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Abstract. Assume that (X, g+) is an asymptotically hyperbolic manifold, (M, [h̄]) is its conformal
infinity, ρ is the geodesic boundary defining function associated to h̄ and ḡ = ρ2g+. For any γ in
(0, 1), we prove that the solution set of the γ -Yamabe problem onM is compact in C2(M) provided
that convergence of the scalar curvature R[g+] of (X, g+) to −n(n + 1) is sufficiently fast as ρ
tends to 0 and the second fundamental form on M never vanishes. Since most of the arguments in
the blow-up analysis performed here are insensitive to the geometric assumption imposed onX, our
proof also provides a general scheme toward other possible compactness theorems for the fractional
Yamabe problem.

Keywords. Fractional Yamabe problem, nonumbilic conformal infinity, compactness, blow-up
analysis

1. Introduction

Given any n ∈ N, let (Xn+1, g+) be an asymptotically hyperbolic manifold with con-
formal infinity (Mn, [h̄]). According to [33, 61, 42, 12, 30], there exists a family of self-
adjoint conformally covariant pseudo-differential operators P γ [g+, h̄] on M defined for
generic γ and whose principal symbols are the same as those of (−1h̄)

γ . If (X, g+)
is Poincaré–Einstein and γ ∈ N, the operator P γ [g+, h̄] coincides with the GJMS op-
erator constructed by Graham et al. [32] via the ambient metric; refer to Graham and
Zworski [33]. In particular, P γ [g+, h̄] is equal to the conformal Laplacian or the Paneitz
operator for γ = 1 or 2, respectively.

Let us call Qγ
[g+, h̄] = P γ [g+, h̄](1) the γ -scalar curvature. One natural question

is if there exists a metric h̄′ conformal to h̄ on M whose γ -scalar curvature Qγ
[g+, h̄′]

is constant. By virtue of the conformal covariance property of P γ , this is reduced to
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searching a smooth solution of the equation

P γ [g+, h̄]u = cup and u > 0 on (Mn, h̄) (1.1)

for some constant c ∈ R provided n > 2γ and p = 2∗n,γ − 1 = (n+ 2γ )/(n− 2γ ).
For γ = 1, the study of the existence of a solution to (1.1) was initiated by Yamabe

[75] and completely solved through the successive works of Trudinger [73], Aubin [5] and
Schoen [67]. See also Lee and Parker [48] and Bahri [6] where a unified proof based on
the use of conformal normal coordinates and a proof not depending on the positive mass
theorem are devised, respectively. If γ = 2 (and n ≥ 5), existence theory of (1.1) becomes
considerably harder because of the lack of a maximum principle. Up to now, only partial
results are available such as those by Qing and Raske [65], Gursky and Malchiodi [36] and
Hang and Yang [38]. In [38], the authors could treat a general class of manifolds having
the property that the Yamabe constant (1.4) is positive and there exists a representative
of the conformal class [h̄] with semipositive Q-curvature Q2. It is worth mentioning a
related work of Gursky et al. [35] which examined a conformally invariant condition for
the existence of a conformal metric having positive scalar and Q-curvatures. Meanwhile,
equation (1.1) with γ = 1/2 has a deep relation to the boundary Yamabe problem (or the
higher-dimensional Riemann mapping theorem) formulated by Escobar [23]; refer also to
Remark 1.2(1). The existence theory for the latter problem has been completed due to the
effort of Cherrier [14], Escobar [23, 24], Marques [57, 58], Almaraz [1], Chen [13] and
Mayer and Ndiaye [59].

If γ /∈ N, it is not a simple task to solve (1.1) directly, since the operator P γ [g+, h̄]
is nonlocal and defined in a rather abstract way. However, Chang and González [12]
discovered that (1.1) can be interpreted as a Caffarelli–Silvestre-type degenerate elliptic
equation of [9], which is indeed local, for which a variety of well-known techniques like
constraint minimization and the Moser iteration technique can be applied; see Proposi-
tion 2.1 for a more precise description. From this observation, González and Qing [30]
succeeded in finding solutions to (1.1) for γ ∈ (0, 1) under the hypothesis that M = ∂X
is nonumbilic and of sufficiently large dimension. Their approach was further developed
in the works of González and Wang [31] and the present authors [46], which cover most
cases when the local geometry dominates. In [46], the authors also established the exis-
tence result for 2-dimensional or locally conformally flat manifolds provided that a certain
technical assumption on the Green’s function of P γ holds. Recently, Mayer and Ndiaye
[60] and Daskalopoulos et al. [16] pursued the critical point at infinity approach and the
flow approach, respectively, removing the technical condition imposed on the Green’s
function.

Furthermore, Case and Chang [11] obtained an extension result for γ ∈ (1, n/2)
which generalizes [12]. By utilizing it and adapting the argument of Gursky and Mal-
chiodi [36], they also deduced that P γ [g+, h̄] satisfies a strong maximum principle for
γ ∈ (1,min{2, n/2})when [h̄] has a metric whose scalar curvature is nonnegative and the
γ -curvature is semipositive. It is plausible that this with some further ideas in [36] may
allow one to get certain existence results for (1.1) under the prescribed conditions.

In many cases, (1.1) may have higher Morse index (or energy) solutions as shown in
[68, 64] for γ = 1. If (X, g+) is the Poincaré ball whose conformal infinity is the standard
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sphere, it follows immediately from the noncompactness of the conformal group that the
solution set to (1.1) is unbounded in L∞(M) for any γ > 0. Indeed, classification results
by Obata [63] and Jin et al. [40, Theorem 1.8] show that there is a correspondence between
an element of the conformal group and a solution to (1.1) for γ = 1 and γ ∈ (0, 1),
respectively.

In this connection, for manifolds M that are not conformally diffeomorphic to the
standard sphere, Schoen [70] raised the question of C2(M)-compactness of the solution
set to (1.1) with γ = 1 and suggested a general strategy towards its proof. The first
affirmative answer was given by Schoen himself [69] in the locally conformally flat case.
Li and Zhu [55] obtained it for n = 3 and Druet [22] did it for n ≤ 5. If n ≥ 6, the
analysis is more delicate because one needs to prove that the Weyl tensor vanishes to the
order greater than b(n − 6)/2c at a blow-up point. By solving this technical difficulty,
Marques [56] and Li and Zhang [52] could deal with the situation that either n ≤ 7 or
the Weyl tensor never vanishes onM . Assuming the validity of the positive mass theorem
and performing a refined blow-up analysis on the basis of the linearized problem (as in
our Section 4), Li and Zhang [53] extended the result up to dimension 11, and Khuri et
al. [43] finally verified it for n ≤ 24. Surprisingly, according to Brendle [7] and Brendle
and Marques [8], there are C∞-metrics on the sphere Sn with n ≥ 25 such that even
though they are not conformally equivalent to the canonical metric, a blowing-up family
of solutions to (1.1) does exist.

For γ = 2, Y. Li and Xiong [51] obtained the C4(M)-compactness result assuming
that the kernel of the Paneitz operator P 2 is trivial, its Green function is positive, the
positive mass type theorem holds for P 2 and one of the following assumptions holds:
5 ≤ n ≤ 9, orM is locally conformally flat, or n ≥ 8 and the Weyl tensor never vanishes.
See also the previous works [39, 65, 49]. On the other hand, Wei and Zhao [74] established
a noncompactness result for n ≥ 25. While it is expected that C4(M)-compactness holds
in general up to dimension 24, a rigorous proof is not known yet.

For the boundary Yamabe problem, corresponding to the case γ = 1/2, compactness
results were deduced when Xn+1 is locally conformally flat [28], n = 3 [29, 4] and n =
4, 5 [47]. Compactness of the solution set also follows under the assumption that n ≥ 6
and the second fundamental form on M vanishes nowhere [1, 47]; refer to [37, 21] for
more results. Almaraz [3] showed that a blow-up phenomenon still happens if n+1 ≥ 25.

If 2γ is a noninteger value, only a little has been revealed up to now. As far as we
know, the only article that investigates compactness of the solution set to (1.1) for γ in
[1, n/2) is [66] due to Qing and Raske, which concerns locally conformally flat manifolds
M with positive Yamabe constant and with Poincaré exponent less than (n−2γ )/2. As for
noncompactness, the present authors [45] constructed asymptotic hyperbolic manifolds
which are small perturbations of the Poincaré ball and exhibit a blow-up phenomenon for
n ≥ 24 if γ ∈ (0, γ ∗) and n ≥ 25 if γ ∈ [γ ∗, 1) where γ ∗ is a number close to 0.940197.
However, the compactness issue for (1.1) with γ ∈ (0, 1) has not been discussed in the
literature so far, unless the underlying manifold is the Poincaré ball; see [40].

In this paper, we are concerned with the compactness of the solution set to the γ -
Yamabe problem (1.1) provided γ ∈ (0, 1) and c > 0. As can be predicted from the
representation theorem of Palais–Smale sequences associated with fractional Yamabe-
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type equations in [27], the conformal covariance property of P γ enables us to perform a
local analysis even though it is a nonlocal operator.

We will state the main theorem in a slightly more general setting; more precisely, we
will allow p to be subcritical. Since we always assume that the metric g+ in X is fixed,
we write P γ

h̄
= P γ [g+, h̄] and Qγ

h̄
= Qγ

[g+, h̄].

Theorem 1.1. Let γ ∈ (0, 1),

n ≥


7 for 0 < γ ≤

√
1/19,

6 for
√

1/19 < γ ≤ 1/2,
5 for 1/2 < γ ≤

√
5/11,

4 for
√

5/11 < γ < 1,

(1.2)

and (Xn+1, g+) be an asymptotically hyperbolic manifold with conformal infinity
(Mn, [h̄]). Denote by ρ a geodesic defining function associated toM , i.e., a unique defin-
ing function splitting the metric ḡ = ρ2g+ on the closure X of X as dρ2

+ hρ near M
where {hρ}ρ is a family of metrics on M such that h0 = h̄.

Assume that ḡ ∈ C4(X,R(n+1)×(n+1)), the first L2(X)-eigenvalue λ1(−1g+) of the
Laplace–Beltrami operator −1g+ satisfies

λ1(−1g+) > n2/4− γ 2, (1.3)

the γ -Yamabe constant defined as

3γ (M, [h̄]) = inf
u∈H γ (M)\{0}

∫
M
uP

γ

h̄
u dvh̄(∫

M
|u|

2n
n−2γ dvh̄

) n−2γ
n

(1.4)

is positive, and

R[g+] + n(n+ 1) = o(ρ2) as ρ → 0 uniformly on M (1.5)

where R[g+] is the scalar curvature of (X, g+).
If the second fundamental form π of (M, h̄) as a submanifold of (X, ḡ) never van-

ishes, then for any ε0 > 0 small, there exists a constant C > 1 depending only on
Xn+1, g+, h̄, γ and ε0 such that

C−1
≤ u ≤ C on M and ‖u‖C2(M) ≤ C (1.6)

for any solution in H γ (M) to (1.1) with 1+ ε0 ≤ p ≤ 2∗n,γ − 1.

Here H γ (M) is the fractional Sobolev space defined via a partition of unity on M . Also,
the values of

√
1/19 and

√
5/11 are approximately 0.229 and 0.674, respectively.

A couple of remarks regarding Theorem 1.1 are in order.
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Remark 1.2. (1) It is remarkable that the dimension restriction (1.2) is exactly the same
as the one appearing in the existence result [46, Corollary 2.7] for equation (1.1) on
nonumbilic conformal infinities.

(2) Condition (1.5) makes the boundary Yamabe problem and the 1/2-Yamabe prob-
lem identical (modulo the remainder term) in view of the energy expansion. This fact is
essentially contained in [34, Section 4]. Also, (1.5) and the property that π 6= 0 at each
point of M are intrinsic in the sense that they do not depend on the choice of a represen-
tative of the class [h̄]. Refer to [46, Lemma 2.1 and Subsections 2.3, 2.4].

(3) Hypothesis (1.5) implies that the mean curvatureH is identically 0 onM; see [46,
Lemma 2.3]. As a particular consequence, π = π −Hḡ on M , the latter tensor being the
trace-free second fundamental form. Thus our theorem generalizes the result of Almaraz
[2, Theorem 1.2] on the boundary Yamabe problem (corresponding to the case γ = 1/2)
under the further assumption that H = 0 on M .

(4) If R[g+] = −n(n + 1) in X, which is a stronger condition than (1.5), one can
check that 3γ (M, [h̄]) > 0 implies (1.3); see [10, Proposition 5.1]. It is an interesting
open question whether (1.3) follows from 3γ (M, [h̄]) > 0 and (1.5).

(5) The standard transversality argument implies that the set of Riemannian metrics
onX whose trace-free second fundamental form is nonzero everywhere is open and dense
in the space of all Riemannian metrics on X. On the other hand, there exists an asymp-
totically hyperbolic manifold Xn+1 that can be realized as a small perturbation of the
Poincaré half-space, for which the solution set of the γ -Yamabe problem is noncompact
provided that n ≥ 24 or n ≥ 25 according to the magnitude of γ ∈ (0, 1); refer to [45].
In this example, the conformal infinity M is the totally geodesic (in particular, umbilic)
boundary of X.

(6) While the condition that M is nowhere umbilic is generic and conformally co-
variant, it does not hold for typical asymptotically hyperbolic metrics such as Poincaré–
Einstein metrics. We expect that for such metrics, a compactness result analogous to
Theorem 1.1 continues to hold under suitable conditions. For example, in light of the
existence result [46, Corollary 3.4], imposing the conditions that M is umbilic, the Weyl
tensor on M never vanishes, and n ≥ 7 for γ ∈ [1/2, 1) and n ≥ 8 for γ ∈ (0, 1)
seems enough. Also, if a suitable condition on the Green’s function on P γ

h̄
is given, a

compactness result may be obtained provided that M is either locally conformally flat or
2-dimensional, as in [28, 29]. An interesting question is whether the dimension assump-
tion in [45] is optimal for a blow-up phenomenon of the solution set to (1.1) to occur. To
answer it, one needs a positive mass type theorem for P γ

h̄
, which is out of reach at the

moment. On the other hand, by applying the extension theorems and the energy identities
established in [11, 10] and the methods of this paper, it should be possible to obtain a
compactness result for γ > 1.

One can deduce Theorem 1.1 from the next theorem and elliptic regularity theory; see
Subsection 6.2 and Appendix A.

Theorem 1.3 (Vanishing theorem for the second fundamental form). For γ ∈ (0, 1)
and n ∈ N satisfying (1.2), let (Xn+1, g+) be an asymptotically hyperbolic manifold
with conformal infinity (Mn, [h̄]) such that (1.3) is valid. Moreover assume that ρ is a
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geodesic defining function associated toM , ḡ = ρ2g+,3γ (M, [h̄]) > 0, and (1.5) holds.
If {(um, ym)}m∈N is a sequence of pairs in C∞(M) ×M such that each um is a solution
of (1.1), ym is a local maximum point of um satisfying um(ym)→∞ and ym→ y0 ∈ M

as m→∞, then the second fundamental form π at y0 vanishes.

As a corollary of Theorem 1.1, we can compute the Leray–Schauder degree of all solu-
tions to equation (1.1) if every hypothesis imposed in the theorem holds. Since P γ

h̄
is a

self-adjoint operator as shown in [33], any Lp+1(M)-normalized minimizer of

inf
u∈H γ (M)\{0}

∫
M
uP

γ

h̄
u dvh̄

(
∫
M
|u|p+1 dvh̄)

2/(p+1) for 1 ≤ p ≤ 2∗n,γ − 1

(which is the same as (1.4) if p = 2∗n,γ − 1) solves

P
γ

h̄
u = E(u)|u|p−1u on (M, h̄) where E(u) =

∫
M

uP
γ

h̄
u dvh̄ (the energy of u).

(1.7)

Furthermore, if the γ -Yamabe constant 3γ (M, [h̄]) is positive, then it is easy to check
that the operator T : L2n/(n+2γ )(M)→ H γ (M) is well-defined by the relation

T (v) = u if and only if P
γ

h̄
u = v on M.

Hence, it is natural to define a map Fp : D3 → L∞(M) by Fp(u) = u − T (E(u)up)
where

D3 = {u ∈ L
∞(M) : u > 3−1 and ‖u‖L∞(M) < 3} for each 3 > 1;

this map has the property that Fp(u) = 0 if and only if u is a solution of (1.1). The
elliptic estimate in Lemma A.2 below implies that Fp is the sum of the identity and a
compact map. Moreover we infer from Lemma 6.6, a consequence of Theorem 1.1, that
0 /∈ Fp(∂D3) for all 1 ≤ p ≤ 2∗n,γ − 1 if 3 is sufficiently large. Therefore the Leray–
Schauder degree deg(Fp,D3, 0) of the map Fp in the domain D3 with respect to the
point 0 ∈ L∞(M) is well-defined.

Theorem 1.4. Under the assumptions of Theorem 1.1,

deg(Fp,D3, 0) = −1.

In particular, the fractional Yamabe equation (1.1) has a solution.

Theorem 1.4 gives a new proof of the existence of a solution to (1.1) under rather restric-
tive assumptions. Compare it with [30, 46]. We also expect that a strong Morse inequality
holds in our framework; refer to [43, Theorem 1.4].

Our proof of the main theorems relies on Schoen’s argument [70] yielding the com-
pactness theorem for the classical Yamabe problem. It has been further developed through
the works of Li and Zhu [55], Druet [22], Marques [56], Khuri et al. [43] (for the
Yamabe problem), Han and Li [37], Felli and Ould Ahmedou [28, 29], Almaraz [2],
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Almaraz et al. [4], Kim et al. [47] (for the boundary Yamabe problem), G. Li [49],
Y. Y. Li and Xiong [51] (for the Q-curvature problem), Schoen and Zhang [71], Li [50],
Jin et al. [41] (for the classical and fractional Nirenberg problem) and Niu et al. [62]
(for the critical Lane–Emden equation involving the regional fractional Laplacian) among
others.

Although certain parts of the proof can be obtained by minor modifications of the clas-
sical arguments, there are still plenty of technical difficulties which demand new ideas.
We will pay attention to, for instance, the following features.

• For the fractional Yamabe problem, it is not the best idea to apply conformal changes
on the whole manifold X, because one needs to properly control the interior geometry,
which is a nontrivial issue. Therefore we will control only the boundary metric through
conformal changes. This restriction does not allow us to use the standard conformal
Fermi coordinates on X (given in [57, Proposition 3.1]), and forces us to work with
more geometric quantities, especially those appearing in the low-order terms of some
asymptotic expansion of a Pohozaev-type identity; refer to Section 5. To handle the
interior of the manifold, we will employ the geometric assumption (1.5) and examine
the first-order partial differential equation satisfied by the geodesic defining function.
• We largely depend on the extension result of Chang and González [12] to analyze

solutions. Because of the degeneracy of the extended problem (2.4), it is not easy to
study the asymptotic behavior of the Green’s function near its singularity; see Appendix
B.1 where some of its qualitative properties are obtained. Hence, in showing the decay
property of rescaled solutions, we do not use potential analysis, but iteratively apply
the rescaling argument based on the maximum principle.
• Regularity theory that we require is technically more difficult to deduce than ones for

the classical local problems, or even nonlocal problems on the Euclidean space.
• Suppose that γ ∈ (0, 1)\{1/2}. In this case, it is not easy to compute integrals involving

the bubbles by using their integral representations (related to the Poisson or Green
kernels). We will solve this technical issue by further developing the Fourier transform
technique due to González and Qing [30].

To reduce overlaps, we will omit the proofs of several intermediate results which closely
follow standard arguments, giving appropriate references. Our main concern is to clarify
the novelty of the nonlocal problems defined on general conformal infinities.

