The Poincaré half-space of a C^*-algebra

Esteban Andruchow, Gustavo Corach and Lázaro Recht

Abstract. Let \mathcal{A} be a unital C^*-algebra. Given a faithful representation $\mathcal{A} \subset \mathcal{B}(\mathcal{L})$ in a Hilbert space \mathcal{L}, the set $G^+ \subset \mathcal{A}$ of positive invertible elements can be thought of as the set of inner products in \mathcal{L}, related to \mathcal{A}, which are equivalent to the original inner product. The set G^+ has a rich geometry, it is a homogeneous space of the invertible group G of \mathcal{A}, with an invariant Finsler metric. In the present paper we study the tangent bundle TG^+ of G^+, as a homogeneous Finsler space of a natural group of invertible matrices in $M_2(\mathcal{A})$, identifying TG^+ with the Poincaré half-space \mathcal{H} of \mathcal{A},

$$\mathcal{H} = \{ h \in \mathcal{A} : \text{Im}(h) \geq 0, \text{Im}(h) \text{ invertible} \}.$$

We show that $\mathcal{H} \simeq TG^+$ has properties similar to those of a space of non-positive constant curvature.

1. Introduction

Let \mathcal{A} be a unital C^*-algebra, G the group of invertible elements in \mathcal{A}, and G^+ the subset of G of positive elements.

Observe that G^+, as an open subset of $\mathcal{A}_+ := \{ x \in \mathcal{A} : x^* = x \}$, is an open submanifold of \mathcal{A}_+ and its tangent space at any point is identified with \mathcal{A}_+. If $G_* = G \cap \mathcal{A}_*$, then it can be proven that G^* is the component of the identity in G_*. Also, there is a left action of G on G^* given by $g \cdot a = (g^{-1})^* a g^{-1}$, and G^+ is the orbit of 1 under this action. With this dual nature, G^+ carries a natural structure of homogeneous space of G, with a linear connection, and a Finsler metric. These facts, and many others concerning the differential geometry of G^+, have been studied in [6], [8], [9]. The goal of the present paper is the study of the tangent bundle TG^+, in particular its presentation as a homogeneous space of the unitary group of a natural quadratic form in $\mathcal{A}^2 = \mathcal{A} \times \mathcal{A}$.

There are several motivations for this study.

Mathematics Subject Classification (2010): Primary 46L05, 58B20; Secondary 22E65, 46L08.
Keywords: Positive invertible operator, inner product.
We consider G^+ as the configuration space of a quantum mechanical system whose elements represent a family of equivalent metrics over a Hilbert space. The tangent bundle TG^+ is the phase space of the configuration space G^+ of the quantum system. Note also that TG^+ identifies in a natural way with the bundle of observables associated with the different metrics. We shall explain this in more detail below.

Note the correspondence $(a, X) \leftrightarrow X + ia$, where $a \in G^+$ and $X \in (TG^+)_a$; here X is a selfadjoint element of \mathcal{A}, because G^+ is open in the space of selfadjoint elements of \mathcal{A}. This correspondence establishes a clear identification between TG^+ and \mathcal{H}, the Poincaré half-space of \mathcal{A},

$$\mathcal{H} = \{ h \in \mathcal{A} : \text{Im}(h) \in G^+ \}.$$

Following ideas from C. L. Siegel [19], [20] and [21], we claim that there is a natural form θ_H in $\mathcal{A} \times \mathcal{A} = \mathcal{A}^2$, determined by H, whose unitary group $U(\theta_H)$ acts transitively in \mathcal{H}. Namely, if we put projective coordinates $\left(\frac{x_1}{x_2} \right)$ for $x_1 \in G^+$ the elements $h = x_2 x_1^{-1} \in \mathcal{H}$ are characterized by the condition

$$\text{Im}(h) = \frac{1}{2i} \left(x_2 x_1^{-1} - (x_1)^{-1} x_2 \right) = \frac{1}{2i} (x_1)^{-1} \left\{ x_1^* x_2 - x_2^* x_1 \right\} x_1^{-1} \in G^+,$$

or equivalently $\frac{1}{2} \left\{ x_1^* x_2 - x_2^* x_1 \right\} \in G^+$. Thus, if we put

$$\theta_H \left(\left(x_1 \atop x_2 \right), \left(y_1 \atop y_2 \right) \right) = \frac{1}{i} \left\{ x_1^* y_2 - x_2^* y_1 \right\},$$

the condition $\text{Im}(h) \in G^+$ is $\theta_H \left(\left(\frac{x_1}{x_2} \right), \left(\frac{y_1}{y_2} \right) \right) \in G^+$.

The unitary group $U(\theta_H)$ of θ_H, i.e., the group of invertible matrices in $M_2(\mathcal{A})$ which preserve θ_H, acts transitively on \mathcal{H}, and makes \mathcal{H} a homogeneous space. Therefore, TG^+ can be considered as the phase space of the mentioned quantum system, with the group $U(\theta_H)$ of symmetries.

The homogeneous space \mathcal{H} identifies in turn, also in a natural fashion, with the space \mathcal{Q}_ρ of selfadjoint projections in \mathcal{A}^2 which decompose the quadratic form θ_H (where ρ_H is the reflection in \mathcal{A}^2 induced by θ_H). This identification is equivariant with the respective actions of the symmetry group $U(\theta_H)$.

The space \mathcal{Q}_ρ, for arbitrary symmetries ρ, was studied thoroughly in [7]; we can obtain the geometric and metric properties of TG^+ from the properties established for \mathcal{Q}_ρ.

In a forthcoming second part of this paper, we shall study additional geometric structures related to a pre-quantization of TG^+, in the framework of a Hilbert-C*-module structure.

We also establish a natural bijection between TG^+ and the space \mathcal{D} of strict contractions of \mathcal{A},

$$\mathcal{D} = \{ a \in \mathcal{A} : \| a \| < 1 \}.$$
The Poincaré half-space of a \(C^* \)-algebra

Besides the form \(\theta_H \) and the group \(\mathcal{U}(\theta_H) \) of invertible elements in \(M_2(A) \) which leave \(\theta_H \) invariant, an important role will be played by the unit pseudo-sphere \(K_H \),

\[
K_H = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in A^2 : \theta_H \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) = 1 \text{ and } x_1 \in G \right\}.
\]

The pseudo-sphere \(K_H \) will serve the role of a coordinate space for \(H \), and these data will be related by the commutative diagram of \(\mathcal{U}(\theta_H) \)-homogeneous spaces

\[
\begin{array}{ccc}
K_H & \xrightarrow{\varphi} & H \\
\downarrow{\Phi_H} & & \downarrow{\Phi_H} \\
Q_{\rho_H} & \xrightarrow{\tilde{\varphi}} & D
\end{array}
\]

where \(\varphi \) and \(\tilde{\varphi} \) are submersions and \(\Phi_H \) is a diffeomorphism.

There is an analogous commutative triangle for the open unit disk model, by means of the form \(\theta_D \),

\[
\theta_D \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) = x_1 y_1 - x_2 y_2.
\]

Both forms (and therefore both sets of data) are covariantly related by the unitary matrix in \(M_2(A) \)

\[
U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}.
\]

For instance, the bijection between \(H \) and \(D \) is a Moebius transformation.

Let us summarize the contents of the paper. In Section 2 we define the space \(H \), the form \(\theta_H \), the unitary group \(\mathcal{U}(\theta_H) \) and the pseudo-sphere \(K_H \) of this form. In Section 3 we introduce an alternative model for \(H \), namely the open unit disk \(D \), along with the form \(\theta_D \) and the unitary group \(\mathcal{U}(\theta_D) \) and pseudo-sphere \(K_D \) of this form. The spaces, forms, groups and unit pseudo-spheres of both models are intertwined by the unitary matrix \(U \in M_2(A) \). The reason to have two models for the same space, is that some computations are easier or more natural with one or the other. For instance, in Section 4 we study the local (Banach–Lie group) structure of \(\mathcal{U}(\theta_H) \). An important role is played by the subgroup \(B \subset \mathcal{U}(\theta_H) \), which we call the Borel subgroup of \(\mathcal{U}(\theta_H) \), and which has a natural meaning in this setting. In Section 5, we introduce the action of \(\mathcal{U}(\theta_D) \) on the unit pseudo-sphere \(K_D \), which implies that also \(\mathcal{U}(\theta_H) \) acts on \(K_H \) (this is another example, where a fact is easier to establish in model than the other). These actions enable us to introduce the actions of \(\mathcal{U}(\theta_H) \) and \(\mathcal{U}(\theta_D) \) on \(H \) and \(D \), respectively. It is shown that these actions are transitive, and the isotropy subgroups are computed. In Section 7, we recall from [7] the space \(Q_\rho \) of signed decompositions of a form induced by a symmetry \(\rho \), and prove that there are natural diffeomorphisms between \(Q_\rho, H \) and \(D \), which are equivariant with respect to the corresponding group actions. This is a key fact, which allows us to import from \(Q_\rho \) to \(H \) and \(D \) the main geometric features of that space: a linear connection, a Finsler metric and its properties. Among these,
that \(\mathcal{H} \) behaves as a non-positively curved metric length space [12]. In Section 9 we compute the specific form of the linear connection induced in \(\mathcal{H} \). In Section 10 we compute special cases of geodesics in \(\mathcal{H} \). Finally, in Section 11, as an Appendix, we outline an intrinsic, coordinate free, version for the Poincaré half-space, in terms of a Hilbertable space endowed with a coherent family of inner products.

2. Poincaré half-space

We define the following forms in \(\mathcal{A}^2 \).

Definition 2.1. The \(\mathcal{A} \)-valued inner product:

\[
\langle \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \rangle = a_1^* b_1 + a_2^* b_2
\]

and the \(\mathcal{A} \)-valued simplectic form

\[
\omega\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right) = a_2^* b_1 - a_1^* b_2.
\]

Let us denote

\[
J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in M_2(\mathcal{A}).
\]

Then, it is apparent that

\[
\omega\left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right) = \langle J \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \rangle.
\]

We shall denote by \(\tilde{a}, \tilde{b}, \tilde{c}, \) etc., the elements of \(M_2(\mathcal{A}) \). Let us denote by \(\text{Gl}_2(\mathcal{A}) \) the group of invertible elements, and by \(\text{U}_2(\mathcal{A}) \) the group of unitary elements in \(M_2(\mathcal{A}) \).

We shall use the selfadjoint reflection \(\rho_H \) (i.e., \(\rho_H^2 = 1, \rho_H^* = \rho_H \)),

\[
\rho_H = -iJ = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.
\]

and the form \(\theta_H \):

\[
\theta_H\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right) = \langle \rho_H \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle = \frac{1}{i}(x_1^* y_2 - x_2^* y_1),
\]

i.e., \(\theta_H = i\omega \).

The following group, which is the group of invertible matrices in \(M_2(\mathcal{A}) \) which preserve the form \(\theta_H \) (equivalently, the form \(\omega \)), will play an important role in this study:

\[
\mathcal{U}(\theta_H) = \left\{ \tilde{a} \in \text{Gl}_2(\mathcal{A}) : \theta_H(\tilde{a} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \tilde{a} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}) = \theta_H\left(\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \right), \right. \\
\left. \text{for all } \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \in \mathcal{A}^2 \right\}.
\]

Clearly,

\[
\tilde{a} \in \mathcal{U}(\theta_H) \text{ if and only if } \rho_H \tilde{a}^* \rho_H = \tilde{a}^{-1}.
\]
Definition 2.2. Let $K_H \subset A^2$ be the set
\[K_H = \{ (\begin{smallmatrix} a_1 \\ a_2 \end{smallmatrix}) \in A^2 : \theta_H(\begin{smallmatrix} a_1 \\ a_2 \end{smallmatrix}, \begin{smallmatrix} a_1 \\ a_2 \end{smallmatrix}) = 1, \text{ with } a_1 \in G \}, \]
i.e., $\begin{smallmatrix} a_1 \\ a_2 \end{smallmatrix} \in K_H$ if $\frac{1}{2}(a_1^*a_2 - a_2^*a_1) = 2\text{Im}(a_1^*a_2) = 1$. Notice that $a_2 \in G$, automatically.

We shall use this hyperboloid K_H to understand the geometry of H; it will be a coordinate space for H.

There is a natural fibration of K_H over H:
\[\varphi_H : K_H \rightarrow H, \quad \varphi_H(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}) = x_2x_1^{-1}. \]

3. The open unit disk model for TG^+

We shall study an alternative model for H (i.e., for TG^+). The main reason to give this alternative version is that many computations will be clearer (and easier) in this model.

Let D be the open unit ball of A:
\[D = \{ z \in A : z^*z < 1 \} = \{ z \in A : \|z\| < 1 \}. \]

Consider the selfadjoint reflection ρ_D,
\[\rho_D = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \]
the induced A-valued indefinite inner product on A^2,
\[\theta_D(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}, \begin{smallmatrix} y_1 \\ y_2 \end{smallmatrix}) = <\rho_D(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}), \begin{smallmatrix} y_1 \\ y_2 \end{smallmatrix}> = x_1^*y_1 - x_2^*y_2, \]
and the group $U(\theta_D)$ of elements in $\text{Gl}_2(A)$ which preserve the form θ_D:
\[U(\theta_D) = \{ \hat{a} \in \text{Gl}_2(A) : \theta_D(\hat{a}(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}), \hat{a}(\begin{smallmatrix} y_1 \\ y_2 \end{smallmatrix})) = \theta_D(\begin{smallmatrix} x_1 \\ x_2 \end{smallmatrix}, \begin{smallmatrix} y_1 \\ y_2 \end{smallmatrix})) \}. \]
Equivalently, $\hat{a} \in U(\theta_D)$ if $\rho_D \hat{a}^* \rho_D = \hat{a}^{-1}$.

