
k;`

is null if k < 6 or ` > .k � 6/=2; and in all other
cases, as z !1, it has an asymptotic expansion

wnl
k;`.z/ D

X
3�ˇ�k�3

0�˛�.k�6/=2�`;p2N

Od
k;`
˛;ˇ;p

.log z/˛zˇ�C1�p

C z�kC1
X

0�˛�.k�3/=2�`;p�2

Od
k;`
˛;k;p

.log z/˛z�p (4.59)

with some constants Odk;`
˛;ˇ;p

, and the linear part wlin
k;`

is given by

wlin
k;`.z/ D

X
0�j�`.k/

.˛
j;C

k
f
j;C

k;`
C ˛

j;�

k
f
j;�

k;`
/ (4.60)

with some constants ˛j;˙
k

. Here f j;˙
k
D .f

j;˙

k;`
/0�j�`.k/ are the solutions of the

homogeneous equation (4.39) defined in Lemma 4.1.

(2) (Uniqueness) Let .�k;`/k�3; 0�`�`.k/ be fixed, and let .w0
k;`
/3�k�M;0�`�`.k/ and

.w1
k;`
/3�k�M;0�`�`.k/ be two solutions of

zLkwk;` D Fk;`.�Iw/; 3 � k �M; (4.61)

defined and C1 in a neighborhood of 0, with wi5;1 � 0 for i 2 ¹0; 1º, and which have
an asymptotic expansion of the form (4.56) as z tends to 0:

wik;`.z/ D
X

0�˛�.k�3/=2�`
ˇ�1�kC2.˛C`/

d
k;`;i
˛;ˇ

.log z/˛zˇ :

If
d
k;`;0
0;�2 D d

k;`;1
0;�2 ; d

k;`;0
0;�3 D d

k;`;1
0;�3 ; (4.62)

then w0
k;`
D w1

k;`
for all 3 � k �M and all 0 � ` � `.k/.

Similarly, if .w0
k;`
/3�k�M;0�`�`.k/ and .w1

k;`
/3�k�M;0�`�`.k/ are two solutions

of (4.61) defined and C1 aroundC1, withwi5;1� 0 for i 2 ¹0;1º, and which satisfy,
as z tends to infinity,

wik;` D
X

0�j�`.k/

˛
j;C;i

k
f
j;C

k;`
C ˛

j;�;i

k
f
j;�

k;`

C

X
3�ˇ�k�3

0�˛�.k�6/=2�`;p2N

Od
k;`;i
˛;ˇ;p

.log z/˛zˇ�C1�p

C z�kC1
X

0�˛�.k�6/=2�`;p�2

Od
k;`;i
˛;k;p

.log z/˛z�p; (4.63)
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then
˛
j;˙;0

k
D ˛

j;˙;1

k
; 8 3 � k �M and 0 � j � `.k/; (4.64)

implies that

w0k;` D w
1
k;` for all 3 � k �M and all 0 � ` � `.k/.

Remark 4.2. By Lemma 4.1 and formulae (4.59) and (4.60), the functions wk;` have an
asymptotic expansion

wk;`.z/ D
X

3�ˇ�k�3
0�˛�.k�6/=2�`;p2N

wk;`;˛;ˇ;p.log z/˛zˇ�C1�p

C zk�C1
X

0�˛�.k�3/=2�`
p2N

wk;`;˛;p.log z/˛z�p as z !1; (4.65)

for some constants wk;`;˛;ˇ;p and wk;`;˛;p .

Proof of Proposition 4.1. Let us start with the existence part of the proposition, and first
consider the indices k D 3; 4 and 5.

In view of the computations carried out in §4.1 (see (4.16)), we have in this
case w5;1 D 0 and

zLkwk;0 D 0; k D 3; 4; 5: (4.66)

In view of Remark 4.1, this implies that for k D 3; 4; 5,

wk;0 D

´
ak0;Cf

0;C
k;0

.z/C ak0;�f
0;�
k;0

.z/ for z � 1=
p
2;

ak0;Cf
0;C
k;0

.z/ for z > 1=
p
2;

(4.67)

where a30;C D �a
3
0;� and where ¹f 0;C

k;0
; f

0;�
k;0
º denotes the basis of solutions associated to

the operator zLk given by (4.45). The coefficients ak0;˙ are determined by (4.57):8̂<̂
:
2.3� C 4/.1=

p
2/3�C3a30;C D c

3;0
0;�2;

.1=
p
2/�kC4.ak0;C C a

k
0;�/ D c

k;0
0;�3;

.�k C 4/.1=
p
2/�kC3.ak0;C � a

k
0;�/ D c

k;0
0;�2; k D 4; 5:

(4.68)

Clearly the functions wk;0, k D 3; 4; 5, satisfy properties (4.55)–(4.60).
Let us now consider the general case of any index k � 6. To this end, we shall proceed

by induction, assuming that, for any integer 3� j � k � 1 and all 0� `� `.j /, .wj;`;�j;`/
satisfies the conclusion of part .1/ of Proposition 4.1.

The first step consists in establishing the following lemma:
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Lemma 4.4. Assume that .wj;`; �j;`/0�`�`.j / is a solution of the system (4.24) with 3 �
j � k � 1 which satisfies (4.55), (4.56), (4.58), (4.59) and (4.60). Then

F nl
k;`.z/ D f

reg
k;`
.z/

C .1=
p
2 � z/k�C6

X
0�˛�.k�6/=2�`

f
reg
k;`;˛

.z/.log.1=
p
2 � z//˛��0;1=

p
2�.z/

C

X
3�ˇ�k�3

0�˛�.k�6/=2�`

f
reg
k;`;ˇ;˛

.z/.1=
p
2 � z/ˇ�C3.log.1=

p
2 � z//˛��0;1=

p
2�.z/;

(4.69)

and has the following asymptotic expansions:

F nl
k;`.z/ D

X
0�˛�.k�6/=2�`
ˇ�1�kC2.˛C`/

zfk;`;˛;ˇ .log z/˛zˇ�2 as z ! 0; (4.70)

F nl
k;`.z/ D z

k��1
X

0�˛�.k�6/=2�`;p2N

Ofk;`;˛;p.log z/˛z�p

C

X
3�ˇ�k�3

0�˛�.k�6/=2�`;p2N

Ofk;`;˛;ˇ;p.log z/˛z�ˇC1�p as z !1; (4.71)

where the coefficients zfk;`;˛;ˇ .resp. Ofk;`;˛;p and Ofk;`;˛;ˇ;p/ are uniquely determined in
terms of the coefficients d j;`

˛;ˇ
.resp. wk;`

˛;ˇ;p
/ involved in (4.56) .resp. (4.65)/.

Proof. Let us first address the behavior of F nl
k;`

near z D 0 and at infinity. To establish
(4.70) and (4.71), we will use formulae (4.35)–(4.38), combining them with the corre-
sponding asymptotics of w1

j;`
, zw1

j;`
, w2

k;`
, zw2

j;`
and Lwj;`, which we start to describe now.

Consider zw1
j;`

. It follows from (4.20) that if wj;`; 3 � j � k � 1, satisfy (4.56) and
(4.65), then for any 6 � j � k C 2, zw1

j;`
has the following asymptotic expansions:

zw1j;`.z/ D
X

0�˛�.j�6/=2�`
ˇ�4�jC2.˛C`/

zw
1;0
j;`;˛;ˇ

.log z/˛zˇ as z ! 0; (4.72)

zw1j;`.z/ D
X

0�˛�.j�6/=2�`
3�ˇ�j�3;p�0

zw
1;1
j;`;˛;ˇ;p

.log z/˛zˇ�C1�p as z !1: (4.73)

Combining (4.20) with (4.56) and (4.72), one can easily check that w1
j;`

has the same
asymptotic form as wj;` as z tends to 0:

w1j;`.z/ D
X

0�˛�.j�3/=2�`
ˇ�1�jC2.˛C`/

w
1;0
j;`;˛;ˇ

.log z/˛zˇ : (4.74)
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Furthermore, invoking (4.20), (4.58), (4.59), (4.60), (4.73) and taking into account (4.46),
one obtains, as z !1,

w1j;`.z/ D z
j�

X
0�˛�.j�3/=2�`

p2N

w
1;1
j;`;˛;j;p

.log z/˛z�p

C

X
0�˛�.j�6/=2�`
3�ˇ�j�3;p2N

w
1;1
j;`;˛;ˇ;p

.log z/˛z�ˇC1�p (4.75)

for any integer 3 � j � k � 1.
The function zw2

j;`
can be analyzed along the same lines as zw1

j;`
. In particular, using

the definition (4.22), one can show that under the assumptions of Lemma 4.4, for any
6 � j � k C 2, zw2

j;`
behaves in the same way as zw1

j;`
when z ! 0 and z !1:

zw2j;`.z/ D
X

0�˛�.j�6/=2�`
ˇ�4�jC2.˛C`/

zw
2;0
j;`;˛;ˇ

.log z/˛zˇ as z ! 0; (4.76)

zw2j;`.z/ D
X

0�˛�.j�6/=2�`
3�ˇ�j�3;p�0

zw
2;1
j;`;˛;ˇ;p

.log z/˛zˇ�C1�p as z !1: (4.77)

Combining (4.22) with (4.56), (4.58)–(4.60), (4.76) and (4.77), and taking into account
(4.47), we deduce, as we have done for w1

j;`
, that w2

j;`
has the same form as wj;`, w1j;`

as z ! 0:
w2j;`.z/ D

X
0�˛�.j�3/=2�`
ˇ�1�jC2.˛C`/

w
2;0
j;`;˛;ˇ

.log z/˛zˇ ; (4.78)

and as z !1,

w2j;`.z/ D z
j��1

X
0�˛�.j�3/=2�`

p2N

w
2;1
j;`;˛;j;p

.log z/˛z�p

C

X
0�˛�.j�6/=2�`
3�ˇ�j�3;p2N

w
2;1
j;`;˛;ˇ;p

.log z/˛z�ˇC1�p; (4.79)

for all 3 � j � k � 1.
Next we address Lwj;`. Writing

Lwj;` D
X
p�1

X
j1C���CjpDj
`1C���C`pD`

.�1/p�1z1�pwj1;`1 � � �wjp ;`p ; (4.80)
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it is easy to check that if wj;`, 3 � j � k � 1, satisfy (4.56) and (4.65), then the same is
true for Lwj;`, 3 � j � k � 1:

Lwj;`.z/ D
X

0�˛�.j�3/=2�`
ˇ�1�jC2.˛C`/

Lw0j;`;˛;ˇ .log z/˛zˇ as z ! 0; (4.81)

Lwj;`.z/ D z
j�C1

X
0�˛�.j�3/=2�`

p2N

Lw1j;`;˛;j;p.log z/˛z�p

C

X
0�˛�.j�6/=2�`
3�ˇ�j�3;p2N

Lw1j;`;˛;ˇ;p.log z/˛z�ˇC1�p (4.82)

as z ! 1. Combining (4.30)–(4.34) with (4.74)–(4.79), (4.81) and (4.82), we obtain
(4.70) and (4.71).

To end the proof of the lemma, it remains to establish (4.69). To this end, we will use
the representations (4.30)–(4.34).

Let us start with F nl;1
k;`

defined by (4.31). It stems from the definition of zw.2;
0/

j;`
given

by (4.23) that for any 6 � j � k C 2, zw.2;
0/

j;`
has the form

f
reg
j;`
.z/C

X
3�ˇ�j�3

0�˛�.j�6/=2�`

.1=
p
2 � z/ˇ�C3.log.1=

p
2 � z//˛h

reg
˛;ˇ
.z/��0;1=

p
2�.z/;

(4.83)

which means that (4.69) holds for F nl;1
k;`

.

We next consider F nl;i
k;`

, i D 2; 3, defined by (4.32) and (4.33) respectively. In view of
(4.20) and (4.21), we deduce that zw1

j;`
and zw3

j;`
have the form (4.83) for any 6� j � kC 2,

and therefore the functions w1
j;`

and w3
j;`

can be written in the following way:

f
reg
j;`
.z/C .1=

p
2 � z/j�C3

X
0�˛�.j�3/=2�`

.log.1=
p
2 � z//˛h

reg
j;`;˛

.z/��0;1=
p
2�.z/

C

X
3�ˇ�j�3

0�˛�.j�6/=2�`

.1=
p
2 � z/ˇ�C3.log.1=

p
2 � z//˛h

reg
j;`;˛;ˇ

.z/��0;1=
p
2�.z/: (4.84)

Similarly, by (4.23) the same is true for w.2;
0/

j;`
. Finally using (4.80), one can easily check

that the functions Lwj;`, 3 � j � k � 1, are of the form (4.55), which can be viewed as a
particular case of (4.84).

Since all the functions involved in (4.32) and (4.33) have the form (4.84), one easily
deduces that F nl;i

k;`
, i D 2; 3, satisfy (4.69).
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Now consider F nl;4
k;`

given by (4.34). It follows from the definition of A0 (see (4.10))
that, for all 3 � j � k � 1, the function A0

j;`
admits a representation of the same form

as wj;`:

A0j;`.z/ D A
reg
j;`
.z/

C .1=
p
2 � z/j�C4

X
0�˛�.j�3/=2�`

.log.1=
p
2 � z//˛A

reg
j;`;˛

.z/��0;1=
p
2�.z/

C

X
3�ˇ�j�3

0�˛�.j�6/=2�`

.1=
p
2 � z/ˇ�C4.log.1=

p
2 � z//˛A

reg
j;`;˛;ˇ

.z/��0;1=
p
2�.z/:

(4.85)

Furthermore, by the required condition (4.19), the functions A0
j;`

, 3 � j � k � 1, vanish

on z D 1=
p
2:

.A0j;`/jzD1=
p
2 D 0; (4.86)

which together with (4.34), (4.55) and (4.85) gives (4.69) for F nl;4
k;`

.

The second step in the proof of Proposition 4.1 relies on the following lemma:

Lemma 4.5. For k � 6, consider the nonhomogeneous equation

�kX D F nl
k ; (4.87)

where �k is defined by (4.28) and F nl
k
D .F nl

k;`
/0�`�`.k/. Then the following properties

hold:

(1) The system (4.87) has a unique solution X0 D .X0;`/0�`�`.k/ such that X0;` � 0 for
any integer `1.k/ < ` � `.k/, where `1.k/D Œ.k � 6/=2�; and such that if ` � `1.k/,
then X0;` belongs to C Œk�C4�.R�C/ \ C1.R�C n ¹1=

p
2º/ and has the form

X0;`.z/ D X
reg
0;`
.z/

C.1=
p
2�z/k�C7

X
0�˛�.k�6/=2�`

.log.1=
p
2�z//˛ X

reg
0;`;˛

.z/��0;1=
p
2�.z/

C

X
3�ˇ�k�3

0�˛�.k�6/=2�`

.1=
p
2�z/ˇ�C4.log.1=

p
2�z//˛X

reg
0;`;ˇ;˛

.z/��0;1=
p
2�.z/;

X0;`.1=
p
2/ D 0:

(4.88)

Moreover, it has an asymptotic expansion of the form (4.56) as z ! 0:

X0;`.z/ D
X

0�˛�.k�4/=2�`
ˇ�1�kC2.˛C`/

X0;`;˛;ˇ .log z/˛zˇ : (4.89)
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(2) The system (4.87) has a unique solution X1 D .X1;`/0�`�`.k/ such that X1;` � 0

for any integer `1.k/ < ` � `.k/, and such that if ` � `1.k/, then X1;` belongs to
C1.�1=

p
2;1Œ/ and has the following asymptotic behavior as z !1:

X1;`.z/ D z
k��1

X
0�˛�.k�6/=2�`;p2N

X1;`;˛;p.log z/˛z�p

C

X
3�ˇ�k�3

0�˛�.k�6/=2�`;p2N

X1;`;˛;ˇ;p.log z/˛z�ˇC1�p: (4.90)

Proof. We use induction on `. Since for any integer k � 6, we have

F nl
k;` � 0; `1.k/ < ` � `.k/;

we get
X0;` � 0; 8 `1.k/ < ` � `.k/:

Consider now
zLkX0;`1.k/ D F

nl
k;`1.k/

: (4.91)

Invoking formulae (4.69), (4.70) together with Lemma 4.3, we easily check that the above
equation has a unique solution X0;`1.k/ that satisfies (4.88) and has an asymptotic expan-
sion of the form (4.89) for z close to 0.

