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1 Introduction

The authors of [1] (along with obtained interesting results) posed the following conjecture.

Conjecture 1 (A. Akopyan and V. Vysotsky [1]). Let  be a curve such that its convex
hull covers a planar convex figure K. Then length./ � per.K/ � diam.K/.

It should be noted that this conjecture has been proved in the case when  is passing
through all extreme points of K (see [1, Theorem 7]). This note is devoted to the proof of
the above conjecture in the general case. Figures 1 and 2 show the difference between the
general case and the special case mentioned above.

We identify the Euclidean plane with R2 supplied with the standard Euclidean met-
ric d , where d.x; y/D

p
.x1 � y1/2 C .x2 � y2/2. For any subset A � R2, co.A/means

the convex hull of A. For any points B;C 2 R2, ŒB; C � denotes the line segment between
these points.

Arseniy Akopyan und Vladislav Vysotsky äusserten 2017 im American Mathematical
Monthly folgende Vermutung: Wenn die konvexe Hülle einer ebenen Kurve  eine
ebene konvexe Figur K überdeckt, dann gilt length./ � per.K/ � diam.K/. Das
heisst, die Länge der Kurve  wird von unten durch den Umfang und den Durch-
messer der Figur K abgeschätzt. Die Autoren der vorliegenden Arbeit beweisen diese
Ungleichung. Sie identifizieren zudem alle Fälle, in denen Gleichheit auftritt. Die Ab-
schätzung mag auf den ersten Blick harmlos erscheinen, dennoch mussten die Autoren
für den Beweis recht tief in die mathematische Werkzeugkiste greifen. Es wäre inter-
essant, Analogien dieser Ungleichung in euklidischen Räumen der Dimension drei und
höher aufzustellen.

https://creativecommons.org/licenses/by/4.0/
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Figure 1. Illustration to the case when  is passing
through all extreme points of K.

Figure 2. Illustration to the case when  is not passing
through some extreme points of K.

A convex (planar) figure is any compact convex subset of R2. We shall denote by
per.K/, bd.K/ and int.K/, respectively, the perimeter, the boundary, and the interior of
a convex figure K. Note that the perimeter of any line segment (i.e. a degenerate convex
figure) is assumed to be equal to its double length. Note also that the diameter

diam.K/ WD max¹d.x; y/ j x; y 2 Kº

of a convex figure K coincides with the maximal distance between two parallel support
lines ofK. Recall that an extreme point ofK is a point inK which does not lie in any open
line segment joining two points of K. The set of extreme points of K will be denoted by
ext.K/. It is well known that ext.K/ is closed and K D co.ext.K// for any convex figure
K � R2.

A planar curve  is the image of a continuous mapping 'W Œa; b� � R 7! R2. From
now on, we will call planar curves simply curves for brevity, since no other curves are
considered in this note. As usual, the length of  is defined as

length./ WD sup

´
mX

iD1

d.'.ti�1/; '.ti //

µ
;

where the supremum is taken over all finite increasing sequences

a D i0 < i1 < � � � < im�1 < im D b

that lie in the interval Œa; b�. A curve  is called rectifiable if length./ <1.
We call a curve  � R2 convex (closed convex) if it is a closed connected subset of the

boundary (respectively, the whole boundary) of the convex hull co./ of  .
Let us consider the following example.

Example 1. Suppose that the boundary bd.K/ of a convex figure K is the union of a line
segment ŒA; B� and a convex curve  with the endpoints A and B . Then K � co./ and
length./ D per.K/ � d.A;B/. Moreover, length./ D per.K/ � diam.K/ if and only if
d.A;B/ D diam.K/.

The main result of this note is the following.
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Figure 3. IfK is a circular segment with the arc  and
the central angle subtending the arc is at most � , then
the equality length./ D per.K/ � diam.K/ holds.