Before proceeding any further, note that ρ_D and ρ_H are conjugate via the unitary element
\[U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}, \]
i.e.,
\[U \rho_D U^* = \rho_H. \]

Therefore, the groups $U(\theta_H)$ and $U(\theta_D)$ are conjugate, and the properties and features of $U(\theta_H)$ are translated to $U(\theta_D)$.
The pseudo-sphere \mathcal{K}_D is given by
\[\mathcal{K}_D := \{(\frac{x_1}{x_2}) \in A^2 : \theta_D((\frac{x_1}{x_2}), (\frac{z_1}{z_2})) = 1, x_1 \in G\} = \{(\frac{z_1}{z_2}) \in A^2 : x_1^2 x_1 - x_2^2 x_2 = 1, x_1 \in G\}. \]

There is an analogous fibration of \mathcal{K}_D over \mathcal{D}:
\[\varphi_D : \mathcal{K}_D \rightarrow \mathcal{D}, \quad \varphi_D((\frac{z_1}{z_2})) = x_2 x_1^{-1}. \]

In fact, if $(\frac{z_1}{z_2}) \in \mathcal{K}_D$, then
\[x_1^2 x_1 = 1 + x_2 x_2, \]
and it follows that
\[1 = (x_1^{-1} + x_2 x_2) x_1^{-1} = (x_1 x_1)^{-1} + (x_2 x_1^{-1}) x_2 x_1^{-1}; \]
thus
\[(x_2 x_1^{-1})^* x_2 x_1^{-1} < 1, \]
i.e., $x_2 x_1^{-1} \in \mathcal{D}$.

Lemma 3.1. $(\frac{z_1}{z_2}) \in \mathcal{K}_D$ if and only if $U(\frac{z_1}{z_2}) \in \mathcal{K}_H$.

Proof. The fact that $U\rho_D U^* = \rho_H$ implies that the equation $\theta_D((\frac{x_1}{x_2}), (\frac{z_1}{z_2})) = 1$ is equivalent to $\theta_H(U(\frac{z_1}{z_2}), U(\frac{z_1}{z_2})) = 1$.

Let us check the invertibility conditions. If $(\frac{z_1}{z_2}) \in \mathcal{K}_D$, then $x_1 \in G$. We must verify that the first coordinate of $U(\frac{z_1}{z_2})$ is invertible. Equivalently, that $1 + x_2 x_1^{-1} = (x_1 + x_2) x_1^{-1} \in G$. Since $(\frac{x_1}{x_2}) \in \mathcal{K}_D$, it follows that $x_2 x_1^{-1} \in \mathcal{D}$, and thus $\|x_2 x_1^{-1}\| < 1$. Then $1 + x_2 x_1^{-1}$ is invertible.

Conversely, suppose that $U(\frac{z_1}{z_2}) = U(\frac{x_1}{x_2}) \in \mathcal{K}_H$. Then z_1, z_2 are invertible, and we must check that $z_1 - iz_2$ is also invertible. The fact that $(\frac{z_1}{z_2}) \in \mathcal{K}_H$ implies that $\text{Im}(z_2 z_1^{-1}) > 0$. Therefore a straightforward computation shows that $\sigma(z_2 z_1^{-1})$. Then $z_2 z_1^{-1} + i = i(z_1 - iz_2) z_1^{-1} \in G$, i.e., $z_1 - iz_2 \in G$. \hfill \square

4. The groups $\mathcal{U}(\theta_H)$ and $\mathcal{U}(\theta_D)$

We shall describe in the next subsections the basic properties shared by $\mathcal{U}(\theta_H)$ and $\mathcal{U}(\theta_D)$. Some computations are easier or more natural in one of the two presentations of these isomorphic groups.

4.1. The unitary group $\mathcal{U}(\theta_H)$ of the form θ_H

In order to study $\mathcal{U}(\theta_H)$, we consider the following subgroups.

Definition 4.1. Let \mathcal{B} be the group of elements $\tilde{b} \in \mathcal{U}(\theta_H)$ which are of the form
\[\tilde{b} = \begin{pmatrix} b_{11} & 0 \\ b_{21} & b_{22} \end{pmatrix}. \]
Proof. Let us exhibit a local chart for \(\mathcal{C} \), the spaces of selfadjoint and skewadjoint (or anti-Hermitian) elements of \(\mathcal{A} \).

It is apparent that \(\mathcal{B} \), which we will call the Borel subgroup of \(\mathcal{U}(\theta_H) \), is indeed a group. Also it is clear that \(\mathcal{T} \) is a group. Note that

\[
J \tilde{c}^* J^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \tau \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -\tau \\ 0 & 1 \end{pmatrix} = \tilde{c}^{-1},
\]

i.e., \(\tilde{c} \in \mathcal{U}(\theta_H) \).

We shall see that these groups are complemented Banach–Lie subgroups of \(\text{Gl}_2(\mathcal{A}) \).

An elementary computation shows that \(\mathcal{U}(\theta_H) \) is closed under the involution of \(\text{M}_2(\mathcal{A}) \): if \(\tilde{a} \in \mathcal{U}(\theta_H) \) then \(\tilde{a}^* \in \mathcal{U}(\theta_H) \). It follows that the factors of the polar decomposition of \(\tilde{a} = \tilde{u} |\tilde{a}| \) remains inside \(\mathcal{U}(\theta_H) \): \(\tilde{u}, |\tilde{a}| \in \mathcal{U}(\theta_H) \). It suffices to show that \(|\tilde{a}| \in \mathcal{U}(\theta_H) \). Clearly \(|\tilde{a}|^2 = \tilde{a}^* \tilde{a} \in \mathcal{U}(\theta_H) \). Note that both \(J|\tilde{a}| J^{-1} \) and \(|\tilde{a}|^{-1} \) are positive elements with the same square:

\[
(J|\tilde{a}| J^{-1})^2 = J|\tilde{a}|^2 J^{-1} = J\tilde{a}^* \tilde{a} J^{-1} = (\tilde{a}^* \tilde{a})^{-1} = |\tilde{a}|^{-2}.
\]

Then \(J|\tilde{a}| J^{-1} = |\tilde{a}|^{-1} \).

The same is true for the other polar decomposition \(\tilde{a} = |\tilde{a}|^* \tilde{w} \).

Note also the elementary fact that a unitary element \(\tilde{u} \) belongs to \(\mathcal{U}(\theta_H) \) if and only if it commutes with \(J \). Similarly, a positive element \(\tilde{b} \in \mathcal{U}(\theta_H) \) if and only if \(J\tilde{b} J^{-1} = \tilde{b}^{-1} \).

We shall denote by \(\mathcal{U}_+(\theta_H) \) the (subgroup of) unitary elements of \(\mathcal{U}(\theta_H) \), and by \(\mathcal{U}(\theta_H)^+ \) the set of positive elements in \(\mathcal{U}(\theta_H) \).

Proposition 4.2. The group \(\mathcal{U}(\theta_H) \) is a Banach–Lie group, and a complemented submanifold of \(\text{M}_2(\mathcal{A}) \).

Proof. Let us exhibit a local chart for \(1 \in \mathcal{U}(\theta_H) \). Denote by \(\text{M}_2(\mathcal{A})_s \) and \(\text{M}_2(\mathcal{A})_a \) the spaces of selfadjoint and skewadjoint (or anti-Hermitian) elements of \(\text{M}_2(\mathcal{A}) \). Consider the space

\[
\mathcal{X} = \text{M}_2(\mathcal{A})_s \oplus \text{M}_2(\mathcal{A})_a = \{ \tilde{\beta} \in \text{M}_2(\mathcal{A})_s : \tilde{\beta} J = J \tilde{\beta} \} \oplus \{ \tilde{\gamma} \in \text{M}_2(\mathcal{A})_a : \tilde{\gamma} J = -J \tilde{\gamma} \}.
\]

Elements \(X \in \mathcal{X} \) are of the form \(X = \tilde{\beta} + \tilde{\gamma} \),

\[
X = \begin{pmatrix} \beta_{11} & \beta_{12} \\ -\beta_{12} & -\beta_{11} \end{pmatrix} + \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{12} & -\gamma_{11} \end{pmatrix}
\]

with \(\beta_{11}^* = -\beta_{11} \), and all other entries selfadjoint. Consider the map

\[
\mathcal{E} : \mathcal{X} \to \mathcal{U}(\theta_H), \quad \mathcal{E}(\tilde{\beta} + \tilde{\gamma}) = e^{\tilde{\beta}} e^{\tilde{\gamma}}.
\]
Note that $e^\tilde{\gamma}$ is a unitary element which commutes with J, i.e., $e^\tilde{\gamma} \in \mathcal{U}(\theta_H)$. The element $e^{\ddot{\gamma}}$ is a positive invertible element of $M_2(\mathcal{A})$; the fact that the exponent $\ddot{\gamma}$ anticommutes with J means that $e^{\ddot{\gamma}}J = Je^{-\ddot{\gamma}}$, i.e., $e^{\ddot{\gamma}} \in \mathcal{U}(\theta_H)^+$, and thus \mathcal{E} is well defined. If one restricts \mathcal{E} to

$$\mathcal{V} = \{ \tilde{\beta} \in \mathcal{X}_s : \| \tilde{\beta} \| < 2 \} \oplus \mathcal{X}_s,$$

then $\mathcal{E}|\mathcal{V}$ is a homeomorphism onto

$$\mathcal{W} = \{ \tilde{u} \in \mathcal{U}(\theta_H) : \| \tilde{u} - 1 \| < 2, \text{ where } \tilde{u} = \tilde{a}|\tilde{a}|^{-1} \}.$$

Clearly, \mathcal{V} and \mathcal{W} are open sets of \mathcal{X} and $\mathcal{U}(\theta_H)$, respectively. If $\tilde{a} \in \mathcal{W}$, the fact that $\| \tilde{u} - 1 \| < 2$ implies that $\tilde{u} = e^{\delta}$ for a unique $\delta \in M_2(\mathcal{A})_m$ with $\| \delta \| < \pi$ (and thus δ is a series in powers of δ). Since \tilde{u} is unitary and belongs to $\mathcal{U}(\theta_H)$, it commutes with J. Then, its logarithm $\tilde{\delta}$ commutes with J, i.e., $\tilde{\delta} \in \mathcal{X}_1$. On the other hand, since $|\tilde{a}|$ is positive and invertible, it has a unique selfadjoint logarithm $\log(|\tilde{a}|) = \tilde{\epsilon}$. The fact that $J|\tilde{a}|J^{-1} = |\tilde{a}|^{-1}$ implies that

$$Je^{-\epsilon} = J\log(|\tilde{a}|)J^{-1} = \log(J|\tilde{a}|J^{-1}) = \log(|\tilde{a}|^{-1}) = -\log(|\tilde{a}|) = -\tilde{\epsilon},$$

i.e., $\tilde{\epsilon} \in \mathcal{X}_2$, and thus $\tilde{a} = \mathcal{E}(\tilde{\delta}, \epsilon)$. The inverse of \mathcal{E} is

$$\mathcal{E}^{-1} : \mathcal{W} \rightarrow \mathcal{V}, \quad \mathcal{E}^{-1}(\tilde{a}) = \log(|\tilde{a}|) + \log(|\tilde{a}|^{-1}) \in \mathcal{X}_1 \oplus \mathcal{X}_2.$$

It is apparent that both \mathcal{E} and \mathcal{E}^{-1} are C^∞ maps. The Banach space \mathcal{X} on which the neighbourhood \mathcal{W} of 1 in $\mathcal{U}(\theta_H)$ is modelled, is complemented in $M_2(\mathcal{A})$. Indeed, \mathcal{X} can be also presented as

$$\mathcal{X} = \{ X \in M_2(\mathcal{A}) : X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & -x_{11} \end{pmatrix}, \text{ with } x_{12}, x_{21} \in \mathcal{A}_s \}.$$

A supplement for \mathcal{X} is, for instance,

$$\{ \begin{pmatrix} a & b \\ -b & c \end{pmatrix} : b^* = -b, \ c^* = -c \}.$$

Charts around other elements of $\mathcal{U}(\theta_H)$ are obtained by translation, using the left action of $\mathcal{U}(\theta_H)$ on itself.

\textbf{Remark 4.3.} The differential at the origin of the map \mathcal{E} is the identity. It follows that the Banach–Lie algebra $\mu(\theta_H)$ of $\mathcal{U}(\theta_H)$ coincides with \mathcal{X}: $X \in \mu(\theta_H)$ if

$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & -x_{11} \end{pmatrix},$$

where x_{12} and x_{21} are selfadjoint.

\textbf{Proposition 4.4.} B and T are Banach–Lie subgroups of $\mathcal{U}(\theta_H)$, and complemented submanifolds of $M_2(\mathcal{A})$. They generate an open and closed subgroup of $\mathcal{U}(\theta_H)$, which contains the connected component of the identity.
The Poincaré half-space of a C*-algebra

Proof. First note that the diagonal entries of elements in \mathcal{B} must be invertible elements in \mathcal{A}. Elementary matrix computations show that $\tilde{b} \in \mathcal{B}$ if and only if it is of the form

$$\tilde{b} = \begin{pmatrix} b & 0 \\ x & (b^*)^{-1} \end{pmatrix},$$

with $b^*xb^{-1} = x^*$, or, equivalently, b^*x selfadjoint. Thus, \mathcal{B} can be parametrized by

$$\mathcal{B} = \{(b, x) : b \text{ invertible in } \mathcal{A} \text{ and } b^*x \in \mathcal{A}_s\}.$$

This set \mathcal{B} is globally diffeomorphic to the set

$$G \times \mathcal{A}_s = \{(a, y) : a \text{ invertible in } \mathcal{A}, y = y^*\}.$$

which is a complemented submanifold of \mathcal{A}^2. The diffeomorphism and its inverse are given by $(b, x) \mapsto (b, b^*x)$ and $(a, y) \mapsto (a, (a^*)^{-1}y)$. Thus, \mathcal{B} is globally diffeomorphic to a submanifold of \mathcal{A}^2. Moreover, this diffeomorphism extends to an open subset of $M_2(\mathcal{A})$:

$$M_2(\mathcal{A}) \ni \left(\begin{array}{cc} a & c \\ y + z & d \end{array} \right) \mapsto \left(\begin{array}{cc} a & \frac{a}{(a^*)^{-1}} + d \\ \frac{a}{(a^*)^{-1}} + y + z & (a^*)^{-1} \end{array} \right),$$

which maps $G \times \mathcal{A}_s$ onto \mathcal{B}.