The paper is organized as follows: In Section 2, we recall some analytic and geomet-
ric tools necessary to investigate the fractional Yamabe problem (1.1). In Section 3, we
introduce some concepts regarding a blowing-up sequence {um}m∈N of solutions to (1.1)
and perform an asymptotic analysis near each blow-up point of {um}m∈N. Section 4 is
devoted to deducing a sharp pointwise estimate of um near each isolated simple blow-
up point. This allows one to establish the vanishing theorem for the second fundamental
form at any isolated simple blow-up point, which is discussed in Section 5. Finally, the
main theorems are proved in Section 6 with the aid of a local Pohozaev sign condition
which guarantees that every blow-up point is isolated simple. In the appendices, we pro-
vide technical results needed in the main body of the proof as well as their proofs. Firstly,
in Appendix A, we present several elliptic regularity results. Then we study the asymp-
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totic behavior of the Green’s function near its singularity in Appendix B.1. We also derive
a fractional Bôcher’s theorem in Appendix B.2. Finally, a number of integrals involving
the standard bubble W1,0, whose precise definition is given in Subsection 2.2, will be
computed in Appendix C.

Notations

• The Einstein convention is adopted throughout the paper. We shall use the indices 1 ≤
i, j, k, l ≤ n.

• For any t ∈ R, set t+ = max {t, 0} and t− = max {−t, 0}. Clearly, t = t+ − t−.

• Let N = n+ 1. Also, for any x ∈ RN+ = {(x1, . . . , xn, xN ) ∈ RN : xN > 0}, we denote
x̄ = (x1, . . . , xn) ∈ Rn ' ∂RN+ .

• For any x̄ ∈ Rn, x = (x̄, 0) ∈ ∂RN+ and r > 0, Bn(x̄, r) signifies the n-dimensional
ball with center x̄ and radius r . Similarly, BN+ (x, r) is the N -dimensional upper half-
ball centered at x having radius r . We often identify Bn(x̄, r) = ∂BN+ (x, r) ∩ ∂RN+ . Set
∂IB

N
+ ((x̄, 0), r) = ∂BN+ (x, r) ∩ RN+ .

• For a function f on RN+ , we often write ∂if =
∂f
∂xi

and ∂Nf =
∂f
∂xN

.

• |Sn−1
| is the surface area of the unit (n− 1)-sphere Sn−1.

• The spaces W 1,2(RN+; x
1−2γ
N ) and D1,2(RN+; x

1−2γ
N ) are the completions of C∞c (RN+)

with respect to the norms

‖U‖
W 1,2(RN+ ;x

1−2γ
N )
=

(∫
RN+
x

1−2γ
N (|∇U |2 + U2) dx

)1/2

,

‖U‖
D1,2(RN+ ;x

1−2γ
N )
=

(∫
RN+
x

1−2γ
N |∇U |2 dx

)1/2

,

respectively. The natural function space W 1,2(X; ρ1−2γ ) for the fractional Yamabe prob-
lem (2.4) is analogously defined.

• For any β ∈ (0,∞) \ N and domain �, we write Cβ(�) for the Hölder space
Cbβc,β−bβc(�) where bβc is the greatest integer that does not exceed β.

• Assume that (M, h̄) and (X, ḡ) are compact Riemannian manifolds. Then Bh̄(y, r) ⊂
(M, h̄) stands for the geodesic ball centered at y ∈ M of radius r > 0. Moreover, dvḡ is
the volume form of (X, ḡ) and dσ represents a surface measure.

• C > 0 denotes a generic constant possibly depending on the dimension n of an un-
derlying manifold M , the order γ of the conformal fractional Laplacian P γ and so on. It
may vary from line to line. Moreover, a notation C(α, β, . . . ) means that the constant C
depends on α, β, . . . .
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Remark 1.5. By [26, Lemma 3.1] (or we may follow [20, proof of Proposition 2.1.1] by
replacing [25, Theorem 1.2] with [72, Lemma 2.2]) and [9, Section 3.2], we have

D1,2(RN+; x
1−2γ
N ) ↪→ L

2(n−2γ+2)
n−2γ (RN+; x

1−2γ
N ) and D1,2(RN+; x

1−2γ
N ) ↪→ H γ (Rn).

(1.8)

Hence we infer from [19, Corollary 7.2] that the trace embedding D1,2(RN+; x
1−2γ
N ) ↪→

Lq(�) is compact for any q ∈ [1, 2∗n,γ ) and a smooth bounded domain � ⊂ Rn.

2. Preliminaries

2.1. Geometric background

We recall the extension result involving the conformal fractional Laplacian P γ obtained
by Chang and González [12]; see also [9, 30].

Proposition 2.1. Suppose that γ ∈ (0, 1), n > 2γ and (X, g+) is an asymptotically
hyperbolic manifold with conformal infinity (M, [h̄]). Also, assume that ρ is a geodesic
defining function associated to M , ḡ = ρ2g+ and the mean curvature H is 0 on M . Set
s = n/2+ γ and

Eḡ(ρ) = ρ
−1−s(−1g+ − s(n− s))ρ

n−s in X.

Then

Eḡ(ρ) =
n− 2γ

4n

[
R[ḡ] − (n(n+ 1)+ R[g+])ρ−2]ρ1−2γ

= −
n− 2γ

2
·
∂ρ
√
|ḡ|

√
|ḡ|

ρ−2γ (by [46, (2.5)]) (2.1)

in M × (0, r0) for some small r0 > 0, where R[ḡ] and R[g+] are the scalar curvatures
of (X, ḡ) and (X, g+), respectively, and |ḡ| is the determinant of ḡ.

(1) Define

κγ =
2−(1−2γ )0(γ )

0(1− γ )
> 0 and ∂γν U = −κγ lim

ρ→0+
ρ1−2γ ∂U

∂ρ
on M (2.2)

where ν denotes the outward unit normal vector with respect to X and 0 is the
Gamma function. If a positive function U ∈ W 1,2(X; ρ1−2γ ) satisfies{

−divḡ(ρ1−2γ
∇U)+ Eḡ(ρ)U = 0 in (X, ḡ),

U = u on M,
(2.3)

then
∂γν U = P

γ

h̄
u on M.
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(2) If (1.3) is also true, then there is a special defining function ρ∗ such thatEḡ∗(ρ∗) = 0
in X and ρ∗(ρ) = ρ(1 + O(ρ2γ )) near M . Moreover the function U∗ =

(ρ/ρ∗)(n−2γ )/2U solves{
−divḡ∗((ρ∗)1−2γ

∇U∗) = 0 in (X, ḡ∗),
∂
γ
ν U
∗
= P

γ

h̄
u−Q

γ

h̄
u on M.

Here ḡ∗ = (ρ∗)2g+ and Qγ

h̄
= P

γ

h̄
(1) are called the adapted metric on X and the

fractional scalar curvature on (M, h̄), respectively.

The spectral requirement (1.3) in the second assertion was pointed out in [11, Section 6],
from which the term “adapted metric” comes.

Note that the condition 3γ (M, [h̄]) > 0 (see (1.4)) implies that the functional

J γ (U) =

∫
X

(ρ1−2γ
|∇U |2ḡ + Eḡ(ρ)U

2) dvḡ for U ∈ W 1,2(X; ρ1−2γ )

is coercive, that is, there exists C > 0 independent of U such that J γ (U) ≥
C‖U‖2

W 1,2(X;ρ1−2γ )
. See [18, Lemma 2.5] for the proof. Therefore, given any u ∈ H γ (M),

the standard minimization argument guarantees the existence and uniqueness of the ex-
tension U ∈ W 1,2(X; ρ1−2γ ) of u which satisfies (2.3). Furthermore, testing (2.3) with
u−, we easily observe that if u ≥ 0 on M , then U ≥ 0 in X. If u > 0 on M , then the
strong maximum principle for elliptic operators gives U > 0 on X.

On the other hand, without loss of generality, we can always assume that the constant
c > 0 in equation (1.1) is exactly 1. As a result, (1.1) is equivalent to the degenerate
elliptic problem 

−divḡ(ρ1−2γ
∇U)+ Eḡ(ρ)U = 0 in (X, ḡ),

U > 0 on X,
U = u on M,
∂
γ
ν U = u

p on M.

(2.4)

Next, choose any y ∈ M and let x = (x̄, xN ) ∈ RN+ be Fermi coordinates on X around y,
i.e., x̄ = (x1, . . . , xn) are normal coordinates onM at y and xN = ρ. In [23, Lemma 3.1],
the following expansion of the metric ḡ near y is given.

Lemma 2.2. In terms of Fermi coordinates x on X around y ∈ M ,√
|ḡ|(x) = 1−nHxN+ 1

2 (n
2H 2
−‖π‖2−RNN [ḡ])x

2
N−nH,ixixN−

1
6Rij [h̄]xixj+O(|x|

3)

and

ḡij (x) = δij+2πijxN+ 1
3Rikj l[h̄]xkxl+ḡ

ij
,NkxNxk+(3πikπkj+RiNjN [ḡ])x

2
N+O(|x|

3).

Here

• δij is the Kronecker delta;
• ‖π‖2 = h̄ikh̄j lπijπkl is the square of the norm of the second fundamental form π ;
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• Rikj l[h̄] is a component of the Riemannian curvature tensor on M and RiNjN [ḡ] is
that of the Riemannian curvature tensor on X;
• Rij [h̄] = Rikjk[h̄] and RNN [ḡ] = RNiNi[ḡ].

Every tensor in the expansion is evaluated at y = 0 and commas denote partial differen-
tiation.

Suppose that a term consists of exactly one copy of xN but any number of xi’s, as in xN ,
xixN and xixjxN . If H = 0 on M , the coefficient of this term in the expansion of

√
|ḡ|

is 0. In particular, condition (A.5) holds.
As explained in the introduction, in dealing with the fractional Yamabe problem, it is

better to control only the boundary metric through conformal changes and then to work
with special metrics on X described in Proposition 2.1. This is a distinguishing property
compared to the boundary Yamabe problem. The following lemma is a reformulation of
[46, Lemmas 2.4 and 3.2].

Lemma 2.3. Let (X, g+) be an asymptotically hyperbolic manifold such that (1.5) holds.
Then the conformal infinity (M, [h̄]) admits a representative h̃ ∈ [h̄], a corresponding
geodesic boundary defining function ρ̃ and the metric g̃ = ρ̃2g+ such that

(1) Rij [h̃](y) = Rij ;k[h̃](y)+ Rjk;i[h̃](y)+ Rki;j [h̃](y) = 0;

(2) H = 0 on M and Rρ̃ρ̃[g̃](y) =
1− 2n

2(n− 1)
‖π(y)‖2,

for a fixed point y ∈ M . Here the semicolon designates covariant differentiation.

2.2. Definition and properties of bubbles

Suppose that γ ∈ (0, 1) and n > 2γ . For arbitrary λ > 0 and σ ∈ Rn, let wλ,σ be the
bubble defined as

wλ,σ (x̄) = αn,γ

(
λ

λ2 + |x̄ − σ |2

) n−2γ
2

for x̄ ∈ Rn, αn,γ = 2
n−2γ

2

(
0
(n+2γ

2

)
0
(n−2γ

2

)) n−2γ
4γ
.

(2.5)
We also introduce the γ -harmonic extension Wλ,σ of wλ,σ , the unique solution of{

−div(x1−2γ
N ∇Wλ,σ ) = 0 in RN+ ,

Wλ,σ = wλ,σ on Rn.
(2.6)

Then it is well-known that

∂γν Wλ,σ = −κγ lim
xN→0+

x
1−2γ
N ∂NWλ,σ = (−1)

γwλ,σ = w

n+2γ
n−2γ
λ,σ on Rn (2.7)

where κγ is the positive number appearing in (2.2) and ν is the outward unit normal vector
to RN+ .
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Lemma 2.4. (1) [Symmetry] The value ofW1,0(x̄, xN ) for (x̄, xN ) ∈ RN+ is determined
by |x̄| and xN . In particular, ∂iW1,0(x̄, xN ) = −∂iW1,0(−x̄, xN ) for each 1 ≤ i ≤ n.

(2) [Decay] There exists a constant C > 0 depending only on n, γ and ` such that

|∇
`
x̄W1,0(x)| ≤

C

1+ |x|n−2γ+` and |x
1−2γ
N ∂NW1,0(x)| ≤

C

1+ |x|n
(2.8)

for all x ∈ RN+ and ` ∈ N ∪ {0}.
(3) [Classification] Suppose that 8 ∈ W 1,2

loc (R
N
+; x

1−2γ
N ) is a nontrivial solution of

−div(x1−2γ
N ∇8) = 0 in RN+ ,

8 ≥ 0 in RN+ ,
∂
γ
ν 8 = 8

p on Rn.

Then p ≥ 2∗n,γ − 1. Moreover, if p = 2∗n,γ − 1, then8(x) = Wλ,σ (x) for all x ∈ RN+
and some (λ, σ ) ∈ (0,∞)× Rn.

(4) [Nondegeneracy] The solution space of the linear problem
−div(x1−2γ

N ∇8) = 0 in RN+ ,

∂
γ
ν 8 =

n+2γ
n−2γ w

4γ
n−2γ
λ,σ 8 on Rn,

‖8(·, 0)‖L∞(Rn) <∞

is spanned by

Z1
λ,σ =

∂Wλ,σ

∂σ1
, . . . , Znλ,σ =

∂Wλ,σ

∂σn
and Z0

λ,σ = −
∂Wλ,σ

∂λ
. (2.9)

Proof. Since w1,0(x̄) depends only on |x̄|, claim (1) follows from the uniqueness of
γ -extension. Moreover the sharp decay estimate [46, Section A] for W1,0 gives (2). As-
sertions (3) and (4) are implied by the results of Jin et al. [40, Theorem 1.8, Remark 1.9]
and Dávila et al. [17], respectively. ut

2.3. Modification of (2.4)

Suppose that (X, g+) is an asymptotically hyperbolic manifold with conformal infin-
ity (M, [h̄]). Consider sequences of parameters {pm}m∈N ⊂ [1 + ε0, 2∗n,γ − 1] for any
fixed ε0 > 0, metrics {h̄m}m∈N ⊂ [h̄] on M , corresponding geodesic boundary defin-
ing functions {ρm}m∈N and positive functions {fm}m∈N on M . Set ḡm = ρ2

mg
+ and

δm = (2∗n,γ − 1) − pm ≥ 0. It is convenient to deal with the following form of the
equation: 

−divḡm(ρ
1−2γ
m ∇Um)+ Eḡm(ρm)Um = 0 in (X, ḡm),

Um > 0 on X,
Um = um on M,
∂
γ
ν Um = f

−δm
m u

pm
m on M,

(2.10)

rather than (2.4).
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We further assume that pm → p0, ḡm = ρ2
mg
+
→ ḡ0 in C4(X,RN×N ) for a met-

ric ḡ0 on X and fm → f0 > 0 in C2(M) as m → ∞. Then, in particular, the sequence
{Eḡm(ρm)}m∈N is bounded in C2(X). This property will be needed when we apply Lem-
mas A.3 and A.4.

Suppose that h̃m = w
4/(n−2γ )
m h̄m on M for a positive function wm on M such that

wm(ym) = 1,
∂wm

∂xi
(ym) = 0 for each i = 1, . . . , n. (2.11)

If ρ̃m is the geodesic boundary defining function associated to h̃m and g̃m = ρ̃2
mg
+,

then g̃m = (ρ̃m/ρm)2ḡm on X. Furthermore, a direct computation using [12, Lemma 4.1]
shows that Ũm = (ρm/ρ̃m)(n−2γ )/2Um solves

−divg̃m(ρ̃
1−2γ
m ∇Ũm)+ Eg̃m(ρ̃m)Ũm = 0 in (X, g̃m),

Ũm > 0 on X,
Ũm = ũm on M,

∂
γ
ν Ũm = w

−
n+2γ
n−2γ

m ∂
γ
ν Um = f̃

−δm
m ũ

pm
m on M,

(2.12)

where f̃m = wmfm, which is the same form as that of (2.10).
As a matter of fact, the resemblance of (2.10) and (2.12) is no accident. The differ-

ential operator in each equation can be realized as a weighted conformal Laplacian on a
smooth metric measure space and its associated conformally covariant boundary operator.
Their forms do not change under conformal changes. For more detailed accounts, refer
to [11, 10].

2.4. Pohozaev’s identity

Pick a small r1 ∈ (0, r0) (see (2.1)) such that the ḡm-Fermi coordinates centered at y ∈ M
are well-defined in the closed geodesic half-ball BN+ (y, r1) ⊂ X for every m ∈ N and
y ∈ M .

In this subsection, we provide a local version of Pohozaev’s identity for
−div(x1−2γ

N ∇U) = x
1−2γ
N Q in BN+ (0, r1) ⊂ RN+ ,

U = u > 0 on Bn(0, r1) ⊂ Rn,
∂
γ
ν U = f

−δup on Bn(0, r1)
(2.13)

where p ∈ [1, 2∗n,γ − 1], Q ∈ L∞(BN+ (0, r1)) and f ∈ C1(Bn(0, r1)).

Lemma 2.5. Let U ∈ W 1,2(BN+ (0, r1); x
1−2γ
N ) be a solution to (2.13) such that U , ∂iU

and x1−2γ
N ∂NU are Hölder continuous on BN+ (0, r1). Given any r ∈ (0, r1), define

P(U, r) = κγ
∫
∂IB

N
+ (0,r)

x
1−2γ
N

[
n− 2γ

2
u
∂u

∂ν
−
r

2
|∇u|2 + r

∣∣∣∣∂u∂ν
∣∣∣∣2] dσx

+
r

p + 1

∫
∂Bn(0,r)

f−δup+1 dσx̄ (2.14)
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where κγ is the positive number in (2.2) and ν is the outward unit normal vector to
∂IB

N
+ (0, r). Then

P(U, r) = −κγ
∫
BN+ (0,r)

x
1−2γ
N Q ·

[
xi∂iU + xN∂NU +

n− 2γ
2

U

]
dx

−
δ

p + 1

∫
Bn(0,r)

xi∂if f
−(δ+1)up+1 dx̄ +

(
n

p + 1
−
n− 2γ

2

)∫
Bn(0,r)

f−δup+1 dx̄

for all r ∈ (0, r1).

Proof. The proof is similar to that of [40, Proposition 4.7]. ut

3. Basic properties of blow-up points

3.1. Various types of blow-up points

We start by recalling the notion of blow-up, isolated blow-up and isolated simple blow-
up. Our definition is a slight modification of the one introduced in [2, Section 4] (cf. [40,
43, 51]).

Definition 3.1. As before, let (X, g+) be an asymptotically hyperbolic manifold with
conformal infinity (M, [h̄]). Here we use the notations of Subsection 2.3 and the small
number r1 > 0 picked in Subsection 2.4.

(1) y0 ∈ M is called a blow-up point of {Um}m∈N ⊂ W 1,2(X; ρ1−2γ ) if there exists a
sequence {ym}m∈N ⊂ M such that ym is a local maximum point of um = Um|M
satisfying um(ym)→∞ and ym → y0 as m→∞. For simplicity, we will often say
that ym→ y0 ∈ M is a blow-up point of {Um}m∈N.

(2) y0 ∈ M is an isolated blow-up point of {Um}m∈N if y0 is a blow-up point such that

um(y) ≤ Cdh̄m(y, ym)
−

2γ
pm−1 for any y ∈ M \ {ym} with dh̄m(y, ym) < r2 (3.1)

for some C > 0, r2 ∈ (0, r1] where h̄m = ḡm|TM and dh̄m is the distance function in
the metric h̄m.

(3) Define a weighted spherical average of um by

ūm(r) = r
2γ

pm−1

∫
∂Bn(ym,r)

um dσh̄m∫
∂Bn(ym,r)

dσh̄m

, r ∈ (0, r1). (3.2)

We say that an isolated blow-up point y0 of {Um}m∈N is simple if there exists r3 in
(0, r2] such that ūm has exactly one critical point in (0, r3) for large m ∈ N.