K

Figure 4. IfK is a circular segment with the arc  and
the central angle subtending the arc is greater than � ,
then the inequality length./ > per.K/ � diam.K/
holds.

Theorem 1. For a given convex figure K and for any planar curve  with the property
K � co./, the inequality

length./ � per.K/ � diam.K/ (1)

holds. Moreover, this inequality becomes an equality if and only if  is a convex curve,
bd.K/ D  [ ŒA; B�, and diam.K/ D d.A;B/, where A and B are the endpoints of  .

Figures 3 and 4 illustrate the fulfillment of the equality in the inequality length./ �
per.K/ � diam.K/ for circular segments.

Remark 1. Since obviously per.K/ � 2 diam.K/, inequality (1) immediately implies the
following widely known inequality: length./ � 1

2
per.K/; see e.g. [4].

The strategy of our proof is as follows. We fix a convex figureK �R2. Then we prove
the existence of a curve 0 of minimal length among all curves  satisfying the condition
K � co./ (Section 2). After that, we prove the inequality length.0/� per.K/� diam.K/
and study all possible cases of the equality length.0/D per.K/� diam.K/, where 0 is an
arbitrary curve of minimal length among all curves  satisfying the condition K � co./
(Section 3). This allow us to get the proof of Theorem 1 in Section 4.

2 Some auxiliary results

To prove the desired results, we first recall some important properties of curves and convex
figures.

Let us recall the following useful definition. A sequence of curves ¹iºi2N converges
uniformly to a curve  if the curves i admit parameterizations with the same domain that
uniformly converges to some parameterization of  . We will need the following result (see
e.g. [3, Theorem 2.5.14]).
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Proposition 1 (Arzela–Ascoli theorem for curves). Given a compact metric space, any
sequence of curves which have uniformly bounded lengths has a uniformly converging
subsequence.

We also note one important property (the lower semi-continuity of length) of the limit
curve in the above assertion (see e.g. [3, Proposition 2.3.4]).

Proposition 2. Suppose that a sequence of rectifiable curves ¹iºi2N which converges
pointwise to  (with respect to parameterizations with the same domain) is given. Then
the inequality lim infi!1 length.i / � length./ holds.

The following property (of the monotonicity of perimeter) of convex figures is well
known (see e.g. [2, § 7]).

Proposition 3. If convex figuresK1 andK2 in the Euclidean plane are such thatK1�K2,
then per.K1/ � per.K2/, and the equality holds if and only if K1 D K2.

We need also the following well-known result (it could be proved using the Crofton
formula; see e.g. [1, pp. 594–595]).

Proposition 4. Let 'W Œc; d �! R be a parametric continuous curve with '.c/ D '.d/.
Then the length of the curve  D ¹'.t/ j t 2 Œc; d �º is greater than or equal to per.co.//.
Moreover, the equality holds if and only if  is a closed convex curve.

Now, we are going to prove the following.

Proposition 5. For a given convex figure K � R2, there is a curve 0 of minimal length
among all curves  satisfying the condition K � co./.

Proof. If int.K/ D ;, then the proposition is trivial. In what follows, we assume that
int.K/ ¤ ;. Denote by �.K/ the set of all planar curves  such that K � co./. Let
us consider M D inf¹length./ j  2 �.K/º. It is clear that M � per.K/ since bd.K/
could be considered as a curve  . Now, we consider the sequence of curves ¹iºi2N from
�.K/ such that length.i /! M as i !1. Without loss of generality, we may assume
that length.i / �M C 1 for all i D 1; 2; 3; : : : .