The Banach–Lie algebra $a_\mathcal{B}$ of \mathcal{B} can be computed using this parametrization. If $b(t) \in G_\mathcal{A}$ and $x(t) \in \mathcal{A}$ are smooth curves such that $b^*(t)x(t)$ is selfadjoint, $b(0) = 1$, $\dot{b}(0) = y_{11}$, $x(0) = 0$ and $\dot{x}(0) = y_{21}$, then

$$\tilde{b}(t) = \begin{pmatrix} b(t) & 0 \\ x(t) & (b^*(t))^{-1} \end{pmatrix}$$

is a smooth curve in \mathcal{B} with $\tilde{b}(0) = 1$ and $\dot{\tilde{b}}(0) = Y$, with

$$Y = \begin{pmatrix} y_{11} & 0 \\ y_{21} & -y_{11} \end{pmatrix},$$

where $\frac{d}{dt}\{b^*(t)x(t)\} = b^*(t)x(t) + b^*(t)\dot{x}(t) \in \mathcal{A}_s$; in particular, at $t = 0$, this implies that y_{21} is selfadjoint. Thus, the Banach–Lie algebra of \mathcal{B} is

$$a_\mathcal{B} = \left\{ Y = \begin{pmatrix} y_{11} & 0 \\ y_{21} & -y_{11} \end{pmatrix} : y_{21}^* = y_{21} \right\}.$$

The subgroup \mathcal{T} is parametrized by \mathcal{A}_s, and can be proved to be a submanifold of $M_2(\mathcal{A})$ in a similar (simpler) fashion. Also, it is apparent that its Banach–Lie algebra $a_\mathcal{T}$ of \mathcal{T} is

$$a_\mathcal{T} = \left\{ Z = \begin{pmatrix} 0 & z_{12} \\ 0 & z_{12} \end{pmatrix} : z_{12}^* = z_{12} \right\}.$$

We claim that the subgroups \mathcal{B} and \mathcal{T} generate a closed and open subgroup of $U(\theta_H)$. To prove that, note that the Banach–Lie algebras of these groups are in direct sum, and its sum is the Banach–Lie algebra $\mu(\theta_H)$ of $U(\theta_H)$:

$$\mu(\theta_H) = a_\mathcal{B} \oplus a_\mathcal{T}.$$
It follows that there is a neighbourhood W of 1 in $\mathcal{U}(\theta_H)$ where any element is the product of elements in \mathcal{B} and \mathcal{T}. Let $\tilde{a}_0 \in \mathcal{U}(\theta_H)$ which is a product of elements in \mathcal{B} and \mathcal{T}. Then

$$\mathcal{U}_0 = \{ \tilde{a} : \tilde{a}_0^{-1} \tilde{a} \in \mathcal{U} \}$$

is an open neighbourhood of \tilde{a}_0 in $\mathcal{U}(\theta_H)$. It follows that the set of these products is an open subgroup. The relation

$$\tilde{a} \sim \tilde{b} \text{ if and only if } \tilde{a}^{-1} \tilde{b} \in \mathcal{B}\mathcal{T}$$

is an equivalence relation. It follows that this subgroup is a union of connected components of $\mathcal{U}(\theta_H)$, containing the connected component of the identity.

Remark 4.5. If \mathcal{A} is a von Neumann algebra, then $\mathcal{U}(\theta_H)$ is connected. Since $\mathcal{U}(\theta_H)^+$ is clearly connected (in fact, contractible), one needs to show that $\mathcal{U}_2(\mathcal{A}) \cap \{ J \}'$ is connected. Since J is skewadjoint, it follows that $\{ J \}' \subset M_2(\mathcal{A})$ is a von Neumann algebra, and therefore

$$\mathcal{U}_2(\mathcal{A}) \cap \{ J \}'$$

is the unitary group of a von Neumann algebra, thus connected.

Theorem 4.6. The unitary part

$$\mathcal{U}_2(\mathcal{A}) \cap \{ J \}'$$

of $\mathcal{U}(\theta_H)$ is isomorphic to $\mathcal{U}_A \times \mathcal{U}_A$. The group $\Pi_0(\mathcal{U}(\theta_H))$ of connected components of $\mathcal{U}(\theta_H)$ is isomorphic to $\Pi_0(\mathcal{U}_A) \times \Pi_0(\mathcal{U}_A)$.

Proof. Consider the map

$$\{ J \}' \to \mathcal{A}, \quad \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + ib.$$

This map is an injective \mathbb{C}^*-homomorphism; thus, its restriction to $\mathcal{U}_2(\mathcal{A}) \cap \{ J \}'$,

$$\Gamma : \mathcal{U}(\theta_H) \to \mathcal{U}_A,$$

is a group homomorphism. It is a retraction: the map $u \mapsto \begin{pmatrix} u & 0 \\ 0 & u \end{pmatrix}$ is a cross section for Γ and a group homomorphism. By straightforward computations, the kernel of Γ consist of matrices

$$\begin{pmatrix} a & i(a-1) \\ -i(a-1) & a \end{pmatrix}$$

with $a^*a = aa^* = \frac{1}{2}(a + a^*)$. Then a is a normal element, which is a zero of the continuous function $f(z) = |z|^2 - \text{Re}(z)$. Therefore, the spectrum of a is contained in the zero set of f, namely $\{ z \in \mathbb{C} : |z - 1/2| = 1/2 \}$. The map $z \mapsto 2z - 1$ sends this circle to the unit circle, and since it is a polynomial map, it sends elements a as above onto normal elements with spectrum in the unit circle, i.e., unitary elements.
of A. Conversely, if $u \in \mathcal{U}_A$, elementary computations show that $a = \frac{1}{2}(u + 1)$ satisfies $a^* a = aa^* = \frac{1}{2}(a + a^*)$. Moreover, it is easy to verify that the map

$$\ker \Gamma \to \mathcal{U}_A, \quad \left(\begin{array}{cc} a & i(a - 1) \\ -i(a - 1) & a \end{array} \right) \mapsto 2a - 1$$

is a group homomorphism, thus a bicontinuous isomorphism.

Therefore, since Γ splits, one has that (by means of an explicit isomorphism)

$$\mathcal{U}_u(\theta_H) \cong \mathcal{U}_A \times \mathcal{U}_A.$$

The polar decomposition induces the isomorphism between $\Pi_0(\mathcal{U}(\theta_H))$ and $\Pi_0(\mathcal{U}_C(\theta_H))$, because the positive part $\mathcal{U}^+(\theta_H)$ is contractible. \hfill \square

Corollary 4.7. B and T generate $\mathcal{U}(\theta_H)$ if and only if \mathcal{U}_A is connected.

5. The unitary group $\mathcal{U}(\theta_D)$ of the form θ_D

As remarked above, $\mathcal{U}(\theta_B)$ and $\mathcal{U}(\theta_D)$ are conjugate via the unitary operator U given in (3.1). Therefore the same properties proved for $\mathcal{U}(\theta_H)$ also hold for $\mathcal{U}(\theta_D)$. Thus, $\mathcal{U}(\theta_D)$ is a Banach–Lie subgroup of $\text{Gl}_2(A)$ and it is closed under the polar decomposition: if $\tilde{a} \in \mathcal{U}(\theta_D)$ and $\tilde{a} = \tilde{u}\tilde{a}$ is its polar decomposition, then $\tilde{u}, |\tilde{a}| \in \mathcal{U}(\theta_D)$. The fact that the unitary part \tilde{u} belongs to $\mathcal{U}(\theta_D)$ means that \tilde{u} commutes with ρ_D. It is elementary that this implies that the matrix of \tilde{u} is of the form

$$\tilde{u} = \left(\begin{array}{cc} u_1 & 0 \\ 0 & u_2 \end{array} \right),$$

with $u_1, u_2 \in \mathcal{U}_A$. Denote by $\lambda = \log |\tilde{a}|$ the unique selfadjoint logarithm of the (positive invertible) element $|\tilde{a}|$. The fact that $\rho |\tilde{a}| = |\tilde{a}|^{-1}\rho_D$, means that

$$\rho_D \lambda = -\lambda \rho_D.$$

On the other hand, positive elements $\tilde{r} \in \mathcal{U}(\theta_D)$ satisfy that $\rho_D \tilde{r} \rho_D \tilde{r} = 1$. In particular, if

$$\tilde{r} = \left(\begin{array}{cc} r_{11} & r_{12} \\ r_{12}^* & r_{22} \end{array} \right),$$

then $r_{11} \geq 1$, because $r_{11} \geq 0$ and $r_{11}^2 - r_{12}r_{12}^* = 1$.

The main issue in introducing this description of $\mathcal{U}(\theta_D)$ is the following result.

Theorem 5.1. $\mathcal{U}(\theta_D)$ acts on \mathcal{K}_D by left multiplication: if $\tilde{a} \in \mathcal{U}(\theta_D)$ and $(x_1, x_2) \in \mathcal{K}_D$, then $\tilde{a}(x_1, x_2) \in \mathcal{K}_D$.

Proof. Recall that $(x_1, x_2) \in \mathcal{K}_D$ means that $\theta_D((x_1, x_2)) = 1$ and that $x_1 \in G$. Since \tilde{a} preserves θ_D, it is clear that $\theta_D(\tilde{a}(x_1, x_2)) = 1$. We must show that the first coordinate of $\tilde{a}(x_1, x_2)$ is invertible in A. Clearly, it suffices to prove this fact
separately for the unitary part \(\tilde{u}\) and the absolute value \(|\tilde{a}|\). The first assertion is clear:

\[
\tilde{u}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} u_1 x_1 \\ u_2 x_2 \end{pmatrix},
\]

and \(u_1 x_1\) is invertible.

For the second assertion, we claim that if \(\tilde{r}\) is a positive element in \(U(\theta_D)\),

\[
\tilde{r} = \begin{pmatrix} r_{11} & r_{12} \\ r_{12} & r_{22} \end{pmatrix}
\]

which satisfies that \(\|r_{12}\| < 1\), then the first coordinate of \(\tilde{r}(x_1)\) is invertible for any \((x_1) \in \mathcal{K}_D\). Indeed, the first coordinate of this product is \(r_{11} x_1 + r_{12} x_2\). Since \(x_1\) is invertible, this sum is invertible if and only if \(r_{11} + r_{12} x_1^{-1}\) is invertible. Since \(\|x_2 x_1^{-1}\| < 1\) and \(\|r_{12}\| < 1\), it follows that \(\|r_{12} x_2 x_1^{-1}\| < 1\). Recall from above that \(r_{11} \geq 1\). These facts imply that \(r_{11} + r_{12} x_2 x_1^{-1}\) is invertible.

Note that for any \(n \geq 1\), \(|\tilde{a}|^{1/n} = e^{\frac{\lambda}{n}} \in U(\theta_D)\), because \(\frac{1}{n}\) anti-commutes with \(\rho_D\). Note also that \(|\tilde{a}|^{1/n} \to 1\) as \(n \to \infty\). Thus, there exists \(n \geq 0\) such that \(\tilde{r} = |\tilde{a}|^{1/n}\) satisfies that \(\|r_{12}\| < 1\). It follows from the above observation, that for any \((x_2) \in \mathcal{K}_D\), \(|\tilde{a}|^{1/n}(x_2) \in \mathcal{K}_D\). Then, inductively,

\[
|\tilde{a}|\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = |\tilde{a}|^{1/n} \begin{pmatrix} \cdots (|\tilde{a}|^{1/n}(x_1) \\ x_2 \end{pmatrix} \in \mathcal{K}_D.
\]

Therefore:

Corollary 5.2. \(U(\theta_H)\) acts on \(\mathcal{K}_H\) by left multiplication.

6. The actions of \(U(\theta_D)\) and \(U(\theta_H)\) on \(\mathcal{D}\) and \(\mathcal{H}\)

In this section we prove that \(U(\theta_H)\) acts in \(TG^+\) (in fact, we prove this fact for the disk model \(D\) of \(TG^+\). First let us note that there is the natural immersion \(G^+ \hookrightarrow TG^+, a \mapsto 0 + ia\). \(G^+\) is a homogeneous space of \(G\), with the left action \(g \cdot a = (g^*)^{-1}ag^{-1}\). This action is the main feature in studying the geometry of \(G^+\). We shall see that it can be regarded as a restriction of the action of \(U(\theta_H)\) on \(TG^+\) (see [6], [8], [9]). Note that \(G\) is a subgroup of \(U(\theta_H)\), via the injective group homomorphism

\[
G \hookrightarrow U(\theta_H), \quad g \mapsto \begin{pmatrix} g & 0 \\ 0 & (g^*)^{-1} \end{pmatrix}.
\]

In order to introduce the actions of \(U(\theta_D)\) and \(U(\theta_H)\) on \(\mathcal{D}\) and \(\mathcal{H}\), respectively, we need the maps

\[
\varphi_D : \mathcal{K}_D \to \mathcal{D}, \quad \varphi_D(x_1, x_2) = x_2 x_1^{-1},
\]

and

\[
\varphi_H : \mathcal{K}_H \to \mathcal{H}, \quad \varphi_H(x_1, x_2) = x_2 x_1^{-1}.
\]
Definition 6.1. (a) Given \(z \in \mathcal{D} \), consider \((1, z)\) and compute \(\theta_D((1, z), (1, z)) = 1 - z^*z \). Since \(\|z\| < 1 \), this element is positive and invertible. Then

\[(1 - z^*z)^{-1/2}, z(1 - z^*z)^{-1/2} \in \mathcal{K}_D.\]

If \(\tilde{a} = \left(\begin{smallmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{smallmatrix} \right) \in \mathcal{U}(\theta_D) \), put

\[\tilde{a} \cdot z = \varphi_D(\tilde{a}((1 - z^*z)^{-1/2} z(1 - z^*z)^{-1/2})) = (a_{21} + a_{22}z)(a_{11} + a_{12}z)^{-1}.\]

(b) Analogously, given \(h \in \mathcal{H} \), we have that \(\theta_H((1, h), (1, h)) = 2 \text{Im}(h) \). Then

\[(\frac{1}{\sqrt{2}} \text{Im}(h)^{-1/2}, \frac{1}{\sqrt{2}} h \text{Im}(h)^{-1/2}) \in \mathcal{K}_H.\]

For \(\tilde{a} = \left(\begin{smallmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{smallmatrix} \right) \in \mathcal{U}(\theta_H) \), put

\[\tilde{a} \cdot h = \varphi_H(\tilde{a}(\frac{1}{\sqrt{2}} \text{Im}(h)^{-1/2}, \frac{1}{\sqrt{2}} h \text{Im}(h)^{-1/2})) = (a_{21} + a_{22}h)(a_{11} + a_{12}h)^{-1}.\]

Remark 6.2. Both actions are well defined, and they are, indeed, left actions.