Let us assume now that for any integer ` < q � `1.k/, the equation

zLkX0;q D Fk;q

has a unique solution X0;q satisfying (4.88) and (4.89). Then by (4.27), we find that

F lin
k;`.z/ D F

reg
k;`
.z/

C .1=
p
2 � z/k�C6

X
0�˛�.k�6/=2�`�1

.log.1=
p
2 � z//˛ F

reg
k;`;˛

.z/��0;1=
p
2�.z/

C

X
3�ˇ�k�3

0�˛�.k�6/=2�`�1

.1=
p
2 � z/ˇ�C3.log.1=

p
2 � z//˛ F

reg
k;`;˛;ˇ

.z/��0;1=
p
2�.z/;

(4.92)
and behaves as follows as z ! 0:

F lin
k;`.z/ D

X
0�˛�.k�6/=2�`
ˇ�5�kC2.˛C`/

zFk;`;˛;ˇ .log z/˛zˇ�2; (4.93)

which implies that Fk;` D F lin
k;`
C F nl

k;`
satisfies (4.69) and (4.70).

Therefore taking into account Lemma 4.3, we infer that the equation zLkX0;` D Fk;`
has a unique solution X0;` that satisfies (4.88) and (4.89).
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The proof of the second part of the lemma is also by induction on `. First taking into
account Lemma 4.3 together with (4.71), we infer that the equation

zLkX1;`1.k/ D F
nl
k;`1.k/

has a unique solution X1;`1.k/ 2 C1.�1=
p
2;1Œ/ of the form (4.90). Then assuming that

for any integer ` < q � `1.k/, the equation
zLkX1;q D Fk;q

has a unique solution X1;q satisfying (4.90), we deduce that F lin
k;`

defined by (4.27) has an
expansion of the following form at infinity:

F lin
k;`.z/ D

X
3�ˇ�k�3

0�˛�.k�6/=2�`�1;p2N

OFk;`;˛;ˇ;p.log z/˛zˇ�C1�p

C zk��1
X

0�˛�.k�6/=2�`�1
p2N

OF
k;`
k;`;˛;p

.log z/˛z�p: (4.94)

Since Fk;` D F lin
k;`
CF nl

k;`
; it follows from (4.71), (4.94) and Lemma 4.3 that the equa-

tion zLkX1;` D Fk;` has a unique solution X1;` in C1.�1=
p
2;1Œ/ with an asymptotic

expansion of the form (4.90) as z !1. This completes the proof of the lemma.

We now return to the proof of Proposition 4.1. Taking advantage of Lemma 4.5.1/,
we get Wk DW .wk;`/0�`�.k�3/=2 by setting

Wk D

8̂̂̂<̂
ˆ̂:
X0 C

X
0�j�`.k/

.akj;Cf
j;C

k
C akj;�f

j;�

k
/ for z � 1=

p
2;

X0 C
X

0�j�`.k/

akj;Cf
j;C

k
for z > 1=

p
2;

(4.95)

where .f j;˙
k

/0�j�`.k/ is the basis of solutions of �kX D 0 introduced in Lemma 4.1,
X0 is given by Lemma 4.5.1/, and in view of (4.15), the coefficients akj;˙ are determined
by the following relations:8̂̂̂<̂

ˆ̂:
X0;`;0;�3 C

X
`�j�`.k/

�
j;`

k;0
.akj;C C a

k
j;�/ D c

k;`
0;�3;

X0;`;0;�2 C
X

`�j�`.k/

�
j;`

k;1
.akj;C � a

k
j;�/ D c

k;`
0;�2;

(4.96)

with X0;`;0;�3, X0;`;0;�2 and ck;`0;�3, ck;`0;�2 given by (4.89) and (4.15) respectively,15 and

with �j;`
k;0

and �j;`
k;1

defined by

f
j;C

k;`
.z/ D

�
j;`

k;0

z3
C
�
j;`

k;1

z2
CO

�
1

z

�
as z ! 0: (4.97)

15With the convention that X0;`;0;ˇ D 0 if ` > `1.k/ and ck;`0;�3 D 0 if ` D .k � 3/=2.
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By of (4.40), we easily deduce that8̂̂<̂
:̂
�
j;`

k;0
D .1=

p
2/˛.�;k/

�
j

`

�
.log.1=

p
2//j�`

�
j;`

k;1
D
p
2

�
˛.�; k/ �

j � `

log.
p
2/

�
�
j;`

k;0
�

(4.98)

By Lemma 4.5.2/,

Wk D X
1
C

X
0�j�`.k/

.˛
j;C

k
f
j;C

k;`
C ˛

j;�

k
f
j;�

k;`
/;

with some coefficients ˛j;˙
k

, which concludes the proof of the first part of Proposition 4.1.
In order to establish part .2/, we again proceed by induction. First, let us investigate

the uniqueness of solutions to (4.61) near 0, and consider the indices k D 3; 4 and 5. By
the computations carried out in §4.1 (see (4.16)), we have in this case wi

k;1
D 0 and

zLkw
i
k;0 D 0;

which implies that
zLk.w

0
k;0 � w

1
k;0/ D 0:

Invoking Remark 4.1 together with assumption (4.62), we easily gather that w0
k;0
D w1

k;0

in a neighborhood of 0, for k D 3; 4 and 5.
Let us assume now that under assumption (4.62),w0

k;`
Dw1

k;`
for all 3� k � k0 � 1�

M � 1 and all 0 � ` � `.k/. Since F nl
k0;`

.�Iw/ depends only on wj;`, j � k0 � 3, this
ensures that

�k0.W
0
k0
�W1

k0
/ D 0; (4.99)

where

W i
k0
D

0BBBBBBB@

wi
k0;0
:::

wi
k0;`
:::

wi
k0;`.k0/

1CCCCCCCA : (4.100)

In order to prove that W0
k0
DW1

k0
, we shall proceed by induction on ` starting from `.k0/.

Taking into account (4.28) together with (4.101), we infer that

zLk0.w
0
k0;`.k0/

� w1k0;`.k0// D 0:

Thanks to Lemma 4.1 and (4.62), this implies that

w0k0;`.k0/ D w
1
k0;`.k0/

:
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Assume now that w0
k0;q
D w1

k0;q
for any integer ` < q � `.k0/. Then, in view of the

definition of �k0 ,
zLk0.w

0
k0;`
� w1k0;`/ D 0;

which, due to Lemma 4.1 and (4.62), easily ensures that w0
k0;`
D w1

k0;`
. This completes

the proof of the uniqueness of solutions to (4.61) near 0.
Second, let us investigate the uniqueness of solutions to (4.61) near C1. Again, we

shall proceed by induction starting with the indices k D 3; 4 and 5. In this case, we have

zLkw
i
k;0 D 0;

and the conclusion follows easily from (4.64). Now, assuming that under assumption
(4.64), the uniqueness holds for any index k � k0 � 1 � M � 1, let us consider the
index k0. Again, by the induction assumption, we have �k0.W

0
k0
�W1

k0
/ D 0: This gives

the result thanks to Lemma 4.1 and condition (4.64), which ends the proof of the propo-
sition.

Remark 4.3. It is important to note that by the uniqueness established above,

d
k;`
˛;ˇ
D c

k;`
˛;ˇ
.�/; 8k; `; ˛; ˇ: (4.101)

4.3. Estimate of the approximate solution in the self-similar region

With the above notations, for any integer N � 3 set

V .N/ss .t; y/ D y C �.N/.t/t���1W .N/
ss

�
t; y

t�C1

�.N/.t/

�
;

u.N/ss .t; �/ D t�C1V .N/ss

�
t;

�

t�C1

�
;

(4.102)

with

W .N/
ss .t; z/ D

NX
kD3

t�k
`.k/X
`D0

.log t /`wk;`.z/;

�.N/.t/ D t
�
1C

NX
kD3

`.k/X
`D0

�k;`t
�k.log t /`

�
:

(4.103)

The purpose of this subsection is first to estimate the radial function V .N/ss defined by
(4.102) in the self-similar region

�ss WD ¹Y 2 R4 W t�1��=10 � jY j � 10t��2��º; (4.104)

and second to study, for N sufficiently large, the remainder term.
Combining (4.15) with Lemma 4.1, we first get the following lemma:
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Lemma 4.6. There exist a positive constant C and a small positive time T D T .N / such
that for all 0 < t � T ,

kh�i
j˛j�1
r
˛.V .N/ss .t; �/ �Q/kL1.�ss/

� C Œt3.���1/ C t3�.1��2/�; 8 j˛j < 3� C 4; .4:105/

kh�i
ˇ
r
˛.V .N/ss .t; �/�Q/kL1.�ss/� C Œt

2�C2.���1/Ct .���1/.NC1/Ct�C1C.3��1/.1��2/�;

8ˇ � j˛j�2 and 1 � j˛j < 3�C4: .4:106/

In addition,

k@tV
.N/

ss .t; �/kL1.�ss/ � Ct
�2�� Œt1C�C2.���1/ C t .1C3�/.1��2/�; (4.107)

kr
˛@tV

.N/
ss .t; �/kL1.�ss/ � Ct

�1Œt3.���1/ C t3�.1��2/�; 8 1 � j˛j < 3� C 3:

(4.108)

Moreover, for any multi-index ˛ with j˛j < 3� C 3, the function16 V
.N/

ss;1 .t; y/ WD

.@tu
.N/
ss /.t; �/ satisfies

kh�i
ˇ
r
˛V

.N/
ss;1 .t; �/kL1.�ss/ � Ct

� Œt3.���1/ C t3�.1��2/�; 8ˇ � j˛j � 1;

kh�i
˛
r
˛V

.N/
ss;1 .t; �/kL1.�ss/ � C Œt

3��2�1 C t3�.1��2/�; (4.109)

k@tV
.N/

ss;1 .t; �/kL1.�ss/ � Ct
�1Œt3��2�1 C t3�.1��2/�: (4.110)

Finally, for any multi-index ˛ of length j˛j < 3� C 2 and any integer ˇ � j˛j, we have

kh�i
ˇ
r
˛V

.N/
ss;2 .t; �/kL1.�ss/ � C Œt

2�C2.���1/ C t�C1C.3��1/.1��2/�; (4.111)

where V .N/ss;2 .t; y/ D t
�C1.@2t u

.N/
ss /.t; �/.

In the spirit of Lemma 3.3, we also have the following result.

Lemma 4.7. For all 0 < t � T ,

kr
˛.V .N/ss .t; �/�Q/kL2.�ss/

� C Œt�j˛j��1.j˛j�2/Ct .���1/.NCj˛j�3/Ct�j˛j��2.3�C3�j˛j/�;

8 1 � j˛j < 3� C 4C 1=2; (4.112)

kr
˛.V

.N/
ss;1 /.t; �/kL2.�ss/

� Ct�.j˛jC1/Œt��1j˛j C t��2.3�C2�j˛j/�; 8 0 � j˛j < 3� C 3C 1=2; (4.113)

kr
˛.V

.N/
ss;2 /.t; �/kL2.�ss/

� Ct�.j˛jC2/Œt��1j˛jCt��2.3�C1�j˛j/.1Ct3��2�2//�; 8 0 � j˛j < 3�C2C1=2:

(4.114)

16We recall that � D yt�C1.
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Let us now consider the remainder

R.N/
ss .t; y/ WD Œ(3.3)V .N/ss �.t; y/:

Clearly,

R.N/
ss .t; y/ D

t�C1

�.N/.t/
zR.N/

ss

�
t; y

t�C1

�.N/.t/

�
;

where
zR.N/

ss .t; z/ D Œ(4.7)W .N/
ss �.t; z/:

By construction,

zR.N/
ss .t; z/ D

X
k�NC1
`�.k�6/=2

t�k.log t /`rk;`.z/ with rk;`.z/ D F
nl
k;`.W

.N/
ss ; �.N//:

In view of the computations carried out in Section 4.1, we have

rk;`.z/Dr
reg
k;`
.z/C.1=

p
2�z/k�C6

X
0�˛�.k�6/=2�`

r
reg
k;`;˛

.z/.log.1=
p
2�z//˛��0;1=

p
2�.z/

C

X
3�ˇ�k�3

0�˛�.k�6/=2�`

r
reg
k;`;˛;ˇ

.z/.1=
p
2 � z/ˇ�C2.log.1=

p
2 � z//˛��0;1=

p
2�.z/: (4.115)

Furthermore, as z ! 0 and as z !1, rk;` satisfies (4.70) and (4.71) respectively.
As a direct consequence of these properties, we obtain the following lemma:

Lemma 4.8. There exist a small positive time T D T .N / and a positive constant CN
such that for all 0 < t � T ,

kh�i
3=2R.N/

ss .t; �/kHK0 .�ss/
� CN Œt

.���1/.N�3=2/ C t�.1��2/.NC1/�
5
2 .�C1/�; (4.116)

where K0 D Œ3� C 5=2�.

Let us end this section by investigating V .N/in � V
.N/

ss in the intersection of the inner
and self-similar regions,

�in \�ss D ¹Y 2 R4 W t�1��=10 � jY j � t�1��º:

In view of (4.15), (4.55) and Remark 4.3, for any multi-index ˛ and any integer m we
have ˇ̌

@˛y@
m
t .V

.N/
in � V .N/ss /.t; y/

ˇ̌
. t2�.NC1/�my2N�j˛j C t�my�N�j˛j

if y 2 �in \�ss and t is sufficiently small, which leads to the following result:

Lemma 4.9. For any integer m and any multi-index ˛,

kr
˛@mt .V

.N/
in � V .N/ss /.t; �/kL1.�in\�ss/ � CN;˛;mt

�mCj˛j.���1/.t2�C2N�1 C tN.���1//

(4.117)
for all 0 < t � T D T .˛;m;N /.



H. Bahouri, A. Marachli, G. Perelman 3844

5. Approximate solution in the remote region

5.1. General scheme of construction of the approximate solution in the remote region

In the previous section, we have built, in the self-similar region, an approximate solu-
tion u.N/ss which extends the approximation solution u.N/in constructed in Section 3 in the
inner region. Our goal here is to extend u.N/ss to the whole space.