Let us take a point O 2 int.K/. There is r > 0 such that the ball with center O and
radius r is insideK. For a fixed i 2N, we consider the point Ci 2 i such that d.Ci ;O/D

max¹d.x; O/; x 2 iº and the straight line li passing through O is perpendicular to the
straight line OCi . Since K � co.i /, there is a point Di 2 i such that the line segment
ŒCi ;Di � intersects li . This means that

M C 1 � length.i / � d.Ci ;Di / � d.Ci ; O/ � r > 0:

It implies that M � r > 0 and

i � B.O;M C 1/ WD ¹x 2 R2; d.x;O/ �M C 1º:

Since the ball B.O;M C 1/ is compact and the lengths of the curves i , i D 1; 2; 3; : : : ,
are uniformly bounded, then the sequence ¹iº has a uniformly converging subsequence
by Proposition 1. Passing to a subsequence if necessary, we can assume that the sequence
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Figure 5. Illustration to Remark 3: a non-convex shortest curve  .

¹iºi2N converges uniformly to some curve 0. Since K � co.i / for i D 1; 2; 3; : : : ,
then K � co.0/ too. The lower semi-continuity of length (see Proposition 2) implies
M D limi!1 length.i / � length.0/, and therefore, length.0/ D M . This proves the
proposition.

Remark 2. Note that the curve 0 in Proposition 5 may not be unique. For instance, if K
is an equilateral triangle, then the union of any two of its sides is such a curve.

Remark 3. Note also that the curve 0 in Proposition 5 could be non-convex. For instance,
let K be the parallelogram ABCD � R2 with A D .0; 0/, B D .1; 1/, C D .t C 1; 1/

and D D .t; 0/, where t � 1. It is easy to see that the broken line ABCE with E D
.t C 1; 0/ is one of the shortest convex curves, whose convex hull coversK, and its length
is 1 C

p
2 C t ; see Figure 5. On the other hand, the length of the broken line ABDC

(whose convex hull is K) is equal to 2
p
2C
p
2 � 2t C t2. It is easy to check that

2
p
2C

p
2 � 2t C t2 < 1C

p
2C t for t > .3

p
2C 2/=4 � 1:5606:

The above discussion leads to the following natural problem.

Problem 1. Give a comprehensive description of the class of planar curves  with the
following property: there is a compact convex figure K � R2 such that  is the shortest
curves among all curves, whose convex hulls cover K.

In the next section, we give more detailed information about any curve of shortest
length among all curves  satisfying the condition K � co./ for a given K.

3 Some properties of shortest curves  with K � co./

Let U � R2 be a convex figure. We say that a straight line l � R2 divides U into U1

and U2 if U1 and U2 are convex figures lying in different half-planes relative to l such that
U D U1 [ U2 and U1 \ U2 D U \ l .

We need the following two simple results.

Lemma 1. LetU �R2 be a convex figure, and let us consider some pointsE;F 2 ext.U /.
Then the straight line l D EF divides U into convex figures U1 and U2 such that

Ui D co.ext.U / \ Ui /; i D 1; 2:
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Figure 6. Illustration to Lemma 2: the convex figure U and MA1AA2.

Proof. It is clear that co.ext.U / \ Ui / � Ui . Let us suppose that co.ext.U / \ Ui / ¤ Ui .
Then there is a point C 2 ext.Ui / such that C … co.ext.U / \ Ui /. On the other hand,
ext.Ui / � ext.U /, and we obtain the contradiction.

Lemma 2. Let U � R2 be a convex figure. Let us suppose that a point A … U and points
A1; A2 2 U are such that the straight lines AA1 and AA2 are support lines for U and
AA1 ? AA2. Then d.A;A1/C per.U / > per.co.U [ ¹Aº//.

Proof. Let us consider the triangle A1AA2, and let � be a part of bd.U / between the
points A1 and A2 such that U � co.� [ ¹Aº/ (Figure 6). It is clear that

bd.co.U [ ¹Aº// D � [ ŒA;A1� [ ŒA;A2�:

It is also clear that per.U / � length.�/ is the length of the part of bd.U / complementary
to � between the pointsA1 andA2; hence, per.U /� length.�/� d.A1;A2/ > d.A;A2/,
and we get

d.A;A1/C per.U / > d.A;A1/C length.�/C d.A;A2/ D per.co.U [ ¹Aº//;

which proves the lemma.