Let us prove that these left actions are transitive. More specifically:

Proposition 6.3. The action of the subgroup \(\mathcal{B} \) on \(\mathcal{H} \) is transitive.

Proof. Let \(h \in \mathcal{H} \) and \(\tilde{b} \in \mathcal{B} \),

\[\tilde{b} = \left(\begin{smallmatrix} b & 0 \\ x & (b^*)^{-1} \end{smallmatrix} \right),\]

with \(b^*x \) selfadjoint. Then

\[\tilde{b} \cdot h = xb^{-1} + (b^*)^{-1}bb^{-1} = (b^*)^{-1}(b^*x + h)b^{-1}.\]

The map \(x \mapsto (b^*)^{-1}xb^{-1} \) is a linear isomorphism in \(\mathcal{A} \) which preserves positivity (and, thus, selfadjointness). Thus,

\[\text{Im}(\tilde{b} \cdot h) = (b^*)^{-1} \text{Im}(h)b^{-1}.\]

Fix \(h \in \mathcal{H} \) and let \(h' \) be another element in \(\mathcal{H} \). Put \(z = \text{Im}(h) \) and \(z' = \text{Im}(h') \); both are in \(G^+ \). The action of \(G \) on \(G^+ \) is transitive, thus there exists \(g \in G \) such that

\[z' = (g^*)^{-1}zg^{-1}.\]

Put \(y = h'g - (g^*)^{-1}z \). Note that \(g^*y = g^*h'g - z \) is selfadjoint:

\[\text{Im}(g^*y) = g^* \text{Im}(h')g - z = g^*z'g - z = 0.\]

A direct computation shows that if

\[\tilde{g} = \left(\begin{smallmatrix} g & 0 \\ y & (g^*)^{-1} \end{smallmatrix} \right),\]

then

\[\tilde{g} \cdot h = h'.\]
Remark 6.4. As remarked, the unitary matrix U maps K_D onto K_H, and intertwines the groups $U(\theta_D)$ and $U(\theta_H)$: $\tilde{a} \in U(\theta_H)$ if and only if $U^*\tilde{a}U \in U(\theta_D)$. We shall see later (Remark 7.4), that the Moebius transformation $\Gamma: H \to D$ induced by these transformations, maps $i \in H$ to 0 \in D. Let us denote by \mathbb{I}_H^i the isotropy group (of the action of $U(\theta_H)$) of $i \in H$:
$$\mathbb{I}_H^i = \{ \tilde{c} \in U(\theta_H) : \tilde{c} \cdot i = i \}.$$
Accordingly, the isotropy group (of the action of $U(\theta_D)$) of 0 \in D is
$$\mathbb{I}_D^0 = \{ \tilde{d} \in U(\theta_D) : \tilde{d} \cdot 0 = 0 \}.$$
The above facts imply that $U^*\mathbb{I}_H^i U = \mathbb{I}_D^0$.
On the other hand, note that $\tilde{d} \cdot 0 = 0$ if and only if $d_{21} = 0$, since $\tilde{d} \in U(\theta_D)$, this implies that also $d_{12} = 0$ and $d_{11}, d_{22} \in A$, i.e.,
$$\mathbb{I}_D^0 = \{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a \in U_A \},$$
and, therefore, $\mathbb{I}_H^i = U \mathbb{I}_D^0 U^* = \mathbb{I}_D^0$.

Theorem 6.5.

1. The subgroup \mathcal{B} acts freely and transitively on K_H. In particular, $U(\theta_H)$ acts transitively on K_H.

2. K_H is an C^∞ submanifold of A^2.

3. The restriction of φ to K_H,
$$\varphi|_{K_H} : K_H \to H,$$
is a surjective submersion, with a global C^∞ cross section.

4. The group $U(\theta_H)$ acts covariantly with respect to φ (on the left): if $\tilde{a} \in U(\theta_H)$ and $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \in K_H$,
$$\varphi(\tilde{a} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}) = \tilde{a} \cdot \varphi(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}).$$

Proof. The first assertion: consider the element $\begin{pmatrix} 1 \\ i \end{pmatrix} \in \mathbb{K}_H$, and pick $\tilde{b} \in \mathcal{B}$,
$$\tilde{b} = \begin{pmatrix} b & 0 \\ x & (b^*)^{-1} \end{pmatrix}$$
with $b^* x$ selfadjoint. Then
$$\tilde{b} \cdot \frac{1}{\sqrt{2}}(1) = \frac{1}{\sqrt{2}}(b x + (b^*)^{-1}).$$
These pairs parametrize K_H. Pick $\begin{pmatrix} 1 \\ x_1 \end{pmatrix} \in \mathbb{K}_H$. Then $\tilde{b} = x_1$ and $x = x_2 - i(x_1)^{-1}$ determine a matrix \tilde{b} in \mathcal{B}: x_1 is invertible and a straightforward computation shows that the fact that $\begin{pmatrix} 1 \\ x_2 \end{pmatrix} \in \mathbb{K}_H$ implies that $b^* x$ is selfadjoint. Clearly $\tilde{b} \cdot \frac{1}{\sqrt{2}}(1) = (\begin{pmatrix} x_1 \\ x_2 \end{pmatrix})$, and \tilde{b} is determined by this condition.
Theorem 6.5: In Theorem 6.5 it is shown that the adapted chart for the Poincaré half-space of a C^*-algebra

Proof. The injective group homomorphism

$$\sigma : B \to K_H, \quad \sigma(b) = \tilde{b} \cdot \begin{pmatrix} 1 \\ x \end{pmatrix},$$

with inverse

$$\sigma^{-1} : K_H \to B, \quad \sigma^{-1}\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right) = \begin{pmatrix} x_1 \\ x_2 - i(x_1^*)^{-1} \end{pmatrix}.$$

The map σ^{-1} extends to $\tilde{H} := \{ (a_1, a_2) \in A^2 : \text{Im}(a_1, a_2), a_1 \in G \}$, which is open in A^2, and the map σ extends to $K_2(A)$. Therefore σ provides a global C^∞ adapted chart for K_H (modelled in the manifold B).

The third assertion: consider the map

$$\psi : H \to K_H, \quad \psi(h) = \left(\frac{1}{\sqrt{2}} \text{Im}(h)^{-1/2} \right) = \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 1 \\ h \end{pmatrix} \right) \text{Im}(h)^{-1/2}.$$

By this description, it is apparent that ψ takes values in \tilde{H}, and moreover, after elementary computations (involving right multiplication by elements of G_A),

$$i\omega(\psi(h)) = \text{Im}((\text{Im}(h)^{-1/2} \cdot h \cdot \text{Im}(h)^{-1/2}) = \text{Im}(h)^{-1/2} \cdot \text{Im}(h) \cdot \text{Im}(h)^{-1/2} = 1.$$

Finally, we get

$$\varphi(\psi(h)) = \varphi\left(\frac{1}{\sqrt{2}} \text{Im}(h)^{-1/2}, \frac{1}{\sqrt{2}} h \text{Im}(h)^{-1/2} \right) = h.$$

The fourth assertion:

$$\tilde{a} \cdot \varphi\left(\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right) = \varphi\left(\tilde{a} \begin{pmatrix} 1 \\ b_2 b_1^{-1} \end{pmatrix} \right),$$

using the invariance of φ under the right action of G_A, this equals

$$\varphi\left(\tilde{a} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} b_1^{-1} \right) = \varphi\left(\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right).$$

Corollary 6.6. K_D is a C^∞-submanifold of A^2

Proof. In Theorem 6.5 it is shown that K_H is a C^∞-submanifold of \tilde{H}, which is an open subset of A^2. Thus, $K_D = U^*K_H$ is also a submanifold of A^2.

Let us finish this section, by proving the claim made at the beginning of it, that the action of G in G^+ is the restriction of the action of $U(\theta_H)$ on TG^+ (using the model H).

Remark 6.7. The injective group homomorphism $G \hookrightarrow U(\theta_H)$, described at the beginning of this section, allows one to regard $g \in G$ as an element in $U(\theta_H)$, namely $\left(\begin{smallmatrix} g & 0 \\ 0 & (g^*)^{-1} \end{smallmatrix} \right)$. An element $a \in G^+$ lies in H as $0 + ia$. Then

$$\left(\begin{pmatrix} g & 0 \\ 0 & (g^*)^{-1} \end{pmatrix} \right) \cdot (0 + ia) = (g^*)^{-1} iag^{-1} = ig \cdot a,$$

which is the guise under which $g \cdot a \in G^+$ appears in TG^+.

The space \mathcal{D} as decompositions of an indefinite form

The fact that ρ_D is selfadjoint in $M_2(\mathcal{A})$ and satisfies $\rho_D^2 = 1$ implies that the form θ_D induces a non degenerate \mathcal{A}-valued indefinite quadratic form in \mathcal{A}^2. We shall consider the following set, which was studied in [7] (Sections 3, 4, 6):

$$\mathcal{Q}_{\rho_D} = \{ \epsilon \in M_2(\mathcal{A}) : \epsilon^2 = 1 \text{ and } \rho_D \epsilon \in G^+ \}.$$

In particular, $\rho_D \epsilon$ is selfadjoint, which implies that

$$\theta_D \left(\epsilon \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right), \left(\begin{array}{c} b_1 \\ b_2 \end{array} \right) \right) = \theta_D \left(\left(\begin{array}{c} a_1 \\ a_2 \end{array} \right), \epsilon \left(\begin{array}{c} b_1 \\ b_2 \end{array} \right) \right) \text{ for all } \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right), \left(\begin{array}{c} b_1 \\ b_2 \end{array} \right) \in \mathcal{A}^2,$$

i.e., ϵ is symmetric for the form θ_D. The fact that $\epsilon^2 = 1$ implies that \mathcal{A}^2 is decomposed in two eigenspaces:

$$\mathcal{A}^2_+ = \{ (x_1^2) \in \mathcal{A}^2 : \epsilon (x_1^2) = (x_1^2) \}$$

and

$$\mathcal{A}^2_- = \{ (y_2^2) \in \mathcal{A}^2 : \epsilon (y_2^2) = -(y_2^2) \}.$$

The fact that $\rho_D \epsilon \in G^+$ means that the quadratic form induced by θ_D is positive definite in \mathcal{A}^2_+ and negative definite in \mathcal{A}^2_-, and that the eigenspaces are θ_D-orthogonal. Conversely, any such decomposition of \mathcal{A}^2 induces a non selfadjoint reflection in \mathcal{Q}_{ρ_D}. Therefore, it is appropriate to think of \mathcal{Q}_{ρ_D} as the set of positive-negative decompositions of the quadratic form (given by) θ_D.

The set \mathcal{Q}_{ρ_D} is a submanifold of $M_2(\mathcal{A})$. It has yet another important characterization in Section 3 of [7]: in the polar decomposition of ϵ, the unitary part is precisely ρ_D:

$$\epsilon = |\epsilon^*| \rho_D.$$

Also, any nonselfadjoint reflection with this latter property belongs to \mathcal{Q}_{ρ_D}. Therefore, \mathcal{Q}_{ρ_D} is parametrized by a subset of $\text{Gl}_2(\mathcal{A})^+$, the set positive invertible elements in $M_2(\mathcal{A})$. In particular, this endows \mathcal{Q}_{ρ_D} with an C^∞ submanifold structure, with a rich metric geometry of non-positive type.

The group $\mathcal{U}(\theta_D)$ acts transitively in \mathcal{Q}_{ρ_D},

$$\tilde{g} \cdot \epsilon = \hat{g} \epsilon \tilde{g}^{-1}.$$

We shall see below that that \mathcal{Q}_{ρ_D} is naturally diffeomorphic to \mathcal{D}. In order to lighten the notation, when the elements $(\begin{smallmatrix} x_1^2 \\ x_2^2 \end{smallmatrix})$, $(\begin{smallmatrix} y_2^2 \\ y_1^2 \end{smallmatrix})$, etc., appear as subindices, let us denote them by x, y, etc.

Definition 7.1. Any element $(\begin{smallmatrix} x_1^2 \\ x_2^2 \end{smallmatrix}) \in K_D$ defines a (modular) rank one (non selfadjoint) projection in $M_2(\mathcal{A})$:

$$p_x = (x_1^2 \ x_2^2) (x_1^2 \ x_2^2)^* \rho_D = (x_1^2 \ x_2^2) (x_1^* \ x_2^*) (\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}) = (x_1 x_1^* - x_1 x_2^* \ x_2^* x_1 - x_2 x_2^*).$$

Or, equivalently,

$$p_x \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) = (x_1^2 \ x_2^2) \theta_D \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) \left(\begin{array}{c} x_1^2 \ x_2^2 \end{array} \right) = (x_1 \ x_2) < \rho_D \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right), \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) >.$$
Proof.

Suppose the Poincaré half-space of a C^*-algebra

Consider the following maps:

$$\Phi_D : \mathcal{D} \to \mathcal{Q}_{\rho_D}, \quad \Phi_D(h) = 2p_\kappa - 1,$$

where $(\frac{x_1}{x_2}, \frac{y_1}{y_2}) \in \mathcal{K}_D$ satisfies that $\varphi:\left(\frac{x_1}{x_2}\right) = h$, and

$$\tilde{\varphi} : \mathcal{K}_D \to \mathcal{Q}_{\rho_D}, \quad \tilde{\varphi}\left(\frac{x_1}{x_2}\right) = 2p_\kappa - 1.$$

Lemma 7.2. The map Φ_D is well defined, C^∞ and equivariant with respect to the actions of $\mathcal{U}(\theta_D)$.