Recall that the approximate solution u.N/ss built in Section 4 has the form

u.N/ss .t; �/ D �C �.N/.t/

NX
kD3

t�k
`.k/X
`D0

.log t /`wk;`

�
�

�.N/.t/

�
;

where `.k/ D Œ.k � 3/=2�; and where �.N/.t/ is given by (4.103).
To achieve our goal, let us start by introducing the function

ulin;.N/.t; �/ WD t

NX
kD3

t�k
`.k/X
`D0

.log t /`wlin
k;`.�=t/; (5.1)

where wlin
k;`

denotes the linear part of the function wk;` given by (4.60).
The function ulin;.N/ solves the Cauchy problem8̂<̂

:
.2@2t � l�/u

lin;.N/
D 0;

ulin;.N/
jtD0 D u

lin;.N/
0 ;

.@tu
lin;.N//jtD0 D u

lin;.N/
1 ;

(5.2)

where l� is defined by (4.42), and where8̂̂̂̂
<̂̂
ˆ̂̂̂:
u

lin;.N/
0 .�/ D

NX
kD3

`.k/X
`D0

�0k;` �
k�C1.log �/`;

u
lin;.N/
1 .�/ D

NX
kD3

`.k/X
`D0

�1k;` �
k�.log �/`;

(5.3)

with 8̂<̂
:
�0k;` D ˛

`;C
k
C ˛

`;�
k
;

�1k;` D
1
p
2

�
.�k C 4/.˛

`;C
k
� ˛

`;�
k
/C .`C 1/.˛

`C1;C
k

� ˛
`C1;�
k

/
�
;

(5.4)

˛
`;˙
k

being the coefficients arising in (4.60). Here we again use the convention that ˛`C1;˙
k

D 0 if `C 1 > .k � 3/=2.
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Indeed, combining (4.60) with (5.1), we infer that

ulin;.N/.t; �/ D

NX
kD3

t�kC1
`.k/X
`D0

.log t /`
X

0�j�.k�3/=2

�
˛
j;C

k
f
j;C

k;`
.�=t/C ˛

j;�

k
f
j;�

k;`
.�=t/

�
:

Taking advantage of (4.44), this gives rise to

ulin;.N/.t; �/D

NX
kD3

t�kC1
X

0�j�.k�3/=2

�
˛
j;C

k

�
log t C log.�=t C 1=

p
2/
�j ��t C 1p

2

��kC4�
�
t

�3
C ˛

j;�

k

�
log t C log.�=t � 1=

p
2/
�j ��t � 1p

2

��kC4�
�
t

�3 �

D

NX
kD3

X
0�j�.k�3/=2

�
˛
j;C

k
.log.�C t=

p
2//j

�
�C tp

2

��kC4
�3

C ˛
j;�

k
.log.� � t=

p
2//j

�
� � tp

2

��kC4
�3

�
;

which ensures the result.
Let now �0 be a radial smooth cutoff function on R4 equal to 1 on the unit ball

centered at the origin and vanishing outside the ball of radius 2 centered at the origin, and
consider, for a small positive real number ı, the compactly supported functions

g0.�/ D �ı.�/u
lin;.N/
0 .�/; g1.�/ D �ı.�/u

lin;.N/
1 .�/; (5.5)

where ulin;.N/
0 and ulin;.N/

1 are the functions defined by (5.3), and where �ı.�/D �0.�=ı/:

Remark 5.1. Invoking (5.3) together with (5.5), we infer that there17 exists ı0.N / > 0
such that for any 0 < ı � ı0.N / and any integerm < 3� C 2, the above functions g0 and
g1 belong respectively to the Sobolev spaces PHmC1.R4/ and PHm.R4/, and satisfy

kg0k PHmC1.R4/ � Cı
3��mC2 and kg1k PHm.R4/ � Cı

3��mC2:

We shall look for the solution in the remote region in the form

uout.t; �/ D �C g0.�/C tg1.�/C
X
k�2

tkgk.�/: (5.6)

To this end, we shall apply the lines of reasoning of Sections 3 and 4 and determine by
induction the functions gk , for k � 2, making use of the fact that uout is a formal solution
to the Cauchy problem 8̂<̂

:
(1.8)uout D 0;

uoutjtD0 D �C g0;

.@tuout/jtD0 D g1:

(5.7)

17In what follows, the parameter ı0.N / may vary from line to line.
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For this purpose, we substitute (5.6) into (1.8), which by straightforward computations
leads to the recurrent relation

gk D
1

k.k � 1/.2C 2.g0/� C .g0/2�/
Hk.gj ; j � k � 1/; k � 2; (5.8)

where the source term Hk has the form

Hk D H
.1/

k
CH

.2/

k
CH

.3/

k
(5.9)

with

H
.1/

k
D l�gk�2; (5.10)

H
.2/

k
D �2

X
k1Ck2Dk
k2>0

k1.k1 � 1 � k2/gk1.gk2/�

C 6
X

k1Ck2Dk�2

�
�gk1

Luk2
�3
C .gk1/�

�
Luk2
�2
C
.gk2/�

�

��
; (5.11)

H
.3/

k
D

X
k1Ck2Ck3Dk

k1k2

�
�gk1gk2.gk3/�� C 2gk1.gk2/�.gk3/�

� 3gk1gk2

�
Luk3
�2
C
.gk3/�

�

��
�

X
k1Ck2Ck3Dk
2�k1<k

k1.k1 � 1/gk1.gk2/�.gk3/�

C 3
X

k1Ck2Ck3Dk�2

.gk1/�.gk2/�

�
Luk3
�2
C
.gk3/�

�

�
; (5.12)

where Luk is given by
Lu D

u � �

1C u��
�

D

X
k�0

tk Luk : (5.13)

Note that Luk depends only on gki with ki � k.

5.2. Analysis of the functions gk

The aim of this section is to investigate the functions gk defined above by (5.8)–(5.12).
To this end, let us start by introducing the following definition.

Definition 5.1. Let A be the set of functions a in C1.R�C/ supported in ¹0 < � � 2ıº,
where ı is the positive parameter introduced in (5.5), and having for � < ı an absolutely
convergent expansion

a.�/ D
X
j�3

X
0�`�.j�3/=2

aj;`�
�j .log �/`: (5.14)
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Remark 5.2. The function space A given by Definition 5.1 is an algebra, and for any
function a in A and any integer m we have

@ma 2 ��mA: (5.15)

Our aim now is to establish the following key result that describes the behavior of the
functions gk .

Lemma 5.1. There exists ı0.N / > 0 such that for any 0 < ı � ı0.N /,

gk 2 �
1�kA; 8k 2 N :

Proof. First note that in view of (5.3) and (5.5), g0 2 �A and g1 2 A for any ı > 0, and
there exists ı0.N / > 0 such that

1

1C .1C .g0/�/2
A � A;

1

1C g0=�
A � A; (5.16)

for any 0 < ı � ı0.N /.
Let us now show that for any 0 < ı � ı0.N /, gk 2 �

1�kA for all k � 2. To this end,
we shall proceed by induction assuming that, for any integer j � k � 1, the function gj
belongs to �1�jA.

Recalling that

l�v D v�� C 6

�
v

�2
C
v�

�

�
;

we infer, taking into account (5.15), that the function H
.1/

k
given by (5.10) belongs

to �1�kA.
Since Luk is defined by

Lu D
u � �

1C u��
�

D

X
k�0

tk Luk ;

it readily follows from the induction assumption that Luj 2 �1�jA for any j � k � 1.
Combining the fact that A is an algebra with (5.15) and (5.16), we deduce that the

function H
.2/

k
defined by (5.11) belongs to �1�kA.

Along the same lines, taking into account (5.11), we readily gather that H
.3/

k
2 �1�kA.

This concludes the proof of the result thanks to (5.8), (5.9) and (5.16).

Remark 5.3. Combining Definition 5.1 with Lemma 5.1, we infer that for any integer k,
the function gk has an absolutely convergent expansion

gk.�/ D �
1�k

X
j�3

X
0�`�.j�3/=2

akj;` �
�j .log �/` (5.17)

for � < ı, where

a0j;` D �
0
j;`; a1j;` D �

1
j;` if 3 � j � N; a0j;` D a

1
j;` D 0 if j � N C 1: (5.18)
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5.3. Estimate of the approximate solution in the remote region

With the above notations, for any integer N � 3 set

u
.N/
out .t; �/ D �C

NX
kD0

tkgk.�/;

V
.N/

out .t; y/ D t
�.�C1/u

.N/
out .t; t

�C1y/:

(5.19)

Invoking Lemma 5.1, and recalling that for any integer k the function gk is compactly
supported in ¹0� �� 2ıº, we infer that V .N/out defined by (5.19) satisfies the followingL1

estimates in the remote region

�out WD ¹Y 2 R4 W y D jY j � t��2��º:

Lemma 5.2. For any multi-index ˛, there exists ı0.˛;N / > 0 such that for any 0 < ı �
ı0.˛;N /,

kh�i
j˛j
r
˛.V

.N/
out .t; �/ �Q/kL1.�out/ � C˛t

�.�C1/ı3�C1; (5.20)

kh�i
j˛j�1
r
˛.V

.N/
out .t; �/ �Q/kL1.�out/ � C˛ı

3� ; (5.21)

kh�i
ˇ
r
˛.V

.N/
out .t; �/ �Q/kL1.�out/ � C˛;ˇ .t

3�.�C1/
C t�C1/; 8ˇ � j˛j � 2;

(5.22)

k@tV
.N/

out .t; �/kL1.�out/ � Ct
�.�C2/ı3�C1; (5.23)

kh�i
j˛j
r
˛V

.N/
out;1.t; �/kL1.�out/ � C˛ı

3� ; (5.24)

kh�i
ˇ
r
˛V

.N/
out;1.t; �/kL1.�out/ � C˛;ˇ .t

3�.�C1/
C t�C1/; 8ˇ � j˛j � 1;

(5.25)

k@tV
.N/

out;1.t; �/kL1.�out/ � Ct
�1ı3� ; (5.26)

kh�i
ˇ
r
˛V

.N/
out;2.t; �/kL1.�out/ � C˛;ˇ .t

3�.�C1/
C ı3��1t�C1/; 8ˇ � j˛j;

(5.27)

for all 0 < t � T with T D T .˛; ı;N /, where

V
.N/

out;1.t; y/ WD .@tu
.N/
out /.t; �/; V

.N/
out;2.t; y/ WD t

�C1.@2t u
.N/
out /.t; �/:

Moreover, for any multi-index ˛ with j˛j � 1,

kr
˛@tV

.N/
out .t; �/kL1.�out/ � C˛t

�1ı3� (5.28)

for all 0 < t � T .

Denote
�xout WD ¹x 2 R4 W jxj � t1��2º: (5.29)
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Lemma 5.3. With the previous notations, for any 0 < ı � ı0.˛;N / and all 0 < t � T D
T .˛; ı;N /,r˛x �u.N/out .t; �/ � t

�C1Q.�=t�C1/ � g0
�
L2.�xout/

� C˛t .1C t
.1��2/.3�C2�j˛j//; 8j˛j � 1; (5.30)r˛x .@`tu.N/out .t; �/ � g`/


L2.�xout/

� C˛t .1C t
.1��2/.3�C2�`�j˛j//; 8j˛j � 0; (5.31)

for ` D 1; 2.

Remark 5.4. Combining (5.19) with Lemma 5.3, we infer that satisfies, for all 0 < t � T ,

kr˛.V
.N/

out .t; �/ �Q/kL2.�out/

� C˛t
.j˛j�3/.�C1/Œı3�C3�j˛j C t .1��2/.3�C3�j˛j/�; 8j˛j � 1; .5:32/

kr
˛V

.N/

out;`.t; �/kL2.�out/

� C˛t
.j˛j�3C`/.�C1/Œı3�C3�`�j˛j C t .1��2/.3�C3�`�j˛j/�; 8j˛j � 0; .5:33/

for ` D 1; 2.

Let us now consider the remainder

R
.N/
out WD (3.3)V .N/out : (5.34)

We have

R
.N/
out .t; y/ D t

�C1 zR
.N/
out .t; t

�C1y/; where zR
.N/
out .t; y/ D Œ(1.8)u.N/out �.t; t

�C1y/:

It follows readily from the proof of Lemma 5.1 thatj � j3=2r˛x zR.N/
out .t; �/


L2.�xout/

� C˛;N t
N�1�.1��2/.j˛jCN�3��7=2/ (5.35)

for any j˛j � 0 provided that N � 3� C 7=2, which leads to the following lemma:

Lemma 5.4. For any multi-index ˛,

kh�i
3=2
r
˛R

.N/
out .t; �/kL2.�out/

� t�2N�
5
2 .�C1/ (5.36)

for all 0 < t � T D T .˛; ı;N / provided that N � 3� C 7=2.

We next investigate V .N/out � V
.N/

ss in �out \�ss. Assuming � < ı, and rewriting u.N/out
in terms of the variable z D �=�.N/.t/; we get

u
.N/
out .t; �/ D �

.N/.t/

�

h
z C

NX
kD3

X
0�`�.k�3/=2

t�k.log t /`
� X

3�ˇ�k�3
0�˛�.k�6/=2�`;p�0

wout
k;`;˛;ˇ;p.log z/˛z�ˇC1�p

C z�kC1
X

0�˛�.k�3/=2�`;p�0

wout
k;`;˛;p.log z/˛z�p

�i
;
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with some coefficients wout
k;`;˛;ˇ;p

, wout
k;`;˛;p

that can be expressed explicitly in terms of the
coefficients �j;` with 3� j �N;0� `� `.j / and of the constants ak

j;`
with k � 0, j � 3,

0 � ` � `.j /, introduced in Remark 5.3.
In particular,

wout
k;`;˛;p D

�
˛ C `

˛

�
a
p

k;˛C`
(5.37)

for all k � 3, ` � .k � 3/=2; ˛ � .k � 3/=2 � `; p � 0.
Combining (5.4), (5.18) with (5.37), we infer thatX
0�j�`.k/

.˛
j;C

k
f
j;C

k;`
C ˛

j;�

k
f
j;�

k;`
/

D

X
0�˛�.j�3/=2�`

pD0;1

z�kC1�p.log z/˛wout
k;`;˛;p CO.z�k�1.log z/`.j /�`/

as z !1, which by Proposition 4.1.2/ (uniqueness near infinity) implies that

wout
k;`;˛;ˇ;p D wk;`;˛;ˇ;p; wout

k;`;q;p D wk;`;q;p; (5.38)

for any 3� k �N , 0� `� `.k/, 0� ˛ � .k � 6/=2� `; 0� q � .k � 3/=2� `; 3� ˇ �
k � 3, p � 0, where wk;`;˛;ˇ;p , wk;`;q;p are the coefficients involved in (4.65).

As a direct consequence of (5.38), we obtain

Lemma 5.5. For any ˛ 2 N4 and any integer m,

k@mt r
˛.V

.N/
out � V

.N/
ss /.t; �/kL1.�out\�ss/ � t

�m��Cj˛j.�C�2/.t�2N C t��2C.1��2/�N /

(5.39)
for all 0 < t < T D T .˛;m;N /.