Let us fix a curve  with an arc length parameterization '.t/, t 2 Œa; b�, such that
K � co./ and it has minimal possible length among all curves with this property. We put
A WD '.a/, B WD '.b/ and zK WD co./.

Lemma 3. In the above notation, A;B 2 ext. zK/ and A¤ B . Moreover,K \ ŒA;B�¤ ;.

Proof. Let us suppose that A … ext. zK/; then there is a sufficiently small " > 0 such that
'.Œa; aC "�/\ ext. zK/ D ; (recall that ext. zK/ is a closed set in R2). Hence, if we modify
 up to 1 WD ¹'.t/ j t 2 Œa C "; b�º, then we get a shorter curve with the same convex
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hull. This contradictions shows that A D '.a/ 2 ext. zK/. Similar arguments imply that
B D '.ˇ/ 2 ext. zK/.

Suppose that B D A. Let us consider a support line l1 for zK through the point B .
Since B 2 ext. zK/, we may take a point C 2 l1 and a support line l2 for zK through C
such that C … zK and l2 is perpendicular to l1. Now, take a point D 2 zK \ l2. Let � be
a part of bd. zK/ between the points B and D such that zK � co.� [ ŒC; D�/. Lemma 2
and Proposition 4 imply d.C;D/C length.�/ < per. zK/ � length./. Hence, the curve
� [ ŒC; D� is shorter than  , and we get a contradiction due to zK � co.� [ ŒC; D�/.
Therefore, B ¤ A.

Let us suppose that K \ ŒA; B� D ;. Then the distance min¹d.x; y/ j x 2 K; y 2 lº
between K and the straight line AB DW l is positive (recall that K � zK and A; B are
extreme points of zK). Therefore,K � co¹ .t/ j t 2 ŒaC ";b � "�º � co./ for sufficiently
small " > 0. Since the curve 2 WD ¹ .t/ j t 2 Œa C "; b � "�º is shorter than  , we get
a contradiction. This proves that K \ ŒA; B� ¤ ;.

Proposition 6. Let us consider ˛; ˇ 2 Œa; b� such that '.˛/; '.ˇ/ 2 ext. zK/. Then one of
the following assertions holds:

(1) Œ'.˛/; '.ˇ/� � bd. zK/;
(2) the straight line l through the points '.˛/ and '.ˇ/ divides zK into zK1 and zK2

such that . zKi n Œ'.˛/; '.ˇ/�/ \K ¤ ;, i D 1; 2.

Proof. Let us suppose that Œ'.˛/; '.ˇ/� 6� bd. zK/; then every zKi , i D 1; 2, has a point Ci

from ext. zK/ n ¹'.˛/; '.ˇ/º. It is clear that Ci D '.t0/ for some t0 2 Œa; b�.
If . zKi n Œ'.˛/; '.ˇ/�/\K D ;, thenK � co.ext. zKj //, j 2 ¹1; 2º n ¹iº, by Lemma 3.

Now, we will show how one can modify  to a curve 1 which is shorter than  , but
K � co.1/.

If t0 D a (t0 D b), then we can take a sufficiently small " > 0 such that

'.Œa; aC "�/ \ l D ; .respectively, '.Œb � "; b�/ \ l D ;/:

Then we see that K � co.ext. zKj // � co.1/, where 1 D ¹'.t/ j t 2 ŒaC "; b�º (respec-
tively, 1 D ¹'.t/ j t 2 Œa; b � "�º). Hence, we have found a curve that is shorter than 
and whose convex hull contains K, which is impossible.

If t0 2 .a; b/, then we can take t1; t2 2 Œa; b�, t1 < t2, such that t0 2 .t1; t2/ and
'.Œt1; t2�/ \ l D ;. Since '.t0/ 2 ext. zK/, then '.Œt1; t0�/ ¤ Œ'.t1/; '.t2/�. Now, we con-
sider a curve 2 D . n '.Œt1; t0�//[ Œ'.t1/; '.t2/�. Obviously, 2 is shorter than  , but its
convex hull still contains K. This contradiction proves the proposition.