Proof. Suppose $(\frac{x_1}{x_2}), (\frac{y_1}{y_2}) \in \mathcal{K}_D$ such that $x_2 x_1^{-1} = y_2 y_1^{-1}$, i.e., $(\frac{y_1}{y_2}) = (\frac{x_1}{x_2}) \cdot g$, for $g = x_1^{-1} y_1 \in G$. Note that

$$1 = y_1 y_2 - y_2^2 y_2 = (x_1 g)^* x_1 g - (x_2 g)^* x_2 g = g^*(x_1^* x_1 - x_2^* x_2)g = g^* g,$$

i.e., $g \in \mathcal{U}_A$. Then

$$p_\gamma = (\frac{y_1}{y_2}) (\frac{y_1}{y_2})^* \rho_D = \left(\begin{array}{c} x_1 x_1^* - 1 \\ x_2 x_2^* \\ x_2 x_2^* + 1 \end{array}\right).$$

Put $\gamma = x_1 x_2$. Since $(\frac{x_1}{x_2}) \in \mathcal{K}_D$, one has that $x_1^* x_1 = 1 + x_2^* x_2$. Then

$$\gamma^* \gamma = x_2 x_1^* x_1 x_2^* = x_2 (1 + x_2^* x_2) x_2^* = x_2 x_2^* + (x_2 x_2^*)^2,$$

thus $\gamma^* \gamma + 1 = (x_2 x_2^* + 1)^2$, i.e., $x_2^* x_2 + 1 = (\gamma^* \gamma + 1)^{1/2}$. Similarly, we get

$$x_1 x_1^* - 1 = (\gamma^* \gamma + 1)^{1/2}$$

(using now that $x_1 x_1^* > 1$, because $x_1^* x_1 > 1$ and x_1 is invertible). Then

$$(2p_\kappa - 1) \rho_D = \left(\begin{array}{c} (\gamma^* \gamma + 1)^{1/2} \\ \gamma^* \gamma + 1^{1/2} \end{array}\right).$$

In order to prove that this matrix is invertible, denote

$$m = \left(\begin{array}{cc} 0 & \gamma \\ \gamma^* & 0 \end{array}\right).$$

Clearly m is self-adjoint and

$$(2p_\kappa - 1) \rho_D = (1 + m^2)^{1/2} + m \geq 0,$$

because the real function $f(t) = (1 + t^2)^{1/2} + t \geq 0$ for all $t \in \mathbb{R}$.
The fact that Φ_D is C^∞ follows from a standard argument in fibrations: clearly, the formula that defines Φ_D in terms of coordinates in K_D is C^∞, therefore, using C^∞ local cross sections for the fibration $\hat{\varphi} : K_D \to D$, one obtains that Φ_D is C^∞.

Finally, if $\tilde{g} \in U(\theta_D)$ (i.e., $\tilde{g}^* \rho_D = \rho_D \tilde{g}^{-1}$),

$$p_{\tilde{g} \times} = \tilde{g} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) < \rho_D \cdot \tilde{g} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) > = \tilde{g} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) < \tilde{g}^* \rho_D \cdot \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) > = \tilde{g} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) < \rho_D \tilde{g}^{-1} \cdot \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) > = \tilde{g} p_{\times} \tilde{g}^{-1},$$

which means that Φ_D is $U(\theta_D)$-equivariant: $\Phi_D(\tilde{g}(x_1)) = \tilde{g} \Phi_D((x_1)) \tilde{g}^{-1}$. \square

In the next theorem we summarize several results about the maps considered in the following diagram of homogeneous spaces of the group $U(\theta_D)$:

(7.3)

\[
\begin{array}{ccc}
\varphi & \downarrow \Phi_D & \downarrow \tilde{\varphi} \\
K_D & \to & Q_{\rho_D} \\
D & \to & Q_{\rho_D}
\end{array}
\]

Theorem 7.3. The diagram (7.3) commutes. The maps $\varphi : K_D \to D$ and $\tilde{\varphi} : K_D \to Q_{\rho_D}$ are submersions. The map $\Phi_D : D \to Q_{\rho_D}$ is a diffeomorphism. All maps are equivariant under the action of $U(\theta_D)$.

Proof. Clearly,

$$\Phi_D \circ \tilde{\varphi} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = p_{\times} = \tilde{\varphi} \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right),$$

thus the diagram commutes. Let us prove that every reflection ϵ in $M_2(A)$ which is θ_D symmetric and such that $\rho_D \epsilon$ (equivalently, $\epsilon \rho_D$ is positive) must be of the form $\epsilon = 2p_{\times} - 1$ for $x \in K_D$. That is, given ϵ of the form

$$\epsilon = \left(\begin{array}{cc} \epsilon_{11} & \epsilon_{12} \\ -\epsilon_{12}^* & \epsilon_{22} \end{array} \right),$$

with $\epsilon_{ii} = \epsilon_{ii}^*$ such that

$$0 \leq \epsilon \rho_D = \left(\begin{array}{cc} \epsilon_{11} & -\epsilon_{12} \\ -\epsilon_{12}^* & -\epsilon_{22} \end{array} \right),$$

there exists $\left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in K_D$ such that

$$\left(\begin{array}{cc} \epsilon_{11} & \epsilon_{12} \\ -\epsilon_{12}^* & \epsilon_{22} \end{array} \right) = \left(\begin{array}{cc} x_1 x_1^* - 1 & -x_1 x_2^* \\ x_2 x_1^* & -x_2 x_2^* - 1 \end{array} \right).$$

We shall look for $\left(\begin{array}{c} x_1 \\ x_2 \end{array} \right)$ with $x_1 > 0$. Note that for any $\left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in K_D$ there exists $\left(\begin{array}{c} x_1 \\ x_2 \end{array} \right)$ with $x_2(x_1)^{-1} = x_2 x_1^{-1}$ and $x_1' > 0$. Indeed, since x_1 is invertible, put $x_1 = |x_1|^u$ the polar decomposition of x_1^u, and take $x_1' = |x_1^u|$. It is not hard to see that such x_1' is unique.
The Poincaré half-space of a C*-algebra

The fact that \(\epsilon^2 = 1 \) means

\[
\begin{align*}
\epsilon_{11}^* - \epsilon_{12}^* \epsilon_{12} &= 1, \\
\epsilon_{11} \epsilon_{12} + \epsilon_{12}^* \epsilon_{22} &= 0, \\
-\epsilon_{12} \epsilon_{12} + \epsilon_{22}^* &= 1.
\end{align*}
\]

Thus, \(x_1 = (1 + \epsilon_{11})^{1/2} \) and \(x_2 = -\epsilon_{12}^* (1 + \epsilon_{11})^{-1/2} \). We must check that \(x_2 x_1^* = -\epsilon_{12}^* \), which is apparent, and that \(-x_2 x_2^* - 1 = \epsilon_{22} \). Indeed, by the above relation on \(\epsilon_{ij} \),

\[
-x_2 x_2^* - 1 = \epsilon_{12}^* (1 + \epsilon_{11})^{-1} \epsilon_{12} - 1 = \epsilon_{12}^* (1 + (\epsilon_{12}^* \epsilon_{12} + 1)^{1/2})^{-1} \epsilon_{12} - 1.
\]

Since \(\epsilon_{12}^* (\epsilon_{12} \epsilon_{12}^*)^n = (\epsilon_{12}^* \epsilon_{12})^n \epsilon_{12} \), then for any continuous function \(f : [0, +\infty) \to \mathbb{C} \),

\[
\epsilon_{12}^* f(\epsilon_{12} \epsilon_{12}^*) = f(\epsilon_{12}^* \epsilon_{12}) \epsilon_{12}^*.
\]

Thus, again using the relations on \(\epsilon_{ij} \),

\[
-x_2 x_2^* - 1 = (1 + (\epsilon_{12}^* \epsilon_{12} + 1)^{1/2})^{-1} \epsilon_{12}^* \epsilon_{12} - 1 = (1 + \epsilon_{22})^{-1} (\epsilon_{22}^* - 1) - 1 = \epsilon_{22}.
\]

Next, we must check that \((\frac{x_1}{x_2}) \in K_D \). Clearly \(x_1 = (1 + \epsilon_{11})^{1/2} \) is invertible (and positive):

\[
x_1 x_1^* - x_2 x_2^* = 1 + \epsilon_{11} - (1 + \epsilon_{11})^{-1} \epsilon_{12}^* \epsilon_{12} (1 + \epsilon_{11})^{-1/2}.
\]

Since \(-\epsilon_{12} \epsilon_{12}^* = (1 + \epsilon_{11})^2 \), this equals

\[
1 + \epsilon_{11} - (-1 + \epsilon_{11}) = 2.
\]

The formula \((\frac{x_1}{x_2}) = (1 + \epsilon_{11})^{1/2} \), regarded as a map \(Q_{\rho_D} \to K_D \), provides a global \(C^\infty \) cross section for \(\tilde{\phi} \), proving that it is retraction, thus a submersion.

Let us exhibit the inverse of \(\Phi_D \): since \(\epsilon = 2\rho_D - 1 \) for a unique \((1 + \epsilon_{11})^{1/2} = \epsilon_{12}^* (1 + \epsilon_{11})^{-1/2} \in K_D \) with \(x_1 > 0 \) (as computed above),

\[
\Phi_D^{-1} : Q_{\rho_D} \to D, \quad \Phi_D^{-1}(\epsilon) = x_2 x_1^{-1} = -\epsilon_{12}^* (1 + \epsilon_{11})^{-1}.
\]

Clearly, it is a \(C^\infty \) map. \(\square \)

The map \(\Phi_D \) was computed using coordinates in \(K_D \). It can be also computed in terms of \(z \in D \). Analogously as \(\tilde{\phi}, \tilde{\varphi} \) has also a global cross section given by the unique element in each fiber with positive first coordinate. Namely,

\[
\delta : D \to K_D, \quad \delta(z) = \left(\frac{1}{z} \right) (1 - z^* z)^{-1/2}.
\]

Then

\[
\Phi_D(z) = 2\rho_D(\delta(z)) - 1 = 2 \left(\frac{1}{z} \right) (1 - z^* z)^{-1} (1 - z^* \rho_D - 1) = \begin{pmatrix} 2(1 - z^* z)^{-1} - 1 & -2(1 - z^* z)^{-1} z^* \\ 2z(1 - z^* z)^{-1} - 2z(1 - z^* z)^{-1} z^* - 1 \end{pmatrix}.
\]
Remark 7.4. There is an analogous diagram as (7.3) for the space \mathcal{H}:

\begin{align}
\phi &\quad \Phi_H \\
\mathcal{H} &\quad \Phi &\quad Q_{\rho_H}
\end{align}

Recall the unitary operator U which intertwines ρ_D and ρ_H: $U\rho_D U^* = \rho_H$. We saw (Lemma 3.1) that U maps \mathcal{K}_D onto \mathcal{K}_H. Also, it is clear that

$\epsilon \in Q_{\rho_H}$ if and only if $U^* \epsilon U \in Q_{\rho_D}$.

Also it is clear, by construction, that

\begin{equation}
\Phi_H(h) = U \Phi_D(\Gamma(h)) U^*,
\end{equation}

where Γ is defined below.

Let us state another consequence obtained from the equivalence of diagrams (7.3) and (7.4)

Theorem 7.5. The map $\Gamma: \mathcal{H} \to \mathcal{D}$,

$\Gamma(h) = (1 + ih)(1 - ih)^{-1}$

is a (well defined) diffeomorphism with inverse $\Gamma^{-1}: \mathcal{D} \to \mathcal{H}$,

$\Gamma^{-1}(z) = i(1 - z)(1 + z)^{-1}$.

Proof. One passes from \mathcal{H} to \mathcal{D} with the cross section

$h \mapsto \frac{1}{\sqrt{2}} \left(\begin{array}{c} \frac{1}{h} \\ \mathrm{Im}(h)^{-1/2} \end{array} \right) \in \mathcal{K}_H$

composed with left multiplication by U^*, followed by φ, namely,

$h \mapsto \frac{1}{\sqrt{2}} \left(\begin{array}{c} \frac{1}{h} \\ \mathrm{Im}(h)^{-1/2} \end{array} \right) \mapsto \frac{1}{\sqrt{2}} U^* \left(\begin{array}{c} \frac{1}{h} \\ \mathrm{Im}(h)^{-1/2} \end{array} \right) \mapsto (1 + ih)(1 - ih)^{-1}$.

Which means that $\Gamma: \mathcal{H} \to \mathcal{D}$ is well defined and smooth. Its inverse is computed analogously:

$z \mapsto \left(\begin{array}{c} 1 \\ z \end{array} \right) (1 - z^*z)^{-1/2} \mapsto U \left(\begin{array}{c} 1 \\ z \end{array} \right) (1 - z^*z)^{-1/2} \mapsto \left(i - iz \right) (1 + z)^{-1}$.

A straightforward computation shows that these maps are each other inverses. \(\square\)

Let us finish this section by recalling the action of the group $\mathcal{U}(\theta_H)$.

If $\left(\begin{array}{c} y_1 \\ y_2 \end{array} \right) \in \mathcal{H}$, then, since $px(\left(\begin{array}{c} y_1 \\ y_2 \end{array} \right)) = (x_1, x_2, y_1, y_2)$, one has that for any $\tilde{a} \in \mathcal{U}(\theta_H)$,

$p_{\tilde{a}} x = \tilde{a} \left(x_1 \quad x_2 \right) \theta_H \left(\tilde{a} \left(x_1 \quad x_2 \right) \right).