6. Approximate solution in the whole space

Let ‚ be a radial function in D.R/ satisfying

‚.�/ D

´
1 if j�j � 1=4;
0 if j�j � 1=2:

Set

V .N/.t; y/ WD ‚.y t���1/V
.N/

in .t; y/C .‚.yt�C�2/ �‚.yt���1//V .N/ss .t; y/

C .1 �‚.yt�C�2//V
.N/

out .t; y/;

u.N/.t; �/ WD t�C1V .N/.t; �=t�C1/:

(6.1)

Combining Lemmas 3.2, 4.6 and 5.2 with Lemmas 4.9 and 5.5, we infer that for N
sufficiently large there exists a positive parameter ı0.N / such that for any 0 < ı � ı0.N /
there exists a positive time T D T .ı; N / so that the approximate solution V .N/ defined
by (6.1) satisfies the following L1 estimates:
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Lemma 6.1. The following estimates hold for V .N/, for all 0 < t � T :

kh�i
j˛j�1
r
˛.V .N/ �Q/.t; �/k

L1.R4/ � ı
3� ; 8 0 � j˛j < 3� C 4; (6.2)

kh�i
ˇ
r
˛.V .N/ �Q/.t; �/k

L1.R4/ � Ct
� ; 8 1 � j˛j < 3� C 4 and ˇ � j˛j � 2;

(6.3)r˛ y

jyj2
� r.V .N/ �Q/.t; �/


L1.R4/

� Ct� ; 8 0 � j˛j < 3� C 3: (6.4)

Moreover, the time derivative of V .N/ satisfies

k@tV
.N/.t; �/k

L1.R4/ � Ct
�2��ı3�C1; (6.5)

kr
˛@tV

.N/.t; �/k
L1.R4/ � Ct

�1ı3� ; 8 1 � j˛j < 3� C 3: (6.6)

In addition, for any multi-index ˛ with j˛j < 3� C 3, the function V
.N/
1 .t; y/ WD

.@tu
.N//.t; �/ and its time derivative satisfy

kh�i
j˛j
r
˛V

.N/
1 k

L1.R4/ � Cı
3� ; (6.7)

kh�i
ˇ
r
˛V

.N/
1 .t; �/k

L1.R4/ � Ct
� ; 8ˇ � j˛j � 1; (6.8)

k@tV
.N/
1 .t; �/k

L1.R4/ � Ct
�1ı3� : (6.9)

Finally, for any multi-index ˛ with j˛j < 3� C 2 and any integer ˇ � j˛j,

kh�i
ˇ
r
˛V

.N/
2 .t; �/k

L1.R4/ � Ct
� ; (6.10)

where V .N/2 .t; y/ WD t�C1.@2t u
.N//.t; �/.

Along the same lines, taking advantage of Lemmas 3.3, 4.7 and 5.3, we get the follow-
ing L2 estimates, as before for N sufficiently large, 0 < ı � ı0.N / and 0 < t � T .ı;N /:

Lemma 6.2. For any 1 � j˛j < 3� C 3,

kr
˛.u.N/.t; �/ � t�C1Q.�=t�C1/ � g0/kL2..R4/

� C.t C t .1��2/.3�C3�j˛j/ C t3C5��j˛j.1C�//; (6.11)

and for any 0 � j˛j < 3� C 2,

kr
˛.u

.N/
t .t; �/ � g1/kL2.R4/ � C.t C t

.1��2/.3�C2�j˛j/ C t2C3��j˛j.1C�//: (6.12)

Moreover,

kr
˛.V .N/.t; �/ �Q/k

L2.R4/ � Ct
2� ; 8 3� C 3 < j˛j < 3� C 4C 1=2; (6.13)

kr
˛V

.N/
1 .t; �/k

L2.R4/ � Ct
� ; 8 3� C 2 < j˛j < 3� C 3C 1=2; (6.14)

kr
˛V

.N/
2 .t; �/k

L2.R4/ � Ct
2� ; 8 3� C 1 < j˛j < 3� C 2C 1=2: (6.15)
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Remark 6.1. Lemma 6.2 implies that

kr
˛.V .N/.t; �/ �Q/k

L2.R4/ � C.t
2�
C t .1C�/.j˛j�3/ı3�C3�j˛j/;

8 1 � j˛j < 3� C 4C 1=2; (6.16)

kr
˛V

.N/
1 .t; �/k

L2.R4/ � C.t
�
C t .1C�/.j˛j�2/ı3�C2�j˛j/;

8 0 � j˛j < 3� C 3C 1=2; (6.17)

and

kr
˛.u.N/.t; �/ � t�C1Q.�=t�C1/ � g0/kL2.R4/

t!0
���! 0; 8 1 � j˛j < 3C

2�

� C 1
;

kr
˛.u

.N/
t .t; �/ � g1/kL2.R4/

t!0
���! 0; 8 0 � j˛j < 2C

�

� C 1
:

Finally, if we denote
R.N/

WD (3.3)V .N/;

then invoking Lemmas 3.4, 4.8, 4.9, 5.4 and 5.5, we get the following result:

Lemma 6.3. There exist N0 2 N and � > 0 such that

kh�i
3=2R.N/.t; �/k

HK0 .R4/ � t
�NC� (6.18)

for all N � N0 and 0 < t � T .ı; N /, where K0 D Œ3� C 5=2� was introduced in Lem-
ma 4.8.

RelabelingN , one can always assume that the approximate solutions u.N/ are defined
and satisfy Lemmas 6.1-6.2 for any integer N � 1, and that (6.18) holds with � D 1 for
all N � 1.

7. Proof of the blow up result

7.1. Key estimates

The approximate solutions u.N/ constructed in the previous sections satisfy, for any inte-
ger N � 1,

.r.u.N/ �Q/; @tu
.N// 2 C.�0; T �;HK0C1.R4//;

with18 some T D T .ı; N / > 0. Furthermore, by (6.2) and (6.8), there are positive con-
stants c0 and c1 such that

u.N/.t; �/ � c0t
�C1; (7.1)

.1C jru.N/j2 � .@tu
.N//2/.t; �/ � c1; (7.2)

18In what follows, ı is assumed to be less than ı0.N /, which may vary from line to line.
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for any integer N � 1, and all t in �0; T �. This ensures that

.u.N/.t; �/; @tu
.N/.t; �// 2 XK0C2; 8t 2 �0; T �:

The goal of this subsection is to finish the proof of Theorem 1.2 by showing that forN
sufficiently large, the approximate solution u.N/ can be completed to an exact solution u
to (1.8) that satisfies

kh�i
3=2@t .u � u

.N//.t; �/k
HL0�1.R4/ C kh�i

3=2
r.u � u.N//.t; �/k

HL0�1.R4/

� tN=2; 8t 2 �0; T �; (7.3)

for some positive T D T .ı; N / and19 L0 D 2M C 1 with M D ŒK0=2�. Note that since
� > 1=2; we have M � 2, and thus L0 � 5.

The mechanism for achieving this will rely on the following crucial result:

Proposition 7.1. There is N0 2 N such that for any integer N � N0, there exists a small
positive time T D T .ı;N / such that, for any time 0 < t1 � T , the Cauchy problem

.NW/.N/

8̂<̂
:

(1.6)u D 0;
ujtDt1 D u

.N/.t1; �/;

.@tu/jtDt1 D @tu
.N/.t1; �/;

(7.4)

has a unique solution u on the interval Œt1; T � which satisfies

kh�i
3=2@t .u � u

.N//.t; �/k
HL0�1.R4/ C kh�i

3=2
r.u � u.N//.t; �/k

HL0�1.R4/ � t
N=2

(7.5)
for all t 2 �t1; T �.

Proof. As mentioned above, for any t1 sufficiently small, the initial data .u.N/.t1; �/;
@tu

.N/.t1; �// belongs to XK0C2, and thus satisfies the hypothesis of Theorem 1.1. By
construction u.N/.t; �/ � � is compactly supported. Thus, to establish Proposition 7.1, it
is enough to show that there exists T D T .ı;N / > 0 such that the solution to the Cauchy
problem (7.4) satisfies the estimate (7.5) for any time t1 � t � min ¹T .ı;N /; T �º, where
T � is the maximal time of existence. This will be achieved in two steps:

(1) First writing u.t; x/ D t�C1V.t; y/, V.t; y/ D V .N/.t; y/ C ".N/.t; y/, with y D
x=t�C1; x 2 R4, we derive the equation satisfied by the remainder term ".N/. We
next set

".N/.t; y/ D H.y/r .N/.t; y/;

where H is the function defined by (2.8), and rewrite the resulting equation in terms
of r .N/. As we will see later, the equation for r .N/ involves the operator L introduced
in (2.10).

19We choose L0 to be an odd integer to make the estimates we are dealing with easier.
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(2) We deduce the desired result (inequalities (7.5)) from suitable energy estimates by
making use of the behavior of the approximate solution u.N/ described by Lem-
mas 6.1 and 6.2, and the spectral properties of the operator L, which turns out to
be close to the Laplace operator.

In order to make notations as light as possible, we shall omit the dependence of the
functions ".N/ and r .N/ on N .

Denote

V1.t; y/ WD a.t/Vt .t; y/C a
0.t/ƒV.t; y/ D ut .t; x/; (7.6)

V2.t; y/ WD a.t/.V1/t .t; y/ � a
0.t/.y � rV1/.t; y/ D t

�C1ut t .t; x/; (7.7)

with a.t/ D t�C1 and ƒV D V � y � rV .
Multiplying the quasilinear wave equation (1.6) by a.t/ and rewriting it in terms of V ,

one gets

.1C jrV j2/V2 � 2.rV � rV1/V1 � .1 � V
2
1 C jrV j

2/�V

C

4X
j;kD1

Vyj Vyk@
2
yj yk

V C
3

V
.1 � V 21 C jrV j

2/ D 0: (7.8)

Thus recalling that the approximate solution V .N/ satisfies (7.8) up to a remainder
term R.N/, we infer that the function u solves (1.6) if and only if the remainder term "

satisfies the following equation:

.1C jrV j2/"2 �L" � 2V1rV � r"1 C .V
2
1 � jr"j

2/�"

C

4X
j;kD1

"yj "yk@
2
yj yk

"C F CR.N/
D 0; (7.9)

where
"2 D a.t/."1/t � a

0.t/.y � r"1/; "1 D a.t/"t C a
0.t/ƒ"; (7.10)

L is the linearized operator introduced in (1.16):

L" D �"C 3

�
.3y � rQ/rQ

jyj2
�
2rQ

Q

�
� r"C 3

1C jrQj2

Q2
";

and the term F is given by

F D .jrV j2� jrV .N/j2/V
.N/
2 � 2.V1rV �V

.N/
1 rV .N// � rV

.N/
1

C .V 21 � .V
.N/
1 /2/�V .N/�

3

V V .N/
.V 21 V

.N/
� .V

.N/
1 /2V /

C 3

�
1

V .N/
.jrV j2� jrV .N/j2/�

2

Q
rQ � r"

�
� 3"

�
1CjrV j2

V V .N/
�
1CjrQj2

Q2

�
� 9.jrV .N/j2� jrQj2/

y � r"

jyj2
� 9

y � rV .N/

jyj2
jr"j2:
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Next, set
".t; y/ D H.y/r.t; y/ (7.11)

with

H D
.1C jrQj2/1=4

Q3=2
: (7.12)

Let us emphasize that in view of Lemma 2.1, the function H enjoys the following prop-
erty: for any ˛ 2 N4, there exists a positive constant C˛ such that for any y in R4,

1

C˛hyi3=2Cj˛j
� jr

˛H.y/j �
C˛

hyi3=2Cj˛j
: (7.13)

Now in light of the definitions introduced in (7.10), we have

"1.t; y/ D H.y/r1.t; y/; "2.t; y/ D H.y/r2.t; y/;

where
r1 D art C a

0ƒr � a0
y � rH

H
r;

r2 D a.r1/t � a
0y � rr1 � a

0 y � rH

H
r1:

(7.14)

Thus taking advantage of (7.9), we readily gather that the remainder term r given by
(7.11) satisfies

.1C jrV j2/r2 C .1C jrQj
2/Lr �

2V1

H
rV � r.Hr1/C .V

2
1 � jr.Hr/j

2/�r

�
2V1

H
rV � r.Hr1/C

V 21 � jr.Hr/j
2

H
Œ�;H�r C

4X
j;kD1

.Hr/yj .Hr/yk@
2
yj yk

r

C

4X
j;kD1

.Hr/yj .Hr/yk

H
Œ@2yj yk ;H �r C

F

H
C

R.N/

H
D 0; (7.15)

where ŒA; B� D AB � BA denotes the commutator of the operators A and B , and where

L D �
1

H.1C jrQj2/
LH: (7.16)

Let us recall that in view of (2.10),

L D �q�q CP ;

where q D 1

.1CjrQj2/1=2
and P is a radial C1 function which satisfies

P D �
3

8�2
.1C o.1// as �!1.
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Dividing the equation at hand by 1C jrV j2, we get

r2 C
1C jrQj2

1C jrV j2
Lr �

2V1

1C jrV j2
rV � rr1 C

V 21 � jr.Hr/j
2

1C jrV j2
�r

C
1

1C jrV j2

4X
j;kD1

.Hr/yj .Hr/yk@
2
yj yk

r C zF C zR.N/
D 0; (7.17)

with

zR.N/
WD

R.N/

.1C jrV j2/H
; (7.18)

zF WD
F

.1C jrV j2/H
�

2V1

.1C jrV j2/H
rV � .rH/r1

C
V 21 � jr.Hr/j

2

.1C jrV j2/H
Œ�;H�r C

4X
j;kD1

.Hr/yj .Hr/yk

.1C jrV j2/H
Œ@2yj yk ;H �r: (7.19)

Observe that zF depends only on the remainder term r and its first derivatives. This
achieves the goal of the first step.

The bound (7.5) will be proved by a bootstrap argument based on the following
lemma, which we establish by combining the positivity property of the operator L (see
(2.12) and Appendix B) with the estimates obtained in Lemmas 6.1 and 6.2.

Lemma 7.1. There is N0 2 N such that for any integer N � N0, there exists T D
T .N; ı/ > 0 such that for any t1 2 �0; T � and any t2 2 Œt1; T � the following property
holds. If for all t 2 Œt1; t2�,

kr1.t; �/k
2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/
� t2N ; (7.20)

then
kr1.t; �/k

2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/
�
C

N
t2N (7.21)

for any t 2 Œt1; t2�, where C is an absolute constant.