Corollary 1. Suppose that '.t0/ is an extreme point of zK and it is not isolated in the set
ext. zK/. Then '.t0/ 2 K.

Proof. Let us take a sequence ¹tnºn2N , tn 2 Œa; b�, such that all points '.tn/ are extreme
for zK, '.tn/ ¤ '.t0/, Œ'.t0/; '.tn/� 6� bd. zK/, and '.tn/! '.t0/ as n!1. By Propo-
sition 6, the straight line ln through the points '.tn/ and '.t0/ divides zK into two convex
figures; each of them contains some point of K. Let zKn be a one of these two figures,
which has a smaller diameter. It is clear that diam. zKn/! 0 as n!1. If Cn 2 zKn \K,
then Cn ! '.t0/ as n!1. Since K is closed, we get '.t0/ 2 K.
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By Lemma 3, the points A and B are extreme points of zK. If A (respectively, B) is
not an isolated point in the set ext. zK/, then A 2 K (respectively, B 2 K). The following
proposition deals with the case when A (or B) is isolated in ext. zK/.

Proposition 7. If A D '.a/ is isolated in ext. zK/, then there are �1; �2 2 .a; b�, �1 < �2,
such that the following assertions hold:

(1) ŒA; '.�1/� [ ŒA; '.�2/� covers some neighborhood of A in bd. zK/;
(2) '.Œa; �1�/ D ŒA; '.�1/�;

(3) '.Œa; �2�/ [ ŒA; '.�2/� is a closed convex curve;

(4) ŒA; '.�1/� \K ¤ ;;

(5) the angle between the line segments ŒA; '.�1/� and ŒA; '.�2/� is equal to �=2.

Similar results hold for B D '.b/ if it is isolated in ext. zK/.

Proof. Since the point A is extreme in zK and isolated in ext. zK/, then there are points
A1;A2 2 ext. zK/� bd. zK/ such that ŒA;A1�; ŒA;A2�� bd. zK/ and ŒA;A1�[ ŒA;A2� covers
some neighborhood of A in bd. zK/ (roughly speaking, A1 and A2 are closest extreme
points to A with respect to different directions on bd. zK/). It is clear that A1 D '.�1/ and
A2 D '.�2/ for some �1; �2 2 .a; b�. Without loss of generality, we may suppose that
0 < �1 < �2.

Let us consider the following closed curves:

1 D '.Œa; �1�/ [ ŒA; '.�1/�; 2 D '.Œa; �2�/ [ ŒA; '.�2/�:

By Proposition 4, we get that length.1/ � per.co.1// and length.2/ � per.co.2//.
Since ŒA;A1�; ŒA;A2�� bd. zK/, then ŒA;A1�� bd.co.1// and ŒA;A2�� bd.co.2//. Due
to the inclusion i � co.i /, i D 1; 2, we may replace the curve  with the curve

�i WD '.Œ�i ; b�/ [ .bd.co.i // n ŒA;Ai �/

with the same convex hull zK. Since  has minimal length among all curves whose convex
hull covers K, we get length.i / D per.co.i // by Proposition 4. It means that 1 and 2

are closed convex curves by Proposition 4 (see Figure 7).

A1

A
A2

Figure 7. Illustration to the proof of Proposition 7: the curves 1 and 2.
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Since A; A1 2 co.2/, then ŒA; A1� � co.2/. On the other hand, ŒA; A1� � bd. zK/.
Since co.2/ � zK, we get ŒA; A1� � bd.co.2//. It implies that ŒA; A1� D '.Œa; �1�/ and
ŒA;A2� ¤ '.Œa; �2�/. Therefore, assertions (1)–(3) are proved.