Then $2p_{\tilde{a}} x - 1 = \tilde{a}(2p_x - 1)\tilde{a}^*$. Therefore:
Proposition 7.6. If $h \in \mathcal{H}$ and $\tilde{g} \in \mathcal{U}(\theta_H)$,

$$\Phi_H(\tilde{g} \cdot h) = \tilde{g} \Phi_H(h) \tilde{g}^{-1},$$

i.e., Φ_H is equivariant for the action of $\mathcal{U}(\theta_H)$. Therefore,

(7.6) \hspace{1cm} \Gamma(\tilde{g} \cdot h) = (U^* \tilde{g} U) \cdot \Gamma(h)

8. The hyperbolic geometry of \mathcal{Q}_ρ

In previous papers [6], [8], [9] the geometry of the set of positive invertible elements of a C^*-algebra was studied. As is the case with the classical example of positive definite complex matrices (see for instance [16]), this space, with the appropriate Finsler metric, behaves as a non-positively curved manifold. In [17] it is proven that the set \mathcal{Q}_ρ embeds in the space of positive invertible elements, in a way that the main geometric features remain invariant. Let us briefly describe below these constructions and results. We shall use these results (and therefore also state them) for the case of the C^*-algebra $M_2(A)$; the space of positive and invertible matrices shall be denoted by $\text{Gl}_2(A)^+$.

Remark 8.1 (see [6]). $\text{Gl}_2(A)^+$ is an open subset of $M_2(A)_+$, so it has a natural differentiable structure. We consider in $\text{Gl}_2(A)^+$ the following left action of $\text{Gl}_2(A)$:

$$\tilde{g} \cdot \tilde{a} = (\tilde{g}^*)^{-1} \tilde{a} \tilde{g}^{-1}, \quad \tilde{g} \in \text{Gl}_2(A), \tilde{a} \in \text{Gl}_2(A)^+.$$

This action is transitive. The isotropy subgroup of an element $\tilde{a} \in \text{Gl}_2(A)^+$ is the group of \tilde{a}-unitary operators. Thus, the Banach–Lie isotropy algebra of \tilde{a} is the space of \tilde{a}-anti-Hermitian elements of $M_2(A)$: $\tilde{x}^* \tilde{a} + \tilde{a} \tilde{x} = 0$. A natural complement for this space is the space of \tilde{a}-Hermitian elements: $\tilde{y}^* \tilde{a} - \tilde{a} \tilde{y} = 0$. This decomposition is equivariant under the action of $\text{Gl}_2(A)$, and induces a linear connection in $\text{Gl}_2(A)^+$. The covariant derivative of this connection is given by

$$\frac{D Y}{d t} = \frac{d Y}{d t} - \frac{1}{2} \{ \gamma \gamma^{-1} Y + Y \gamma^{-1} \dot{\gamma} \},$$

where $Y(t)$ is a tangent field along the curve $\gamma(t)$ in $\text{Gl}_2(A)^+$; due to the trivial local structure of $\text{Gl}_2(A)^+ \subset M_2(A)_+$, this simply means that $Y(t)$ is a curve of selfadjoint elements in $M_2(A)$. A geodesic is a curve γ such that $D\dot{\gamma}/dt = 0$. The geodesic γ with $\gamma(0) = \tilde{a}$ and $\dot{\gamma}(0) = X$ is given by

$$\gamma(t) = e^{\frac{t}{2} X \tilde{a}^{-1}} \tilde{a} e^{\frac{t}{2} X \tilde{a}^{-1}}.$$

The exponential map $\exp_{\tilde{a}} : M_2(A)_+ \rightarrow \text{Gl}_2(A)^+$,

$$\exp_{\tilde{a}}(X) = e^{\frac{1}{2} X \tilde{a}^{-1}} \tilde{a} e^{\frac{1}{2} X \tilde{a}^{-1}},$$

is everywhere a diffeomorphism. Any pair $\tilde{a}, \tilde{b} \in \text{Gl}_2(A)^+$ is joined by a unique geodesic, which is

$$\gamma_{\tilde{a}, \tilde{b}}(t) = \tilde{a}^{1/2} (\tilde{a}^{-1/2} \tilde{b} \tilde{a}^{-1/2})^t \tilde{a}^{1/2}.$$
The space $\text{Gl}_2(A)^+$ carries a Finsler metric. By this we mean a continuous distribution $\text{Gl}_2(A)^+ \ni \tilde{a} \mapsto \| \tilde{a} \|$ of norms defined in the corresponding tangent spaces $T(\text{Gl}_2(A)^+)_{\tilde{a}} = M_2(A)_{s_{\tilde{a}}}$. Notice that we do not require that this distribution be smooth, as in the finite dimensional setting (see for instance [1], [2], [6], [7], for other examples of Finsler metrics in the context of operator theory).

If $\tilde{a} \in \text{Gl}_2(A)^+$ and $X \in M_2(A)_{s_{\tilde{a}}}$, put

$$\| X \|_{\tilde{a}} = \| \tilde{a}^{-1/2} X \tilde{a}^{-1/2} \|_{\tilde{a}}.$$

(8.1) Theorem 8.2 ([6], Section 6). With the metric defined in (8.1), the geodesics of the connection are globally minimal: for any $\tilde{a}, \tilde{b} \in \text{Gl}_2(A)^+$, the unique geodesic $\gamma_{\tilde{a}, \tilde{b}}$ of the connection has minimal length among all smooth curves in $\text{Gl}_2(A)^+$ joining \tilde{a} and \tilde{b}.

The (geodesic) distance between \tilde{a} and \tilde{b} can be computed as

$$d_g(\tilde{a}, \tilde{b}) = \| \log(\tilde{a}^{-1/2} \tilde{b} \tilde{a}^{-1/2}) \|,$$

where log denotes the unique selfadjoint logarithm of a positive invertible element.

Moreover, the metric has the following property, which in Riemannian geometry is equivalent to non positive curvature, and is used as a definition of non positive curvature for metric length spaces (i.e., metric spaces with given short curves, see [4], [5], [12]).

Theorem 8.3 ([9]). If $\gamma(t), \delta(t)$ are two geodesics in G^+, then $f(t) = d_g(\gamma(t), \delta(t))$ is a convex function.

In particular, if the geodesics start at the same point, i.e., $\gamma(0) = \delta(0)$, then

$$d_g(\gamma(t), \delta(t)) \leq t d_g(\gamma(1), \delta(1)).$$

There is a natural embedding of Q_ρ in $\text{Gl}_2^+(A)$:

Theorem 8.4 ([17]). The embedding of Q_ρ in $\text{Gl}_2(A)^+$ is given by

$$Q_\rho \hookrightarrow \text{Gl}_2^+(A), \quad \epsilon \mapsto \rho \epsilon.$$

This embedding has the following properties:

(1) Let $\epsilon_1, \epsilon_2 \in Q_\rho$. Then the unique geodesic of $\text{Gl}_2(A)^+$ joining $\rho \epsilon_1$ and $\rho \epsilon_2$ lies in (the image of) Q_ρ (under the above embedding).

(2) Q_ρ is an homogeneous space under the action of $\mathcal{U}(\theta_D)$, $\text{Gl}_2^+(A)$ is an homogeneous space under the action of $\text{Gl}_2(A)$. The embedding is equivariant for these actions.

Thus, if we endow Q_ρ with the geometry induced by this embedding, it becomes a non positively curved metric length space.

We use these facts to translate to H and D the metric structure of Q_ρ, by means of the equivariant diffeomorphisms Φ_H and Φ_D, respectively.
The Poincaré half-space of a C*-algebra

Definition 8.5. For any $h_1, h_2 \in \mathcal{H}$ and $z_1, z_2 \in \mathcal{D}$,

$$d_H(h_1, h_2) = d_\gamma(\rho_H \Phi_H(h_1), \rho_H \Phi_H(h_2)),$$

$$d_D(z_1, z_2) = d_\gamma(\rho_D \Phi_D(z_1), \rho_D \Phi_D(z_2)).$$

Therefore one has:

Corollary 8.6. Both (\mathcal{H}, d_H) and (\mathcal{D}, d_D) are non positively curved metric length spaces. In other words, if δ_1, δ_2 are two geodesics in \mathcal{H} (resp. \mathcal{D}), the function

$$f(t) = d_H(\delta_1(t), \delta_2(t))$$

(resp. $f(t) = d_D(\delta_1(t), \delta_2(t))$) is convex.

If, additionally, $\delta_1(0) = \delta_2(0)$ then, for $t \in [0, 1]$,

$$d_H(\delta_1(t), \delta_2(t)) \leq t d_H(\delta_1(1), \delta_2(1))$$

(resp. $d_D(\delta_1(t), \delta_2(t)) \leq t d_D(\delta_1(1), \delta_2(1))$).

The diffeomorphism

$$\Gamma : \mathcal{H} \to \mathcal{D}$$

is an isometry.

Proof. Recall formula (3.1) in Remark 7.4: $\Phi_H(h) = U \Phi_D(\gamma(h)) U^*$. A straightforward computation shows that this implies that if $h_1, h_2 \in \mathcal{H}$, then

$$d_D(\Gamma(h), \Gamma(h_2)) = d_H(h_1, h_2).$$

In [15], treating other kind of problems, a similar homeomorphism was established, between \mathcal{D} and the set of elements in \mathcal{A} with positive and invertible real part (i.e., $-\mathcal{H}$).

Recall that the group $\mathcal{G}(\theta_H)$ acts transitively on \mathcal{H}. This group is, in turn, isomorphic to $\mathcal{G}(\theta_D)$, which acts transitively on \mathcal{D}. Also recall (Proposition (7.6)), that these actions are equivariant for Φ_H and Φ_D, respectively. Then one has:

Corollary 8.7. The actions of $\mathcal{G}(\theta_H)$ and $\mathcal{G}(\theta_D)$ on \mathcal{H} and \mathcal{D}, respectively, are isometric.

Proof. The diffeomorphism Φ_H, followed by the embedding of $\mathcal{G}_p \mathcal{H}$, is a composition of maps which are equivariant for the action of $\mathcal{G}(\theta_H) \subset \mathcal{G}_2(\mathcal{A})$. On the other hand, the action of this latter group on $\mathcal{G}_2^+(\mathcal{A})$ is isometric ([7], p. 66).

Example 8.8. Let us compute the d_D distance between 0 and z in \mathcal{D}:

$$d_D(0, z) = \| \log(\Phi_D(z) \rho_D) \| = \| \log \left(\begin{array}{cc} 2(1 - z^* z)^{-1} - 1 & 2(1 - z^* z)^{-1} z^* \\ 2z(1 - z^* z)^{-1} & 2(1 - z^* z)^{-1} z^* + 1 \end{array} \right) \|.$$

Straightforward computations show that this matrix above can be factorized

$$\left(\begin{array}{cc} 2(1 - z^* z)^{-1} - 1 & 2(1 - z^* z)^{-1} z^* \\ 2z(1 - z^* z)^{-1} & 2z(1 - z^* z)^{-1} z^* + 1 \end{array} \right) = \Delta_1 \Delta_2,$$
where
\[
\Delta_1 = \begin{pmatrix}
(1 - z^* z)^{-1} & 0 \\
0 & (1 - zz^*)^{-1}
\end{pmatrix}
\quad \text{and} \quad
\Delta_2 = \begin{pmatrix}
1 + z^* z & 2z^* \\
2z & 1 + zz^*
\end{pmatrix}.
\]

(A key fact in this computation is that
\[
z(1 - z^* z)^{-1} = (1 - zz^*)^{-1} z.
\]
Denote by
\[
\Omega = \begin{pmatrix}
0 & z^* \\
z & 0
\end{pmatrix}.
\]
Note that \(\Omega^* = \Omega\) and \(\|\Omega\| < 1\). Then
\[
\Delta_1 = (1 - \Omega)^{-1} \quad \text{and} \quad \Delta_2 = (1 + \Omega)^2.
\]
Therefore \(\log(\Delta_1 \Delta_2) = \log(1 + \Omega) - \log(1 - \Omega)\). Using the power series
\[
\log(1 + t) - \log(1 - t) = 2 \sum_{k=0}^{\infty} \frac{t^{2k+1}}{2k+1},
\]
we get that
\[
\log(1 + \Omega) - \log(1 - \Omega) = 2 \left(z \sum_{k=0}^{\infty} \frac{1}{2k+1} (z^* z)^k \right)
\]
The norm of this matrix equals
\[
\| \log(1 + \Omega) - \log(1 - \Omega) \| = \|(\log(1 + \Omega) - \log(1 - \Omega))^2\|^{1/2}.
\]
Note that \(\langle \log(1 + \Omega) - \log(1 - \Omega) \rangle^2\) equals
\[
4 \left(z^* z \left(\sum_{k=0}^{\infty} \frac{1}{2k+1} (z^* z)^k \right)^2 \right)
\]
\[
= \left(\log(1 + |z|) - \log(1 - |z|) \right)^2.
\]
The square root of the norm of this matrix is
\[
\max\{\| \log(1 + |z|) - \log(1 - |z|) \|, \| \log(1 + |z^*|) - \log(1 - |z^*|) \|\}.
\]
The function \(f(t) = \log(1 + t) - \log(1 - t)\) is strictly increasing in \([0, 1)\), with \(f(0) = 0\). Thus (using that \(\| |z| \| = \| z \|\)),
\[
\| \log(1 + |z|) - \log(1 - |z|) \| = \max\{\| f(t) \| : t \in \sigma(|z|) \} = f(\| z \|).
\]
Analogously, \(\| \log(1 + |z^*|) - \log(1 - |z^*|) \| = f(\| z \|)\). Then
\[
d_D(0, z) = \log \left(\frac{1 + \| z \|}{1 - \| z \|} \right),
\]
In the scalar case \(\mathcal{A} = \mathbb{C}\), this norm equals
\[
d_D(0, z) = \log \left(\frac{1 + |z|}{1 - |z|} \right),
\]
which is the Poincaré distance in the open unit disk \(\mathbb{D}\).
9. The covariant derivative in \mathcal{H}

In this section we compute explicitly the covariant derivative induced by the reductive structure (see for instance [14]). Recall the decomposition (4.1) of the Banach–Lie algebra of $\mathcal{U}(\theta_H)$,

$$X = X_{\text{as}} \oplus X_s = \{ \tilde{\beta} \in M_2(A)_{\text{as}} : \tilde{\beta} J = J \tilde{\beta} \} \oplus \{ \tilde{\gamma} \in M_2(A)_s : \tilde{\gamma} J = -J \tilde{\gamma} \}.$$

Elements $X \in \mathcal{X}$ are of the form $X = X_0 + X_h$,

$$X = \begin{pmatrix} x_{11} & x_{12} \\ -x_{12} & -x_{11} \end{pmatrix} + \begin{pmatrix} \alpha & \beta \\ -\beta & -\alpha \end{pmatrix}$$

with $x_{11} = -x_{11}$, and all other entries selfadjoint. The left hand subspace X_{as} is the Banach–Lie algebra of the isotropy group of the action at the element $i \in \mathcal{H}$. The right hand subspace X_s is the horizontal space at this point.