Roughly speaking, item (2) (or (3), respectively) in the above definition describes the
situation when clustering of bubbles (or bubble towers, respectively) is excluded among
various blow-up scenarios.
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Hereafter, we always assume that {(um, ym)}m∈N is a sequence of pairs in
C∞(M) × M such that um is a solution to (1.1) with c = 1, and ym is a local max-
imum point of um satisfying um(ym) → ∞ and ym → y0 ∈ M as m → ∞. Then
ym → y0 ∈ M becomes a blow-up point of a sequence {Um}m∈N ⊂ W 1,2(X; ρ1−2γ )

where each Um is a solution to (2.10) with ḡm = ḡ, h̄m = h̄, ρm = ρ and fm = 1. Set
Mm = um(ym) and εm = M

−(pm−1)/(2γ )
m for each m ∈ N. Obviously, Mm → ∞ and

εm→ 0 as m→∞.
Also, we denote by h̃m a representative of the class [h̄m] satisfying properties (1)

and (2) in Lemma 2.3 with y = ym, and by Ũm a solution to (2.12). Inspection of the
proof of Lemma 2.3 (found in [46]) shows that one can choose representatives {h̃m}m∈N
in such a way that h̃m → h̃0 in C4(M) as m → ∞ for some metric h̃0 on M . Then the
C4-smoothness of the metric ḡ on X and regularity of noncharacteristic first-order partial
differential equations imply that g̃m → g̃0 in C4(M × [0, r]) for some metric g̃0 and a
small r > 0. Refer to Step 5 of the proof of Proposition 3.7 where the proof is essentially
given. By extending g̃m in a suitable manner, we may assume that g̃m→ g̃0 in C4(X).

We shall often use x ∈ RN+ to denote g̃m-Fermi coordinates on X around ym so that
Ũm can be regarded as a function on RN+ near the origin.

3.2. Blow-up analysis

We study the asymptotic behavior of a sequence {Um}m∈N of solutions to (2.10) near
blow-up points.

Proposition 3.2. Assume that p ∈ [1 + ε0, 2∗n,γ − 1]. For any small ε1 > 0 and large
R > 0, there are constants C0, C1 > 0 depending only on (X, g+), h̄, n, γ, ε0, ε1 and
R such that if U ∈ W 1,2(X; ρ1−2γ ) is a solution to (2.4) with maxM U ≥ C0, then
(2∗n,γ − 1) − p < ε1 and U |M has local maximum points y1, . . . , yN ∈ M for some
1 ≤ N = N (U) ∈ N, for which the following statements hold:

(1) Let r̂m = R α
(p−1)/(2γ )
n,γ u(ym)

−(p−1)/(2γ ) where αn,γ is the positive number defined
in (2.5). Then

Bh̄(ym1 , r̂m1) ∩ Bh̄(ym2 , r̂m2) = ∅ for 1 ≤ m1 6= m2 ≤ N .

(2) For each m = 1, . . . ,N and some β = β(N, γ ) ∈ (0, 1),

∥∥αn,γU(ym)−1U
(
α

p−1
2γ
n,γ U(ym)

−
p−1
2γ ·

)
−W1,0

∥∥
Cβ (BN+ (0,2R))

+
∥∥αn,γ u(ym)−1u

(
α

p−1
2γ
n,γ u(ym)

−
p−1
2γ ·

)
− w1,0

∥∥
C2+β (Bn(0,2R)) ≤ ε1 (3.3)

in ḡ-Fermi coordinates centered at ym.
(3) We have

U(y)dh̄(y, {y1, . . . , yN })
2γ
p−1 ≤ C1 for y ∈ M.
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Proof. The validity of this proposition comes from a Liouville-type theorem [40, Theo-
rem 1.8] (see our Lemma 2.4(3)) and an induction argument. See [55, proof of Proposi-
tion 5.1] for a detailed account for the Yamabe problem. ut

We have a remark on (3.3): According to Proposition A.8, only Cβ -convergence is guar-
anteed on the closed half-ball BN+ (0, 2R). However, we have C2+β -convergence on its
bottom Bn(0, 2R).

Lemma A.2 and the standard rescaling argument readily give the annular Harnack
inequality around an isolated blow-up point.

Lemma 3.3. Suppose that ym → y0 ∈ M is an isolated blow-up point of a sequence
{Um}m∈N of solutions to (2.10). In the ḡm-Fermi coordinate system centered at ym, there
exists C > 0 independent of m ∈ N and r > 0 such that

max
BN+ (0,2r)\B

N
+ (0,r/2)

Um ≤ C min
BN+ (0,2r)\B

N
+ (0,r/2)

Um

for any r ∈ (0, r2/3) where r2 > 0 is defined in Definition 3.1(2).

Proof. The proof is similar to that of [40, Lemma 4.3]. ut

If ym → y0 ∈ M is an isolated blow-up point of solutions {Um}m∈N to (2.10), Proposi-
tion 3.2 can be extended in the following manner.

Lemma 3.4. Let ym → y0 ∈ M be an isolated blow-up point of a sequence {Um}m∈N
of solutions to (2.10) with fm > 0 in Bn(0, r2). In addition, suppose that {Rm}m∈N and
{τm}m∈N are arbitrary sequences of positive numbers such that Rm→∞ and τm→ 0 as
m→∞. Then pm → 2∗n,γ − 1, and {U`}`∈N and {p`}`∈N have subsequences {U`m}m∈N
and {p`m}m∈N such that for some β ∈ (0, 1),

∥∥ε̂ 2γ
p`m
−1

`m
U`m(ε̂`m ·)−W1,0

∥∥
Cβ (BN+ (0,Rm))

+
∥∥ε̂ 2γ

p`m
−1

`m
u`m(ε̂`m ·)−w1,0

∥∥
C2+β (Bn(0,Rm))

≤ τm

(3.4)
in ḡm-Fermi coordinates centered at ym and Rmε̂`m → 0 as m→∞. Here

ε̂`m = α

p`m
−1

2γ
n,γ M

−
p`m
−1

2γ
`m

= α

p`m
−1

2γ
n,γ u`m(y`m)

−
p`m
−1

2γ

for all m ∈ N.

In order to prove this, we first need the following analogue of the Hopf lemma.

Lemma 3.5. Suppose that ḡ is a smooth metric on BN+ (0, 1), A ∈ C0(BN+ (0, 1)) and
U ∈ W 1,2(BN+ (0, 1); x1−2γ

N ) is a solution to{
−divḡ(x

1−2γ
N ∇U)+ x

1−2γ
N AU = 0 in BN+ (0, 1),

U ≥ c0 > 0 on BN+ (0, 1),
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such that x1−2γ
N ∂NU ∈ C

0(BN+ (0, 1)). Assume also that there exist a small r > 0 and
x̄0 ∈ B

n(0, r) \ Bn(0, r/2) such that U(x̄0, 0) = c0 and U(x̄, 0) > c0 on {x̄ ∈ Rn :
|x̄| = r/2}. Then

lim
xN→0

x
1−2γ
N ∂NU(x̄0, xN ) > 0.

Proof. Our proof is in the spirit of those in [30, Theorem 3.5] and [11, Proposition 7.1].
Let

W(x) = x
−(1−2γ )
N (xN + C̃1x

2
N )(e

−C̃2|x̄| − e−C̃2r) in BN+ (0, 1)

with C̃1, C̃2 > 0 sufficiently large. Then there exists a small δ > 0 such that{
−divḡ(x

1−2γ
N ∇W)+ x

1−2γ
N AW ≤ 0 in BN+ (0, 1),

U − δW ≥ c0/2 > 0 on BN+ (0, 1).

Therefore {
−divḡ(x

1−2γ
N ∇(U − δW))+ x

1−2γ
N A+(U − δW) ≥ 0 in 01,

U − δW ≥ c0 on ∂01,

where 01 = (B
n(0, 1)\Bn(0, 1/2))×(0, 1/2). By the maximum principle,U−δW > c0

in 01. Since (U − δW)(x̄0, 0) = c0, the assertion follows. ut

Proof of Lemma 3.4. We set

Vm(x) = ε̂

2γ
pm−1
m Um(ε̂mx) for all x ∈ BN+ (0, r2ε̂

−1
m ).

Then we infer from (2.10) and (3.1) that{
−divḡm(ε̂m·)(x

1−2γ
N ∇Vm)+ ε̂

2
mx

1−2γ
N Am(ε̂m·)Vm = 0 in BN+ (0, r2ε̂

−1
m ),

∂
γ
ν Vm = f

−δm
m (ε̂m·)V

pm
m on Bn(0, r2ε̂−1

m ),
(3.5)

where
Am = x

−(1−2γ )
N Eḡm(x

1−2γ
N )

in ḡm(ε̂m·)-coordinates centered at ym, and

Vm(x̄, 0) ≤ C|x̄|−
2γ

pm−1 for all x̄ ∈ Bn(0, r2ε̂−1
m ).

Thus Lemma 3.3 yields

Vm(x) ≤ C|x|
−

2γ
pm−1 for all x ∈ BN+ (0, r2ε̂

−1
m ). (3.6)

Also, by Definition 3.1(1),

Vm(0) = αn,γ , ∇x̄Vm(0) = 0 for all m ∈ N. (3.7)
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On the other hand, Lemma 3.5 implies

inf
x∈∂IB

N
+ (0,r)

Vm = inf
x∈BN+ (0,r)

Vm for each r ∈ (0, 1]. (3.8)

Indeed, since Vm is positive on its domain, we have

−divḡm(ε̂m·)(x
1−2γ
N ∇Vm)+ ε̂

2
mx

1−2γ
N (Am)+(ε̂m·)Vm ≥ 0 in BN+ (0, 1).

Because of the classical maximum principle, Vm does not attain its infimum in the interior
of BN+ (0, r) for any r ∈ (0, 1], unless it is a constant function. However, it cannot be
constant, because otherwise we get the absurd relation

0 = ∂γν Vm = f
−δm
m (ε̂m·)V

pm
m > 0 on Bn(0, r).

Moreover, the infimum of Vm is not achieved on the bottom Bn(0, r), because the exis-
tence of a minimum point x̄m ∈ Bn(0, r) of Vm and the Hopf lemma produce the contra-
dictory relation

0 > ∂γν Vm(x̄m, 0) = f−δmm (ε̂mx̄m)V
pm
m (x̄m, 0) > 0.

Therefore (3.8) must be true.
Now one observes from (3.7), (3.8) and Lemma 3.3 that Vm(x) ≤ C for |x| ≤ 1. In

light of (3.6), this reads

Vm(x) ≤ C for x ∈ BN+ (0, r2ε̂
−1
m ) (3.9)

where C > 0 is a constant independent of m ∈ N.
Accordingly, by making use of (3.5), (3.7), (3.9), (A.3), (A.4), (A.6), (A.17) and

Lemma 2.4(3), we deduce the existence of β ∈ (0, 1) such that

pm→ 2∗n,γ − 1, Vm→ W1,0 in Cβloc(R
N
+) and Vm(·, 0)→ w1,0 in C2+β

loc (Rn)

after passing to a subsequence. The assertion of the lemma is true. ut

Keeping in mind that our proof is not affected by picking a subsequence of {U`}`∈N, we
always select {Rm}m∈N first and then {U`m}m∈N satisfying (3.4) and Rmε̂`m → 0. From
now on, we write {Um}m∈N to denote {U`m}m∈N to simplify notation.

The next result is a simple consequence of the previous lemma for τm = w1,0(Rm)/2.

Corollary 3.6. (1) Suppose that ym → y0 ∈ M is an isolated blow-up point of a se-
quence {Um}m∈N of solutions to (2.10). If {Ũm}m∈N is a sequence of solutions to
(2.12) constructed as in Subsection 3.1, then ym → y0 ∈ M is an isolated blow-up
point of {Ũm}m∈N.

(2) Assume that y0 ∈ M is an isolated blow-up point of {Um}m∈N. Then the function
ūm defined in (3.2) has exactly one critical point in (0, Rmε̂m) for large m ∈ N. In
particular, if the isolated blow-up point y0 ∈ M of {Um}m∈N is also simple, then
ū′m(r) < 0 for all r ∈ [Rmε̂m, r3); see Definition 3.1(3).
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Proof. Choose l, L > 0 such that l ≤ w−1
m = ũm/um ≤ L on M for all m ∈ N. If we use

the normal coordinates on M at ym, it follows from (3.4) that

lMm(w1,0(ε̂
−1
m ·)−τm) ≤ αn,γ ũm ≤ LMm(w1,0(ε̂

−1
m ·)+τm) in Bn(0, Rmε̂m). (3.10)

Hence there exists a sufficiently large R > 0 independent of m ∈ N such that R < Rm
and ũm(·) ≤ ũm(0)/2 on ∂Bn(0, Rε̂m) for each large m ∈ N, from which we infer that
ũm has a local maximum point ỹm on M satisfying dh̄m(ym, ỹm) = |ỹm| ≤ Rε̂m. Now it

is easy to check that ỹm → y0 is a blow-up point of {Ũm}m∈N. Furthermore, since (3.10)
implies the existence of a constant C > 0 depending on R > 0 such that

ũm ≤ CMm ≤ C(|y| + |ỹm|)
−

2γ
pm−1 ≤ C|y − ỹm|

−
2γ

pm−1 if |y| ≤ Rε̂m,

one finds

ũm(y) ≤ Cdh̃m
(y, ỹm)

−
2γ

pm−1 for any y ∈ M \ {ỹm} with d
h̃m
(y, ỹm) < r2

where the magnitude of r2 > 0 may be reduced if necessary. As a result, an applica-
tion of the proof of Lemma 3.4 to ũm shows that for R′ � R large enough, ũm is
C2(B

h̃m
(ỹm, R′ε̂m))-close to a suitable rescaling of the standard bubble w1,0 so that it

has a unique critical point on B
h̃m
(ỹm, R

′ε̂m), the local maximum point ỹm. However, by
(2.11), ym ∈ Bh̃m(ỹm, R

′ε̂m) is already a critical point of ũm, and so it is equal to ỹm. This
completes the proof of (1). The verification of (2) is plain. ut

3.3. Isolated simple blow-up points

Let ym→ y0 ∈ M be an isolated simple blow-up point of {Um}m∈N. By Corollary 3.6(1),
ym → y0 is an isolated blow-up point of {Ũm}m∈N. The objective of this subsection is
to show that the behavior of each Ũm in the geodesic half-ball Bg̃m(ym, r) ∩ X can be
controlled whenever r > 0 is chosen to be sufficiently small. We will use g̃m-Fermi
coordinates centered at ym, so Bg̃m(ym, r) ∩X is identified with BN+ (0, r) ⊂ RN+ .

Proposition 3.7. Assume n > 2 + 2γ and ym → y0 ∈ M is an isolated simple blow-up
point of a sequence {Um}m∈N of solutions to (2.10). Then one can chooseC > 0 large and
r4 ∈ (0,min {r3, R0}] small (refer to Definition 3.1(3) and Proposition B.2), independent
of m ∈ N, such that

{
Mm|∇

`
x̄Ũm(x)| ≤ C|x|

−(n−2γ+`) (` = 0, 1, 2),
Mm|x

1−2γ
N ∂N Ũm(x)| ≤ C|x|

−n
for 0 < |x| ≤ r4 (3.11)

where Mm = um(ym) and Ũm is the function constructed in Subsection 3.1.
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Proof. The proof consists of six steps. Let o(1) denote any sequence tending to 0 as
m→∞.

Step 1 (Rough upper decay estimate of {Ũm}m∈N). For any fixed sufficiently small η > 0,
set λm = (n − 2γ − η)(pm − 1)/(2γ ) − 1. We shall show that there exist r ′4 = r

′

4(η) ∈

(0, r3] and a large constant C > 0 independent of m ∈ N such that

Mλm
m Ũm(x) ≤ C|x|

−(n−2γ )+η in 02 = B
N
+ (0, r

′

4) \ B
N
+ (0, Rmε̂m). (3.12)

This can be proved as in [28, Lemma 2.7] and [40, Lemma 4.6]. However, since this is
one of the places where hypothesis (1.5) is used, we sketch the proof.

Because Ũm ≤ CUm in BN+ (0, r3) for some C > 0, it suffices to verify that

Mλm
m Um(x) ≤ C|x|

−(n−2γ )+η in 02. (3.13)

Thanks to Lemma 3.3 and Corollary 3.6(2), it turns out that

U
pm−1
m (x) ≤ CR

−2γ+o(1)
m |x|−2γ in BN+ (0, r3) \ B

N
+ (0, Rmε̂m). (3.14)

Let {
Lm(U) = −divḡm(x

1−2γ
N ∇U)+ Eḡm(xN )U in BN+ (0, r3),

Bm(U) = ∂
γ
ν U − f

−δm
m u

pm−1
m u on Bn(0, r3),

where u = U on Bn(0, r3). By (2.10), we clearly have Um > 0, Lm(Um) = 0 in
BN+ (0, r3) and Bm(Um) = 0 in Bn(0, r3).

Assume that 0 ≤ µ ≤ n− 2γ . Then one can calculate

Lm(|x|
−µ) = x

1−2γ
N (µ(n− 2γ − µ)+O(|x|))|x|−(µ+2). (3.15)

Moreover, [46, Lemma 2.3] tells us that (1.5) ensures H = 0 on M . Hence ∂N
√
|ḡm| =

O(xN ) by Lemma 2.2 and

divḡm(x
1−2γ
N ∇(x

2γ
N |x|

−(µ+2γ )))− div(x1−2γ
N ∇(x

2γ
N |x|

−(µ+2γ )))

= x
1−2γ
N [O(|x|)x

2γ
N ∂ij |x|

−(µ+2γ )
+O(|x|)x

2γ
N ∂i |x|

−(µ+2γ )
+O(xN )(∂Nx

2γ
N )|x|

−(µ+2γ )
]

= x
1−2γ
N [O(|x|)x

2γ
N |x|

−(µ+2γ+2)
]

(cf. (5.2)). This implies that

Lm(x
2γ
N |x|

−(µ+2γ )) = x
1−2γ
N ((µ+ 2γ )(n− µ)+O(|x|))|x|−(µ+2)(xN/|x|)

2γ . (3.16)

From (3.15), (3.16) and the computation

Bm(|x|
−µ
− ζx

2γ
N |x|

−(µ+2γ )) = |x|−(µ+2γ )
[2γ κγ ζ + f−δmm u

pm−1
m (ζx

2γ
N − |x|

2γ )]

= |x|−(µ+2γ )
[2γ κγ ζ +O(R

−2γ+o(1)
m )] (by (3.14))
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in BN+ (0, r3) \ B
N
+ (0, Rmε̂m) for a fixed ζ ∈ R, we observe that the function

81m(x) = Lm(|x|
−η
− ζx

2γ
N |x|

−(η+2γ ))+ L0M
−λm
m (|x|−(n−2γ )+η

− ζx
2γ
N |x|

−n+η),

with a suitable choice of L0, Lm > 0 large and ζ, η > 0 small, satisfies

Lm(81m)≥0 in 02, Bm(81m)≥0 on ∂02∩Rn and Um≤81m on ∂02\Rn.

Consequently, the generalized maximum principle (Lemma A.5) yields Um ≤ 81m in 02.
From this and the assumption that ym → y0 is an isolated simple blow-up point of
{Um}m∈N, we infer that (3.13) or (3.12) holds.

Step 2 (Lower decay estimate of {Ũm}m∈N). We claim that there is a large constantC > 0
such that

MmŨm(x) ≥ C
−1
|x|−(n−2γ ) in 02 (3.17)

where the magnitude of r ′4 is reduced if necessary.
Let Gm be the Green’s function that solves (B.1) provided ḡ = ḡm and BR =

BN+ (0, r
′

4). By (2.10), (3.4) and (B.3), we find that U = MmUm − C
−1Gm solves

−divḡm(x
1−2γ
N ∇U)+ x

1−2γ
N AmU = 0 in 02,

∂
γ
ν U = Mmf

−δm
m u

pm
m ≥ 0 on ∂02 ∩ Rn,

U ≥ 0 on ∂02 \ Rn,

provided that C > 0 is large enough. Hence the weak maximum principle discussed in
Remark A.6 shows that U ≥ 0 in 02. Inequality (3.17) now follows from the inequality
Um ≤ CŨm in BN+ (0, r

′

4) and (B.3).