Let us prove (4). If ŒA;'.�1/�\K D ;, then there is " > 0 such that co.'.Œa; �1C "�//

and K are situated in different half-planes with respect to some straight line. Therefore,
K � co.3/, where 3 WD '.Œ�1 C "; b�/[ ŒA; '.�1 C "/�. On the other hand, 3 is shorter
than  (recall that '.�1/ is extreme in zK; hence, '.Œa; �1 C "�/ ¤ ŒA; '.�1 C "/�). This
contradiction implies ŒA; '.�1/� \K ¤ ;.

Finally, let us prove (5). If †A1AA2 ¤ �=2, then we can take A0 2 ŒA; A1� such that
A0 ¤ A and d.A; A0/ is less than the distance from A to K. Then A0 D '.� 0/ for some
� 0 2 .a; �1/. Now, take a point A00 2 ŒA; A2� such that ŒA0; A00� is orthogonal to ŒA; A2�.
If we consider 4 WD '.Œ�

0; b�/ [ ŒA0; A00�, then K � co.4/ and length.4/ < length./
(since the leg is shorter than the hypotenuse in any right triangle). This contradiction shows
that †A1AA2 D �=2.

Similar results for the point B we get automatically, reversing the parameterization of
the curve  . The proposition is completely proved.

Proposition 8. In the above notation, let �1 be the smallest number in T , and let �2 be
the largest number in T , where T D ¹t 2 Œa; b� j '.t/ 2 Kº. Then the following inequality
holds:

length./C d.'.�1/; '.�2// � per. zK/ � per.K/:

Proof. Since K � zK, then the inequality per. zK/ � per.K/ follows directly from Propo-
sition 3. Therefore, it suffices to prove the inequality

length./C d.'.�1/; '.�2// � per. zK/: (2)

We have '.Œa; �1�/ D ŒA; '.�1/� � bd. zK/ and '.Œ�2; b�/ D Œ'.�2/; B� � bd. zK/ by
Proposition 7. Proposition 7 also implies that there is �1 2 .a; b� such that ŒA; '.�1/� [

ŒA;'.�1/� covers a neighborhood of A in bd. zK/ if A …K and there is �2 2 Œa; b/ such that
ŒB; '.�2/� [ ŒB; '.�2/� covers a neighborhood of B in bd. zK/ if B … K (note that �1 D b

if and only if �2 D a).
Let us consider y D '.Œ�1; �2�/ and yK D co.y/. Note that yK � zK and yK contains all

extreme points of zK with the possible exception of points A and B (the latter is possible
only if A or B is not in K). Therefore, zK D co. yK [ ¹A;Bº/.

Since y [ Œ'.�1/; '.�2/� is a closed curve, Proposition 4 implies the inequality

length.y/C d.'.�1/; '.�2// � per. yK/: (3)

Let us consider the following four cases: (1) A;B 2 K, (2) exactly one of the points A
and B is in K, (3) A;B … K and �1 < b, (4) A;B … K and �1 D b.

In case (1), we have  D y and yK D zK; hence, (3) implies

length./C d.'.�1/; '.�2// � per. zK/;

and we got what we need.
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Let us consider case (2). Without loss of generality, we may assume thatB 2K (hence,
�2 D b and '.�2/DB) andA …K. Hence, zK D co. yK [ ¹Aº/. Let us consider the triangle
A1AA2, where A1 D '.�1/ and A2 D '.�1/. By Proposition 7, we have†A1AA2 D �=2.
Since A1; A2 2 bd. zK/ \ y , we get that A1; A2 2 bd. yK/. Then (3) and Lemma 2 imply

length./C d.'.�1/; '.�2// D d.A;A1/C length.y/C d.'.�1/; '.�2//

� d.A;A1/C per. yK/ > per. zK/;

which proves (2).
To deal with case (3), consider the triangles A1AA2 and B1BB2, where A1 D '.�1/,