The computation of the covariant derivative will be done in several steps.

Step 1. First we compute the differential of the map $\pi_i : \mathcal{U}(\theta_H) \to \mathcal{H}$, $\pi_i(\tilde{g}) = \tilde{g} \cdot i$, at the identity $1 \in \mathcal{U}(\theta_H)$. Recall that $\pi_i(\tilde{g}) = (g_{22} i + g_{21})(g_{12} i + g_{11})^{-1}$.

Then, differentiating at 1, we get

$$d(\pi_i)_1(\tilde{g}) = \gamma_{21} + \gamma_{12} + i(\gamma_{22} - \gamma_{11}).$$

If \tilde{g} is horizontal, $d(\pi_i)_1(\tilde{g}) = 2\gamma_{12} - 2i\gamma_{11}$. Then:

Theorem 9.1. The 1-form of the reductive connection at $i \in \mathcal{H}$ is

$$\kappa_i(\zeta) = \frac{1}{2} \begin{pmatrix} -\chi & \chi \\ \chi & -\chi \end{pmatrix}, \quad \text{if } \zeta = \chi + i\chi.$$

Step 2. For any given $h = x + iy$, one can find an element $\tilde{b} \in \mathcal{B} \subset \mathcal{U}(\theta_H)$ (the Borel subgroup of $\mathcal{U}(\theta_H)$) such that $\tilde{b} \cdot i = h$. For instance,

$$\tilde{b} = \begin{pmatrix} y^{-1/2} & 0 \\ x y^{-1/2} & y^{1/2} \end{pmatrix} \quad \text{with inverse } \tilde{b}^{-1} = \begin{pmatrix} y^{1/2} & 0 \\ -y^{-1/2} x & y^{-1/2} \end{pmatrix}.$$

Straightforward computations show that $\tilde{b} \cdot i = h$ (and $\tilde{b}^{-1} \cdot h = i$).

Step 3. Let us compute now the differential of the action of $\tilde{g} \in \mathcal{U}(\theta_H)$ on tangent vectors of \mathcal{H}. If $\frac{d}{dt} h = \zeta$,

$$\frac{d}{dt}(\tilde{g} \cdot h) = (g_{22} - w g_{21}) \zeta (g_{12} - g_{11})^{-1},$$

where $w = \tilde{g} \cdot h = (g_{22} h + g_{21})(g_{12} h + g_{11})^{-1}$. Using the transformation in Step 2, we can carry a tangent vector χ at h to the tangent vector $y^{-1/2} \zeta y^{-1/2}$ at i. If $\zeta = \chi + i\chi$,

$$\kappa_i(y^{-1/2} \zeta y^{-1/2}) = \frac{1}{2} y^{-1/2} \begin{pmatrix} -\chi & \chi \\ \chi & -\chi \end{pmatrix} y^{-1/2}.$$
Step 4. To obtain $\kappa_h(\zeta)$, we use the inner automorphism Ad_j:
\[
\begin{pmatrix}
 y^{-1/2} & 0 \\
 xy^{-1/2} & y^{-1/2}
\end{pmatrix}
\left\{ \frac{1}{2} y^{-1/2} \begin{pmatrix} -\Upsilon & \chi \\ \chi & Y \end{pmatrix} y^{-1/2} \right\}
\begin{pmatrix}
 y^{1/2} & 0 \\
 -y^{-1/2}x & y^{-1/2}
\end{pmatrix}
\]
\[
= \frac{1}{2} \begin{pmatrix}
 -y^{-1} \chi y^{-1} x & y^{-1} \chi y^{-1} \\
 \chi - xy^{-1} \chi y^{-1} & \chi x y^{-1}
\end{pmatrix}
\frac{1}{2} \begin{pmatrix}
 -y^{-1} \Upsilon & -y^{-1} \chi \\
 -xy^{-1} \chi y^{-1} & \chi y^{-1}
\end{pmatrix}
\]

Step 5. Next, we compute the covariant derivative of the reductive connection in \mathcal{H}, at the point $i \in \mathcal{H}$. Consider the curve $h(t) = x(t) + iy(t)$ in \mathcal{H}, with $z(0) = i$, and the vector field $\zeta = \chi + i \Upsilon$ defined on a neighbourhood of i. Denote by $\frac{dC}{dt}{\mid}_{t=0}$ the covariant derivative at $i \in \mathcal{H}$. According to [14], one has that
\[
k_i\left(\frac{dC}{dt}{\mid}_{t=0}\right) = \left. \frac{d}{dt} \kappa_{h(t)} Z(h(t)) \right|_{t=0} + \left[\kappa_i(Z(i)), \kappa_i \left(\frac{d}{dt} h(t) \right) \right]_{t=0}.
\]
To lighten the notation, we shall denote by $\kappa(\zeta')$, h' the usual derivatives at $t = 0$.
So the formula above reads
\[
k_i\left(\frac{dC}{dt}{\mid}_{t=0}\right) = \kappa(\zeta') + \left[\kappa_i(Z(i)), \kappa_i(h') \right].
\]
Then
\[
\kappa(\zeta') = \frac{1}{2} \begin{pmatrix}
 -\Upsilon' & \chi' \\
 \chi' & Y'
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
 y' \Upsilon - \chi' x' & -y' \chi - \chi' y' \\
 -x' \chi - \Upsilon x' & x' \chi - \Upsilon y'
\end{pmatrix}
\]
Let us write the sum of right-hand matrix above with the bracket $[\kappa_i(Z(i)), \kappa_i(h')]$. After strenuous but elementary computations one gets
\[
\frac{1}{4} \begin{pmatrix}
 \Upsilon y' - \chi x' & -\Upsilon x' - \chi y' \\
 -\chi y' - \Upsilon x' & \chi x' - \Upsilon y'
\end{pmatrix}
\frac{1}{4} \begin{pmatrix}
 y' \Upsilon - x' \chi & -y' \chi - x' \Upsilon \\
 -x' \Upsilon - y' \chi & x' \chi - y' \Upsilon
\end{pmatrix}
\]
Now we must apply κ_i^{-1}, or else realize that the above term is the value of κ_i at $-\text{Re}(x' \Upsilon + y' \chi) + i \text{Re}(x' \chi - y' \Upsilon)$.
Therefore,
\[
\left. \frac{dC}{dt}{\mid}_{t=0} = \chi' + i \Upsilon' + \{-\text{Re}(x' \Upsilon + y' \chi) + i \text{Re}(x' \chi - y' \Upsilon)\} \right.
\]

Step 6. Let $h_0 = x_0 + iy_0 \in \mathcal{H}$, and $h(t) = x(t) + iy(t)$ be a smooth curve in \mathcal{H} with $h(0) = h_0$. Let $\zeta = \chi + i \Upsilon$ be a smooth vector field defined on a neighbourhood of h_0. Let us compute $\frac{dC}{dt}{\mid}_{t=0}$. To do this, we shall use the invariance of the connection under the action of the group $U(\theta \mathcal{H})$, and the fact that we know this formula in the case $h_0 = i$. As seen in Step 2, the (explicit) element \tilde{b} defined there, performs $\tilde{b}^{-1} \cdot h_0 = i$. Thus we can carry the data to the point i, perform the covariant derivative, and translate it back to h_0 with the action (note for instance, that $y_0^{1/2} \text{Re}(w) y_0^{1/2} = \text{Re}(y_0^{1/2} w y_0^{1/2})$, and so forth). We get:
\[
(9.1) \quad \frac{dC}{dt} = \zeta' - \text{Re}(x' y_0^{-1} \Upsilon + y' y_0^{-1} \chi) + i \text{Re}(x' y_0^{-1} \chi - y' y_0^{-1} \Upsilon).
\]
We devote the next section to describe examples of geodesics in the half-space model \mathcal{H}.

\[E. \text{Androuch, G. Corach and L. Recht}\]
The Poincaré half-space of a C*-algebra

10. Examples of geodesics in \mathcal{H}

In terms of the decomposition (4.1) of the Banach–Lie algebra of $\mathcal{U}(\theta_H)$,

$$X = X_{\text{os}} \oplus X_{s} = \{ \tilde{\beta} \in M_2(A)_{\text{os}} : \tilde{\beta}J = J\tilde{\beta} \} \oplus \{ \tilde{\gamma} \in M_2(A)_{s} : \tilde{\gamma}J = -J\tilde{\gamma} \}.$$

Geodesics of \mathcal{H} starting at i for $t = 0$ have the form

$$\delta(t) = e^{tX_h} \cdot i,$$

where X_h is a horizontal element, i.e., an element in $M_2(A)$ of the form

$$X_h = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix},$$

with $\alpha^* = -\alpha$, $\beta^* = -\beta$. We shall compute these geodesics in two particular cases:

Example 10.1. Suppose that the entries α and β in X_h commute. Put $\gamma = (\alpha^2 + \beta^2)^{1/2}$. The element γ may not be invertible; however, if we make the assumption that A is weakly closed (i.e., a von Neumann algebra), then there exist unique selfadjoint elements x and y in A such that $x\gamma = \gamma x = \alpha$ and $y\gamma = \gamma y = \beta$. Moreover, there exists a selfadjoint element $\chi \in A$ such that $x = \cos(\chi)$ and $y = \sin(\chi)$. Accordingly, $X_h/\gamma = \begin{pmatrix} \cos(\chi) & \sin(\chi) \\ \sin(\chi) & -\cos(\chi) \end{pmatrix}$. Put $1_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Straightforward computations show that for $n \geq 0$,

$$(tX_h)^{2n} = (t\gamma)^{2n}1_2 \quad \text{and} \quad (tX_h)^{2n+1} = (t\gamma)^{2n+1}X_h/\gamma.$$

Then

$$e^{tX_h} = \cosh(t\gamma)1_2 + \sinh(t\gamma)X_h/\gamma = \begin{pmatrix} \cosh(t\gamma) + \cos(\chi)\sinh(t\gamma) & \sin(\chi)\sinh(t\gamma) \\ \sin(\chi)\sinh(t\gamma) & \cosh(t\gamma) - \cos(\chi)\sinh(t\gamma) \end{pmatrix}.$$

After straightforward calculations, involving well known identities concerning cosh and sinh, we arrive at

$$\delta(t) = (\sin(\chi)\sinh(2t\gamma) + i) (\cosh(2t\gamma) + \cos(\chi)\sinh(2t\gamma))^{-1}. $$

Since all elements involved commute and ξ,γ are selfadjoint, it follows that

$$\text{Re}(\delta(t)) = \sin(\chi)\sinh(2t\gamma) (\cosh(2t\gamma) + \cos(\chi)\sinh(2t\gamma))^{-1}$$

and

$$\text{Im}(\delta(t)) = (\cosh(2t\gamma) + \cos(\chi)\sinh(2t\gamma))^{-1}. $$

Therefore, if one regards δ as a geodesic in TG^+, i.e., $\delta = (\text{Re}(\delta), \text{Im}(\delta))$, it is given by

$$\text{Re}(\delta(t)) = \sin(\chi)\sinh(2t\gamma) (\cosh(2t\gamma) + \cos(\chi)\sinh(2t\gamma))^{-1},$$

and

$$\text{Im}(\delta(t)) = (\cosh(2t\gamma) + \cos(\chi)\sinh(2t\gamma))^{-1}. $$
Additionally, if there exists \(\mu \in A \), \(\mu = \mu^* \), such that \(\mu \beta = -\alpha \) (for instance, if \(\beta \) is invertible), then
\[
(\text{Re}(\delta(t) - \mu))^2 + (\text{Im}(\delta(t)))^2 = \mu^2 + 1,
\]
that is, geodesics \(\delta \) of the Poincaré half-space (with commuting \(\alpha, \beta \)) satisfy the equation of an \(A \)-valued circle, centered in the real axis (at \(\mu^* = \mu \)) with radius \((1 + \mu^2)^{1/2}\).

Another special case which can be explicitly computed occurs when \(\alpha \) and \(\beta \) anti-commute:
\[
\alpha \beta = -\beta \alpha.
\]

Example 10.2. Suppose now that the entries \(\alpha, \beta \) in \(X_h \) anti-commute. Then
\[
\begin{pmatrix} 0 & 0 \\ 0 & -\alpha \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & \beta \\ \beta & 0 \end{pmatrix}
\]
commute. Thus
\[
e^{tX_h} = e^{t\begin{pmatrix} 0 & 0 \\ 0 & -\alpha \end{pmatrix}} e^{t\begin{pmatrix} 0 & \beta \\ \beta & 0 \end{pmatrix}} = \begin{pmatrix} e^{\alpha t} & 0 \\ 0 & e^{-\alpha t} \end{pmatrix} \begin{pmatrix} \cosh(t\beta) & \sinh(t\beta) \\ \sinh(t\beta) & \cosh(t\beta) \end{pmatrix}.
\]
Therefore
\[
\delta(t) = e^{tX_h} \cdot i = e^{-\alpha t}(\sinh(t\beta) + i \cosh(t\beta))(\cosh(t\beta) + i \sinh(t\beta))^{-1} e^{-\alpha t}.
\]
By straightforward computations,
\[
(\sinh(t\beta) + i \cosh(t\beta))(\cosh(t\beta) + i \sinh(t\beta))^{-1} = (\sinh(2t\beta) + i) \cosh^{-1}(2t\beta).
\]
Since \(\cosh \) is even, \(\cosh(2t\beta) \) commutes with \(e^{\alpha t} \), analogously, since \(\sinh \) is odd, \(e^{-\alpha t} \sinh(2t\beta) = \sinh(2t\beta) e^{\alpha t} \). Then
\[
\delta(t) = \sinh(2t\beta) \cosh^{-1}(2t\beta) + i \cosh^{-1}(2t\beta) e^{-2\alpha t}.
\]
Clearly, this is the real/imaginary part decomposition of \(\delta \). Note that the real part of \(\delta \) does not depend on \(\alpha \). Thus, as a curve in \(TG^+ \), this geodesic is given by
\[
\delta(t) = (\sinh(2t\beta) \cosh^{-1}(2t\beta), \cosh^{-1}(2t\beta) e^{-2\alpha t}).
\]
Suppose that \(\alpha, \beta \) have a polar decompositions in \(A \), \(\alpha = \mu |\alpha| \quad \text{and} \quad \beta = \nu |\beta| \). Then after elementary calculations, one has that the imaginary and real parts of \(\delta \) satisfy the equation
\[
(\text{Re}(\delta - i\mu))^2 + (\text{Im}(\delta))^2 = 0.
\]

11. Appendix: The half-space of a Hilbertable space

A complex locally convex topological vector space \(\mathbb{V} \) is **Hilbertable** if there exists an inner product \(\beta \) which makes \(\mathbb{V} \) a Hilbert space. In this section we fix such a space \(\mathbb{V} \). We shall denote by \(S(\mathbb{V}) \) the space of all sesquilinear forms \(\sigma \) on \(\mathbb{V} \), which are continuous in both variables. We consider in \(S(\mathbb{V}) \) the topology whose basis of neighbourhoods of the origin are the sets
\[
W(V, \epsilon) = \{ \sigma \in S(\mathbb{V}) : |\sigma(\xi, \eta)| < \epsilon, \text{ for all } \xi, \eta \in V \},
\]
where V is a neighbourhood of 0 in \mathbb{V} and $\epsilon > 0$. Let us denote by $\mathcal{I}(V)$ the set of all $\beta \in S(V)$ which are positive definite and which reproduce the topology of V.