Step 3 (Rough upper decay estimate of derivatives of {Ũm}m∈N). We assert{
M
λm
m |∇

`
x̄Ũm(x)| ≤ C(1+ ε̂

o(1)
m )|x|−(n−2γ+`)+η (` = 1, 2),

M
λm
m |x

1−2γ
N ∂N Ũm(x)| ≤ C(1+ ε̂

o(1)
m )|x|−n+η

in 02. (3.18)

We apply the standard rescaling argument described, e.g., in [29, proof of Lemma 2.6].
Given any m ∈ N and R ∈ [2Rmε̂m, r ′4/2], set

UR(x) = Mλm
m Rn−2γ−ηŨm(Rx) in 03 = B

N
+ (0, 2) \ BN+ (0, 1/2),

which solves{
−divḡm(R·)(x

1−2γ
N ∇UR)+ Eḡm(R·)(xN )UR = 0 in 03,

∂
γ
ν UR = (ε̂m/R)2γ λm f̃−δmm (R ·)UpmR on ∂0′3 = ∂03 ∩ Rn.

(3.19)

Inequalities (3.18) will be valid if there exists C > 0 independent of m and R such that

2∑
`=1

|∇
`
x̄UR(x)| + |x

1−2γ
N ∂NUR(x)| ≤ C(1+ ε̂o(1)m ) for |x| = 1. (3.20)
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Because of relatively poor regularity property of degenerate elliptic equations, especially
when γ ∈ (0, 1) is small, derivation of (3.20) is rather technical. In particular, as we will
see shortly, it requires the lower estimate (3.17) of Mλm

m Ũm in contrast to the local case
γ = 1.

In light of (3.12), we have UR(x) ≤ C in 03. Applying the Hölder estimate (A.3),
a bootstrap argument with the Schauder estimate (A.17), and the derivative estimate (A.6)
for (3.19), we obtain

‖∇x̄UR‖C0(K) ≤ C[1+ (ε̂m/R)
2γ λm ] ≤ C (3.21)

for any proper compact subset K of 03 ∪ ∂0
′

3. Furthermore, (3.17) yields

(ε̂m/R)
2γ λmUpm−2

R (x) ≤

{
C for n < 6γ,
(ε̂m/R)

2γ λm−η(2−pm)ε̂
o(1)
m ≤ Cε̂

o(1)
m for n ≥ 6γ,

on ∂0′3. This together with (A.17) and (3.21) gives

‖UR‖Cβ′ (K̃ ′) ≤ C[1+ (ε̂m/R)
2γ λm(1+ ‖UR‖Cβ (K̃) + ‖U

pm−2
R ∇x̄UR‖C0(K̃))]

≤ C(1+ ε̂o(1)m ) (3.22)

for all compact subsets K̃ ′ ( K̃ of 0′3 and exponents 1 ≤ β < β ′ ≤ min {2, β + 2γ }.
The desired inequality (3.20) is now derived from (3.21), (3.22), (A.6) with `0 = 2 and
(A.11).

Step 4 (Estimate of δm). For δm = (2∗n,γ − 1)− pm ≥ 0,

δm = O
(
M
−

2
n−2γ +o(1)

m

)
and Mδm

m → 1 as m→∞. (3.23)

The proof makes use of Pohozaev’s identity in Lemma 2.5 and is analogous to that in [40,
Lemma 4.8]. Hence we omit it.

Step 5 (Estimate of {Ũm}m∈N on {|x| = r4}). We demonstrate

max
|x|=r4

MmŨm(x) ≤ C(r4) (3.24)

for any sufficiently small r4 ∈ (0, r ′4].
Suppose this does not hold. Then there exists a sequence {zm}m∈N of points on the

half-sphere {x ∈ RN+ : |x| = r4} such that

MmUm(zm)→∞ as m→∞.

Let Eḡm(xN ) = x
1−2γ
N Am where {Am}m∈N is a family of functions whose C2-norm is

uniformly bounded. We divide into cases according to the sign of Am.

Case 1: Am ≥ 0 in BN+ (0, r
′

4) for all m ∈ N. In this case, one can argue as in [56,
Proposition 4.5] or [2, Proposition 4.3] to reach a contradiction. The proof is omitted.
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Case 2: Am ≥ 0 in BN+ (0, r
′

4) is violated for some m ∈ N. In this situation, we will
recover positivity ofAm by employing a conformal change of the metric ḡm onM . Owing
to (1.5) (or the condition H = 0 on M), (2.1) and Lemma 2.2, we have

x
1−2γ
N Am = Eḡm(xN ) ≥

n− 2γ
2

x
1−2γ
N

[
1− 2r ′4

∥∥∇√|ḡm|∥∥L∞(BN+ (0,r ′4))]
×
[
‖πm(0)‖2 + RNN [ḡm](0)− r ′4

∥∥∇(x−1
N ∂N

√
|ḡm|

)∥∥
L∞(BN+ (0,r

′

4))

]
in BN+ (0, r

′

4), where πm is the second fundamental form of (M, h̄m) ⊂ (X, ḡm). Also,
inspecting the proof of [46, Lemma 2.4], we see that

‖πm(0)‖2 + RNN [ḡm](0) =
1

2(n− 1)
(R [h̄m](0)− ‖πm(0)‖2).

We want to find a representative ȟm of the conformal class [h̄m] and a small r ′′4 ∈ (0, r
′

4]

such that
Eǧm(xN ) = x

1−2γ
N Ǎm ≥ 0 in BN+ (0, r

′′

4 )

for all m ∈ N, where ǧm is the metric on X defined via the geodesic boundary defining
function associated to ȟm. To this end, it suffices to confirm that given a fixed small
number ε > 0,

R [ȟm](0)− ‖π̌m(0)‖2 ≥ 1/ε (3.25)

and

r ′′4
∥∥∇√|ǧm|∥∥L∞(BN+ (0,r ′′4 )) ≤ ε, r ′′4

∥∥∇(x−1
N ∂N

√
|ǧm|

)∥∥
L∞(BN+ (0,r

′′

4 ))
≤

1
2ε
. (3.26)

Here π̌m is the second fundamental form of (M, ȟm) ⊂ (X, ǧm).
Set fm(x̄) = −K|x̄|2 in Bn(0, r ′4) for some large K > 0 and then extend it to M

suitably so that fm ∈ C∞(M). If we let ȟm = e2fm h̄m, then the transformation law of
the scalar curvature and the umbilic tensor under a conformal change (see [23, (1.1)] and
[46, (2.2)]) gives

R [ȟm](0)− ‖π̌m(0)‖2

= e−2fm(0)
(
R [h̄m] − ‖πm‖

2
− 2(n− 1)1x̄fm − (n− 1)(n− 2)|∇x̄fm|2

)
(0)

≥ 4n(n− 1)K − sup
m∈N

(|R [h̄m]| + ‖πm‖
2)(0) ≥ 2n(n− 1)K > 0,

which establishes (3.25).
Verifying (3.26) requires a little more work. We extend fm on M to its collar neigh-

borhood M × [0, r ′4) by solving a first-order partial differential equation

〈dfm, dρm〉ḡm +
ρm

2
|dfm|

2
ḡm
= 0 on M × [0, r ′4).
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Since the equation is noncharacteristic, a solution exists and is unique provided r ′4 small.
Locally, it is written as

∂fm

∂xN
+
xN

2

[
ḡ
ij
m

∂fm

∂xi

∂fm

∂xj
+

(
∂fm

∂xN

)2]
= 0 in BN+ (0, r

′

4). (3.27)

We easily see that ǧm = e2fm ḡm on M × [0, r ′4). Hence, by the assumption H = 0 on M
and (3.27), it is sufficient to find a small r ′′4 = r

′′

4 (K) > 0 such that

‖∇fm‖L∞(BN+ (0,r
′′

4 ))
≤ ε and ‖∇

2fm‖L∞(BN+ (0,r
′′

4 ))
≤ C/ε for all m ∈ N

so as to ensure the validity of (3.26). Given any x̄ ∈ Bn(0, 2r ′′4 ), the characteristic equa-
tion of (3.27) is the system of 2N + 1 ordinary differential equations for the functions

p = p(s; x̄) = (p1, . . . , pN )(s; x̄), z = z(s; x̄), x = x(s; x̄) = (x1, . . . , xN )(s; x̄)

defined as
ṗ = −

(
xN

2
∂1ḡ

ij
m(x)pipj , . . . ,

xN

2
∂nḡ

ij
m(x)pipj , 1

2 (ḡ
ij
m(x)pipj + p2

N )

)
,

ż = xN ḡ
ij
m(x)pipj + pN (1+ xNpN ),

ẋ = (xN ḡ1i
m (x)pi, . . . , xN ḡnim (x)pi, 1+ xNpN ),

p(0; x̄) = (−2Kx̄, 0), z(0; x̄) = −K|x̄|2, x(0; x̄) = (x̄, 0).

Here the dot stands for differentiation with respect to s and the domain of the functions
(p, z, x)(·; x̄) is assumed to be [0, 2r ′′4 ). The asymptotic analysis of the system indicates

‖∇fm‖L∞(BN+ (0,r
′′

4 ))
≤ sup
x̄∈Bn(0,2r ′′4 )

‖p(·; x̄)‖L∞([0,2r ′′4 )) ≤ 5K−1

and

‖∇
2fm‖L∞(BN+ (0,r

′′

4 ))
≤ 2 sup

x̄∈Bn(0,2r ′′4 )
(‖∇x̄p(·; x̄)‖L∞([0,2r ′′4 ))+‖ṗ(·; x̄)‖L∞([0,2r ′′4 ))) ≤ 5K

for any fixed r ′′4 ∈ (0,K
−2), thereby establishing the desired inequalities.

Now, with the fact that x1−2γ
N Ǎm ≥ 0 in BN+ (0, r

′′

4 ), we may consider the family
{Ǔm}m∈N of solutions to (2.10) in which the tildes are replaced with checks. Notice that
sinceH = 0 is an intrinsic condition that comes from (1.5), the new metrics ǧm onX still
satisfy necessary conditions for the regularity results in Appendices A and B.2. Hence
our situation is reduced to Case 1 and we get the same contradiction.

Step 6 (Completion of the proof). Finally, reasoning as in [56, Proposition 4.5] or [2,
Proposition 4.3] with estimates (3.23) and (3.24), we get the desired inequalityMmŨm(x)

≤ C|x|−(n−2γ ) in BN+ (0, r4) \ {0}. The other estimates in (3.11) are established as in
Step 3. This finishes the proof. ut
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4. Linear theory and refined blow-up analysis

4.1. Linear theory

Let χ : [0,∞) → [0, 1] be a smooth function such that χ(t) = 1 on [0, 1] and 0 in
[2,∞). Set also χε(t) = χ(εt) for any ε > 0.

Proposition 4.1. Let n > 2 + 2γ , ε > 0, and π be a symmetric 2-tensor (that is, an
n × n-matrix) whose trace tr(π) is 0. Also, suppose that W1,0 and w1,0 are the stan-
dard bubbles appearing in (2.5) and (2.6), respectively. Then there exists a solution
9 ∈ D1,2(RN+; x

1−2γ
N ) to the linear equation{
−div(x1−2γ

N ∇9) = x
1−2γ
N · 2εxNχε(|x|)πij∂ijW1,0 in RN+ ,

∂
γ
ν 9 =

n+2γ
n−2γ w

4γ
n−2γ
1,0 9 on Rn,

(4.1)

such that

|∇
`
x̄9(x)| ≤

Cε|π |∞

1+ |x|n−2γ−1+` , |x
1−2γ
N ∂N9(x)| ≤

Cε|π |∞

1+ |x|n−1 (4.2)

for any x ∈ RN+ , ` ∈ N ∪ {0} and some C > 0 independent of ε > 0,

9(0) =
∂9

∂x1
(0) = · · · =

∂9

∂xn
(0) = 0 (4.3)

and ∫
RN+
x

1−2γ
N ∇9 · ∇W1,0 dx =

∫
Rn
w

n+2γ
n−2γ
1,0 9 dx̄ = 0. (4.4)

Here |π |∞ = maxi,j=1,...,n |πij |.

Proof. Given a fixed ε > 0, let Q ∈ L
2(n−2γ+2)
n−2γ+4 (RN+; x

1−2γ
N ) be defined by

Q(x) = 2εxNχε(|x|)πij∂ijW1,0(x) for x = (x̄, xN ) ∈ RN+ .

By the symmetry of the functions Z0
1,0, . . . , Z

n
1,0 given in (2.9) and the assumption that

tr(π) = 0, we see that∫
RN+
x

1−2γ
N QZ0

1,0 dx =

∫
RN+
x

1−2γ
N QZ1

1,0 dx = · · · =

∫
RN+
x

1−2γ
N QZn1,0 dx = 0.

Therefore, from the nondegeneracy result in Lemma 2.4(4) and the Fredholm alternative,
we get a unique solution 9̃ ∈ D1,2(RN+; x

1−2γ
N ) to (4.1) satisfying∫

RN+
x

1−2γ
N ∇9̃ · ∇Z0

1,0 dx =

∫
RN+
x

1−2γ
N ∇9̃ · ∇Z1

1,0 dx = · · ·

=

∫
RN+
x

1−2γ
N ∇9̃ · ∇Zn1,0 dx = 0.
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Furthermore, by repetitive applications of the maximum principle and the scaling method
with the help of Lemmas A.3 and A.4, we can prove that 9̃ satisfies (4.2). See [18, proof
of Lemma 3.3] for the details. Multiplying the first equation and (2.6)–(2.7) by W1,0
and 9̃, respectively, also reveals that

n+ 2γ
n− 2γ

∫
Rn
w

n+2γ
n−2γ
1,0 9̃ dx̄ = κγ

∫
RN+
x

1−2γ
N ∇9̃ · ∇W1,0 dx =

∫
Rn
w

n+2γ
n−2γ
1,0 9̃ dx̄.

Hence (4.4) holds for the function 9̃.
Now, if we set

9 = 9̃ −
29̃(0)

αn,γ (n− 2γ )
Z0

1,0 −

n∑
i=1

∂i9̃(0)
αn,γ (n− 2γ )

Zi1,0,

then it can be easily shown from (2.8) that 9 is the desired function that satisfies (4.1)–
(4.4). This concludes the proof. ut

4.2. Refined blow-up analysis

As before, let ym → y0 ∈ M be an isolated simple blow-up point of {Um}m∈N. In view
of Corollary 3.6(1) and (2.11), ym → y0 is an isolated blow-up point of {Ũm}m∈N and
Mm = Ũm(ym) (= Ũm(0) if the g̃m-Fermi coordinate system around ym is used). Also,
Proposition 3.7 ensures the validity of the pointwise estimate (3.11) for {Ũm}m∈N near y0.
The objective of this subsection is to refine it by analyzing the εm-order terms. Recall
the functions W1,0 and 9m defined in (2.6) and constructed in Proposition 4.1 (where
the tensor πm is replaced by the second fundamental form π̃m(ym) at ym of (M, h̃m) ⊂
(X, g̃m)), respectively.

Proposition 4.2. Suppose that n > 2 + 2γ . Let εm = M
−(pm−1)/(2γ )
m , ε̂m =

α
(pm−1)/(2γ )
n,γ εm,

Ṽm(x) = ε̂

2γ
pm−1
m Ũm(ε̂mx) in BN+ (0, r

′

4ε̂
−1
m ), (4.5)

and αn,γ and r4 be the positive constants introduced in (2.5) and Proposition 3.7, re-
spectively. Then one can find C > 0 and r5 ∈ (0, r4] independent of m ∈ N such that

|∇
`
x̄ Ṽm −∇

`
x̄(W1,0 +9m)|(x) ≤

Cε2
m

1+ |x|n−2γ−2+` (4.6)

for ` = 0, 1, 2 and

|x
1−2γ
N ∂N Ṽm − x

1−2γ
N ∂N (W1,0 +9m)|(x) ≤

Cε2
m

1+ |x|n−2 (4.7)

for |x| ≤ r5ε̂−1
m .
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Proof. Our main tool will be the maximum principle; compare the proof of [2, Proposi-
tion 6.1] for the boundary Yamabe problem which makes use of Green’s representation
formula. The proof is split into three steps.

Step 1 (An estimate of Ṽm − (W1,0 +9m)). We assert that

|Ṽm − (W1,0 +9m)| ≤ Cmax {ε2
m, δm} in BN+ (0, r4ε̂

−1
m ) (4.8)

where δm = (2∗n,γ − 1)− pm. Set

3m = max
|x|≤r4 ε̂

−1
m

|Ṽm − (W1,0 +9m)|(x) = |Ṽm − (W1,0 +9m)|(x̂m).

If |x̂m| ≥ ηr4ε̂−1
m for any fixed small η ∈ (0, 1), we obtain an inequality

3m ≤ Cε̂
n−2γ
m = o(ε2

m)

stronger than (4.8). Thus we may assume that |x̂m| ≤ ηr4ε̂−1
m . Let

2m = 3
−1
m [Ṽm − (W1,0 +9m)]

and
L̂m(2m) = −divĝm(x

1−2γ
N ∇2m)+ Êm(xN )2m

in BN+ (0, r4ε̂
−1
m ). Then{

L̂m(2m) = x
1−2γ
N Q̂1m in BN+ (0, r4ε̂

−1
m ),

∂
γ
ν 2m − Bm2m = Q̂2m on Bn(0, r4ε̂−1

m ),
(4.9)

where ĝm = g̃m(ε̂m·),

Êm(xN ) =
n− 2γ

4n

[
R[ĝm] − (n(n+ 1)+ R[g+](ε̂m·))x−2

N

]
x

1−2γ
N (4.10)

=
n− 2γ

4n
ε̂2
m

[
R[g̃m](ε̂m·)+ o(1)

]
x

1−2γ
N (by (1.5)),

Q̂1m = 3
−1
m

[
(ĝ
ij
m − δ

ij )∂ij (W1,0 +9m)+
∂i
√
|ĝm|√
|ĝm|

ĝ
ij
m∂j (W1,0 +9m)

+
∂N
√
|ĝm|√
|ĝm|

∂N (W1,0 +9m)+ ∂i ĝ
ij
m∂j (W1,0 +9m)

− 2ε̂mxNχm(|x|)(πm)ij∂ijW1,0 − Êm(xN )(W1,0 +9m)

]
Q̂2m = 3

−1
m

[
(f̂−δmm − 1) (w1,0 +9m)

pm + (w1,0 +9m)
n+2γ
n−2γ {(w1,0 +9m)

−δm − 1}

+

{
(w1,0 +9m)

n+2γ
n−2γ − w

n+2γ
n−2γ
1,0 −

n+ 2γ
n− 2γ

w

4γ
n−2γ
1,0 9m

}]
,

Bm = f̂
−δm
m

Ṽ
pm
m − (w1,0 +9m)

pm

Ṽm − (w1,0 +9m)

and f̂m = fm(ε̂m·).
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As a preliminary step, we first deduce pointwise estimates of the functions Q̂1m, Q̂2m
and Bm. By (3.9), (A.6), (3.11), (2.8) and (4.2),

|∇
`
x̄ Ṽm(x)| + |∇

`
x̄W1,0(x)| ≤

C

1+ |x|n−2γ+` and |∇
`
x̄9m(x)| ≤

Cε̂m

1+ |x|n−2γ−1+`

(4.11)
in BN+ (0, r4ε̂

−1
m ) for ` = 0, 1. Moreover, by (3.4) and (3.11),

Ṽm(x̄) ≥
C

1+ |x̄|n−2γ in Bn(0, r4ε̂−1
m ). (4.12)

From these inequalities and Lemmas 2.2–2.4 (especially, H = 0 on M), we discover

|Q̂1m(x)| ≤
C3−1

m ε2
m

1+ |x|n−2γ in BN+ (0, r4ε̂
−1
m ), (4.13)

|Q̂2m(x̄)| ≤ C3
−1
m

[
δm log(1+ |x̄|)

1+ |x̄|n+2γ+o(1) +
ε2
m

1+ |x̄|n−2+2γ

]
on Bn(0, r4ε̂−1

m ), (4.14)

|Bm(x̄)| ≤ C[Ṽ
pm−1
m + (w1,0 +9m)

pm−1
] ≤

C

1+ |x̄|4γ+o(1)
on Bn(0, r4ε̂−1

m ).

