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Continuous multi-line queues and TASEP

Erik Aas and Svante Linusson1

Abstract. In this paper, we study a distribution „ of labeled particles on a continuous ring.

It arises in three di�erent ways, all related to the multi-type TASEP on a ring. We prove

formulas for the probability density function for some permutations and give conjectures

for a larger class. We give a complete conjecture for the probability of two particles i; j

being next to each other on the cycle, for which we prove some cases. We also �nd that two

natural events associated to the process have exactly the same probability expressed as a

Vandermonde determinant. It is unclear whether this is just a coincidence or a consequence

of a deeper connection.
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1. Introduction

In this paper, we study a distribution „ of labeled particles on a continuous ring.

We call this distribution continuous TASEP on a ring. It arises in three di�erent

ways:

(1) as the limit of the stationary distribution of the totally asymmetric exclusion

process (TASEP) on a ring;

(2) as the projection to the last row of a random continuous multiline queue;

(3) as the stationary distribution of the so-called (continuous) process of the last

row.

Exact de�nitions are given in Section 2. The equivalence of these three

descriptions in the discrete case follows from the seminal work by Ferrari and

Martin [10]. The �rst two explicitly and the third implicitly, as described in

1 The authors acknowledge �nancial support from the Swedish research council, grant 621-

2009-5864.
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Section 2.3. The limit of the TASEP considered here keeps the number of jumping

particles constant and lets the number of vacant positions tend to in�nity.

A large number of TASEP’s have been studied, from probabilistic, com-

binatorial and physical viewpoints. In previous works by several authors e.g.

[1, 4, 6, 10, 11, 12], the discrete version of the TASEP studied here has been proven

to have many remarkable properties and to be connected to other objects: the

shape of random n–core partitions, random walks in an a�ne Weyl group, and

multiline queues. In the present paper we study properties of the limit distribu-

tion „ and �nd some unexpectedly nice properties of it. For simplicity, most of

our results are stated for the case when the n particles are labeled by ¹1; : : : ; nº,

corresponding to a cyclic permutation.

1.1. Results and conjectures. If we condition on the permutation � of the

distribution we can in some special cases give an exact description of the density

function g� of how the particles are located on the circle, see Section 3. For the

reverse permutation w0 D n : : : 321, the density function is the Vandermonde

determinant, see Theorem 3.2. For a class of other permutations the density

function is, mostly conjecturally, an explicit linear combination of derivatives of

the Vandermonde determinant. See Theorem 3.3 and Conjectures 3.4 and 3.6.

In the cases we can prove, we �rst prove an exact formula for the discrete case

with a given number of empty sites and then take the limit, see Section 3.2. An

interesting observation is that the density functions g� in several cases satisfy

Laplace’s equation. In general, it seems di�cult to give a closed formula for the

probability that the particles form a given permutation and we have no general

conjecture. However, we give a closed formula for the probability for w0, see

Theorem 3.11.

Despite the di�culty we had in understanding the probability of a permutation,

it seems to be within reach to study certain two-point correlations corresponding to

adjacency in the permutation, that is, the probability of two given labeled particles

being next to each other. The corresponding two point correlation turned out to be

important in the discrete case [2, 7], and has been the second focus of our study.

In Section 4 we present a tantalizing pattern for this correlation that we formulate

as a general conjecture. We prove some special cases of the conjecture.

In Section 5 we study a third problem, namely the probability that k particles

adjacent to each other form a descending sequence in the discrete chain. This is

proven, Theorem 5.1, to be the same Vandermonde determinant as in Theorem 3.2,

which settles Conjecture 8.1 in [7]. We don’t know if these two di�erent probabil-

ities expressed as a Vandermonde determinant is just a coincidence, or if there is

a deeper connection. See Remark 5.2 for a discussion.
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2. Background and de�nitions

2.1. Multi-type TASEP on a ring. Consider a vector m D .m1; : : : ; mn/ of

positive integers and a ring with N sites (we assume that N �
P

mi ), labeled

0; : : : ; N � 1 .mod N / from left to right starting at some particular site 0. A state

of the m-TASEP chain is an assignment of
P

i mi labeled particles to positions on

the ring such that no two particles are on the same site. Exactly mi of the particles

are labeled i . The dynamics of the chain is de�ned as follows. A particle is chosen

uniformly at random and if the site to left of the particle is empty or contains a

particle with larger label then the two sites swap.

i �! i and k i �! i k if k > i .