Proof of Lemma 7.1. In order to prove (7.21), let us start by applying the operator LM to
(7.17). This gives

LM r2 C
1C jrQj2

1C jrV j2
LMC1r �

2V1

1C jrV j2
rV � rLM r1 C

V 21 � jr"j
2

1C jrV j2
�LM r

C
1

1C jrV j2

4X
j;kD1

.Hr/yj .Hr/yk@
2
yj yk

.LM r/C zFM C LM zR.N/
D 0 (7.22)
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with zFM D LM zF C GM , where

GM WD

�
LM ;

1C jrQj2

1C jrV j2

�
Lr � 2

�
LM ;

V1

1C jrV j2
rV � r

�
r1

C

�
LM ;

V 21 � jr"j
2

1C jrV j2
�

�
r C

4X
j;kD1

�
LM ;

.Hr/yj .Hr/yk

1C jrV j2
@2yj yk

�
r: (7.23)

Now let us multiply (7.17) by a�1r1 and (7.22) by a�1LM r1, and then integrate
over R4. This easily gives rise to the identity

a�1.t/

Z
R4
Œr1(7.17)C .LM r1/(7.22)�.t; y/ dy D 0: (7.24)

Making use of (7.17) and (7.22), we deduce that (7.24) can be split as follows:

� a�1.t/

Z
R4
Œr1. zF C zR

.N//C .LM r1/. zFM C LM zR.N//�.t; y/ dy

D .I /C .II/C .III/C .IV/;

with

.I / D a�1.t/

Z
R4
.r2r1 C LM r2 LM r1/.t; y/ dy;

.II/ D a�1.t/
Z

R4

1C jrQj2

1C jrV j2
Œ.Lr/r1 C .L

MC1r/.LM r1/�.t; y/ dy;

.III/ D �2a�1.t/
Z

R4

V1

1C jrV j2
rV � Œ.rr1/r1 C .rLM r1/.L

M r1/�.t; y/ dy;

.IV/ D a�1.t/
4X

i;jD1

Z
R4
gi;j Œ@

2
yiyj

rr1 C .@
2
yiyj

LM r/.LM r1/�.t; y/ dy;

where for all 1 � i; j � 4 the coefficients gi;j in the last integrand are defined by

gi;j D
V 21 � jr"j

2

1C jrV j2
ıi;j C

.Hr/yi .Hr/yj

1C jrV j2
; (7.25)

and obviously satisfy the symmetry relations gi;j D gj;i .
First, let us investigate the term .I /. By definition

r2 D a.r1/t � a
0y � rr1 � a

0 y � rH

H
r1;

and thus
LM r2 D a.L

M r1/t � a
0y � r.LM r1/ � a

0X

with
X D ŒLM ; y � r�r1 C LM

y � rH

H
r1:
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We deduce that

.I / D
1

2

d

dt
Œkr1.t/k

2

L2.R4/
C kLM r1.t/k

2

L2.R4/
�

�
1C �

t

Z
R4

�
r1y � rr1 C .L

M r1/y � r.L
M r1/C r1

y � rH

H
r1 C .L

M r1/X

�
.t; y/ dy:

Integrating by parts and taking into account that kXk
L2.R4/ . kr1kHL0�1.R4/; we find

that

.I / D
1

2

d

dt
Œkr1.t/k

2

L2.R4/
C kLM r1.t/k

2

L2.R4/
�C

1

t
O
�
kr1.t; �/k

2

HL0�1.R4/

�
; (7.26)

in the sense that (and all along this proof)

jO.kr1.t; �/k
2

HL0�1.R4/
/j . kr1.t; �/k2HL0�1.R4/:

Let us now estimate .II/. First, we point out that it stems from the Hardy inequality
and the asymptotic expansion (2.4) that for any f in PH 1.R4/,

kr.qf /k
L2.R4/ � Ckrf kL2.R4/: (7.27)

Therefore performing an integration by parts, we get

.II/ D
Z

R4
r

�
1C jrQj2

1C jrV j2

�
� Œqr1r.qr/C qLM r1r.qLM r/�.t; y/ dy

C

Z
R4

1CjrQj2

1CjrV j2
Œr.qr1/�r.qr/Cr.qLM r1/�r.qLM r/CP .rr1CLM rLM r1/�.t; y/ dy:

A straightforward computation gives

r

�
1C jrQj2

1C jrV j2

�
D r

�
1C
jrQj2 � jrV j2

1C jrV j2

�
D r

�
.rQ � rV /.rQCrV /

1C jrV j2

�
:

We claim that there is a positive constant C such that for any t 2 Œt1; t2� with 0 < t1 �
t2 � T , r�1C jrQj21C jrV j2

�
.t; �/


L1.R4/

� Ct� : (7.28)

To see this, first observe that for any t 2 Œt1; t2�,20

kr
2.V �Q/.t; �/k

L1.R4/ � Ct
� :

Indeed, by definition,
V D V .N/ C " with " D Hr;

20Here and below, we assume that N > �.
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which gives the result, by applying the triangle inequality and making use of Lemma 6.1,
the Hardy inequality, the estimates (6.3), (7.13) and the bootstrap assumption (7.20).

Along the same lines, we find that

kh�i
�1
r.V �Q/.t; �/kL1 � Ct

� ; kh�ir
2V.t; �/kL1 � C; krV.t; �/kL1 � C;

which completes the proof of the claim (7.28).
We deduce that

.II/ D
1

t
O
�
kr1.t; �/k

2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/

�
C

Z
R4

1CjrQj2

1CjrV j2
Œr.qr1/�r.qr/Cr.qLM r1/�r.qLM r/CP .rr1CLM rLM r1/�.t; y/ dy:

Moreover, remembering that

r1 D art C a
0ƒr � a0

y � rH

H
r;

we obtain
r.qr1/ D a@t .rqr/C a

0ƒrqr � a0Y0

with

Y0 D r

�
q
y � rH

H
r

�
� Œrq;ƒ�r:

Invoking (2.4) together with (7.13) and the Hardy inequality, we infer that

kY0kL2.R4/ . krrk
L2.R4/: (7.29)

Along the same lines, we readily gather that

LM r1 D a@t .L
M r/C a0ƒLM r � a0Y1;

rqLM r1 D a@t .rqLM r/C a0ƒrqLM r � a0Y2;

with

Y1 D LM
y � rH

H
r � ŒLM ; ƒ�r; Y2 D �Œrq;ƒ�L

M r Cr.qY1/ ;

which clearly satisfy

kY1kH1.R4/ C kY2kL2.R4/ . krrk
HL0�1.R4/: (7.30)

Taking advantage of (7.29) and (7.30), we infer that

.II/ D
d

dt
E1.t/C .II/1 C .II/2 C

1

t
O
�
kr1.t; �/k

2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/

�
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with

E1.t/ WD
1

2

Z
R4

1CjrQ.y/j2

1CjrV.t; y/j2
Œjr.qr/j2Cjr.qLM r/j2CP .r2C.LM r/2/�.t; y/ dy;

(7.31)

.II/1

WD �
1

2

Z
R4
@t

�
1CjrQ.y/j2

1CjrV.t; y/j2

�
Œjr.qr/j2Cjr.qLM r/j2CP .r2C.LM r/2/�.t; y/ dy;

.II/2 WD
1C �

t

Z
R4

1C jrQj2

1C jrV j2
Œr.qr/ �ƒr.qr/Cr.qLM r/ �ƒr.qLM r/�.t; y/ dy:

Again combining the bootstrap assumption (7.20) with (6.6), we claim that for any
t 2 Œt1; t2� with 0 < t1 � t2 � T ,@t� 1C jrQ.y/j2

1C jrV.t; y/j2

�
.s; �/


L1.R4/

� Ct�1: (7.32)

It is obvious that (7.32) reduces to

k@trV.t; �/kL1.R4/ � Ct
�1: (7.33)

Now to establish (7.33), let us first recall that

V D V .N/ C " with " D Hr:

Applying the triangle inequality and invoking (6.6), we deduce that

k@trV.t; �/kL1.R4/ � k@trV
.N/.t; �/k

L1.R4/ C k@tr.Hr/.t; �/kL1.R4/

� Ct�1 C kr.H@tr/.t; �/kL1.R4/�

But in view of (7.14), we have

art D ar1 � a
0ƒr C a0

y � rH

H
r;

which ends the proof of (7.33) thanks to the bootstrap assumption (7.20).
Consequently, we get

.II/1 D
1

t
O
�
krr.t; �/k2

HL0�1.R4/

�
: (7.34)

To end the estimate of the second part, it remains to investigate the term .II/2. For that
purpose we perform an integration by parts, which implies that

.II/2 D
1C �

2

Z
R4

�
.r � y/

1C jrQj2

1C jrV j2

�
Œjr.qr/j2 C jr.qLM r/j2�.t; y/ dy:
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Taking into account Lemma 6.1 and the bootstrap assumption (7.20), this gives rise to

.II/2 D
1

t
O
�
krr.t; �/k2

HL0�1.R4/

�
� (7.35)

In summary, we have

.II/ D
d

dt
E1.t/C

1

t
O
�
kr1.t; �/k

2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/

�
� (7.36)

Moreover, it stems from the definition of the operator L and the estimates (6.2), (7.20)
that there is a positive constant C such thatˇ̌
E1.t/ �

1
2

�
Lr.t; �/jr.t; �/

�
L2
�
1
2

�
LMC1r.t; �/jLM r.t; �/

�
L2

ˇ̌
� Cı3�krr.t; �/k2

HL0�1
:

(7.37)

Let us now estimate the third term .III/. Integrating again by parts, we easily get

.III/ D �2a�1.t/
Z

R4

V1

1C jrV j2
rV � Œ.rr1/r1 C .rLM r1/.L

M r1/�.t; y/ dy

D a�1.t/

Z
R4
@yj

�
V1

1C jrV j2
@yj V

�
Œ.r1/

2
C .LM r1/

2�.t; y/ dy �

Arguing as above, we infer that for any t 2 Œt1; t2� with 0 < t1 � t2 � T ,r� V1

1C jrV j2
rV

�
.t; �/


L1
� Ct� : (7.38)

This estimate is a direct consequence of the inequalities

krV1.t; �/kL1 � Ct
� ; kh�i

�1V1.t; �/kL1 � Ct
� ; kh�ir

2V.t; �/kL1 � C;

which readily follow from the bootstrap assumption (7.20) and Lemma 6.1. Hence

.III/ D
1

t
O
�
kr1.t; �/k

2

HL0�1.R4/

�
� (7.39)

Finally, the last term .IV/ can be dealt with along the same lines as .II/. First, per-
forming an integration by parts, we get

.IV/ D �
4X

i;jD1

a�1.t/

Z
R4
gi;j Œ.@yi r/.@yj r1/C .@yiL

M r/.@yjLM r1/�.t; y/ dy

�

4X
i;jD1

a�1.t/

Z
R4
.@yj gi;j /Œ.@yi r/r1 C .@yiL

M r/.LM r1/�.t; y/ dy;

where the coefficients gi;j are defined by (7.25).
For any t 2 Œt1; t2� with 0 < t1 � t2 � T , the functions gi;j for 1 � i; j � 4 satisfy

kgi;j .t/kL1.R4/ � Cı
6� and krgi;j .t/kL1.R4/ � Ct

� : (7.40)
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Indeed, by definition

gi;j D
V 21 � jr"j

2

1C jrV j2
ıi;j C

.Hr/yi .Hr/yj

1C jrV j2
;

which leads to the result thanks to the estimates�V 21 � jr"j21C jrV j2

�
.t; �/


L1.R4/

� Cı6� ;

r�V 21 � jr"j21C jrV j2

�
.t; �/


L1.R4/

� Ct� ;r`� .Hr/yj .Hr/yk1C jrV j2

�
.t; �/


L1.R4/

� Ct2N ; ` D 0; 1;

fwhichthat can be proved in the same way as (7.28), making use of the bootstrap assump-
tion (7.20) and Lemma 6.1.

Remembering that

r1 D art C a
0ƒr � a0

y � rH

H
r;

we find that
r.r1/ D a@t .rr/C a

0ƒrr � a0 zY0

with
zY0 D r

�
y � rH

H
r

�
� Œr; ƒ�r:

Along the same lines as for Y0, we have

k zY0kL2.R4/ . krrk
L2.R4/: (7.41)

Similarly, we easily check that

rLM r1 D a@t .rLM r/C a0ƒrLM r � a0 zY2;

with
zY2 D �Œr; ƒ�L

M r Cr.Y1/;

which clearly satisfies
k zY2kL2.R4/ . krrk

HL0�1.R4/: (7.42)

Therefore

.IV/ D
d

dt
E2.t/C

1

2

4X
i;jD1

Z
R4
.@tgi;j /Œ.@yi r/.@yj r/C .@yiL

M r/.@yjLM r/�.t; y/ dy

�
� C 1

t

4X
i;jD1

Z
R4
gi;j Œ@yi rƒ@yj r C .@yiL

M r/.ƒ@yjLM r/�.t; y/ dy

C
1

t
O
�
kr1.t; �/k

2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/

�
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with

E2.t/ D �
1

2

4X
i;jD1

Z
R4
gi;j Œ.@yi r/.@yj r/C .@yiL

M r/.@yjLM r/�.t; y/ dy: (7.43)

In view of the bootstrap assumption (7.20) and Lemma 6.1,

kh�irgi;j kL1.R4/ � C; (7.44)

which follows easily from the fact that for any t 2 Œt1; t2�,h�ir�V 21 � jr"j21C jrV j2

�
.t; �/


L1.R4/

� C;h�ir� .Hr/yj .Hr/yk1C jrV j2

�
.t; �/


L1.R4/

� Ct2N :

An integration by parts thus gives rise to

.IV/ D
d

dt
E2.t/C

1

2

4X
i;jD1

Z
R4
.@tgi;j /Œ.@yi r/.@yj r/C .@yiL

M r/.@yjLM r/�.t; y/ dy

C
1

t
O
�
kr1.t; �/k

2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/

�
:

Now we claim that
k@tgi;j kL1.R4/ � Ct

�1: (7.45)

This is again a consequence of the bootstrap assumption (7.20) and Lemma 6.1 which
assert that there is a positive constant C such that for any t 2 Œt1; t2�,@t�V 21 � jr"j21C jrV j2

�
.t; �/


L1.R4/

� Ct�1;@t� .Hr/yj .Hr/yk1C jrV j2

�
.t; �/


L1.R4/

� CtN :

Therefore we obtain

.IV/ D
d

dt
E2.t/C

1

t
O
�
kr1.t; �/k

2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/

�
: (7.46)

Observe also that by (7.40),ˇ̌
E2.t/

ˇ̌
� Cı6�

�
kr1.t; �/k

2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/

�
: (7.47)

We finally address the terms zF , zFM and zR.N/. Using the bootstrap assumption (7.20)
and Lemmas 6.1 and 6.2 it is not difficult to show the following estimates.
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Lemma 7.2. There exists a positive constant C such that under assumption (7.20), for
any t 2 Œt1; t2� with 0 < t1 � t2 � T ,

k zF .t; �/k
HL0�1.R4/ � Ct

�
�
krr.t; �/k

HL0�1.R4/ C kr1.t; �/kHL0�1.R4/
�
; (7.48)

k zR.N/.t; �/k
HL0�1.R4/ � Ct

NC� ; (7.49)

k zFM .t; �/kL2.R4/ � Ct
�
�
krr.t; �/k

HL0�1.R4/ C kr1.t; �/kHL0�1.R4/
�
: (7.50)

We now combine the last lemma with the bootstrap assumption (7.20) and the above
estimates (7.26), (7.37), (7.39), (7.47), (7.49) and (7.50) to get

d

dt
E.t/ � Ct2N�1 (7.51)

with
E.t/ D

1

2
Œkr1.t/k

2

L2.R4/
C kLM r1.t/k

2

L2.R4/
�C E1.t/C E2.t/;

where E1 and E2 are respectively given by (7.31) and (7.43).
It follows from (2.4), (2.12), (7.37) and (7.47) (see Remark B.1) that

E.t/ � C.kr1.t; �/k
2

HL0�1
C krr.t; �/k2

HL0�1
/

for some positive constant C provided that ı is taken sufficiently small. Therefore, inte-
grating inequality (7.51) and taking into account that r.t1/ D r1.t1/ D 0, we get

kr1.t; �/k
2

HL0�1.R4/
C krr.t; �/k2

HL0�1.R4/
�
C

N
t2N ;

which completes the proof of Lemma 7.1.

Since by construction, we have

.u � u.N//.t; x/ D t�C1.V � V .N//.t; x=t�C1/ D t�C1.Hr/.t; x=t�C1/;

@t .u � u
.N//.t; x/ D .V1 � V

.N/
1 /.t; x=t�C1/ D .Hr1/.t; x=t

�C1/;

Proposition 7.1 follows readily from (7.13) and Lemma 7.1 by standard continuity argu-
ments.