(4.15)

Reducing r4 if necessary, we have w1,0(x̄) ≥ 2|9m(x̄)| on Bn(0, r4ε̂−1
m ). Using this fact,

(4.11), (4.12) and the inequality

|xp − px + (p − 1)| ≤
{
C(1− x)2 min {1, xp−2

} for p ∈ (1, 2),
C(1− x)2(1+ xp−2) for p ≥ 2,

in (0,∞), we also deduce that

|∇x̄Bm(x̄)| ≤ C

[
δm

1+ |x̄|4γ+o(1)
+

1
1+ |x̄|1+4γ+o(1)

]
, (4.16)

|∇x̄Q̂2m(x̄)| ≤ C3
−1
m

[
δmεm

1+ |x̄|n+2γ+o(1) +
δm log(1+ |x̄|)

1+ |x̄|n+1+2γ+o(1) +
ε2
m

1+ |x̄|n−1+2γ

]
,

(4.17)

on Bn(0, r4ε̂−1
m ).

Next, we claim that there is a number η ∈ (0, 1) such that

|2m(x)| ≤ C

[
1

1+ |x|γ
+
3−1
m (ε2

m + δm)

1+ |x|n−2−2γ

]
in BN+ (0, ηr4ε̂

−1
m ). (4.18)

To verify it, we construct a barrier function

82m(x)

=


L(1+3−1

m (ε2
m + δm))[(2− |x|

2)− ζx
2γ
N (2− |x|

2−2γ )] for |x| ≤ 1,
L[(|x|−γ − ζx

2γ
N |x|

−3γ )+3−1
m (ε2

m + δm)(|x|
−(n−2−2γ )

− ζx
2γ
N |x|

−(n−2))]

for 1 < |x| < ηr4ε̂
−1
m ,
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with L > 0 large and ζ > 0 small. Indeed, we see from H = 0 on M , (4.9) and (4.11)–
(4.15) that

L̂m(82m) ≥
Cx

1−2γ
N 3−1

m ε2
m

1+ |x|n−2γ ≥ ±x
1−2γ
N Q̂1m = L̂m(±2m) in BN+ (0, ηr4ε̂

−1
m ),

∂γν 82m ≥ C

[
1

1+ |x̄|3γ
+
3−1
m (ε2

m + δm)

1+ |x̄|n−2

]
≥ |Bm| + |Q̂2m|

≥ ±∂γν 2m

on Bn(0, ηr4ε̂−1
m ),

82m ≥ C3
−1
m ε

n−2γ
m ≥ ±2m on ∂IBN+ (0, ηr4ε̂

−1
m ),

(4.19)

for sufficiently small η ∈ (0, 1). Thus, rescaling (4.19) and employing the weak maximum
principle in Remark A.6, we establish that |2m| ≤ 82m in BN+ (0, ηr4ε̂

−1
m ). This implies

(4.18).
Suppose now that 3−1

m (ε2
m + δm) → 0 as m → ∞. By Lemmas 3.4, A.2, A.7 and

(4.13)–(4.17), there exist a function 20 and a number β ∈ (0, 1) such that

2m→ 20 in Cβloc(R
N
+) ∩ C

1
loc(R

n) and weakly in W 1,2
loc (R

N
+; x

1−2γ
N ) (4.20)

along a subsequence, and so
−div(x1−2γ

N ∇20) = 0 in RN+ ,

|20| ≤
C

1+ |x|γ
in RN+ ,

∂
γ
ν 20 =

n+2γ
n−2γ w

4γ
n−2γ
1,0 20 on Rn.

Consequently, from the fact that Ṽm(0) = ∇x̄ Ṽm(0) = 0, Lemma 2.4(1), (4.3) and (4.20),
we see that

20(0) =
∂20

∂x1
(0) = · · · =

∂20

∂xn
(0) = 0.

In view of Lemma 2.4(4), 20 = 0 in RN+ . It follows from (4.20) that |x̂m| → ∞ as
m → ∞. However, the uniform estimate (4.18) on 2m then implies 1 = 2m(x̂m) → 0,
so we get a contradiction. Estimate (4.8) must be true.

Step 2 (Estimate of δm). We assert

δm ≤ Cε
2
m. (4.21)

Its proof can be done as in [2, Lemma 6.2] with minor modifications, so is omitted.
As a particular consequence of (4.8) and (4.21), we get

|Ṽm − (W1,0 +9m)|(x) ≤ Cε
2
m for all x ∈ BN+ (0, r4ε̂

−1
m ). (4.22)

Step 3 (Completion of the proof). We can now deduce (4.6) with ` = 0. Redefine

2m = ε
−2
m [Ṽm − (W1,0 +9m)] for x ∈ BN+ (0, r4ε̂

−1
m )
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so that it solves equation (4.9) once each quantity 3m in the definition of Q̂1m and Q̂2m
is replaced with ε2

m. As in (4.13) and (4.14),

|Q̂1m(x)| ≤
C

1+ |x|n−2γ and |Q̂2m(x̄)| ≤
C

1+ |x̄|n+2γ−2 (4.23)

for x ∈ BN+ (0, r4ε̂
−1
m ) and x̄ ∈ Bn(0, r4ε̂−1

m ). By (4.22) and (4.11),

|2m| ≤ C in BN+ (0, r4ε̂
−1
m ) and |2m| ≤ Cε

n−2γ−2
m on ∂IBN+ (0, r4ε̂

−1
m ). (4.24)

For any 0 < µ ≤ n− 2γ − 2, we define

83m;µ(x) =

{
Lµ[(2− |x|2)− ζµx

2γ
N (2− |x|

2−2γ )] for |x| ≤ 1,
Lµ(|x|

−µ
− ζµx

2γ
N |x|

−µ−2γ ) for 1 < |x| < r4ε̂
−1
m ,

where Lµ and ζµ are a large and a small positive number respectively depending only on
µ, n and γ . If we set µ0 = min {γ, n − 2γ − 2}, a direct computation using H = 0 on
M , (4.9), (4.15), (4.23) and (4.24) shows

L̂m(83m;µ0) ≥
Cx

1−2γ
N

1+ |x|n−2γ ≥ L̂m(±2m) in BN+ (0, r
′

5ε̂
−1
m ),

∂
γ
ν 83m;µ0 ≥ ±∂

γ
ν 2m on Bn(0, r ′5ε̂

−1
m ),

83m;µ0 ≥ ±2m on ∂IBN+ (0, r
′

5ε̂
−1
m ),

(4.25)

for r ′5 ∈ (0, r4] small enough. Hence we deduce from the weak maximum principle in
Remark A.6 that

|2m| ≤ 83m;µ0 ≤
C

1+ |x|µ0
in BN+ (0, r

′

5ε̂
−1
m ). (4.26)

If µ0 = n− 2γ − 2, we are done. Otherwise, we put (4.26) into the second inequality of
(4.25) in order to improve it so that

|2m| ≤ 83m;µ1 ≤
C

1+ |x|µ1
in BN+ (0, r

′′

5 ε̂
−1
m )

for µ1 = min {2γ, n − 2γ − 2} and r ′′5 ∈ (0, r
′

5]. Iterating this process, we can conclude
the proof of (4.6) for ` = 0.

The remaining inequalities, i.e., (4.6) for ` = 1, 2 and (4.7), are derived as in the
justification of (3.18). Indeed, a tedious but straightforward calculation shows that the
second-order derivatives of the functions Bm(x̄) and Q̂2m(x̄) have the required decay rate
as |x̄| → ∞. The proof is now complete. ut
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5. Vanishing theorem for the second fundamental form

Let us denote by (g̃0, h̃0) the C4-limit of the sequence {(g̃m, h̃m)}m∈N given in Subsec-
tion 3.1. For each m ∈ N, let π̃m and π̃0 be the second fundamental forms of (M, h̃m) ⊂
(X, g̃m) and (M, h̃0) ⊂ (X, g̃0), respectively. By employing the sharp pointwise estimate
of Proposition 4.2, we now prove that π̃0 = 0 at an isolated simple blow-up point y0 ∈ M

of a sequence {Um}m∈N of solutions to (2.10).

Proposition 5.1. Suppose that γ ∈ (0, 1), n ∈ N satisfies the dimension restriction (1.2)
and ym → y0 is an isolated simple blow-up point of the sequence {Um}m∈N so that the
description for {Ũm}m∈N in the first paragraph of Subsection 4.2 holds. Then

‖π̃m(ym)‖ → 0 as m→∞. (5.1)

In particular, π̃0(y0) = 0.

Proof. We will use Lemma 2.3 with g̃ = g̃m, h̃ = h̃m and y = ym, and think as if Ũm is
a function in RN+ near the origin by applying g̃m-Fermi coordinates on X around ym.

Denoting ĝm = g̃m(ε̂m ·) and f̂m = f̃m(ε̂m ·), we set

Q0m(U)Qm(U) = (ĝ
ij
m − δ

ij )∂ijU +

[
∂i
√
|ĝm|√
|ĝm|

ĝ
ij
m∂jU +

∂N
√
|ĝm|√
|ĝm|

∂NU

]
+ ∂i ĝ

ij
m∂jU

= Q1m(U)+Q2m(U)+Q3m(U). (5.2)

Also, let Êm be the functions introduced in (4.10) so that Ṽm in (4.5) is a solution of{
−div(x1−2γ

N ∇Ṽm)+ Êm(xN )Ṽm = x
1−2γ
N Qm(Ṽm) in BN+ (0, r5ε̂

−1
m ),

∂
γ
ν Ṽm = f̂

−δm
m Ṽ

pm
m on Bn(0, r5ε̂−1

m ).

Thus in view of Pohozaev’s identity in Lemma 2.5, one can write

P(Ṽm, rε̂−1
m ) = P1m(Ṽm, rε̂

−1
m )+

δm

pm + 1
P2m(Ṽm, rε̂

−1
m ) for any r ∈ (0, r5]

where

P1m(U, r) = κγ

∫
BN+ (0,r)

x
1−2γ
N [Q0m(U)−Qm(U)]

×

[
xi∂iU + xN∂NU +

n− 2γ
2

U

]
dx,

P2m(U, r) = −

∫
Bn(0,r)

xi∂i f̂mf̂
−(δm+1)
m upm+1 dx̄ +

n− 2γ
2

∫
Bn(0,r)

f̂−δmm upm+1 dx̄

(5.3)

for u = U on Bn(0, r).
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For a fixed r ∈ (0, r5], let

F̂m(V1, V2) = κγ

∫
BN+ (0,rε̂

−1
m )

x
1−2γ
N [Q0m(V1)−Qm(V1)]

×

[
xi∂iV2 + xN∂NV2 +

n− 2γ
2

V2

]
dx.

Owing to (4.6) and (4.7), we are led to

P1m(Ṽm, rε̂
−1
m )

= F̂m(W1,0,W1,0)+ F̂m(W1,0, 9m)+ F̂m(9m,W1,0)+ F̂m(9m, 9m)+ o(ε
2
m) (5.4)

provided that n > 2+ 2γ .
We first estimate F̂m(W1,0,W1,0). This amounts to calculating the integrals

F̃`m = κγ

∫
RN+
x

1−2γ
N Q`m(W1,0) Z

0
1,0 dx for ` = 0, 1, 2, 3

where Z0
1,0 = x · ∇W1,0 + ((n − 2γ )/2)W1,0 is the function described in (2.9). For the

value F̃1m, we discover from Lemmas 2.4(1), 2.2 and 2.3 that

F̃1m = κγ

[
2ε̂m(π̃m)ij

∫
RN+
x

2−2γ
N ∂ijW1,0Z

0
1,0 dx

+
1
3
ε̂2
mRikj l[h̃m]

∫
RN+
x

1−2γ
N xkxl∂ijW1,0Z

0
1,0 dx

+ ε̂2
m(g̃m)

ij
,Nk

∫
RN+
x

2−2γ
N xk∂ijW1,0Z

0
1,0 dx

+ ε̂2
m(3(π̃m)ik(π̃m)kj +RiNjN [g̃m])

∫
RN+
x

3−2γ
N ∂ijW1,0Z

0
1,0 dx+o(ε

2
m)

]
= κγ [0+0+0+ ε̂2

m(3‖π̃m‖
2
+RNN [g̃m]) ·

1
n

∫
RN+
x

3−2γ
N 1x̄W1,0Z1,0 dx+o(ε

2
m)]

(since H̃m = R[h̃m] = 0)

= ε̂2
m‖π̃m‖

2κγ
4n−5

2n(n−1)

∫
RN+
x

3−2γ
N 1x̄W1,0Z

0
1,0 dx+o(ε

2
m) (5.5)

where H̃m = tr(π̃m)/n. Similarly,

F̃2m = ε̂
2
m‖π̃m‖

2κγ
1

2(n− 1)

∫
RN+
x

2−2γ
N ∂NW1,0Z

0
1,0 dx + o(ε

2
m), (5.6)

F̃3m = o(ε
2
m). (5.7)

Moreover, the Gauss–Codazzi equation and Lemma 2.3 yield

R[g̃m] = 2RNN [g̃m] + ‖π̃m‖2 + R[h̃m] − H̃ 2
m = −

n

n− 1
‖π̃m‖

2 at ym ∈ M.
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Hence we find

F̃0m = −ε̂
2
m‖π̃m‖

2κγ
n− 2γ

4(n− 1)

∫
RN+
x

1−2γ
N W1,0Z

0
1,0 dx + o(ε

2
m). (5.8)

Consequently, by combining (5.5)–(5.8) and employing (C.1), we obtain

F̂m(W1,0,W1,0) = ε̂
2
m‖π̃m‖

2κγ
3n2
+ n(16γ 2

− 22)+ 20(1− γ 2)

8n(n− 1)(1− γ 2)
C0 + o(ε

2
m) (5.9)

for some constant C0 > 0 depending only on n and γ . We note that the coefficient of ε2
m

(or ε̂2
m) is positive if and only if n satisfies (1.2) for each γ ∈ (0, 1).

On the other hand,

F̂m(W1,0, 9m)+ F̂m(9m,W1,0) ≥ o(ε
2
m), (5.10)

whose verification is deferred to the end of the proof. Also, a direct computation using
(4.2) and Lemma 2.2 yields

F̂m(9m, 9m) = o(ε
2
m). (5.11)

By plugging (5.9)–(5.11) into (5.4), we arrive at

P1m(Ṽm, rε̂
−1
m ) ≥ ε̂2

m‖π̃m‖
2κγ

3n2
+ n(16γ 2

− 22)+ 20(1− γ 2)

8n(n− 1)(1− γ 2)
C0 + o(ε

2
m).

Using (3.11), (3.23) and (4.5), we deduce{
|∇
`
x̄ Ṽm(x)| ≤ C|x|

−(n−2γ+`) (` = 0, 1, 2),
|x

1−2γ
N ∂N Ṽm(x)| ≤ C|x|

−n
in BN+ (0, r4ε̂

−1
m ).

Thus, it follows from (5.3) that

|P(Ṽm, rε̂−1
m )| ≤ Cε

n−2γ
m and P2m(Ṽm, rε̂

−1
m ) ≥ 0

if r > 0 is selected to be small enough. As a result, estimate (5.1) follows.

Derivation of (5.10). Since π̃m → π̃0 in C1(M), the norm |π̃m|∞ (see the statement of
Proposition 4.1) is uniformly bounded in m ∈ N. Thus, by virtue of (5.2), (2.8), (4.2),
Lemma 2.2 and integration by parts, we observe

F̂m(W1,0, 9m)+ F̂m(9m,W1,0)

= −2ε̂m(π̃m)ij κγ

∫
RN+
x

2−2γ
N

[
∂ijW1,0

{
xk∂k9m + xN∂N9m +

n− 2γ
2

9m

}
+ ∂ij9m

{
xk∂kW1,0 + xN∂NW1,0 +

n− 2γ
2

W1,0

}]
dx + o(ε2

m)

= 2ε̂m(π̃m)ij κγ

∫
RN+
x

2−2γ
N

[
(n− 2γ + 2)∂iW1,0∂j9m + ∂iW1,0(xk∂jk9m + xN∂jN9m)

+ (xk∂ikW1,0 + xN∂iNW1,0)∂j9m
]
dx + o(ε2

m)

= −2ε̂m(π̃m)ij κγ

∫
RN+
x

2−2γ
N ∂iW1,0∂j9m dx + o(ε

2
m)
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provided that n > 2 + 2γ . On the other hand, applying another integration by parts and
inserting 9m in (4.1) lead to

− 2ε̂m(π̃m)ijκγ

∫
RN+
x

2−2γ
N ∂iW1,0∂j9m dx + o(ε

2
m)

= κγ

∫
RN+
x

1−2γ
N |∇9m|

2 dx −
n+ 2γ
n− 2γ

∫
Rn
w

4γ
n−2γ
1,0 92

m dx̄︸ ︷︷ ︸
=I

+o(ε2
m).

It is well-known that the Morse index of w1,0 ∈ H
γ (Rn) is 1 due to the contribution of

w1,0 itself. Hence we see from (4.4) that I ≥ 0; see [18, proof of Lemma 4.5] for more
explanation. This completes the proof. ut

6. Proof of the main theorems

6.1. Exclusion of bubble accumulation

Set

P ′(U, r) = κγ
∫
∂IB

N
+ (0,r)

x
1−2γ
N

[
n− 2γ

2
u
∂u

∂r
−
r

2
|∇u|2 + r

∣∣∣∣∂u∂r
∣∣∣∣2] dσx, (6.1)

which is a part of the function P defined in (2.14).

Lemma 6.1. Assume that γ ∈ (0, 1) and the dimension condition (1.2) holds. Let
ym→ y0 be an isolated simple blow-up point of {Um}m∈N, and {Ũm}m∈N be the sequence
of functions constructed in Subsection 3.1. Suppose further that π̃0(y0) 6= 0. Then, given
m ∈ N large and r > 0 small, there exist universal constants C1, . . . , C4 > 0 such that

ε̂
n−2γ
m P ′(Ũm(0)Ũm, r) ≥ ε̂2

mC1− ε̂
2+η
m r2−ηC2− ε̂

n−2γ
m r−n+2γ+1C3−

ε̂nmr
nC4

ε̂
2n+o(1)
m + r2n+o(1)

(6.2)

in g̃m-Fermi coordinates centered at ym. Here, η > 0 is an arbitrarily small number.
Proof. We have

P ′(Ũm(0)Ũm, r) = ε̂−(n−2γ )+o(1)
m

[
P(Ṽm, rε̂−1

m )−
rε̂−1
m

p + 1

∫
∂Bn(0,rε̂−1

m )

f̂−δmm Ṽ
pm+1
m dσx̄

]
where Ṽm is the function defined in (4.5) and ε̂o(1)m → 1 as m→∞. Inspecting the proof
of Proposition 5.1 and using the assumption that π̃0(y0) 6= 0, we obtain

P(Ṽm, rε̂−1
m ) ≥ ε̂2

mC1 − ε̂
2+η
m r2−ηC2 − ε̂

n−2γ
m r−n+2γ+1C3

for some C1, C2, C3 > 0 and small η > 0. Also, by (4.11),∣∣∣∣rε̂−1
m

∫
∂Bn(0,rε̂−1

m )

f̂−δmm Ṽ
pm+1
m dσx̄

∣∣∣∣ ≤ C4ε̂
n
mr

n

ε̂
2n+o(1)
m + r2n+o(1)

for some C4 > 0. Therefore (6.2) holds. ut
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We shall use the following Liouville-type lemma to prove Lemma 6.3.

Lemma 6.2. If U ∈ W 1,2
loc (R

N
+; x

1−2γ
N ) is a solution to

−div(x1−2γ
N ∇U) = 0 in RN+ ,

∂
γ
ν U = 0 on Rn,

lim inf|x|→∞ U(x) ≥ 0,
(6.3)

then it is a nonnegative constant.