(Thus we can think of vacancies as particles labeled n C 1, but the notation

becomes simpler by not doing so.) It is important to note that all particles less

than i “look the same” to i (as do all larger than i). This observation is called

the projection principle. So, for instance, if one is interested only in the behavior

of class i particles, one can instead study the chain where all particles less than i

have the same class 1, all class i particles have class 2, and the rest class 3.

Exclusion processes have been studied extensively, and this m-TASEP has

been considered by several authors [1, 3, 7, 8, 9, 10, 11, 13]. Both Matrix Ansatz

solutions and more combinatorial solutions have been suggested.

Let „m.N / be the stationary distribution of the TASEP. We de�ne „n as the

limit of „m when m D .1; : : : ; 1
„ ƒ‚ …

n

/ is �xed and N tends to in�nity, while scaling

the ring to have length 1 (this will be made precise below). Note that we de�ne

a limit of stationary distributions and not the limit of the TASEP itself. We leave

the latter as an interesting challenge.

2.2. Multiline queues. We will make extensive use of multiline queues (MLQ’s),

originally de�ned by Ferrari and Martin [10]. We distinguish between discrete

MLQ’s and continuous MLQ’s.

A discrete MLQ of type m D .m1; : : : ; mn/ is an n�N array, with m1C� � �Cmi

boxes in row i for 1 � i � n. We label the rows 1; : : : ; n from top to bottom.
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Given such an array, there is a labeling procedure which assigns a label to each

box. See Figures 1 and 2 for an example. We label the boxes row by row from

top to bottom. Suppose we have just labeled row i . Pick any order of the boxes in

row i such that boxes with smaller label come before boxes with larger label. Now

go through the boxes in this order. When considering a box labeled k, �nd the

�rst unlabeled box in row .i C 1/, going weakly to the right (cyclically) from the

column of the box, and label that box k. When this is done, some boxes (in total

miC1) remain unlabeled in row i C 1. Label these i C 1. Thus all boxes in the �rst

row are labeled 1. By k-bully path we mean the path of a label k from its starting

position in row k directly down and then along the .k C 1/-st row to its box with

label k, and so forth all the way down to the bottom row. If two k-bully-paths are

arriving at the same label k it is not well de�ned which one turns downwards and

which one continues on the same row, but it will not matter for our purposes.

Note that we can alternatively label the boxes by �nding the k-bully paths for

k D 1; : : : ; n in order. For example, if m1 D 1, the 1-bully path is obtained by

always taking the next box weakly cyclically to the right of the current box, starting

with the unique box on row 1.

A continuous MLQ of type m is a sequence of n “continuous” rows with

m1 C � � �C mi boxes in row i . In this case we consider the location of the boxes to

be numbers in the continuous interval Œ0; 1/. The location of the boxes are chosen

uniformly at random in each row such that two boxes cannot have the exact same

position. We label the boxes using the same labeling procedure as for discrete

MLQ’s. See Figure 3.

The distribution on the last row (in fact, on any row) in a continuous MLQ is

the limit of the corresponding distribution for discrete MLQ’s. We will use this in

the proofs in Section 3.

The motivation for these de�nitions is the following theorem.

Theorem 2.1 (Ferrari–Martin). Let X be an m-TASEP distributed word. Then

PŒX D u� D
nu

Qr
iD1

�
n

m1C���Cmi

� ;

where nu is the number of m-MLQ’s whose bottom row is labeled u.

From this theorem it follows that „n is the distribution of the labels on the

bottom row for a uniformly chosen continuous MLQ.
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Figure 1. A discrete multiline queue with m D .1; 2; 2; 2; 2/.