Remark 7.1. Combining Proposition 7.1 with the bounds (7.1) and (7.2), we find that for
any t 2 Œt1; T �, the solution to the Cauchy problem (7.4) satisfies

u.t; �/ � Qc0t
�C1 and .1C jruj2 � .@tu/

2/.t; �/ � Qc1 (7.52)

with some positive constants Qc0 and Qc1 provided that N is sufficiently large.
Furthermore, injecting the bounds (7.20) into (7.17) and taking into account Lemma

7.2, one obtains

kh�i
3=2@2t .u � u

.N//.t; �/k
HL0�2.R4/ � t

N=2; 8t 2 Œt1; T �: (7.53)
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7.2. End of the proof

We are now in a position to finish the proof of Theorem 1.2. Let .tn/n2N be a sequence
of positive real numbers in �0; T � converging to 0, and consider the Cauchy problem

.NW/n;N

8̂<̂
:

(1.6)u D 0;
ujtDtn D u

.N/.tn; �/;

.@tu/jtDtn D .@tu
.N//.tn; �/:

In view of Proposition 7.1 and Remark 7.1, the following uniform local well-posedness
result is straightforward:

Corollary 7.1. There exists an integer N0 such that for any n 2 N, the Cauchy problem
.NW/n;N0 has a unique solution un on Œtn; T � which satisfies

kh�i
3=2@t .un � u

.N0//.t; �/k
HL0�1.R4/

C kh�i
3=2
r.un � u

.N0//.t; �/k
HL0�1.R4/ � t

N0=2; 8t 2 Œtn; T �: (7.54)

Furthermore,

un.t; x/ � Qc0t
�C1; 1C jrun.t; x/j

2
� .@tun.t; x//

2
� Qc1; 8.t; x/ 2 Œtn; T � �R4;

(7.55)

By the Ascoli theorem, the bounds (7.54) and (7.55) imply that there exists a solution
u to the Cauchy problem (1.11) on �0;T � satisfying .u;@tu/2C.�0;T �;XL0/ and such that
after passing to a subsequence, the sequence ..run; @tun//n2N converges to .ru;@tu/ in
C.ŒT1; T �;H

s�1.R4// for any T1 2 �0; T � and any s < L0. Clearly the solution u satisfies

k@t .u�u
.N0//.t; �/k

HL0�1.R4/Ckr.u�u
.N0//.t; �/k

HL0�1.R4/ � t
N0=2; 8t 2 �0; T �;

u.t; x/ � Qc0t
�C1; 1C jru.t; x/j2 � .@tu.t; x//

2
� Qc1; 8.t; x/ 2 �0; T � �R2:

Taking into account Lemma 6.2 and Remarks 5.1 and 6.1, this concludes the proof of
Theorem 1.2.

Appendix A. Derivation of the equation

In this appendix, we carry out the derivation of the equation in the case of time-like
surfaces with vanishing mean curvature that for fixed t are parametrized as follows:

Rn � Sn�1 3 .x; !/ 7! .x; u.t; x/!/ 2 R2n; (A.1)

with some positive function u. An elementary computation shows that in this case the
volume density corresponding to the pull-back metric is given by

L.u; ut ;ru/ D u
n�1

p
1 � .ut /2 C jruj2: (A.2)
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Using the fact that the mean curvature is the first variation of the volume form, we can
determine the equation of motion by formally considering the Euler–Lagrange equation
associated to the density L, which gives rise to21

@L

@u
�

nX
jD1

@

@xj

@L

@uxj
�
@

@t

@L

@ut
D 0:

According to (A.2), this leads to

.n � 1/un�2
p
1 � .ut /2 C jruj2 �

nX
jD1

@

@xj

un�1uxjp
1 � .ut /2 C jruj2

C
@

@t

un�1utp
1 � .ut /2 C jruj2

D 0: (A.3)

Therefore the quasilinear wave equation at hand takes the form

@t

�
utp

1 � .ut /2 C jruj2

�
�

nX
jD1

@xj

�
uxjp

1 � .ut /2 C jruj2

�
C

n � 1

u
p
1 � .ut /2 C jruj2

D 0: (A.4)

Straightforward computations show that this can be rewritten as

ut t .1C jruj
2/ ��u.1 � .ut /

2
C jruj2/C

nX
j;kD1

uxj uxkuxj xk

� 2ut .ru � rut /C
n � 1

u
.1 � .ut /

2
C jruj2/ D 0; (A.5)

which is (1.6).
Let us emphasize that in the particular case when u.t; x/ D R.t/ with R a positive

regular function, the above equation reduces to

RR00 C .n � 1/.1 � .R0/2/ D 0: (A.6)

Integrating this equation using the fact that 1 � .R0/2R�2.n�1/ is constant, one readily
gathers that if R.0/ > 0 and �1 < R0.0/ < 0, then there exists a finite positive time T
such that R.T / D 0, and furthermore

R.t/ D T � t CO..T � t /2n�1/; t ! T:

21These computations are justified by the invariance of our flow under the action of the
group In �O.n/.
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So, as t tends to T , the cylinders defined by

Rn � Sn�1 3 .x; !/ 7! .x;R.t/!/ 2 R2n

shrink to the Rn space.22

Appendix B. Study of the linearized operator of the quasilinear wave equation
around the ground state

The aim of this section is to investigate the linearized operator L introduced in (1.16). To
this end, let us consider the change of function

w.�/ D H.�/f .�/ with H D
.1CQ2

�/
1=4

Q3=2
:

By easy computations, we deduce that

Lw D �H.1CQ2
�/Lf with L D �q�q CP ;

where q D 1=.1CQ2
�/
1=2 and P D V [=.1CQ2

�/ with

V [ D
�3.1CQ2

�/

Q2
C
1

2
.B1/� �

1

4
B21 �

3

2
B1

�
�
1CQ2

�

�
C 2Q�

�
1

Q
�
Q�

�

��
: (B.1)

In view of Lemma 2.1, the potential P belongs to C1rad.R
4/ and satisfies

P D �
3

8�2
.1C o.1// as �!1: (B.2)

The operator L with domain H 2.R4/ is self-adjoint on L2.R4/. The following positivity
property of L is at the heart of the analysis carried out in this article.

Lemma B.1. There is a positive constant c such that for any function f in PH 1
rad.R

4/,

.Lf jf /
L2.R4/ � c krf k

2

L2.R4/
: (B.3)

Remark B.1. Taking into account (2.4), one easily deduces from (B.3) that for any inte-
ger m, there exists a positive constant cm such that

.LmC1f jf /
L2.R4/C.Lf jf /L2.R4/ � cm krf k

2

Hm.R4/
; 8f 2 PH 1

rad.R
4/\ PHmC1.R4/;

and

.LmC1f jf /
L2.R4/ C .f jf /L2.R4/ � cmkf k

2

Hm.R4/
; 8f 2 HmC1

rad .R4/:

22Obviously, (A.6) has a trivial solution T � t with T some positive constant. But to ensure that
the surface is time-like, we must impose that R0.t/2 < 1 for all t .
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Proof of Lemma B.1. Recalling that the positive function ƒQ D Q � �Q� solves the
homogeneous equation Lw D 0, we infer that the function

G WD
ƒQ

H
(B.4)

defines a positive solution to the homogeneous equation Lf D 0. In a standard way this
implies

L � 0: (B.5)

In order to prove inequality (B.3), assume for contradiction that there is a sequence
.un/n2N in PH 1

rad.R
4/ satisfying krunkL2.R4/ D 1 and

.Lunjun/L2.R4/
n!1
����! 0: (B.6)

Since .un/n2N is bounded in PH 1
rad.R

4/, there is a function u in PH 1
rad.R

4/ such that, up to
a subsequence (still denoted by un for simplicity),

un
n!1
��* u in PH 1.R4/: (B.7)

We claim that u ¤ 0 and Lu D 0. Indeed,

.Lunjun/L2.R4/ D

Z
R4
jr.qun/.x/j

2 dx C

Z
R4
j.qun/.x/j

2V [.x/ dx:

First, observe that there is a positive constant C such that, for any integer n,

kr.qun/kL2.R4/ > C: (B.8)

Indeed,

krunkL2.R4/ �

1qr.qun/

L2.R4/

C kr.1=q/qunkL2.R4/;

which, in view of the Hardy inequality and Lemma 2.1, leads to (B.8).
Second, consider a smooth radial function � valued in Œ0; 1� and satisfying

�.x/ D

²
0 for jxj � 1;
1 for jxj � 2;

and write

.Lunjun/L2.R4/

D

Z
R4
jr.qun/.x/j

2 dx �
3

4

Z
R4
j.qun/.x/j

2 �.x/

jxj2
dx C

Z
R4
j.qun/.x/j

2 QV .x/ dx;

where
QV .x/ D V [.x/C

3

4

�.x/

jxj2
:
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Invoking formula (B.2), we infer that there is a positive constant ı such that

j QV .x/j .
1

hxi2Cı
:

Invoking the Rellich theorem and the Hardy inequality, we deduce thatZ
R4
j.qun/.x/j

2 QV .x/ dx
n!1
����!

Z
R4
j.qu/.x/j2 QV .x/ dx: (B.9)

Now for any functions f and g in PH 1.R4/, denote

a.f; g/ WD

Z
R4
r.qf /.x/ � r.qg/.x/ dx �

3

4

Z
R4

�.x/

jxj2
.qf /.x/.qg/.x/ dx:

Combining the Hardy inequality with Lemma 2.1, we easily gather that there exist positive
constants ˛0 < ˛1 such that for any function f in PH 1.R4/, we have

˛0krf k
2

L2.R4/
� a.f; f / � ˛1krf k

2

L2.R4/
;

which ensures that a.f; g/ is a scalar product on PH 1.R4/ and that the norms
p
a.�; �/ and

k � k PH1.R4/ are equivalent.

Since un
n!1
��* u in PH 1.R4/, we deduce that a.u; u/ � lim infn!1 a.un; un/, and

thus
.Luju/

L2.R4/ � lim inf
n!1

.Lunjun/L2.R4/:

Taking into account (B.5), (B.6) and (B.9), we obtain

.Luju/
L2.R4/ D 0; (B.10)

which, according to the fact that L is positive, implies that Lu D 0.
To end the proof of the claim, it remains to establish that u ¤ 0. For that purpose, let

us start by observing that by (B.6), (B.9) and (B.10),Z
R4
jr.qun/.x/j

2 dx �
3

4

Z
R4
j.qun/.x/j

2 �.x/

jxj2
dx

n!1
����!

Z
R4
jr.qu/.x/j2 dx �

3

4

Z
R4
j.qun/.x/j

2 �.x/

jxj2
dx: (B.11)

But in view of the Hardy inequality and the bound (B.8), we haveZ
R4
jr.qun/.x/j

2 dx �
3

4

Z
R4
j.qun/.x/j

2 �.x/

jxj2
dx

�
1

4

Z
R4
jr.qun/.x/j

2 dx �
C

4
: (B.12)

By passing to the limit, we obtainZ
R4
jr.qu/.x/j2 dx �

3

4

Z
R4
j.qu/.x/j2

�.x/

jxj2
dx �

C

4
;

which proves that u is not null.
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By construction the function u belongs to PH 1
rad.R

4/ and satisfies

�q�quCPu D 0 with P D �
3

8�2
.1C o.1// as �!1:

Therefore in view of the Hardy inequality, Pu 2 L2rad.R
4/ and thus q�qu belongs

to L2rad.R
4/, which ensures that u 2 PH 2

rad.R
4/.

In the radial setting the homogeneous equation Lu D 0 admits a basis of solutions
¹f1; f2º given by23

f1.�/ D G.�/; f2.�/ D G.�/

Z �

1

.1C .Qr .r//
2/3=2

Q3.r/r3.ƒQ/2.r/
dr;

where G denotes the function defined by (B.4). By Lemma 2.1, one has

f1.�/ � 1; f2.�/ � 1=�
2;

near � D 0. Since f2 62 PH 1
rad.R

4/, we deduce that u is collinear to G. This yields a con-
tradiction because in view of (2.4), the function G behaves like 1=

p
� when �!1 and

thus it does not belong to PH 1
rad.R

4/. This completes the proof of the lemma.

Appendix C. Proof of the local well-posedness result

The aim of this appendix is to give an outline of the proof of Theorem 1.1. Since the
subject is well known, we only indicate the main arguments. One can proceed in three
steps:
(1) First, one proves that for some sufficiently small positive time

T D T
�
kr.u0 �Q/kHL�1 ; ku1kHL�1 ; infu0; inf.1C jru0j2 � .u1/2/

�
;

the Cauchy problem (1.11) has a solution u such that .u; ut / belongs to the function
space C.Œ0; T �; XL/, ut 2 C1.Œ0; T �;HL�1/, and for all t in Œ0; T �,

kr.u �Q/.t; �/kHL�1 C kut .t; �/kHL�1

� C
�
kr.u0 �Q/kHL�1 C ku1kHL�1

�
for some positive constant

C D C
�
kr.u0 �Q/kHL�1 ; ku1kHL�1 ; infu0; inf.1C jru0j2 � .u1/2/

�
:

(2) Second, one shows the uniqueness of solutions by a continuity argument.
(3) Third, one establishes the blow up criterion (1.13).

23See Appendix D for the proof.
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So let us consider the Cauchy problem (1.11) and assume that r.u0 �Q/ and u1
belong to HL�1.R4/, with L an integer strictly larger than 4, and that there exists " > 0
such that

u0 � 2" and
1 � .u1/

2 C jru0j
2

1C jru0j2
� 2":

Defining, for 1 � i; j � 4,8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

aij .ru; ut / D ıij

�
1 �

.ut /
2

1C jruj2

�
�

uxj uxi

1C jruj2
;

bi .ru; ut / D
2uxiut

1C jruj2
;

c.u;ru; ut / D �
3.1 � .ut /

2 C jruj2/

u.1C jruj2/
;

(C.1)

we readily gather that (1.6) takes the form

ut t �

4X
i;jD1

ai;j .ru; ut /uxixj �

4X
iD1

bi .ru; ut /utxi � c.u;ru; ut / D 0: (C.2)

To prove existence, we shall use an iterative scheme. To this end, introduce the
sequence .u.n//n2N defined by u.0/ D Q, which according to (2.1) satisfies

c.Q;rQ; 0/C

4X
i;jD1

ai;j .rQ; 0/Qxixj D 0;

and

.W/nC1

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
u
.nC1/
t t �

4X
i;jD1

ai;j .ru
.n/; u

.n/
t /u.nC1/xixj

�

4X
iD1

bi .ru
.n/; u

.n/
t /u

.nC1/
txi

� c.u.n/;ru.n/; u
.n/
t / D 0;

u.nC1/jtD0 D u0;

.@tu
.nC1//jtD0 D u1:

In order to investigate the sequence .u.n//n2N defined above by induction, let us begin
by proving that this sequence is well defined for any time t in some fixed interval Œ0; T �
which depends only on kr.u0 �Q/kHL�1 , ku1kHL�1 and ". This will be deduced from
the following result.