Proof. According to the Hölder estimate (A.3) and the asymptotic condition in (6.3),U is
in Cβloc(R

N
+) and bounded from below. Let m0 = infRN+ U and Um0 = U − m0 ≥ 0. By

the Harnack inequality (A.4) and scaling invariance of (6.3), we have

sup
BN+ (0,r)

Um0 ≤ C inf
BN+ (0,r)

Um0 for any r > 0 (6.4)

where C > 0 is independent of r . Letting r → ∞ in (6.4), we find that Um0 = 0 or
U = m0 in RN+ . One more application of the asymptotic condition on U forces m0 ≥ 0.

ut

Lemma 6.3. Assume that γ ∈ (0, 1) and the dimension condition (1.2) holds. Let ym→
y0 ∈ M be an isolated blow-up point of the sequence {Um}m∈N and π0(y0) 6= 0. Then y0
is an isolated simple blow-up point of {Um}m∈N.

Proof. Thanks to Corollary 3.6(2), the weighted average ūm of um = Um|M (see (3.2) for
its precise definition) has exactly one critical point in (0, Rmε̂m) for largem ∈ N. Suppose
to the contrary that there exists another critical point %m of ūm such thatRmε̂m ≤ %m→ 0
as m→∞. Define

T̃m(x) = %

2γ
pm−1
m Ũm(%mx) in BN+ (0, %

−1
m r5).

Then, using Propositions 3.7 and B.4, Lemma 6.2 and (3.17), one can verify the existence
of c1 > 0 and β ∈ (0, 1) such that

T̃m(0) T̃m→ c1(|x|
−(n−2γ )

+ 1) in Cβloc(R
N
+ \ {0}) ∩ C

1
loc(R

n
\ {0}) (6.5)

up to a subsequence; see [2, Proposition 8.1]. It follows from (6.2) that

ε̂
−(n−2γ )
m (ε̂2

mC1 − ε̂
2+η
m %2−η

m C2 − ε̂
n−2γ
m %

−n+2γ+1
m C3)−

ε̂
2γ
m %

n
mC4

ε̂
2n+o(1)
m + %

2n+o(1)
m

≤ P ′(Ũm(0)Ũm, %m) = %−(n−2γ )+o(1)
m P ′(T̃m(0)T̃m, 1). (6.6)

Note that

%
n−2γ+o(1)
m ·ε̂

−(n−2γ )
m (ε̂2

mC1−ε̂
2+η
m %2−η

m C2−ε̂
n−2γ
m %

−n+2γ+1
m C3) ≥ −2%mC3 → 0 (6.7)
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and

%
n−2γ+o(1)
m ·

ε̂
2γ
m %

n
m

ε̂
2n+o(1)
m + %

2n+o(1)
m

≤ C

(
ε̂m

%m

)2γ+o(1)

≤
C

R
2γ+o(1)
m

→ 0 (6.8)

as m → ∞. Hence, taking the limit on (6.6) and employing (6.7), (6.8), (6.5) and (6.1),
we obtain

0 ≤ lim
m→∞

P ′(T̃m(0)T̃m, 1) = P ′(c1(|x|
−(n−2γ )

+ 1), 1)

= −κγ c
2
1
n− 2γ

2

∫
∂IB

N
+ (0,1)

x
1−2γ
N dσx < 0,

which is a contradiction. The assertion in the statement must be true. ut

We rule out bubble accumulation by applying Lemma 6.3.

Proposition 6.4. Assume the hypotheses of Theorem 1.1. Let ε0, ε1, R, C0, C1 be pos-
itive numbers in the statement of Proposition 3.2. Suppose that U ∈ W 1,2(X; ρ1−2γ ) is
a solution to (2.10) and {y1, . . . , yN } is the set of its local maximum points on M . Then
there exists a constant C2 > 0 depending only on (X, g+), h̄, n, γ , ε0, ε1 and R such that
if maxM U ≥ C0, then dh̄(ym1 , ym2) ≥ C2 for all 1 ≤ m1 6= m2 ≤ N (U).
Proof. By applying Propositions 3.2, 3.7 and B.4, Lemmas 6.1 and 6.3, the maximum
principle and the Hopf lemma (Lemma 3.5), one can argue as in [2, Proposition 8.2] or
[40, Proposition 5.2]. ut

By Proposition 6.4, supm∈NN (Um) is bounded. Therefore we have

Corollary 6.5. Assume the hypotheses of Theorem 1.1. Then the set of blow-up points of
{Um}m∈N is finite and it consists of isolated simple blow-up points.

6.2. Proofs of the main theorems

We are now ready to complete the proofs of the main theorems. All notations used in the
proofs are borrowed from Subsection 3.1.

Proof of Theorem 1.3. According to Corollary 6.5, any blow-up point ym → y0 ∈ M

of {Um}m∈N is isolated simple. Therefore Proposition 5.1 implies the validity of Theo-
rem 1.3. ut

Proof of Theorem 1.1. We first claim that u ≤ C on M . Indeed, if this does not hold,
then by Proposition 2.1, there is a sequence {Um}m∈N ⊂ W 1,2(X; ρ1−2γ ) of solutions
to (2.4) which blows up at a point y0 ∈ M . By applying Theorem 1.3, we conclude that
π(y0) = 0. However, this contradicts the assumption that π never vanishes on M .

A combination of (1.4), Lemma A.2 and Proposition A.8 now yields the other esti-
mates in (1.6), that is, the lower and C2+β -estimates of u on M . ut

At this stage, only Theorem 1.4 remains to be verified. To define the Leray–Schauder
degree deg(Fp,D3, 0) for all 1 ≤ p ≤ 2∗n,γ − 1 and apply its homotopy invariance, we
need the following result.
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Lemma 6.6. Assume the hypotheses of Theorem 1.1. Then one can choose a constant
C = C(Xn+1, g+, h̄, γ ) > 1 such that

C−1
≤ u ≤ C on M

for all 1 ≤ p ≤ 2∗n,γ − 1 and u > 0 satisfying (1.7).

Proof. We consider the extension problem (2.4) where the fourth line is replaced by
∂
γ
ν U = E(u)up on M . By adapting the proofs of [28, Lemmas 4.1 and 6.5] and ap-

plying Theorem 1.1, we get the result. ut

Proof of Theorem 1.4. From the previous lemma, we find that 0 /∈ Fp(∂D3) for all
1 ≤ p ≤ 2∗n,γ − 1 provided 3 > 0 large enough. Therefore

deg(Fp,D3, 0) = deg(F1,D3, 0) for all 1 ≤ p ≤ 2∗n,γ − 1.

Since 3γ (M, [h̄]) > 0, the first L2(M)-eigenvalue of P γ
h̄

must be positive, for∫
M

uP
γ

h̄
u dvh̄ ≥ 3

γ (M, [h̄])‖u‖2

L
2n

n−2γ (M)

≥ 3γ (M, [h̄])|M|−2γ /n
‖u‖2

L2(M)
, u ∈ H γ (M).

Also, in [30, Theorem 4.2], it was proved that the first eigenspace of P γ
h̄

is one-dimen-
sional and spanned by a positive function onM . ByL2(M)-orthogonality, the other eigen-
functions must change their signs. Using these characterizations, one can follow the ar-
gument in [69], up to minor modifications, to derive deg(F1,D3, 0) = −1. The proof of
Theorem 1.4 is complete. ut

Appendix A. Elliptic regularity

For a fixed point x0 ∈ Rn ' ∂RN+ and R > 0, let

BR = B
N
+ ((x0, 0), R) ⊂ RN+ , ∂B ′R = B

n(x0, R) ⊂ Rn, ∂B ′′R = ∂IB
N
+ ((x0, 0), R),

(A.1)
so that ∂BR = ∂B ′R ∪ ∂B

′′

R . Suppose also that γ ∈ (0, 1) and

(g1) ḡ is a smooth metric on BR such that ḡiN = 0, ḡNN = 1 and λḡ|ξ |2 ≤ ḡij (x)ξiξj ≤
3ḡ|ξ |

2 on BR for some positive numbers λḡ ≤ 3ḡ and all vectors ξ ∈ Rn;
(A1) A ∈ L2(n−2γ+2)/(n−2γ+4)(BR; x

1−2γ
N ), Q ∈ L1(BR; x

1−2γ
N ),

F = (F1, . . . , Fn, FN ) ∈ L
1(BR; x

1−2γ
N );

(a1) a ∈ L2n/(n+2γ )(∂B ′R) and q ∈ L1(∂B ′R).

In this section, we will examine regularity of a weak solution U ∈ W 1,2(BR; x
1−2γ
N ) to a

degenerate elliptic equation
−divḡ(x

1−2γ
N ∇U)+ x

1−2γ
N AU = x

1−2γ
N Q+ div(x1−2γ

N F) in BR,
U = u on ∂B ′R,
∂
γ

ν,FU = au+ q on ∂B ′R,
(A.2)
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where

∂
γ

ν,FU = κγ lim
xN→0+

x
1−2γ
N

(
FN −

∂U

∂xN

)
= ∂γν U + κγ lim

xN→0+
x

1−2γ
N FN .

Notice that ∂γν = ∂
γ

ν,0. We first recall the precise meaning of a weak solution to (A.2).

Definition A.1. Assume (g1), (A1) and (a1) are valid. A function U ∈ W 1,2(BR; x
1−2γ
N )

is called a weak solution to (A.2) if

κγ

∫
BR

x
1−2γ
N (〈∇U,∇8〉ḡ + AU8)dvḡ

= κγ

∫
BR

x
1−2γ
N (Q8− Fi∂i8− FN∂N8)dvḡ +

∫
∂B ′R

(au+ q)φ dvh̄

for every 8 ∈ C1(BR) such that 8 = φ on ∂B ′R and 8 = 0 on ∂B ′′R . Here u is the trace
of U on ∂B ′R and h̄ = ḡ|∂B ′R .

A.1. Hölder estimates

By applying the Moser iteration technique, we can deduce Hölder estimates for weak
solutions to (A.2).

Lemma A.2. Assume that the metric ḡ satisfies (g1) and U ∈ W 1,2(BR; x
1−2γ
N ) is a

weak solution to (A.2). Suppose also that

(A2) A,Q ∈ Lq1(BR; x
1−2γ
N ) and F ∈ Lq2(BR; x

1−2γ
N ) for q1 > (n − 2γ + 2)/2 and

q2 > n− 2γ + 2;
(a2) a, q ∈ Lq3(∂B ′R) for q3 > n/(2γ ).

Then U ∈ Cβ(BR/2) and

‖U‖Cβ (BR/2) ≤ C(‖U‖L2(BR;x
1−2γ
N )
+ ‖Q‖

Lq1 (BR;x
1−2γ
N )

+ ‖F‖
Lq2 (BR;x

1−2γ
N )
+ ‖q‖Lq3 (∂B ′R)

) (A.3)

where C > 0 and β ∈ (0, 1) depend only on n, γ , R, λḡ , 3ḡ , ‖A‖
Lq1 (BR;x

1−2γ
N )

and

‖a‖Lq3 (∂B ′R)
. Moreover, if U is nonnegative on BR , then also

sup
BR/2

U ≤ C
(

inf
BR/2

U + ‖Q‖
Lq1 (BR;x

1−2γ
N )
+ ‖F‖

Lq2 (BR;x
1−2γ
N )
+ ‖q‖Lq3 (∂B ′R)

)
(A.4)

for some C > 0 depending only on n, γ , R, λḡ , 3ḡ , ‖A‖
Lq1 (BR;x

1−2γ
N )

and ‖a‖Lq3 (∂B ′R)
.

Proof. Derivation of (A.3) and (A.4) can be found in [44, Lemma 5.1 and Remark 5.2].
ut
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A.2. Derivative estimates

If the functions A,Q, a and q have classical derivatives in the tangential direction, weak
solutions to (A.2) have higher differentiability in the same direction. The following result
is a huge improvement of [44, Lemma 5.3] in that a much milder condition on ḡ is im-
posed. The reader is advised to see carefully why handling (A.2) becomes more difficult
if ḡ is non-Euclidean and how it is resolved in the proof.

Lemma A.3. Assume that the metric ḡ satisfies (g1) and U ∈ W 1,2(BR; x
1−2γ
N ) is a

weak solution to (A.2). Suppose also that `0 is 1, 2 or 3, and

(g2) we have
|∇
`
x̄∂N

√
|ḡ|(x)| ≤ CxN on BR (A.5)

for any ` = 0, . . . , `0;
(A3a) A, . . . ,∇`0−1

x̄ A,Q, . . . ,∇
`0−1
x̄ Q ∈ L∞(BR) and F, . . . ,∇`0−1

x̄ F ∈ Cβ
′

(BR) for
β ′ ∈ (0, 1);

(A3b) ∇`0
x̄ A,∇

`0
x̄ Q ∈ Lq1(BR; x

1−2γ
N ) and ∇`0

x̄ F ∈ Lq2(BR; x
1−2γ
N ) for q1 >

(n− 2γ + 2)/2 and q2 > n− 2γ + 2;
(a3) a, . . . ,∇`0

x̄ a, q, . . . ,∇
`0
x̄ q ∈ L

q3(∂B ′R) for q3 > n/(2γ ).

Then ∇`0
x̄ U ∈ C

β(BR/2) and

‖∇
`0
x̄ U‖Cβ (BR/2) ≤ C

(
‖U‖

L2(BR;x
1−2γ
N )
+

`0−1∑
`=1

‖∇
`
x̄A‖L∞(BR) + ‖∇

`0
x̄ A‖Lq1 (BR;x

1−2γ
N )

+

`0−1∑
`=0

‖∇
`
x̄Q‖L∞(BR) + ‖∇

`0
x̄ Q‖Lq1 (BR;x

1−2γ
N )
+

`0−1∑
`=0

‖∇
`
x̄F‖Cβ′ (BR)

+ ‖∇
`0
x̄ F‖Lq2 (BR) +

`0∑
`=1

‖∇
`
x̄a‖Lq3 (∂B ′R)

+

`0∑
`=0

‖∇
`
x̄q‖Lq3 (∂B ′R)

)
(A.6)

for C > 0 and β ∈ (0, 1) depending only on n, γ , R, ḡ, A, ‖a‖Lq3 (∂B ′R)
and∑`0−1

`=0 ‖∇
`
x̄U‖L∞(BR).

Proof. Assuming that `0 = 1, we shall derive (A.6). Given any vector h ∈ Rn with |h|
small, we define the difference quotient DhU by

DhU(x̄, xN ) =
U(x̄ + h, xN )− U(x̄, xN )

|h|
for (x̄, xN ) ∈ B3R/4.

Then it weakly solves{
−divḡ(x

1−2γ
N ∇(DhU))+ x

1−2γ
N A(DhU) = x

1−2γ
N Q∗ + div(x1−2γ

N F ∗) in B3R/4,

∂
γ

ν,F ∗(D
hU) = a(DhU)+ q∗ on ∂B ′3R/4,

(A.7)
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where Uh(x̄, xN ) = U(x̄ + h, xN ),

F ∗ =
(
DhFi +D

h(
√
|ḡ| ḡij ) · ∂jU

h,DhFN +D
h
√
|ḡ| · ∂NU

h
)
,

Q∗ = DhQ−DhB · Uh and q∗ = Dha · Uh +Dhq.

The most problematic term in analyzing (A.7) turns out to be div(x1−2γ
N F ∗), espe-

cially its subterm ∂N (x
1−2γ
N Dh

√
|ḡ| · ∂NU

h). Let us consider it in depth. If we fix a small
number ε > 0 and write

B3R/4,ε = B3R/4 ∩ {xN > ε} and ∂B ′3R/4,ε = B3R/4 ∩ {xN = ε},

then an integration by parts shows

∫
B3R/4,ε

x
1−2γ
N (Dh

√
|ḡ| · ∂NU

h)∂N8dx = −

∫
B3R/4,ε

(Dh
√
|ḡ|)∂N (x

1−2γ
N ∂NU

h)8 dx

−

∫
B3R/4,ε

x
1−2γ
N (∂ND

h
√
|ḡ|)∂NU

h8dx −

∫
∂B ′3R/4,ε

x
1−2γ
N (Dh

√
|ḡ|)∂NU

hφ dx̄

(A.8)

for any 8 ∈ C1(B3R/4) such that 8 = φ on ∂B ′3R/4 and 8 = 0 on ∂B ′′3R/4. On the other
hand, we deduce from (A.2) that∫
B3R/4,ε

√
|ḡ|

h
∂N (x

1−2γ
N ∂NU

h)8 dx

= −

∫
B3R/4,ε

x
1−2γ
N (

√
|ḡ| ḡij )h∂iU

h∂j8dx −

∫
B3R/4,ε

x
1−2γ
N AhUh8dx

+

∫
B3R/4,ε

x
1−2γ
N Qh8dx −

∫
B3R/4,ε

x
1−2γ
N (Fi)

h∂i8dx

−

∫
B3R/4,ε

x
1−2γ
N (FN )

h∂N8dx +

∫
∂B ′3R/4,ε

x
1−2γ
N

√
|ḡ|

h
∂NU

hφ dx̄

+

∫
B3R/4,ε

x
1−2γ
N

(
∂N
√
|ḡ|

h)
∂NU

h8dx +

∫
∂B ′3R/4,ε

x
1−2γ
N ((FN )

h
− ∂NU

h)φ dx̄

where
√
|ḡ|

h
(x̄, xN ) =

√
|ḡ|(x̄ + h, xN ) and so on. Consequently, after substituting

4 =
(√
|ḡ|

h)−1
(Dh

√
|ḡ|)8

for 8 in the above identity, combining the result with (A.8) and then taking ε → 0, we
get
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B3R/4

x
1−2γ
N (Dh

√
|ḡ| · ∂NU

h)∂N8dx

= −

∫
B3R/4

x
1−2γ
N (

√
|ḡ|ḡij )h∂iU

h∂j4dx −

∫
B3R/4

x
1−2γ
N AhUh4dx

+

∫
B3R/4

x
1−2γ
N Qh4dx −

∫
B3R/4

x
1−2γ
N (Fi)

h∂i4dx

−

∫
B3R/4

x
1−2γ
N (FN )

h∂N4dx +

∫
B3R/4

x
1−2γ
N (∂N

√
|ḡ|)h∂NU

h4dx

−

∫
B3R/4

x
1−2γ
N (∂ND

h
√
|ḡ|)∂NU

h8dx + κ−1
γ

∫
∂B ′3R/4

(au+ q)φ dx̄. (A.9)

We have two remarks on (A.9): First, 4 has the same regularity as 8 and vanishes on
∂B ′′3R/4. Second, by virtue of (g2), there exists a constant C > 0 such that

∣∣(∂N√|ḡ|h)∂NUh∣∣+ |(∂NDh√|ḡ|)∂NUh| ≤ C(xN∂NU)h in B3R/4.

Furthermore, as pointed out in [44, proof of Lemma 5.3], a rescaling argument gives

‖xN∂NU‖L∞(B2R/3) ≤ C(‖U‖L∞(B3R/4) + ‖F‖Cβ′ (BR)
+ ‖Q‖L∞(BR))

where C > 0 depends only n, R, ḡ and ‖A‖L∞(BR). Therefore no terms on the right-hand
side of (A.9) are harmful.

Now, we introduce a number

k =


‖∇x̄A‖Lq1 (BR;x

1−2γ
N )
+‖∇x̄Q‖Lq1 (BR;x

1−2γ
N )
+‖∇x̄F‖Lq2 (BR;x

1−2γ
N )

+‖xN∂NU‖L∞(B2R/3)+‖∇x̄a‖Lq3 (∂B ′R)
+‖∇x̄q‖Lq3 (∂B ′R)

if it is nonzero,
any positive number otherwise.

In the latter case, we will let k → 0 at the last stage. For a fixed K > 0 and m ≥ 0, we
define

Vh = (D
hU)+ + k, Vh,K = min {Vh,K} and Zh,m = V

(m+2)/2
h .

