Short note Angle sum of polygons in space

Fritz Siegerist and Karl Wirth

Abstract. It is examined for which angles sums a polygon in space exists.

We consider polygons in the three-dimensional Euclidean space with n generally non-coplanar vertices $(n \geq 3)$ and call them n-gons for short. An angle of an n-gon is defined as the angle between adjacent sides that is smaller than or equal to 180°. Intersecting sides, coinciding vertices, and even angles of 0° are permitted.
Theorem. An n-gon in Euclidean space E^{3} with angle sum S_{n} exists if and only if

$$
(n-2) \cdot 180^{\circ} \geq S_{n} \geq\left\{\begin{array}{c}
0^{\circ} \text { for even } n \tag{1}\\
180^{\circ} \text { for odd } n
\end{array}\right.
$$

Proof. First, we show by induction on n that the upper bound from (1) forms a necessary condition for the existence of an n-gon. Let $S_{n}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$ be the sum of the n-gon's consecutive angles. The base case $S_{3}=180^{\circ}$ is known. Adding to the n-gon a further vertex with angle α_{n+1}, as shown in Figure 1, we obtain the new vertex angles α_{1}^{\prime} and α_{n}^{\prime} and the triangle angles β and γ. From $(n-2) \cdot 180^{\circ} \geq S_{n}$ and using the spherical triangle inequality, it follows by the induction step that

$$
\begin{aligned}
((n+1)-2) \cdot 180^{\circ} & \geq S_{n}+180^{\circ}=S_{n}+\beta+\gamma+\alpha_{n+1} \\
& =S_{n}-\alpha_{1}+\left(\alpha_{1}+\beta\right)-\alpha_{n}+\left(\alpha_{n}+\gamma\right)+\alpha_{n+1} \\
& \geq S_{n}-\alpha_{1}+\alpha_{1}^{\prime}-\alpha_{n}+\alpha_{n}^{\prime}+\alpha_{n+1}=S_{n+1}
\end{aligned}
$$

Figure 1

As regards the necessary conditions of the lower bound from (1), it suffices to show that $S_{n} \geq 180^{\circ}$ for odd n. To do this, we generalize an approach often used at school to prove that $S_{3}=180^{\circ}$: the angles α_{i} of an n-gon are translated such that their vertices come to lie in a common point O and, in addition, those with even index i are reflected at O. In this way, we obtain an angle fan with a common side of α_{i} and α_{i+1} for $1 \leq i \leq n-1$, and an angle of 180° between the opposite sides of α_{1} and α_{n}, as illustrated in Figure 2 for $n=5$. Hence, again based on the spherical triangle inequality, it follows that $S_{n} \geq 180^{\circ}$.

Figure 2

Next, we verify that (1) is sufficient for the existence of an n-gon by giving an example for each angle sum S_{n}.

For even n, consider an n-gon, as shown in Figure 3 for $n=10$, but without point v. Its sides are diagonals of the lateral rectangles of a regular prism, and we choose their common length to be 1 . This n-gon, which we call a crown, has equal angles. If the radius r of the circumscribed circle of the base area is continuously varied, the prism degenerates in two cases: for $r=0$, it becomes a line segment with $S_{n}=0^{\circ}$, and for $r=1 /\left(2 \sin \frac{\pi}{n}\right)$, it results in a regular planar n-gon and thus $S_{n}=(n-2) \cdot 180^{\circ}$. The continuity ensures that S_{n} assumes all values from (1) between these boundaries.

Figure 3

For odd $n(n \geq 5)$, we add to a crown with $n-1$ vertices a further vertex v which is the midpoint of a side, as in Figure 3 for $n=11$. Since the angle at v is 180°, it follows for each r that $S_{n}=S_{n-1}+180^{\circ}$, and thus S_{n} again assumes all values from (1).

Boundaries. The upper bound $S_{n}=(n-2) \cdot 180^{\circ}$ can only be reached if, in the step of the above induction proof, it holds $\alpha_{1}^{\prime}=\alpha_{1}+\beta$ and $\alpha_{n}^{\prime}=\alpha_{n}+\gamma$, and consequently $\alpha_{1}^{\prime} \leq 180^{\circ}$ and $\alpha_{n}^{\prime} \leq 180^{\circ}$. The two equations imply that a corresponding n-gon is planar and the two inequalities, which in addition exclude overlapping and concavity, that it is convex.

Concerning the lower bounds, an n-gon with even n and $S_{n}=0^{\circ}$ is obviously linear. However, an n-gon with odd n and $S_{n}=180^{\circ}$ is planar, which is due to the fact that the associated angle fan must be planar. If in such an n-gon all α_{i} are different from 0°, it can be characterized by having the largest turning number t, given by $t=(n-1) / 2$. Figure 4 shows a heptagon with $t=3$ and thus $S_{7}=180^{\circ}$, together with the star (the great heptagram), which is the most symmetric version of the latter. An n-gon with $S_{n}=180^{\circ}$ and one or more vanishing angles α_{i} is obtained by limiting processes. If $n-1$ angles vanish and therefore the remaining one becomes 180°, we get again a linear n-gon.

Figure 4

Summarizing the main point, we have that an n-gon with a boundary angle sum S_{n} from (1) is planar.

Generalization. The theorem holds for n-gons in any Euclidean space E^{d} with $d \geq 2$. For $d>3$, the proof works in the same way as in E^{3}. For $d=2$, it remains to show that, for each non-boundary angle sum S_{n} from (1), there exists a planar n-gon, which can easily be done by means of examples.

Remark. We could not find our result elsewhere in the present general form. However, for some classes of equilateral n-gons, it is implicitly contained in [1].

Reference

[1] Y. Kamiyama, A filtration of the configuration space of spatial polygons, Adv. Appl. Discrete Math. 22 (2019), 67-74.

Fritz Siegerist
Obere Bühlstrasse 21
8700 Küsnacht, Switzerland
f.siegerist@gmx.ch

Karl Wirth
Carmenstrasse 48
8032 Zürich, Switzerland
wirthk@gmx.ch