Proposition C.1. Let u be such that .u; ut / 2 C.Œ0; T �; XL/, ut t 2 C.Œ0; T �;HL�2/ for
some integer L > 4 and some 0 < T � 1. Assume that

kutkL1.Œ0;T �;HL�1/ C kr.u �Q/kL1.Œ0;T �;HL�1/ � A; (C.3)

kut tkL1.Œ0;T �;HL�2/ � A1; (C.4)

u.t; x/ � ";
1 � .ut .t; x//

2 C jru.t; x/j2

1C jru.t; x/j2
� "; 8.t; x/ 2 Œ0; T � �Rd : (C.5)
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Consider the Cauchy problem8̂̂̂̂
<̂
ˆ̂̂:
ˆt t �

4X
i;jD1

ai;j .ru; ut /ˆxixj �

4X
iD1

bi .ru; ut /ˆtxi D c.u;ru; ut /;

ˆjtD0 D ˆ0;

.@tˆ/jtD0 D ˆ1;

(C.6)

assuming that r.ˆ0 �Q/ and ˆ1 belong toHL�1.R4/. Then the Cauchy problem (C.6)
has a unique solution ˆ on Œ0; T � and the following energy inequalities hold:

kˆt .t; �/kHL�1Ckr.ˆ.t; �/�Q/kHL�1

� C" etC";A;A1 .kˆ1kHL�1 C kr.ˆ0 �Q/kHL�1/

C C";A;A1

Z t

0

�
kut .s; �/kHL�1 C kr.u �Q/.s; �/kHL�1

�
ds; (C.7)

and

kˆt t .t; �/kHL�2 � CA.kˆt .t; �/kHL�1 C kr.ˆ.t; �/ �Q/kHL�1/

C C";A.kut .t; �/kHL�1 C kr.u �Q/.t; �/kHL�1/: (C.8)

Proof. Invoking hypothesis (C.5), we easily check that for any � 2 R4 n ¹0º, the charac-
teristic polynomial of the wave equation (C.6),

�2 � �

4X
iD1

bi .ru; ut /�i �

4X
i;jD1

ai;j .ru; ut /�i�j (C.9)

has two distinct real roots �1 and �2. Indeed, taking into account (C.1), we find that the
discriminant of (C.9) is given by

� D
4.ut /

2

.1Cjruj2/2

� 4X
iD1

uxi �i

�2
C
4.1�.ut /

2Cjruj2/

1Cjruj2
j�j2�

4

1Cjruj2

� 4X
iD1

uxi �i

�2
D
4.1�.ut /

2Cjruj2/

.1Cjruj2/2
j�j2C

4.1�.ut /
2Cjruj2/

.1Cjruj2/2

�
jruj2j�j2�

� 4X
iD1

uxi �i

�2�
;

which implies that

� �
4.1 � .ut /

2 C jruj2/

.1C jruj2/2
j�j2: (C.10)

This ends the proof of the fact that the polynomial (C.9) has two distinct real roots �1
and �2, and ensures that (C.6) is strictly hyperbolic as long as

1 � .ut /
2
C jruj2 > 0;

and thus, in view of (C.5), on Œ0; T � �R4.
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Consider the function ẑ WD ˆ �Q. It satisfies8̂̂̂̂
<̂
ˆ̂̂:
ẑ
t t �

4X
i;jD1

ai;j .ru; ut / ẑ xixj �

4X
iD1

bi .ru; ut / ẑ txi D f .u;ru; ut /;

ẑ
jtD0 D ˆ0 �Q;

.@t ẑ /jtD0 D ˆ1;

(C.11)

with

f .u;ru; ut / D c.u;ru; ut /C

4X
i;jD1

ai;j .ru; ut /Qxixj : (C.12)

First, note that the source term f belongs to L1.Œ0; T �; HL�1.R4// and thus
to L1.Œ0; T �; HL�1.R4//. Let us start by establishing that f 2 L1.Œ0; T �; L2.R4//.
Recalling that by (2.1), we have

c.Q;rQ; 0/C

4X
i;jD1

ai;j .rQ; 0/Qxixj D 0;

we deduce that f can be rewritten in the following way:

f D c.u;ru; ut / � c.Q;rQ; 0/C

4X
i;jD1

.ai;j .ru; ut / � ai;j .rQ; 0//Qxixj

D �3

�
1

u
�
1

Q

�
C zf ;

where

zf D c.u;ru; ut /C
3

u
C

4X
i;jD1

�
ai;j .ru; ut / � ai;j .rQ; 0/

�
Qxixj : (C.13)

Combining Lemma 2.1 with the hypotheses (C.3) and (C.5) we obtain, making use of
Taylor’s formula

j zf j � C";A
�
jut j C jr.u �Q/j

�
;

which easily ensures that for all t in Œ0; T �, we have

k zf .t; �/kL2 � C";A
�
kut .t; �/kL2 C kr.u �Q/.t; �/kL2

�
: (C.14)

Therefore we are reduced to the study of the term

�3

�
1

u
�
1

Q

�
D 3

u �Q

uQ
:

We claim that ˇ̌̌̌
1

u
�
1

Q

ˇ̌̌̌
� C";A

ju �Qj

Q2
: (C.15)
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On the one hand, according to estimate (C.3), the function u � Q is bounded on
Œ0; T � �R4. Then writing

u D QC .u �Q/;

and recalling that the stationary solution Q behaves like � at infinity, we infer that there
is a positive number R0 D R0.A/ such that for any jxj � R0 and any t in Œ0; T �, we have

u.t; x/ � Q.x/=2:

On the other hand, invoking (C.5) together with Lemma 2.1, we infer that there is a posi-
tive constant C.";R0/ such that if jxj � R0, then for all 0 � t � T ,

1

u.t; x/
�
C.";R0/

Q.x/
:

Now taking advantage of the Sobolev embedding PH 1.R4/ ,! L4.R4/, we deduce that� 1u � 1

Q

�
.t; �/


L2
� C";A k.u �Q/.t; �/kL4

 1

Q2


L4

� C";A kr.u �Q/.t; �/kL2

 1

Q2


L4
;

which according to the fact that 1=Q.�/ . 1=h�i ensures that� 1u � 1

Q

�
.t; �/


L2
� C";A kr.u �Q/.t; �/kL2 : (C.16)

Together with (C.14), this implies that for all t in Œ0; T �,

kf .t; �/kL2 � C";A
�
kut .t; �/kL2 C kr.u �Q/.t; �/kL2

�
: (C.17)

Thanks to the bound (C.3), this ends the proof that f 2 L1.Œ0; T �; L2.R4//.
In order to establish that f 2L1.Œ0;T �;HL�1.R4//, first observe that by the assump-

tion (C.3), the functions .bi .ru; ut //1�i�4, .ai;j .ru; ut /� ai;j .rQ;0//1�i;j�4 as well
as the function c.u;ru; ut /C 3=u belong to L1.Œ0; T �;HL�1.R4//.

Thus taking advantage of Lemma 2.1 and recalling thatL> 4, we find that zf belongs
to L1.Œ0; T �;HL�1.R4// and satisfies the following estimate uniformly on Œ0; T �:

k zf .t; �/kHL�1 � C";A
�
kut .t; �/kHL�1 C kr.u �Q/.t; �/kHL�1

�
:

Moreover, applying Leibniz’s formula to the term u�Q
uQ

and taking into account (C.16),
we infer that there is a positive constant C";A such that for all t in Œ0; T �, we have� 1u � 1

Q

�
.t; �/


HL�1

� C";A kr.u �Q/.t; �/kHL�1 :

Combining the last two inequalities, we get

kf .t; �/kHL�1 � C";A
�
kut .t; �/kHL�1 C kr.u �Q/.t; �/kHL�1

�
: (C.18)

This concludes the proof of the fact that f 2 L1.Œ0; T �;HL�1.R4//.
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Finally, since the coefficients of equation (C.11) as well as their time and spatial
derivatives are bounded on Œ0; T � � R4, applying classical arguments we infer that the
Cauchy problem (C.6) admits a unique solution on Œ0; T � �R4.

To simplify the notations, in the rest of this proof we shall denote by A the matrix
.ai;j /1�i;j�4 and by b the vector .b1; : : : ; b4/, and omit the dependence of all the func-
tions ai;j and bi on .ru; ut / and of the source term f on .u;ru; ut /.

Now to establish the energy inequality (C.7), we can proceed as follows. First we take
the L2-scalar product of (C.11) with ẑ t � b

2
� r ẑ , which gives rise to

��
@t

�
ẑ
t�
b

2
�r ẑ

�
�

4X
i;jD1

ai;j ẑ xixj �
b

2
�r ẑ tC

bt

2
�r ẑ

�
.t; �/

ˇ̌̌̌�
ẑ
t�
b

2
�r ẑ

�
.t; �/

�
L2

D

�
f .t; �/

ˇ̌̌̌�
ẑ
t �

b

2
� r ẑ

�
.t; �/

�
L2
:

Performing integrations by parts, we deduce that

1

2

d

dt
E. ẑ /.t; �/ D I0.t/C

�
f .t; �/

ˇ̌̌̌�
ẑ
t �

b

2
� r ẑ

�
.t; �/

�
L2
; (C.19)

where

E. ẑ /.t; �/ WD

� ẑ t � b2 � r ẑ
�
.t; �/

2
L2
C

4X
i;jD1

�
ai;j ẑ xi .t; �/

ˇ̌
ẑ
xj .t; �/

�
L2

C

�b2 � r ẑ
�
.t; �/

2
L2
; (C.20)

and where I0 admits the estimate

jI0.t/j � a0.t/
�
k.r ẑ /.t; �/k2

L2
C kẑ t .t; �/k

2
L2

�
(C.21)

with

a0.t/ D T
�
kA.t; �/kL1 ; k.rt;xA/.t; �/kL1 ; kb.t; �/kL1 ; k.rt;xb/.t; �/kL1

�
; (C.22)

T denoting a polynomial function of all its arguments.
By (C.3) and (C.4), we have

ka0kL1.Œ0;T ��R4/ � CA;A1 : (C.23)

Observe also that thanks to (C.10), we have

E. ẑ /.t; �/ � 4
�
k.r ẑ /.t; �/k2

HL�1
C kẑ t .t; �/k

2
HL�1

�
;

E. ẑ /.t; �/ �

� ẑ t � b2 � r ẑ
�
.t; �/

2
L2
C "kr ẑ .t; �/k2

L2
:

(C.24)
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Now in order to estimate ˆt .t; �/ and r.ˆ �Q/.t; �/ in HL�1, we differentiate the
nonlinear wave equation (C.11) with respect to the space variable up to order L � 1.
By straightforward computations we formally obtain, for any multi-index ˛ of length
j˛j � L � 1, 8̂̂̂̂

<̂
ˆ̂̂:
.@˛ ẑ /t t �

4X
i;jD1

ai;j .@
˛ ẑ /xixj �

4X
iD1

bi .@
˛ ẑ /txi D f˛;

.@˛ ẑ /jtD0 D @
˛.ˆ0 �Q/;

.@t .@
˛ ẑ //jtD0 D @

˛ˆ1;

(C.25)

with
f˛ D @

˛f C zf˛;

where

zf˛ WD

4X
i;jD1

X
ˇ<˛

�
˛

ˇ

�
.@˛�ˇai;j /.@

ˇ ẑ /xixj C

4X
iD1

X
ˇ<˛

�
˛

ˇ

�
.@˛�ˇbi /.@

ˇ ẑ /txi : (C.26)

Then taking the L2-scalar product of (C.25) with .@˛ ẑ /t � b
2
� r.@˛ ẑ / and applying the

same line of reasoning as above, we get

1

2

d

dt
E.@˛ ẑ /.t; �/ D I˛.t/C

�
f˛.t; �/

ˇ̌̌̌�
.@˛ ẑ /t �

b

2
� r.@˛ ẑ /

�
.t; �/

�
L2
; (C.27)

where
jI˛.t/j � a0.t/

�
kr.@˛ ẑ /.t; �/k2

L2
C k.@˛ ẑ /t .t; �/k

2
L2

�
: (C.28)

Now since the functions .rai;j /1�i;j�4 and .rbi /1�i�4 belong to the Sobolev space
HL�2.R4/, the function zf˛ belongs to L2.R4/ and satisfies, uniformly on Œ0; T �,

k zf˛.t; �/kL2 � CAŒkr ẑ .t; �/kH j˛j C k
ẑ
t .t; �/kH j˛j �: (C.29)

Therefore taking into account (C.18) we get, for any j˛j � L � 1,ˇ̌̌̌�
f˛.t; �/

ˇ̌̌̌�
.@˛ ẑ /t �

b

2
� r.@˛ ẑ /

�
.t; �/

�
L2

ˇ̌̌̌
� C";A

�
kr ẑ .t; �/k2

H j˛j
C kẑ t .t; �/k

2
H j˛j

C
�
kr ẑ .t; �/kH j˛j C k

ẑ
t .t; �/kH j˛j

��
kut .t; �/kHL�1 C kr.u �Q/.t; �/kHL�1

��
:

(C.30)

Combining (C.19), (C.21), (C.23), (C.27), (C.28) and (C.30), we easily gather thatˇ̌̌̌ X
j˛j�L�1

d

dt
E.@˛ ẑ /.t; �/

ˇ̌̌̌
� C";A;A1

�
kr ẑ .t; �/k2

HL�1
C kẑ t .t; �/k

2
HL�1

C .kr ẑ .t; �/kHL�1 C kẑ t .t; �/kHL�1/.kut .t; �/kHL�1 C kr.u �Q/.t; �/kHL�1/
�
:

(C.31)
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Applying the Gronwall lemma and taking into account (C.24), we deduce that for all
t in Œ0; T �,

kr ẑ .t; �/kHL�1 C kẑ t .t; �/kHL�1 � C"e
tC";A;A1 .kˆ1kHL�1 C kr.ˆ0 �Q/kHL�1/

C C";A;A1

Z t

0

�
kus.s; �/kHL�1 C kr.u �Q/.s; �/kHL�1

�
ds: (C.32)

To complete the proof of the energy estimates, it remains to estimate kˆt t .t; �/kHL�2.R4/.
To this end, we make use of equation (C.11) which implies that

ˆt t D

4X
i;jD1

ai;j .ru; ut / ẑ xixj C

4X
iD1

bi .ru; ut / ẑ txi C f .u;ru; ut /:

This ensures the result according to (C.3) and (C.18).

Let us now return to the proof of Theorem 1.1. The first step can be deduced from
Proposition C.1 by a standard argument that can be found for instance in the monographs
[4,14,36]. The key point consists in proving that the sequence .u.n//n2N defined by .W/n
(see page 3871) is uniformly bounded, in the sense that there exist a small positive time

T D T
�
ku1kHL�1 ; kr.u0 �Q/kHL�1 ; "

�
; (C.33)

and a positive constantC DC.ku1kHL�1 ;kr.u0 �Q/kHL�1 ; "/ such that for any integer
n and any time t in Œ0; T �, we have

ku
.n/
t .t; �/kHL�1 C kr.u

.n/
�Q/.t; �/kHL�1 C ku

.n/
t t .t; �/kHL�2 � C; (C.34)

u.n/.t; �/ � " and .1 � .u
.n/
t /2 C jru.n/j2/.t; �/ � ": (C.35)

In order to establish the uniform estimate (C.34), set

A D 2C"
�
ku1kHL�1 C kr.u0 �Q/kHL�1

�
; (C.36)

A1 D .CA C C";A/A; (C.37)

where C", CA and C";A are the constants introduced in (C.7)–(C.8).
We claim that there exists a positive time T � 1 of the form (C.33) such that for any

integer n � 0 the following property holds. If for all t 2 Œ0; T �, we have

ku
.n/
t .t; �/kHL�1 C kr.u

.n/
�Q/.t; �/kHL�1 � A; (C.38)

ku
.n/
t t .t; �/kHL�2 � A1; (C.39)

u.n/.t; x/ � ";
1 � .u

.n/
t .t; x//2 C jru.n/.t; x/j2

1C jru.n/.t; x/j2
� "; 8.t; x/ 2 Œ0; T � �Rd ;

(C.40)

then the same bounds remain true for u.nC1/.
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Indeed, by the energy estimate (C.7) in Proposition C.1, u.nC1/ satisfies, for all
t 2 Œ0; T �,

ku
.nC1/
t .t; �/kHL�1 C kr.u

.nC1/
�Q/.t; �/kHL�1

� C"etC";A;A1 .ku1kHL�1 C kr.u0 �Q/kHL�1/C AC";A;A1 t;

which implies that there exists T .A; "/ > 0 such that if t � T .A; "/, then

ku
.nC1/
t .t; �/kHL�1 C kr.u

.nC1/
�Q/.t; �/kHL�1

� 2C"
�
ku1kHL�1 C kr.u0 �Q/kHL�1

�
D A:

Invoking then (C.8) we get, for all t � T .A; "/,

ku
.nC1/
t t .t; �/kHL�2 � .CA C C";A/A D A1:

This ends the proof that u.nC1/ satisfies (C.38) and (C.39).
Finally, (C.40) results directly from the following straightforward estimates:

ku.nC1/.t; �/ � u0kL1.R4/ �

Z t

0

k@su
.nC1/.s; �/k

L1.R4/ ds . At;

k.@tu
.nC1//.t; �/ � u1kL1.R4/ �

Z t

0

k@2su
.nC1/.s; �/k

L1.R4/ ds . A1t;

k.ru.nC1//.t; �/ � ru0kL1.R4/ �

Z t

0

k.@sru
.nC1//.s; �/k

L1.R4/ ds . At;

which implies (C.40) provided that T D T .A; A1; "/ is chosen sufficiently small. This
completes the proof of the claim.