We test (A.7) with 8 = χ̃(V mh,KVh − k
m+1) where χ̃ ∈ C∞(BR) denotes a suitable

cut-off function. Employing (A.9), Hölder’s inequality, Young’s inequality, the weighted
Sobolev inequality and the weighted Sobolev trace inequality (see (1.8)) and then letting
K →∞, we derive

‖∇(χ̃Zh,m)‖
2
L2(BR;x

1−2γ
N )
≤ Cmη

[∫
BR

x
1−2γ
N (χ̃2

+ |∇χ̃ |2)Z2
h,m dx

+

∫
BR

x
1−2γ
N χ̃2V mh (|∇x̄Uh|

2
+ ‖xN∂NU‖

2
L∞(B2R/3)

) dx

]
(A.10)
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for some C > 0 depending only on n, γ , R, ḡ,A, ‖a‖Lq3 (∂B ′R)
and ‖U‖L∞(BR), and η > 1

depending only on n and γ ; refer to the proofs of [26, Proposition 1] and [44, Lemma
5.3] which provide more detailed descriptions. Combining (A.10) with the corresponding
inequality for (DhU)− + k and letting h→ 0, we see

∥∥|∇x̄U |+k∥∥m+2

L
(m+2) n−2γ+2

n−2γ (BR∩{χ̃=1};x1−2γ
N )

≤Cmη‖∇χ̃‖2L∞(BR)
∥∥|∇x̄U |+k∥∥m+2

L(m+2)(BR;x
1−2γ
N )

.

Hence the Moser iteration argument implies that

‖∇x̄U‖L∞(BR/2) ≤ (the right-hand side of (A.6) with `0 = 1).

Similarly, one can obtain the weak Harnack inequality as well as the Hölder estimate
for ∇x̄U . The cases `0 = 2 or 3 can also be treated. We omit the details. ut

In the following lemma, we take into account Hölder regularity of the weighted derivative
x

1−2γ
N ∂NU of a weak solution U to (A.2).

Lemma A.4. Suppose that the metric ḡ satisfies (g1) and U ∈ W 1,2(BR; x
1−2γ
N ) is a

weak solution to (A.2) such that U,∇x̄U,∇2
x̄U ∈ C

β(BR) for some β ∈ (0, 1). Further-
more, assume that the following conditions hold:

(A4) A ∈ Cβ(BR), supxN∈(0,R)(‖Q(·, xN )‖Cβ (∂B ′R)
+ ‖∂iFi(·, xN )‖Cβ (∂B ′R)

) < ∞ and
FN = 0;

(a4) a, q ∈ Cβ(∂B ′R).

Then x1−2γ
N ∂NU ∈ C

min {β,2−2γ }(BR/2) and

‖x
1−2γ
N ∂NU‖Cmin {β,2−2γ }(BR/2)

≤ C
( 2∑
`=0

‖∇
`
x̄U‖Cβ (BR)

+ sup
xN∈(0,R)

(‖Q(·, xN )‖Cβ (∂B ′R)
+ ‖∂iFi(·, xN )‖Cβ (∂B ′R)

)+ ‖q‖
Cβ (∂B ′R)

)
(A.11)

for C > 0 depending only on n, γ , R, ḡ, ‖A‖Cβ (BR) and ‖a‖
Cβ (∂B ′R)

.

Proof. Refer to [44, Lemma 5.5]. ut

A.3. Two maximum principles

In this part, we list two maximum principles which are used throughout the paper.
The following lemma describes the generalized maximum principle for degenerate

elliptic equations.



A compactness theorem for the fractional Yamabe problem 3059

Lemma A.5. Suppose that A ∈ L∞(BR), a ∈ L∞(∂B ′′R) and there exists a function
V ∈ C0(BR) ∪ C

2(BR) such that ∇x̄V, x
1−2γ
N ∂NV ∈ C

0(BR) and
−div(x1−2γ

N ∇V )+ x
1−2γ
N AV ≥ 0 in BR,

V > 0 on BR,
∂
γ
ν V + aV ≥ 0 on ∂B ′R.

If U ∈ C0(BR) ∪ C
2(BR) satisfies ∇x̄U, x

1−2γ
N ∂NU ∈ C

0(BR) and solves
−div(x1−2γ

N ∇U)+ x
1−2γ
N AU ≥ 0 in BR,

∂
γ
ν U + aU ≥ 0 on ∂B ′R,
U ≥ 0 on ∂B ′′R,

(A.12)

then U ≥ 0 on BR . Furthermore, the same conclusion holds if BR and ∂B ′R are replaced
by RN+ and Rn, respectively, and the third inequality in (A.12) is replaced with the condi-
tion that |U(x)|/V (x)→ 0 uniformly as |x| → ∞.

Proof. Modify suitably the proofs of [40, Lemma A.3] and [45, Lemma 3.7]. ut

The next remark concerns the weak maximum principle when the size of the domain is
sufficiently small.

Remark A.6. For any fixed R > 0, we introduce the space

W1,2
0 (BR; x

1−2γ
N ) = {U ∈ W 1,2(BR; x

1−2γ
N ) : U = 0 on ∂B ′′R}, (A.13)

endowed with the standard W 1,2(BR; x
1−2γ
N )-norm. As shown in [20, Lemma 2.1.2],

the map D1,2(RN+; x
1−2γ
N ) ↪→ L2(BR; x

1−2γ
N ) is compact. Therefore a minimizer of the

Rayleigh quotient

λ1(R) = inf
U∈W1,2

0 (BR;x
1−2γ
N )\{0}

∫
BR
x

1−2γ
N |∇U |2 dx∫

BR
x

1−2γ
N U2 dx

always exists, and so λ1(R) > 0. Moreover, we see from dilation symmetry that

λ1(R) = (R
′/R)2λ1(R

′) for any 0 < R < R′.

Thus, if |A| ≤M for some constant M > 0, there exists R′0 = R
′

0(M, ḡ) > 0 such that

‖U‖∗ =

(∫
BR

x
1−2γ
N (|∇U |2ḡ + AU

2) dvḡ

)1/2

for U ∈W1,2
0 (BR; x

1−2γ
N ) (A.14)

is a norm equivalent to the W1,2
0 (BR; x

1−2γ
N )-norm for R ∈ (0, R′0).
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In particular, we have a weak maximum principle: Given any R ∈ (0, R′0), suppose
that U ∈ W 1,2(BR; x

1−2γ
N ) satisfies
−divḡ(x

1−2γ
N ∇U)+ x

1−2γ
N AU ≥ 0 in BR,

∂
γ
ν U ≥ 0 on ∂B ′R,
U ≥ 0 on ∂B ′′R.

(A.15)

Then U ≥ 0 in BR . To check it, we just put a test function U− ∈ W 1,2(BR; x
1−2γ
N ) into

(A.15) and use the equivalence between the ∗-norm and the W1,2
0 (BR; x

1−2γ
N )-norm.

A.4. Schauder estimates

In this subsection, we prove the Schauder estimate for solutions to
−divḡ(x

1−2γ
N ∇U)+ x

1−2γ
N AU = 0 in BR,

U = u > 0 on ∂B ′R,
∂
γ
ν U = q on ∂B ′R,

(A.16)

which is a special case of (A.2).

Lemma A.7. Assume that the metric ḡ satisfies (g1) and (g2), and q ∈ Cβ(BR) for some
0 < β /∈ N. Suppose also that

(g3) ḡij (0) = δij where δij is the Kronecker delta;
(A3c) A, . . . ,∇dβex̄ A ∈ L∞(BR) and β ′ ∈ (0, β + 2γ ] ∩ (0, dβe).

If U ∈ W 1,2(BR; x
1−2γ
N ) is a weak solution to (A.16), then u ∈ Cβ

′

(∂B ′R/2) and

‖u‖
Cβ
′
(∂B ′

R/2)
≤ C

(
‖U‖

L2(BR;x
1−2γ
N )
+ ‖q‖

Cβ (∂B ′R)
+

dβe∑
`=0

‖∇
`
x̄A‖L∞(BR)

)
. (A.17)

Here dβe is the smallest integer exceeding β and C > 0 depends only on n, γ , β, R, ḡ
and A.

Proof. We shall closely follow the argument in [40, proof of Theorem 2.14].
Considering a finite open cover ofBR which consists of balls and half-balls with small

diameters, we may assume that R > 0 is so small that the ∗-norm in (A.14) is equivalent
to the standard W 1,2(BR; x

1−2γ
N )-norm. For simplicity, we set

M = ‖q‖
Cβ (∂B ′R)

+

dβe∑
`=0

‖∇
`
x̄A‖L∞(BR).

Assume that β ∈ (0, 1). Form ∈ N, letWm be the unique solution inW 1,2(BR/2m; x
1−2γ
N )

to 
−divḡ(x

1−2γ
N ∇Wm)+ x

1−2γ
N AWm = 0 in BR/2m ,

∂
γ
ν Wm = q(0)− q(x̄) on ∂B ′R/2m ,
Wm = 0 on ∂B ′′R/2m .

(A.18)



A compactness theorem for the fractional Yamabe problem 3061

Then an application of the weak maximum principle (Remark A.6) to the equation of the
function

22γmWm

(
x

2m

)
±
MRβ

2βm

[
2R2
− |x|2

n+ 2− 2γ
+

2R2γ
− x

2γ
N

2γ κγ

]
shows

‖Wm‖L∞(BR/2m ) ≤
CM

2(β+2γ )m (A.19)

for every m ∈ N. Define hm = Wm+1 −Wm. Thanks to Lemmas A.2 and A.3, we have

‖∇
`
x̄(U +W0)‖L∞(BR/2) ≤ C(‖U‖L2(BR;x

1−2γ
N )
+M), (A.20)

‖∇
`
x̄hm‖L∞(BR/2m+2 ) ≤

CM

2(β+2γ−`)m , (A.21)

for ` = 0, 1 and all m ∈ N. By (A.19)–(A.21) and the mean value theorem,

|u(x̄)− u(0)| ≤ |Wm(0, 0)| + |Wm(x̄, 0)| + |(U +W0)(x̄, 0)− (U +W0)(0, 0)|

+

m−1∑
j=0

|hj (x̄, 0)− hj (0, 0)|

≤ C(‖U‖
L2(BR;x

1−2γ
N )
+M)|x̄|min {β+2γ,1} for all x̄ ∈ ∂B ′R/2,

so that u ∈ Cβ
′

(∂B ′R/2) and (A.17) holds.
Suppose β ∈ (1, 2). In this case, we modify Wm by replacing the second equation of

(A.18) with
∂γν Wm = q(0)+∇x̄q(0) · x̄ − q(x̄) on ∂B ′R/2m .

Then we use the above argument to conclude that u ∈ Cβ
′

(∂B ′R/2) and (A.17) holds.
The case β > 2 can be treated similarly. This finishes the proof. ut

A.5. Conclusion

From the results obtained in the previous subsections, one gets the following regularity
property of solutions to (1.1) and its extension problem (2.4).

Proposition A.8. Suppose that U ∈ W 1,2(X; ρ1−2γ ) is a weak solution of (2.4) with a
fixed p ∈ (1, 2∗n,γ − 1] and condition (1.5) holds. Then the functions U , ∇x̄U , ∇2

x̄U and

x
1−2γ
N ∂NU are Hölder continuous on X. In particular, the trace u ∈ C2(M) of U on M

satisfies (1.1) in the classical sense.

Proof. The above regularity properties are local. Therefore Lemmas A.2, A.3, A.4 and
A.7 can be used. ut

Appendix B. Green’s function and Bôcher’s theorem

In this section, we keep the notations of (A.1).
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B.1. Green’s function

Given a small number R > 0, we shall examine the existence and the growth rate of the
Green’s function G in BR , a solution of

−divḡ(x
1−2γ
N ∇G)+ Eḡ(xN )G = 0 in BR,

∂
γ
ν G = δ0 on ∂B ′R,
G = 0 on ∂B ′′R,

(B.1)

where ḡ is the metric satisfying (g1) and δ0 is the Dirac measure centered at 0 ∈ RN . Our
argument is based on elliptic regularity theory and does not rely on parametrices.

We start by deriving an auxiliary lemma.

Lemma B.1. Given a small R > 0, suppose that a = q = 0 on ∂B ′R , A ∈ L∞(BR) and
Q ∈ Lq1(BR; x

1−2γ
N ) for

q1 ∈

[
2(n− 2γ + 2)
n− 2γ + 4

,
n− 2γ + 2

2

)
. (B.2)

Assume also that U ∈ W1,2
0 (BR; x

1−2γ
N ) is a weak solution to (A.2) and the ∗-norm is

equivalent to the W1,2
0 (BR; x

1−2γ
N )-norm; see (A.13) and (A.14). Then

‖U‖
Lq4 (BR;x

1−2γ
N )
≤ C‖Q‖

Lq1 (BR;x
1−2γ
N )

for any pair (q1, q4) satisfying 1/q1 = 1/q4 + 2/(n− 2γ + 2) and some constant C > 0
depending only on n, γ , R, λḡ , 3ḡ , q1 and q4.

Proof. One can follow the lines of [15, proof of Lemma 3.3]. The main difference is that
we need to apply the Sobolev inequality instead of the Sobolev traced inequality as used
in that reference; see (1.8). ut

Appealing to the previous lemma, we prove the main result in this subsection.

Proposition B.2. Assume that n ≥ 2+2γ . Then there exists 0 < R0 ≤ min {R′0, r1} small
(refer to Remark A.6 and Subsection 2.4) such that (B.1) possesses a unique solution
G ∈ W

1,2
loc (BR \ {0}; x

1−2γ
N ) satisfying

|x|n−2γG(x)→ gn,γ uniformly as |x| → 0 where gn,γ =
0
(n−2γ

2

)
πn/222γ0(γ )

> 0

(B.3)
for any fixed R ∈ (0, R0).

Proof. The proof is divided into four steps.

Step 1 (Existence). By using (1.5) and (2.1), we rewrite the first equation of (B.1) as

−divḡ(x
1−2γ
N ∇G)+ x

1−2γ
N AG = 0 in BR



A compactness theorem for the fractional Yamabe problem 3063

where A ∈ C2(BR). In view of Remark A.6, there exists R0 > 0 such that ‖ · ‖∗ in (A.14)
serves as a norm equivalent to the standard W1,2(BR; x

1−2γ
N )-norm for all R ∈ (0, R0).

Then a duality argument in [46, proof of Lemma 4.2] shows that the desired function G
exists and is contained in W 1,2

loc (BR \ {0}; x
1−2γ
N ) ∩ W 1,q(BR; x

1−2γ
N ) for any 1 < q <

(n− 2γ + 2)/(n− 2γ + 1).

Step 2 (Regularity). Recall that

GRN+
(x) =

gn,γ

|x|n−2γ in RN+ (B.4)

solves {
−div(x1−2γ

N ∇GRN+
) = 0 in RN+ ,

∂
γ
ν GRN+

= δ0 on Rn.

Hence G satisfies (B.1) if and only if H = GRN+
−G− gn,γR

−(n−2γ ) is a solution of
−div(x1−2γ

N ∇H)+ x1−2γ
N AH = x1−2γ

N (Q(GRN+
)− Agn,γR

−(n−2γ )) in BR,

∂
γ
ν H = 0 on ∂B ′R,
H = 0 on ∂B ′′R,

(B.5)
where

Q(U) = −(ḡij − δij )∂ijU −
∂i
√
|ḡ|

√
|ḡ|

ḡij∂jU −
∂N
√
|ḡ|

√
|ḡ|

∂NU

− ∂i ḡ
ij∂jU +

n− 2γ
4n

(R[ḡ] + o(1))U.

By a direct calculation, we see that

H ∈ W 1,2
loc (BR \ {0}; x

1−2γ
N ) ∩W 1,q(BR; x

1−2γ
N ) (B.6)

and

|Q(GRN+
)| ≤

C

|x|n−2γ+1 ∈ L
q(BR; x

1−2γ
N ) (B.7)

for all 1 < q < (n− 2γ + 2)/(n− 2γ + 1). We claim that

‖H‖
Lq
′
(BR;x

1−2γ
N )

<∞ whenever n ≥ 2+ 2γ and 1 < q ′ <
n− 2γ + 2
n− 2γ − 1

. (B.8)

To justify it, we consider the formal adjoint of (B.5),
−div(x1−2γ

N ∇U)+ x
1−2γ
N AU = x

1−2γ
N Q in BR,

∂
γ
ν U = 0 on ∂B ′R,
U = 0 on ∂B ′′R,

(B.9)
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where Q is an arbitrary function of class C1(BR). Then

(x
1−2γ
N ∂NU)(x̄, xN )− (x

1−2γ
N ∂NU)(x̄, ε) =

∫ xN

ε

∂N (x
1−2γ
N ∂NU) dxN

= −

∫ xN

ε

x
1−2γ
N (1x̄U − AU +Q) dxN

for any small ε > 0. Since (x1−2γ
N ∂NU)(x̄, ε) → 0 as ε → 0 thanks to the boundary

condition and 1x̄U ∈ C0(BR) in light of Lemma A.3, we observe

|∂NU(x̄, xN )| ≤ CxN in BR

and in particular U ∈ C1(BR). Thus one may use H and U as test functions for (B.9) and
(B.5), respectively. As a consequence,∫
BR

x
1−2γ
N HQdx =

∫
BR

x
1−2γ
N (∇H · ∇U + AHU) dx

=

∫
BR

x
1−2γ
N

(
Q(GRN+

)− Agn,γ r
−(n−2γ ))U dx

≤ ‖Q(GRN+
)− Agn,γ r

−(n−2γ )
‖
L
n−2γ+2
n−2γ+1−η(BR;x

1−2γ
N )

‖U‖
Ln−2γ+2+η′ (BR;x

1−2γ
N )

≤ C‖Q‖
L
n−2γ+2

3 +η′′
(BR;x

1−2γ
N )

for any Q ∈ C1(BR) and small η > 0. Here η′ and η′′ are small positive numbers
depending only on η. Also, the last inequality is due to (B.7) and Lemma B.1, and the
assumption n ≥ 2 + 2γ is required to ensure that q1 = (n − 2γ + 2)/3 + η′′ satisfies
condition (B.2). By duality, the assertion (B.8) follows.

Step 3 (Blow-up rate). We use the rescaling argument of [54, proof of Proposition B.1].
For 0 < R′ < R/3, we define

H̃(x) = (R′)n−2γH(R′x) in B3 \ B1/3.

It clearly solves{
−div(x1−2γ

N ∇H̃)+ x1−2γ
N (R′)2A(R′x)H̃ = x1−2γ

N O(R′) in B3 \ B1/3,

∂
γ
ν H̃ = 0 on ∂B ′3 \ ∂B

′

1/3,

where O(R′) ≤ CR′. The local integrability condition (B.6), Lemma B.1 and estimate
(B.8) show that

‖H̃‖L∞(B2\B1/2) ≤ C
(
‖H̃‖

L
n−2γ+2+η
n−2γ (B3\B1/3;x

1−2γ
N )

+O(R′)
)

= C
(
(R′)η

′

‖H‖
L
n−2γ+2+η
n−2γ (BR;x

1−2γ
N )

+O(R′)
)
≤ C(R′)η

′
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for a small η > 0 and η′ = (n− 2γ )η/(n− 2γ + 2+ η). Therefore

|H(x)| ≤ C|x|−(n−2γ )+η′ in B2R/3. (B.10)

On the other hand, by virtue of (B.6) and (B.7), we can apply Lemma B.1 to (B.5), getting

|H(x)| ≤ C in BR \ B2R/3. (B.11)

Putting (B.4), (B.10) and (B.11) together gives the blow-up rate (B.3) of G.

Step 4 (Uniqueness). The uniqueness of G follows from Bôcher’s theorem stated in
Proposition B.4. ut

Corollary B.3. Assume that n ≥ 2 + 2γ . The regular part H of the Green’s function G
defined in the proof of the previous proposition satisfies

|∇x̄H(x)| ≤ C
|x|η

′

|x|n−2γ+1 and |x
1−2γ
N ∂NH(x)| ≤ C

|x|η
′

|x|n

for any fixed R ∈ (0, R0) and small η′ > 0.