There is a natural involution in $S(V)$, which we shall call the *conjugation* in $S(V)$, which is given by

$$\sigma'(\xi, \eta) = \overline{\sigma(\eta, \xi)}.$$

Then $S(V)$ decomposes as

$$S(V) = S_0(V) \oplus S_1(V),$$

the Hermitian ($\sigma'_0 = \sigma_0$) and anti-Hermitian ($\sigma'_1 = -\sigma_1$) forms, respectively. The set $\mathcal{I}(V)$ is an open subset of $S_0(V)$.

Denote by $\mathcal{L}(V)$ the algebra of continuous linear operators acting in V. $\mathcal{L}(V)$ is a topological algebra, with the topology given by

$$W(V, V') = \{ a \in \mathcal{L}(V) : a(\xi) \in V' \text{ for } \xi \in V \}$$

as a system of neighbourhoods of $0 \in \mathcal{L}(V)$, for V, V' neighbourhoods of $0 \in V$.

Given $\beta \in \mathcal{I}(V)$, V becomes a Hilbert space, we shall denote it by V_β. Likewise, $\mathcal{L}(V)$ becomes a C^*-algebra, which will be denoted by $\mathcal{L}_\beta(V)$.

11.1. Charts in $S(V)$

Given $\beta \in \mathcal{I}(V)$, put

$$\Phi_\beta : \mathcal{L}_\beta(V) \to S(V), \quad \Phi_\beta(a)(\xi, \eta) = \beta(a\xi, \eta).$$

By Riesz’ theorem, it is clear that Φ_β is a bijection. We shall call Φ_β the chart for $S(V)$ centered at β. Denote by $G(V)$ the group of bijective elements of $\mathcal{L}(V)$.

The group $G(V)$ acts on $S(V)$ as changes of variables, that is, if $g \in G(V)$ and $\sigma \in S(V)$,

$$L_g\sigma(\xi, \eta) = \sigma(g^{-1}\xi, g^{-1}\eta).$$

It is apparent that this action restricts to an action of $G(V)$ on $\mathcal{I}(V)$, and that it is transitive on $\mathcal{I}(V)$.

Let us describe a change of charts by means on an element $g \in G(V)$. Let β and $\tilde{\beta} = L_g\beta$. Then the following diagram commutes

(11.1)$$
\begin{array}{ccc}
\mathcal{L}_\beta(V) & \xrightarrow{L_g} & \mathcal{L}_{\tilde{\beta}}(V) \\
\downarrow \text{Ad}_g & & \downarrow \Phi_{\tilde{\beta}} \\
\mathcal{L}_{\tilde{\beta}}(V) & \xrightarrow{\Phi_\beta} & S(V).
\end{array}
$$

Here

- $L_g : \mathcal{L}_\beta(V) \to \mathcal{L}_{\tilde{\beta}}(V)$ is the action given by $L_g a = \hat{g}a g^{-1}$, where $\hat{g} = (g^{-1})^*$, with $*$ the involution of $\mathcal{L}_\beta(V)$. This map L_g is a $*$-preserving linear isomorphism. It is also an isomorphism of the set $\mathcal{L}_\beta^+(V)$ of positive invertible operators, preserving its metric and its linear connection (see Section 6).

- $\text{Ad}_g : \mathcal{L}_\beta(V) \to \mathcal{L}_{\tilde{\beta}}(V)$ is a C^*-algebra isomorphism.
The diagram (11.1) can be read as follows:

\[\Phi_{L_g \beta} = \Phi_{\beta} \mathbb{L}_g \text{Ad}_{g^{-1}}. \]

As was noted in Section 6, the group \(G(V) \) acts on \(\mathcal{L}_\beta^+ (V) \) by means of the action \(\mathbb{L}_g \).

\(G(V) \) acts also on \(\mathcal{I}(V) \) as noted above. The commutativity of the diagram (11.1) implies that \(\Phi_{\beta} \) intertwines both actions:

\[\Phi_{\beta} : \mathcal{L}_\beta^+ (V) \rightarrow \mathcal{I}(V), \quad L_g \Phi_{\beta} = \Phi_{\beta} \mathbb{L}_g. \]

11.2. The Poincaré half-space

We shall denote the Poincaré half-space of \(V \) by \(\Pi(V) \), which is the set

\[\Pi(V) = \{ \sigma \in S(V) : \text{Im}(\sigma) \in \mathcal{I}(V) \}, \]

where \(\text{Re}(\sigma) = \frac{1}{2}(\sigma + \sigma^c) \) and \(\text{Im}(\sigma) = \frac{i}{2}(\sigma^c - \sigma) \). We define charts in \(\Pi(V) \). Let \(\beta \in \mathcal{I}(V) \). Clearly \(\Phi_{\beta} (a^*) = \Phi_{\beta} (a)^c \). Therefore \(\Phi_{\beta} \) maps the Poincaré half-space space \(\mathcal{H}(\mathcal{L}_\beta(V)) \) of the C*-algebra \(\mathcal{L}_\beta(V) \) as defined in Section 1, onto \(\Pi(V) \).

The purpose of this Appendix is to introduce the geometry of the bundle of observables associated with the space of metrics \(\mathcal{I}(V) \) of the Hilbertable space \(V \).

Specifically, the bundle \(O \rightarrow \mathcal{I}(V) \), where the fiber \(O_{\beta} \) over \(\beta \in \mathcal{I}(V) \) is the vector space

\[O_{\beta} = \{ a \in \mathcal{L}_\beta(V) : a^* = a \}. \]

We claim that the natural way to present the bundle of observables is as the tangent bundle \(T\mathcal{I}(V) \).

But the space \(T\mathcal{I}(V) \) can be identified with the Poincaré half-space \(\Pi(V) \) as follows. A tangent vector \(X \in (T\mathcal{I}(V))_\beta \) is, canonically, an element of \(S_0(V) \). Therefore the map

\[(\beta, X) \in (T\mathcal{I}(V))_\beta \leftrightarrow X + i\beta \in \Pi(V) \]

identifies \(T\mathcal{I}(V) \) with \(\Pi(V) \) in a natural way.

11.3. The group of movements in \(\Pi(V) \)

Let \(\Phi_{\beta} \) and \(\Phi_{\tilde{\beta}} \), with \(\tilde{\beta} = L_g \beta \) for \(g \in G(V) \), be a pair of charts. We shall denote by \(\phi \) the change of charts given by

\[\mathcal{L}_\beta(V) \xrightarrow{\Phi_{\tilde{\beta}}} \mathcal{S}(V) \]

\[\uparrow \psi \quad \Phi_{\tilde{\beta}} \xrightarrow{\Phi_{\beta}^{-1}} \mathcal{L}_\beta(V) \]

The C*-isomorphism \(\text{Ad}_{g^{-1}} : \mathcal{L}_\beta(V) \rightarrow \mathcal{L}_\beta(V) \) enables one to relate any construction done in both algebras. For instance, the forms \(\theta_H \) and their unitary
groups $\mathcal{U}(\theta H)$. Consider the group $\mathcal{U}(\theta H)_\beta$, which acts on the half-space $\Pi(\mathcal{L}_\beta(V)) \subset \mathcal{L}_\beta(V)$. If $h \in \mathcal{U}(\theta H)_\beta$ and $z \in \Pi(\mathcal{L}_\beta(V))$, denote by $\Lambda_h z$ the action of h on z. We have the following diagram:

$$
\begin{array}{ccc}
\Pi(\mathcal{L}_\beta(V)) & \xrightarrow{\psi \Lambda_h \psi^{-1}} & \Pi(\mathcal{L}_\beta(V)) \\
\uparrow \psi & & \uparrow \psi \\
\Pi(\mathcal{L}\tilde{\beta}(V)) & \xrightarrow{\Lambda_h} & \Pi(\mathcal{L}\tilde{\beta}(V))
\end{array}
$$

Here Λ_h denotes the action of $\tilde{h} \in \mathcal{U}(\theta H)_{\tilde{\beta}}$ on $\Pi(\mathcal{L}\tilde{\beta}(V))$. We want to exhibit how the transition maps ψ translate this action on $\Pi(\mathcal{L}_\beta(V))$. Note that

$$(11.2) \quad \psi \Lambda_h \psi^{-1} = L_g \text{Ad} g \Lambda_h \text{Ad} g L_g^{-1} = L_g \Lambda_h L_g^{-1}.$$

Denote by $G_\beta(V)$ the group of invertible operators in $\mathcal{L}_\beta(V)$. There is a representation $u : G_\beta(V) \rightarrow \mathcal{U}(\theta H)_\beta$, $u(g) = \left(\begin{array}{cc} g & 0 \\ 0 & \tilde{g} \end{array} \right)$. Using this representation we may write (11.2) above as $\psi \Lambda_h \psi^{-1} = u(g) \Lambda_h u(g)^{-1}$. Moreover, if we denote by $\Lambda_d g : \mathcal{U}(\theta H)_\beta \rightarrow \mathcal{U}(\theta H)_{\tilde{\beta}}$, $\Lambda_d g = u(g) h u(g)^{-1}$, it is straightforward to verify that

$$(11.3) \quad \psi \Lambda_h \psi^{-1} = \Lambda_d g \lambda_{\Lambda_d g^{-1}} \tilde{h}.$$

Therefore we have obtained the following construction:

- To each $\beta \in I(V)$ we associate the group $\mathcal{U}(\theta H)_\beta$.
- If $\tilde{\beta} = L_g \beta$, to the pair $(\beta, \tilde{\beta})$ we associate the group isomorphism $\omega_{\beta, \tilde{\beta}} : \mathcal{U}(\theta H)_{\tilde{\beta}} \rightarrow \mathcal{U}(\theta H)_\beta$, $\omega_{\beta, \tilde{\beta}}(\tilde{h}) = \Lambda_d g \lambda_{\Lambda_d g^{-1}} \tilde{h}$.

Remarkably, this isomorphism $\omega_{\beta, \tilde{\beta}}$ does not depend on the choice of g: if $\tilde{\beta} = L_g \beta = L_{g'} \beta$, then g and g' give rise to the same isomorphism. This is another straightforward computation left to the reader.

We shall refer to this system of groups and group isomorphism as the group of movements $\mathcal{U}(\theta)$ of the Poincaré half-space $\Pi(V)$. This group of movements acts on $\Pi(V)$ and is independent on the choice of coordinates. Thus, $\Pi(V)$ is a homogeneous space of the group of movements $\mathcal{U}(\theta)$.

11.4. The relative case

So far, the building blocks of this construction are a Hilbert space V, the space of forms $S(V)$ and its subset of inner products $I(V)$. Now we want to restrict these constructions to a subalgebra $\mathcal{A} \subset \mathcal{L}(V)$. Let us define:
Definition 11.1. A C^*-pair is a pair (V, A), where V is a Hilbertable space and $A \subset \mathcal{L}(V)$ is a subalgebra, such that there exists $\beta \in \mathcal{I}(V)$ such that A is a sub-C^*-algebra of $\mathcal{L}_\beta(V)$.

In such case, we say that β is adapted to A. Let us denote by

$$\mathcal{I}(A) = \{ \beta \in \mathcal{I}(V) : \beta \text{ is adapted to } A \}.$$

Denote by G_A the invertible group of A. Clearly G_A acts on $\mathcal{I}(V)$, and $L_\beta g \beta \in \mathcal{I}(A)$ if $\beta \in \mathcal{I}(A)$ and $g \in G_A$. Denote by $\mathcal{I}_\Omega(A) \subset \mathcal{I}(A)$ an orbit of this action. A C^*-triple is a triple

$$(V, A, \mathcal{I}_\Omega(A))$$

consisting of a C^*-pair and an orbit. With these data, we can repeat the former constructions, substituting $\mathcal{L}(V)$ by A, and $\mathcal{I}(V)$ by $\mathcal{I}_\Omega(A)$.

The Poincaré half-space $\Pi(A)$ of A is formed by the elements of $\mathcal{S}_\Omega(A)$ with positive imaginary part. The (restricted) group of movements $U(\theta)$ acts on $\Pi(A)$ accordingly.

References

Received October 17, 2017; revised March 5, 2018. Published online August 20, 2019.

E-mail: eandruch@ungs.edu.ar

E-mail: gcorach@fi.uba.ar

E-mail: recht@usb.ve

Supported by PIP 2014 0525 (CONICET) and PICT 2015 1505 (ANPCyT).