To end the proof of the local well-posedness for the Cauchy problem (1.11), it suffices
to establish that the sequences .@tu.n//n2N and .r.u.n/ �Q//n2N are Cauchy sequences
in L1.Œ0; T �;HL�2.R4//. By a standard argument, this fact follows easily from (C.34).
Indeed, setting w.nC1/ WD u.nC1/ � u.n/, we readily gather that for all n � 0,8̂̂̂̂
<̂
ˆ̂̂:
w
.nC1/
t t �

4X
i;jD1

ai;j .ru
.n/; u

.n/
t /w.nC1/xixj

�

4X
iD1

bi .ru
.n/; u

.n/
t /w

.nC1/
txi

D g.n/;

w.nC1/jtD0 D 0;

.@tw
.nC1//jtD0 D 0;

where

g.n/ D

4X
i;jD1

.ai;j .ru
.n/; u

.n/
t / � ai;j .ru

.n�1/; u
.n�1/
t //u.n/xixj

C

4X
iD1

.bi .ru
.n/; u

.n/
t / � bi .ru

.n�1/; u
.n�1/
t //u

.n/
txi

C c.u.n/;ru.n/; u
.n/
t / � c.u.n�1/;ru.n�1/; u

.n�1/
t /:
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Since by construction we have, for any .t; x/ in Œ0; T � �Rd ,

u.n/.t; x/ � " and
1 � .u

.n/
t .t; x//2 C jru.n/.t; x/j2

1C jru.n/.t; x/j2
� ";

arguing in a similar way to the proof of Proposition C.1 we obtain

kw
.nC1/
t .t; �/kL1.Œ0;T �;HL�2/ C krw

.nC1/.t; �/kL1.Œ0;T �;HL�2/

� CT .kw
.n/
t .t; �/kL1.Œ0;T �;HL�2/ C krw

.n/.t; �/kL1.Œ0;T �;HL�2//:

This ensures the result provided that T is small enough and completes the proof of the
first step.

Let us now address the second step, and establish the uniqueness of solutions to the
Cauchy problem (1.11). For this purpose, we shall prove the following continuation cri-
terion which easily gives the result:

Lemma C.1. Let u and v be two solutions of the Cauchy problem (1.11) respectively
associated to the initial data .u0; u1/ and .v0; v1/ in Xs , such that .u; ut / and .v; vt / are
in C.Œ0; T �; Xs/ and ut and vt belong to C1.Œ0; T �;H s�1/ for some s > 4. Then there is
a positive constant C such that, for all t in Œ0; T �,

k.u � v/t .t; �/kL2.R4/ C kr.u � v/.t; �/kL2.R4/

� C
�
ku1 � v1kL2.R4/ C kr.u0 � v0/kL2.R4/

�
:

Proof. By straightforward computations, the functionw WDu� v solves the Cauchy prob-
lem 8̂̂̂̂

<̂
ˆ̂̂:
wt t �

4X
i;jD1

ai;j .ru; ut /wxixj �

4X
iD1

bi .ru; ut /wtxi D g;

wjtD0 D u0 � v0;

.@tw/jtD0 D u1 � v1;

(C.41)

where

g D

4X
i;jD1

�
ai;j .ru; ut / � ai;j .rv; vt /

�
vxixj

C

4X
iD1

�
bi .ru; ut / � bi .rv; vt /

�
vtxi C c.u;ru; ut / � c.v;rv; vt /:

Therefore, taking theL2-scalar product of (C.41) withwt � b
2
� rw we get, as in the proof

of Proposition C.1, the energy inequality

kwt .t; �/kL2.R4/ C krw.t; �/kL2.R4/

� C

�
ku1 � v1kL2.R4/ C kr.u0 � v0/kL2.R4/ C

Z t

0

kg.s; �/k
L2.R4/ ds

�
:
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As before, by straightforward computations we have

kg.s; �/k
L2.R4/ � C

�
kwt .t; �/kL2.R4/ C krw.t; �/kL2.R4/

�
;

which easily completes the proof of the continuation criterion.

Finally the blow up criterion (1.13) results by standard arguments from the fact that if

lim sup
t%T

� 1

u.t; �/


L1
C

 1

.1C jruj2 � .@tu/2/.t; �/


L1
C sup
j j�1

k@xrt;xukL1

�
<1;

then the solution to the Cauchy problem (1.11) can be extended beyond T . This ends the
proof of Theorem 1.1.

Appendix D. Some simple ordinary differential equations results

D.1. Proof of Duhamel’s formula (3.16)

The formula results from the following lemma:

Lemma D.1. With the previous notations, the homogeneous equation

Lf D 0 (D.1)

has a basis of solutions ¹e1; e2º given by8̂<̂
:

e1.y/ D .ƒQ/.y/;

e2.y/ D .ƒQ/.y/
Z y

1

.1C .Qr .r//
2/3=2

Q3.r/r3.ƒQ/2.r/
dr:

(D.2)

Moreover, for any regular function g, the solution to the Cauchy problem´
Lf D g;

f .0/ D 0 and f 0.0/ D 0;
(D.3)

can be written in the form

f .y/ D �.ƒQ/.y/

Z y

0

.1C .Qr .r//
2/3=2

Q3.r/r3.ƒQ/2.r/

Z r

0

Q3.s/s3.ƒQ/.s/

.1C .Qs.s//2/3=2
g.s/ ds dr:

Proof. It has already been mentioned that e1 WD ƒQ is a positive solution of the homo-
geneous equation Lf D 0.

In order to obtain e2 it is convenient to remove the first order derivative in L by setting
f D OH Of , where

2
. OH/y

OH
D �

�
3

y
C B1

�
(D.4)
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with B1 defined by (1.17). Then

Lf D g () OL Of D Og

with g D OH Og and
OL D @2y C

OP ;

where

OP D B0 C

�
3

y
C B1

�
. OH/y

OH
C
. OH/yy

OH
:

Since for any two solutions Of1 and Of2 of the homogeneous equation

OL Of D 0; (D.5)

the Wronskian W. Of1; Of2/ is constant, the functions Oe1, Oe2 defined by

Oe1 D OH�1e1; Oe2.y/ D Oe1.y/
Z y

1

ds

Oe21.s/
(D.6)

constitute a fundamental system of solutions to (D.5). Since

B1.y/ D
9Q2

y

y
�
6Qy

Q
;

in view of (2.1) we get

B1.y/ D 3

�
Qy

Q
�
QyyQy

1CQ2
y

�
:

Therefore
3

y
C B1.y/ D 3

�
log
�

yQ

.1CQ2
y/
1=2

��
y

;

and thus taking into account (D.4), one can choose

OH.y/ D
.1C .Qy/

2.y//3=4

.yQ.y//3=2
: (D.7)

This completes the proof of (D.2).
To end the proof of the lemma, it remains to establish Duhamel’s formula (3.16). For

this purpose, let us start by noticing that since by constructionW.Oe1; Oe2/D 1, the solution
of (D.3) can be written in the form

f .y/ D

Z y

0

e1.y/e2.s/ � e1.s/e2.y/
OH 2.s/

g.s/ ds:
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In view of (D.2), we deduce that

f .y/ D e1.y/
Z y

0

�
e1.s/

Z s

1

OH 2.s0/ ds0

e21.s0/
� e1.s/

Z y

1

OH 2.s0/ ds0

e21.s0/

�
g.s/

OH 2.s/
ds

D �e1.y/
Z y

0

e1.s/g.s/
OH 2.s/

Z y

s

OH 2.s0/ ds0

e21.s0/
ds:

Finally, performing an integration by parts, we readily gather that

f .y/ D �e1.y/
Z y

0

OH 2.s/

e21.s/

Z s

0

e1.s0/g.s0/
OH 2.s0/

ds0 ds;

which ends the proof of the lemma by (D.7).

D.2. Proof of Lemma 4.3

To prove the first item, let us, for g in C1.R�C/, look for the solution f of the inhomo-
geneous equation8<: zLkf D .2z

2
� 1/@2zf �

�
6

z
C 4z�k

�
@zf �

�
6

z2
� 2�k.1C �k/

�
f D g;

f .1=
p
2/ D 0;

in the form

f D f .0/ C f .1/ with f .0/.z/ WD

NC1X
mD1

˛m.z � 1=
p
2/m;

where N WD Œk�� C 3 and where the coefficients ˛m for 1 � m � N C 1 are uniquely
determined by the requirement that the function

zg WD g � zLkf
.0/

satisfies
zg.`/.1=

p
2/ D 0; 8` 2 ¹0; : : : ; N º: (D.8)

Then f .1/ has to satisfy´
zLkf

.1/
D zg;

f .1/.1=
p
2/ D 0; f .1/ 2 C1.R�C/;

and can be recovered by the Duhamel formula:

f .1/.z/ D

Z z

1=
p
2

zg.s/

2s2 � 1

1

W.f
0;C
k;0

; f
0;�
k;0

/.s/

�
f
0;�
k;0

.z/f
0;C
k;0

.s/ � f
0;C
k;0

.z/f
0;�
k;0

.s/
�
ds;
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where
W.f

0;C
k;0

; f
0;�
k;0

/ WD f
0;C
k;0

.f
0;�
k;0

/z � f
0;�
k;0

.f
0;C
k;0

/z

denotes the Wronskian of the basis ¹f 0;C
k;0

; f
0;�
k;0
º defined by (4.45). By straightforward

computations, we have

W.f
0;C
k;0

; f
0;�
k;0

/.z/ D

p
2 ˛.�; k/ sgn.z � 1=2/jz2 � 1=2j˛.�;k/�1

z6
;

which implies that

f .1/.z/ D
1

2
p
2 ˛.�; k/

Z z

1=
p
2

s3zg.s/

�
f
0;�
k;0

.z/

js � 1=
p
2j˛.�;k/

�
f
0;C
k;0

.z/

.s C 1=
p
2/˛.�;k/

�
ds:

(D.9)
The uniqueness follows immediately from Remark 4.1.

Now we turn our attention to the second item. Our task here is to solve uniquely (4.51)
in C1.�0; 1=

p
2�/ under condition (4.52). Let us start with the case q D 0 and look for a

solution f to the equation

zLkf .z/ D .1=
p
2 � z/h.z/

in the form
f D f .0/ C f .1/

with

f .0/.z/ WD .1=
p
2 � z/C1

NX
mD0

cm.1=
p
2 � z/m;

where againN D Œk��C 3. Due to (4.52), the coefficients cm for 0 �m �N can be fixed
so that

zLkf
.1/.z/ D .1=

p
2 � z/ zh.z/; (D.10)

where zh is a function in C1.�0; 1=
p
2�/ that satisfies

zh.`/.1=
p
2/ D 0; 8` 2 ¹0; : : : ; N º:

But any solution to (D.10) is of the form

1

2
p
2 ˛.�; k/

Z z

1=
p
2

s3.1=
p
2 � s/ zh.s/

�
f
0;�
k;0

.z/

.1=
p
2 � s/˛.�;k/

�
f
0;C
k;0

.z/

.s C 1=
p
2/˛.�;k/

�
ds

C aC
k
f
0;C
k;0

.z/C a�k f
0;�
k;0

.z/

for some constants aC
k

and a�
k

. Invoking the fact that we look for solutions in
C1.�0; 1=

p
2�/ vanishing at z D 1=

p
2; we end up with the result, in the case q D 0,

by taking aC
k
D a�

k
D 0.
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To establish the result for any integer q � 1, we shall proceed by induction assuming
that under condition (4.52), for any integer 1 � j � q � 1, the inhomogeneous equation

zLkf .z/ D .1=
p
2 � z/ .log.1=

p
2 � z//jh.z/

has a unique solution f of the form

f .z/ D .1=
p
2 � z/C1

X
0�`�j

.log.1=
p
2 � z//` h`.z/;

where for all 0 � ` � j , h` is in C1.�0; 1=
p
2�/. Then we look for a solution f to

zLkf .z/ D .1=
p
2 � z/ .log.1=

p
2 � z//qh.z/

of the form
f .z/ D .log.1=

p
2 � z//q zf .z/C f .1/.z/; (D.11)

where
zLk
zf .z/ D .1=

p
2 � z/h.z/:

Thanks to the above computations, this implies that

zf .z/ D .1=
p
2 � z/C1hq.z/;

where hq belongs to C1.�0; 1=
p
2�/.

Since in view of (D.11),

zLkf
.1/.z/ D .1=

p
2 � z/

X
0�`�q�1

.log.1=
p
2 � z//` zh`.z/;

with zh` 2 C1.�0; 1=
p
2�/; this completes the proof of the second item by the induction

assumption.
Let us now establish the third item. To this end, for g 2C1.�0;1=

p
2Œ/with an asymp-

totic expansion at 0 of the form

g.z/ D .log z/˛0
X
ˇ�ˇ0

gˇz
ˇ�2

with some integers ˛0 and ˇ0, we investigate the nonhomogeneous equation zLkf D g.
Fixing some z0 in �0; 1=

p
2Œ and invoking Duhamel’s formula, we readily gather that for

all z in �0; 1=
p
2Œ; we have

f .z/ D
1

2
p
2 ˛.�; k/

Z z

z0

s3g.s/

�
f
0;�
k;0

.z/

.1=
p
2 � s/˛.�;k/

�
f
0;C
k;0

.z/

.s C 1=
p
2/˛.�;k/

�
ds

C aC
k
f
0;C
k;0

.z/C a�k f
0;�
k;0

.z/

for some constants aC
k

and a�
k

.



Blow up dynamics for surfaces asymptotic to the Simons cone 3885

Taking into account (4.45), we infer that any solution to zLkf D g has, for z close
to 0, an asymptotic expansion

f .z/ D
X
ˇ��3

f0;ˇz
ˇ
C

X
1�˛�˛0

X
ˇ�ˇ0

f˛;ˇ .log z/˛zˇ

when ˇ0 � �1, and

f .z/ D
X

ˇ�min.ˇ0;�3/

f0;ˇz
ˇ
C

X
1�˛�˛0

X
ˇ�ˇ0

f˛;ˇ .log z/˛zˇ

C .log z/˛0C1
X

ˇ�max.ˇ0;�3/

f˛;ˇz
ˇ

when ˇ0 � �2. This completes the proof of the third item.
To end the proof of the lemma, it remains to establish the fourth item. Applying

Duhamel’s formula, we get

f .z/ D �
1

2
p
2 ˛.�; k/

Z 1
z

s3g.s/

�
f
0;�
k;0

.z/

.s � 1=
p
2/˛.�;k/

�
f
0;C
k;0

.z/

.s C 1=
p
2/˛.�;k/

�
ds

C aC
k
f
0;C
k;0

.z/C a�k f
0;�
k;0

.z/

for some constants aC
k

and a�
k

. Since A < �k, the unique solution to (4.54) that has at
infinity an asymptotic expansion

f .z/ D
X

0�˛�˛0

X
p2N

Of k˛;p.log z/˛ zA�p

is given by the above formula with aC
k
D a�

k
D 0. This ends the proof of the lemma.
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