Proof. The result follows immediately from (B.10) and the rescaling argument. ut

B.2. The proof of Bôcher’s theorem

We present the following version of a fractional Bôcher’s theorem, which is needed in the
proof of Proposition 3.7. The Euclidean case was considered in [40, Lemma 4.10] and
[62, Proposition 3.4].

Proposition B.4. Fix any R ∈ (0, R0). Suppose that the metric ḡ satisfies (g1) and (g2),
‖A‖L∞(BR0 )

≤M, and ∇x̄A ∈ Lq1(BR0; x
1−2γ
N ) for q1 > (n− 2γ + 2)/2. If a function

U is nonnegative in BR \ {0}, belongs to W 1,2(BR \ B
′
ϑ ; x

1−2γ
N ) and weakly solves{

−divḡ(x
1−2γ
N ∇U)+ x

1−2γ
N AU = 0 in BR \ B ′ϑ ,

∂
γ
ν U = 0 on ∂B ′R \ ∂B

′
ϑ ,

for all ϑ ∈ (0, R), then for any R′ ∈ (0, R),

U = c1G+ E in BR′ \ {0}.

Here c1 is a nonnegative constant,G is the Green’s function that satisfies (B.1) (where R
is replaced with R′) and E ∈ W 1,2(BR; x

1−2γ
N ) solves{

−divḡ(x
1−2γ
N ∇E)+ x

1−2γ
N AE = 0 in BR′ ,

∂
γ
ν E = 0 on ∂B ′

R′
.

The numbers R0 and M were chosen in Proposition B.2 and Remark A.6. To prove
the proposition, we will use the strategy from [55, Section 9] and [62, Section 3]. As a
preliminary step, we derive two results.
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Lemma B.5. Assume that U satisfies all the conditions in Proposition B.4. If U(x) =
o(|x|−(n−2γ )) as |x| → 0, then 0 is a removable singularity of U and there exists β in
(0, 1) such that U ∈ W 1,2(BR′; x

1−2γ
N ) ∩ Cβ(BR′) for any R′ ∈ (0, R).

Proof. We argue as in [62, Lemma 3.6] with minor modifications. The maximum prin-
ciple of Remark A.6 combined with the asymptotic behavior (B.3) of G near the origin
shows that U is bounded in BR′ . Owing to the regularity hypotheses on ḡ and A, we can
apply the scaling method with Lemmas A.3 and A.4, deducing U ∈ Cβ(BR′) for some
β ∈ (0, 1) and

|x| |∇x̄U(x)| + |x|
2γ
|x

1−2γ
N ∂NU(x)| ≤ C in BR′ .

This in turn implies that U ∈ W 1,2(BR′; x
1−2γ
N ). ut

Lemma B.6. Assume that U satisfies all the conditions in Proposition B.4. Then

lim sup
r→0+

max
|x|=r
|x|n−2γU(x) <∞.

Proof. This can be checked as in [55, Lemma 9.3] or [62, Lemma 3.7]. ut

Proof of Proposition B.4. One can carry out the proof by adapting the ideas of [55,
Proposition 9.1] or [62, Proposition 3.4]. Lemmas B.5 and B.6 are required. ut

Appendix C. Computation of the integrals involving the standard bubble

We obtain the values of several integrals involving the standard bubbleW1,0 and its deriva-
tives, which are needed in the proof of the vanishing theorem in Section 5.

Proposition C.1. Suppose γ ∈ (0, 1) and n > 2 + 2γ . Then there exists a constant
C0 > 0 depending only on n and γ such that∫

RN+
x

3−2γ
N 1x̄W1,0Z

0
1,0 dx = C0,∫

RN+
x

2−2γ
N ∂NW1,0Z

0
1,0 dx =

3
2(1+ γ )

C0,∫
RN+
x

1−2γ
N W1,0Z

0
1,0 dx = −

3
2(1− γ 2)

C0.

(C.1)

Here W1,0 and Z0
1,0 are the functions given in (2.6) and (2.9).

Its proof is based on the Fourier transform technique which was introduced by González
and Qing [30] and soon improved by González and Wang [31] and Kim et al. [45, 46],
where the authors studied the existence and C2(M)-noncompactness of the solution set
of (1.1). We first need to recall a lemma obtained in [30, Section 7] and [45, Subsec-
tion 4.3].
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Lemma C.2. (1) Assume that n ≥ 3 and γ ∈ (0, 1). Let Ŵ1,0(ξ, xN ) be the Fourier
transform of W1,0(x̄, xN ) in x̄ ∈ Rn for each fixed xN > 0 and Kγ the modi-
fied Bessel function of the second kind of order γ . Also choose appropriate numbers
d1, d2 > 0 depending only on n and γ so that the functions ϕ(t) = d1t

γKγ (t) and
ŵ1,0(t) = d2t

−γKγ (t) solve

φ′′(t)+
1− 2γ
t

φ′(t)− φ(t) = 0, φ(0) = 1 and φ(∞) = 0

and

φ′′(t)+
1+ 2γ
t

φ′(t)− φ(t) = 0 and lim
t→0

t2γφ(t)+ lim
t→∞

tγ+1/2etφ(t) ≤ C

for some C > 0, respectively. Then

Ŵ1,0(ξ, xN ) = ŵ1,0(ξ)ϕ(|ξ |xN ) for every ξ ∈ Rn and xN > 0.

(2) Let

Aα =

∫
∞

0
tα−2γ ϕ2(t) dt, A′α =

∫
∞

0
tα−2γ ϕ(t)ϕ′(t) dt,

A′′α =
∫
∞

0
tα−2γ (ϕ′(t))2 dt,

Bβ =
∫
∞

0
t−β+2γ ŵ2

1,0(t)t
n−1 dt, B′β =

∫
∞

0
t−β+2γ ŵ1,0(t) ŵ

′

1,0(t)t
n−1 dt

B′′β =
∫
∞

0
t−β+2γ (ŵ′1,0(t))

2tn−1 dt,

for α, β ∈ N ∪ {0}. Then

Aα =
α + 2
α + 1

·

[(
α + 1

2

)2

− γ 2
]−1

Aα+2 = −

(
α + 1

2
− γ

)−1

A′α+1

=

(
α + 1

2
− γ

)(
α − 1

2
+ γ

)−1

A′′α

for α odd, α ≥ 1 and

Bβ =
4(n− β + 1)Bβ−2

(n− β)(n+ 2γ − β)(n− 2γ − β)
= −

2B′β−1

n+ 2γ − β
,

Bβ−2 =
(n− 2γ − β)B′′β−2

n+ 2γ − β + 2

for β even, β ≥ 2.

With the help of the previous lemma, we evaluate the following nine integrals.
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Lemma C.3. Assume that γ ∈ (0, 1) and n > 2+ 2γ . Set C0 = |Sn−1
|A3B2. Then

I1 =

∫
RN+
x

1−2γ
N W 2

1,0 dx =
3

2(1− γ 2)
C0,

I2 =

∫
RN+
x

1−2γ
N rW1,0(∂rW1,0) dx = −

3n
4(1− γ 2)

C0,

I3 =

∫
RN+
x

2−2γ
N W1,0(∂NW1,0) dx = −

3
2(1+ γ )

C0,

I4 =

∫
RN+
x

2−2γ
N r(∂rW1,0)(∂NW1,0) dx =

3n− 2(1+ γ )
4(1+ γ )

C0,

I5 =

∫
RN+
x

3−2γ
N W1,0(1x̄W1,0) dx = −C0,

I6 =

∫
RN+
x

3−2γ
N (∂rW1,0)

2 dx = C0,

I7 =

∫
RN+
x

3−2γ
N (∂NW1,0)

2 dx =
2− γ
1+ γ

C0,

I8 =

∫
RN+
x

3−2γ
N r(∂rW1,0)(∂rrW1,0) dx = −

n

2
C0,

I9 =

∫
RN+
x

4−2γ
N (∂NW1,0)(1x̄W1,0) dx = (2− γ ) C0,

for r = |x̄|.

Proof. The quantities I1, I6, I7 were computed in [30, Lemma 7.2]. Moreover, [46,
Lemma B.4] provides the value of I8, and its proof suggests a way to calculate I2, I3.
Accordingly we only take into account the others. Throughout the proof, we agree that the
variable of ŵ1,0 and ŵ′1,0 is |ξ | and that of ϕ and ϕ′ is |ξ |xN . Also, ′ is used to represent
differentiation in the radial variable |ξ |.

It follows from Parseval’s theorem that

I4 =

∫
∞

0
x

2−2γ
N

(∫
Rn

̂xi∂iW1,0∂NŴ1,0 dξ

)
dxN

= −

∫
∞

0
x

2−2γ
N

[∫
Rn
(nŴ1,0 + ξi∂iŴ1,0)∂NŴ1,0 dξ

]
dxN

= −

∫
∞

0
x

2−2γ
N

[∫
Rn
(nŵ1,0ϕ + |ξ |ŵ

′

1,0ϕ + xN |ξ |ŵ1,0ϕ
′)|ξ |ŵ1,0ϕ

′ dξ

]
dxN

= −|Sn−1
|(nA2B′2 +A′1B

′

2 +A′′3B3).

Therefore Lemma C.2(2) gives the value in the statement. On the other hand, we observe
by applying integration by parts that

I5 = −

∫
RN+
x

3−2γ
N |∇x̄W1,0|

2 dx = −I6.
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Also one can verify

I9 = −

∫
∞

0
x

4−2γ
N

[∫
Rn
|ξ |2Ŵ1,0(∂NŴ1,0) dξ

]
dxN = −|Sn−1

|A′4B2,

finishing the proof. ut

Proof of Proposition C.1. We have

Z0
1,0 = r∂rW1,0 + xN∂NW1,0 +

n− 2γ
2

W1,0,

1x̄W1,0 = ∂rrW1,0 + (n− 1)r−1∂rW1,0,

for r = |x̄|. Hence∫
RN+
x

3−2γ
N 1x̄W1,0Z

0
1,0 dx = I8 + (n− 1)I6 + I9 +

n− 2γ
2

I5,∫
RN+
x

2−2γ
N ∂NW1,0Z

0
1,0 dx = I4 + I7 +

n− 2γ
2

I3,∫
RN+
x

1−2γ
N W1,0Z

0
1,0 dx = I2 + I3 +

n− 2γ
2

I1.

Now an easy application of Lemma C.3 completes the proof. ut

Acknowledgments. The authors sincerely appreciate the referees’ thoughtful comments and valu-
able suggestions which significantly improved the paper. S. Kim was supported by FONDE-
CYT Grant 3140530 during his stay at the Pontifical Catholic University of Chile. He has
been supported by Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education (NRF2017R1C1B5076384,
NRF2020R1C1C1A01010133, NRF2020R1A4A3079066). M. Musso has been supported by EP-
SRC research GrantEP/T008458/1. The research of J. Wei is partially supported by NSERC of
Canada. Part of the paper was written when S. Kim was visiting the University of British Columbia
and Wuhan University. He thanks these institutions for hospitality and financial support.

References

[1] Almaraz, S. de M.: An existence theorem of conformal scalar-flat metrics on manifolds with
boundary. Pacific J. Math. 248, 1–22 (2010) Zbl 1205.53043 MR 2734161

[2] Almaraz, S. de M.: A compactness theorem for scalar-flat metrics on manifolds with boundary.
Calc. Var. Partial Differential Equations 41, 341–386 (2011) Zbl 1225.53040 MR 2796235

[3] Almaraz, S. de M.: Blow-up phenomena for scalar-flat metrics on manifolds with boundary.
J. Differential Equations 251, 1813–1840 (2011) Zbl 1223.53031 MR 2823676

[4] Almaraz, S., de Queiroz, O. S., Wang, S.: A compactness theorem for scalar-flat metrics
on 3-manifolds with boundary. J. Funct. Anal. 277, 2092–2116 (2019) Zbl 1420.53047
MR 3989139
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Anal. Non Linéaire (in press)

[48] Lee, J. M., Parker, T. H.: The Yamabe problem. Bull. Amer. Math. Soc. (N.S.) 17, 37–91
(1987) Zbl 0633.53062 MR 888880

[49] Li, G.: A compactness theorem on Branson’s Q-curvature equation. Pacific J. Math. 302,
119–179 (2019) Zbl 1434.53041 MR 4028770

[50] Li, Y.: Prescribing scalar curvature on Sn and related problems. I. J. Differential Equations
120, 319–410 (1995) Zbl 0827.53039 MR 1347349

[51] Li, Y., Xiong, J.: Compactness of conformal metrics with constantQ-curvature. I. Adv. Math.
345, 116–160 (2019) Zbl 07021539 MR 3899029

[52] Li, Y., Zhang, L.: Compactness of solutions to the Yamabe problem. II. Calc. Var. Partial
Differential Equations 24, 185–237 (2005) Zbl 1229.35071 MR 2164927

[53] Li, Y., Zhang, L.: Compactness of solutions to the Yamabe problem. III. J. Funct. Anal. 245,
438–474 (2007) Zbl 1229.35072 MR 2309836

[54] Li, Y., Zhu, M.: Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries.
Comm. Pure Appl. Math. 50, 449–487 (1997) Zbl 0869.58054 MR 1443055

[55] Li, Y., Zhu, M.: Yamabe type equations on three-dimensional Riemannian manifolds. Comm.
Contemp. Math. 1, 1–50 (1999) Zbl 0973.53029 MR 1681811

[56] Marques, F. C.: A priori estimates for the Yamabe problem in the non-locally conformally flat
case. J. Differential Geom. 71, 315–346 (2005) Zbl 1101.53019 MR 2197144

[57] Marques, F. C.: Existence results for the Yamabe problem on manifolds with boundary. Indi-
ana Univ. Math. J. 54, 1599–1620 (2005) Zbl 1090.53043 MR 2189679

[58] Marques, F. C.: Conformal deformations to scalar-flat metrics with constant mean curvature
on the boundary. Comm. Anal. Geom. 15, 381–405 (2007) Zbl 1132.53021 MR 2344328

[59] Mayer, M., Ndiaye, C. B.: Barycenter technique and the Riemann mapping prob-
lem of Cherrier–Escobar. J. Differential Geom. 107, 519–560 (2017) Zbl 1410.53043
MR 3715348

[60] Mayer, M., Ndiaye, C. B.: Fractional Yamabe problem on locally flat conformal infinities of
Poincaré–Einstein manifolds. arXiv:1701.05919 (2017)

[61] Mazzeo, R. R., Melrose, R. B.: Meromorphic extension of the resolvent on complete
spaces with asymptotically constant negative curvature. J. Funct. Anal. 75, 260–310 (1987)
Zbl 0636.58034 MR 916753

[62] Niu, M., Peng, Z., Xiong, J.: Compactness of solutions to nonlocal elliptic equations. J. Funct.
Anal. 275, 2333–2372 (2018) Zbl 1395.35189 MR 3847472

[63] Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Dif-
ferential Geom. 6, 247–258 (1971/72) Zbl 0236.53042 MR 303464

[64] Pollack, D.: Nonuniqueness and high energy solutions for a conformally invariant scalar equa-
tion. Comm. Anal. Geom. 1, 347–414 (1993) Zbl 0848.58011 MR 1266473

[65] Qing, J., Raske, D.: Compactness for conformal metrics with constant Q curvature on lo-
cally conformally flat manifolds. Calc. Var. Partial Differential Equations 26, 343–356 (2006)
Zbl 1096.53023 MR 2232210

[66] Qing, J., Raske, D.: On positive solutions to semilinear conformally invariant equations
on locally conformally flat manifolds. Int. Math. Res. Notices 2006, art. 94172, 20 pp.
Zbl 1115.53028 MR 2219215

[67] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature.
J. Differential Geom. 20, 479–495 (1984) Zbl 0576.53028 MR 788292

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0633.53062&format=complete
http://www.ams.org/mathscinet-getitem?mr=888880
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1434.53041&format=complete
http://www.ams.org/mathscinet-getitem?mr=4028770
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0827.53039&format=complete
http://www.ams.org/mathscinet-getitem?mr=1347349
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:07021539&format=complete
http://www.ams.org/mathscinet-getitem?mr=3899029
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1229.35071&format=complete
http://www.ams.org/mathscinet-getitem?mr=2164927
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1229.35072&format=complete
http://www.ams.org/mathscinet-getitem?mr=2309836
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0869.58054&format=complete
http://www.ams.org/mathscinet-getitem?mr=1443055
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0973.53029&format=complete
http://www.ams.org/mathscinet-getitem?mr=1681811
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1101.53019&format=complete
http://www.ams.org/mathscinet-getitem?mr=2197144
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1090.53043&format=complete
http://www.ams.org/mathscinet-getitem?mr=2189679
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1132.53021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2344328
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1410.53043&format=complete
http://www.ams.org/mathscinet-getitem?mr=3715348
http://arxiv.org/abs/1701.05919
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0636.58034&format=complete
http://www.ams.org/mathscinet-getitem?mr=916753
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1395.35189&format=complete
http://www.ams.org/mathscinet-getitem?mr=3847472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0236.53042&format=complete
http://www.ams.org/mathscinet-getitem?mr=303464
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0848.58011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1266473
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1096.53023&format=complete
http://www.ams.org/mathscinet-getitem?mr=2232210
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1115.53028&format=complete
http://www.ams.org/mathscinet-getitem?mr=2219215
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0576.53028&format=complete
http://www.ams.org/mathscinet-getitem?mr=788292


A compactness theorem for the fractional Yamabe problem 3073

[68] Schoen, R.: Variational theory for the total scalar curvature functional for Riemannian metrics
and related topics. In: Topics in Calculus of Variations, Lecture Notes in Math. 1365, Springer,
New York (1989) Zbl 0702.49038 MR 0994021

[69] Schoen, R.: On the number of constant scalar curvature metrics in a conformal class. In:
Differential Geometry: A Symposium in Honor of Manfredo Do Carmo (H. B. Lawson and
K. Tenenblat, eds.), Wiley, 311–320 (1991) Zbl 0733.53021 MR 1173050

[70] Schoen, R.: Course notes on ‘Topics in differential geometry’ at Stanford University (1988);
https://www.math.washington.edu/ pollack/research/Schoen-1988-notes.html

[71] Schoen, R., Zhang, D.: Prescribed scalar curvature on the n-sphere. Calc. Var. Partial Differ-
ential Equations 4, 1–25 (1996) Zbl 0843.53037 MR 1379191

[72] Tan, J., Xiong, J.: A Harnack inequality for fractional Laplace equations with lower
order terms. Discrete Contin. Dynam. Systems 31, 975–983 (2011) Zbl 1269.26005
MR 2825646

[73] Trudinger, N. S.: Remarks concerning the conformal deformation of Riemannian struc-
tures on compact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22, 265–274 (1968)
Zbl 0159.23801 MR 240748

[74] Wei, J., Zhao, C.: Non-compactness of the prescribed Q-curvature problem in large di-
mensions. Calc. Var. Partial Differential Equations 46, 123–164 (2013) Zbl 1258.53038
MR 3016505

[75] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka
Math. J. 12, 21–37 (1960) Zbl 0096.37201 MR 125546

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0702.49038&format=complete
http://www.ams.org/mathscinet-getitem?mr=0994021
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0733.53021&format=complete
http://www.ams.org/mathscinet-getitem?mr=1173050
https://www.math.washington.edu/~pollack/research/Schoen-1988-notes.html
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0843.53037&format=complete
http://www.ams.org/mathscinet-getitem?mr=1379191
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1269.26005&format=complete
http://www.ams.org/mathscinet-getitem?mr=2825646
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0159.23801&format=complete
http://www.ams.org/mathscinet-getitem?mr=240748
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1258.53038&format=complete
http://www.ams.org/mathscinet-getitem?mr=3016505
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0096.37201&format=complete
http://www.ams.org/mathscinet-getitem?mr=125546

	1. Introduction
	2. Preliminaries
	3. Basic properties of blow-up points
	4. Linear theory and refined blow-up analysis
	5. Vanishing theorem for the second fundamental form
	6. Proof of the main theorems
	Appendix A. Elliptic regularity
	Appendix B. Green's function and Bôcher's theorem
	Appendix C. Computation of the integrals involving the standard bubble
	References