A2D '.�1/,B1D '.�2/ andB2D '.�2/. By Proposition 7,†A1AA2D†B1BB2D�=2.
Note that �1 < �2 and �1 < �2. Since A1; A2; B1; B2 2 bd. zK/ \ y , we get that

A1; A2; B1; B2 2 bd. yK/:

Then (3) and Lemma 2 imply

length./C d.'.�1/; '.�2// D d.A;A1/C d.B;B1/C length.y/C d.'.�1/; '.�2//

� d.A;A1/C d.B;B1/C per. yK/

> d.A;A1/C per.co. yK [ ¹Bº//

> per.co.co. yK [ ¹Bº/ [ ¹Aº//

D per.co. yK [ ¹A;Bº// D per. zK/;

which proves (2).
Finally, let us consider case (4). In this case, we have ŒA; B� � bd. zK/, A2 D B and

A D B2. Let us consider the quadrangle AA1B1B , where A1 D '.�1/ and B1 D '.�2/.
By Proposition 7, we have †A1AB D †B1BA D �=2. Since A1; B1 2 bd. zK/ \ y , we
get that A1; B1 2 bd. yK/.

We denote by 3 a part of bd. yK/ between A1 and A2 such that zK � co.3 [ ¹A;Bº/

(see Figure 8). It is clear that

bd. zK/ D 3 [ ŒA;A1� [ ŒB; B1� [ ŒA; B�:

A1 B1

BA

Figure 8. Illustration to case (4) in the proof of Proposition 8.
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Note that per. yK/ � length.3/ is the length of the curve .bd. yK/ n 3/ [ ¹A1; B1º, con-
necting the points A1 and B1. Hence, per. yK/ � length.3/ � d.A1; B1/ � d.A; B/, and
we get

length./C d.'.�1/; '.�2// D d.A;A1/C d.B;B1/C length.y/C d.'.�1/; '.�2//

� per. yK/C d.A;A1/C d.B;B1/

� length.3/C d.A;B/C d.A;A1/C d.B;B1/

D per. zK/:

Hence, we have proved (2) for all possible cases. The proposition is proved.

Remark 4. We see from the above proof that the equality

length./C d.'.�1/; '.�2// D per. zK/

is fulfilled if and only if '.Œa; b�/ [ ŒA; B� is a convex curve (that coincides with bd. zK/)
and the quadrangle AA1B1B , where A1 D '.�1/ and A2 D '.�1/, is a rectangle (in par-
ticular, A1 D A and B1 D B). Consequently, since per. zK/ D per.K/ implies zK D K, the
equality

length./C d.'.�1/; '.�2// D per.K/

is fulfilled if and only if '.Œa; b�/ [ ŒA; B� D bd.K/.

Since diam.K/� d.'.�1/; '.�2//, then Proposition 8 and Remark 4 imply the follow-
ing corollary.

Corollary 2. If a curve  has shortest length among all curves whose convex hulls cover
a given compact convex figure K, then the following inequality holds:

length./C diam.K/ � per.K/:

Moreover, the equality in this inequality is fulfilled if and only if  is convex, bd.K/ D
 [ ŒA; B� and diam.K/ D d.A;B/, where A and B are the endpoints of the curve  .

4 Proof of Theorem 1

Let us fix a convex figureK � R2. By Proposition 5, there is a curve 0 of minimal length
among all curves  satisfying the condition K � co./. By Corollary 2, we get

length./C diam.K/ � length.0/C diam.K/ � per.K/

for any curve  such that K � co./, which proves (1). We have the equality in (1) if
and only if length./ D length.0/ (hence, we may assume that  D 0 without loss of
generality),  is convex,  [ ŒA;B�D bd.K/ and diam.K/D d.A;B/, whereA and B are
the endpoints of the curve  . Therefore, we obtain just convex figuresK and corresponding
curves  exactly as in Example 1.
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