Short note A note on the Diophantine equation $(x+1)^{3}+(x+2)^{3}+\cdots+(2 x)^{3}=y^{n}$

Nguyen Xuan Tho

Abstract

In this short note, we show that the equation in the title has no integer solutions $x, y \geq 1$ and $n>1$.

1 Introduction

Let k, l, n be fixed positive integers. The equation

$$
\begin{equation*}
(x+1)^{k}+(x+2)^{k}+\cdots+(l x)^{k}=y^{n} \tag{1}
\end{equation*}
$$

has been studied by many authors. Bai and Zhang [1] solved equation (1) in the case $l=k=2$. Bérczes, Pink, Savas, and Soydan [3] showed that (1) has no solutions if $l=2$, $2 \leq x \leq 13, y \geq 2$, and $n \geq 3$. Soydan [4] showed that (1) only has a finite number of integer solutions $x, y \geq 1$ if $k \neq 1,3$ and $n \geq 2$. Bartoli and Soydan [2] showed that every positive integer solutions x, y of (1) must satisfy $\max \{x, y, n\}<C$, where C is a computable constant depending only on k, l. In this short note, we completely solve equation (1) when $l=2, k=3$, and $n \geq 2$. In fact, we will give an elementary proof of the following theorem.

Theorem 1. Let $n \geq 2$ be a positive integer. Then the equation

$$
\begin{equation*}
(x+1)^{3}+(x+2)^{3}+\cdots+(2 x)^{3}=y^{n} \tag{2}
\end{equation*}
$$

has no integer solutions $x, y \geq 1$.

2 A proof of Theorem 1

Assume there exist integers $x, y \geq 1$ satisfying (2). Using the formula

$$
1^{3}+2^{3}+\cdots+m^{3}=\frac{m^{2}(m+1)^{2}}{4} \quad \text { for all } m \in Z^{+}
$$

equation (2) is equivalent to

$$
\begin{equation*}
y^{n}=\frac{(2 x)^{2}(2 x+1)^{2}}{4}-\frac{x^{2}(x+1)^{2}}{4}=\frac{x^{2}(3 x+1)(5 x+3)}{4} \tag{3}
\end{equation*}
$$

Case 1: \boldsymbol{n} is even. Then, from (3), we have $(3 x+1)(5 x+3)$ is a perfect square. Since $\operatorname{gcd}(3 x+1,5 x+3) \in\{1,2,4\}$, both $5 x+3$ and $3 x+1$ are perfect squares or two times perfect squares. The first case is impossible modulo 5 , and the second case is impossible modulo 3.

Case 2: \boldsymbol{n} is odd.

Case 2.1: x is even. Let $x=2 a$, where $a \in \mathbb{Z}^{+}$. Then (3) becomes

$$
\begin{equation*}
a^{2}(6 a+1)(10 a+3)=y^{n} \tag{4}
\end{equation*}
$$

If $3 \nmid a$, then $\operatorname{gcd}\left(a^{2},(6 a+1)(10 a+3)\right)=1$. Therefore, from (4), we have $a^{2}=A^{n}$, where $A \in \mathbb{Z}^{+}$, which is impossible since n is odd. If $3 \mid a$, let $a=3 b$, where $b \in \mathbb{Z}^{+}$. Equation (4) becomes

$$
\begin{equation*}
3^{3} b^{2}(18 b+1)(10 b+1)=y^{n} \tag{5}
\end{equation*}
$$

Since $\operatorname{gcd}\left(b^{2},(18 b+1)(10 b+1)\right)=1$, from (5), we have $b^{2}=A^{n}$ or $b^{2}=3^{n-3} A^{n}$, where $A \in \mathbb{Z}^{+}$, which is also impossible since n is odd.
Case 2.2: x is odd. Let $x=2 a+1$, where $a \in \mathbb{Z}, a \geq 0$. Then (3) becomes

$$
\begin{equation*}
(2 a+1)^{2}(3 a+2)(5 a+4)=y^{n} \tag{6}
\end{equation*}
$$

If $3 \nmid 2 a+1$, then $\operatorname{gcd}(2 a+1,5 a+4)=\operatorname{gcd}(2 a+1,3 a+2)=1$. Therefore, from (6), we have $(2 a+1)^{2}=C^{n}$, where $C \in \mathbb{Z}^{+}$, which is impossible since n is odd. If $3 \mid 2 a+1$, let $a=3 b+1$, where $b \in Z, b \geq 0$. Equation (6) becomes

$$
\begin{equation*}
3^{3}(2 b+1)^{2}(9 b+5)(5 b+3)=y^{n} \tag{7}
\end{equation*}
$$

Since $\operatorname{gcd}(2 b+1,9 b+5)=\operatorname{gcd}(2 b+1,5 b+3)=1$, from (7), we have

$$
(2 b+1)^{2}=C^{n} \quad \text { or } \quad(2 b+1)^{2}=3^{n-3} C^{n}
$$

where $C \in Z^{+}$, which is impossible since n is odd. Theorem 1 is proved.

References

[1] M. Bai and Z. Zhang, On the Diophantine equation $(x+1)^{2}+(x+2)^{2}+\cdots+(x+d)^{2}=y^{n}$, Funct. Approx. Comment. Math. 49 (2013), 73-77.
[2] D. Bartoli and G. Soydan, The Diophantine equation $(x+1)^{k}+(x+2)^{k}+\cdots+(l x)^{k}=y^{n}$ revisited, Publ. Math. Debrecen 96 (2020), no. 1-2, https://arxiv.org/abs/1909.06100v1.
[3] A. Bérczes, I. Pink, G. Savas and G. Soydan, On the equation $(x+1)^{k}+(x+2)^{k}+\cdots+(2 x)^{k}=y^{n}$, J. Number Theory, 183 (2017), 326-351.
[4] G. Soydan, On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+\cdots+(l x)^{k}=y^{n}$, Publ. Math. Debrecen 91 (2017), no. 3-4, 369-382.

Nguyen Xuan Tho
School of Applied Mathematics and Informatics
Hanoi University of Science and Technology
1 Dai Co Viet Road, Ha Noi, Vietnam
tho.nguyenxuan1 @hust.edu.vn