� � 1 � � � � � �

� � � � � 1 2 2 �

2 3 � 3 � � 1 � 2

2 2 3 3 4 1 4 �

2 5 2 3 3 4 1 4 5

Figure 2. The bully paths and the labeling of the multiline queue in Figure 1.

3 1 2 1

1 2 1

1 1

Figure 3. A continuous multiline queue.

2.3. The process of the last row. Theorem 2.1 can easily be extended to the

case where mn D 0, as we now explain. Consider a .m1; : : : ; mn�1; 0/-MLQ. By

the theorem, the labeling of row n � 1 has TASEP distribution. Using the proof

of [10], it is easy to show that row n also has TASEP distribution, of the same

type. It follows that the probabilistic map from the .n � 1/-st row to the nth row

represents another Markov chain with the same distribution! Here is an example

of how we will use this fact. Consider Figure 4. In the top row we have sampled

a word from the TASEP distribution, and on the second row we have selected

4 positions for the boxes, uniformly at random. Then we use the same labeling
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procedure as before. The claim, then, is that the bottom row also has TASEP

distribution.

Formally, the discrete process of the last row is a Markov chain where the

states are assignments of labeled particles to positions, mi particles labeled i for

each i , on the circle ZN . The transitions are uniformly random assignments of

positions of
P

i mi boxes on a row below and they are labeled with the same

labeling procedure as for multiline queues. The unique stationary distribution of

this process thus coincides with the stationary distribution of the m-TASEP and

the bottom row of a uniformly random m-MLQ.

The continuous process of the last row is then obtained by letting N ! 1

(while scaling the circle to unit length), which similarly gives the same stationary

distribution as the continuous MLQ of type m.

4 2 3 1

1 2 4 3

Figure 4. The bottom row is the output of the process of the last row. The top row together

with the positions of the boxes in the second row are given.

3. Discrete and continuous density functions

Recall that in the de�nition of „n we have taken m D .1; : : : ; 1/, so the particles

form a permutation. We now de�ne the key quantities of interest.

(a) For a permutation � , the number G�.b1; : : : ; bnI N / of discrete MLQ’s of

length N such that the labels of the boxes in the bottom row are �1; : : : ; �n,

at positions b1 < � � � < bn. For �xed N , summing G�.b1; : : : ; bnI N / over

all permutations � and all increasing sequences b1 < � � � < bn, we get

ZN D
�

N
1

��
N
2

�

: : :
�

N
n

�

, the total number of discrete MLQ’s.

(b) We get the corresponding continuous probability density function for 0 <

q1 < � � � < qn < 1 as a limit:

g�.q1; : : : ; qn/ D lim
ı!0

ı�n lim
N !1

.1=ZN /
X

.x1;:::;xn/2Zn\
Q

i Œqi N;.qi Cı/N /

G�.x1; : : : ; xnI N /:

(c) The probability p� D
R

0<q1<���<qn<1 g�.q1; : : : ; qn/dq1 : : : dqn that the let-

ters at the bottom of a random continuous MLQ form the permutation � .
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Remark 3.1. The probability p� can also be obtained by a �nite computation as

follows. With probability 1, the horizontal positions of all boxes in the MLQ are

unique, and can hence be ordered from right to left, by numbering them from 1

to
�

n
2

�

. Such a numbering we call a placement .aij / where aij is the label given to

the j th box from the right in the i th row (from the top, as always). Since we always

have ai.j C1/ > aij , clearly there are
�

.nC1
2 /

1;:::;n

�

unique placements for a .1; : : : ; 1/-

MLQ. The placement determines the labeling of the bottom row. Therefore, we

have p� D k
�

.nC1
2 /

1;:::;n

� , where k is the number of placements for which the bottom

row is labeled � .

A re�ned version of this observation allows for computing the polynomials g� .

We have used this for computing examples, but not in the proofs.

3.1. Probability density functions for the continuous chain. As an example,

consider the case when n D 2. Which permutation appears depends solely on

whether or not the box in row 1 is between the two boxes in row 2 or not. This

gives us directly g21.q1; q2/ D q2 � q1 and g12.q1; q2/ D 1 � .q2 � q1/. The

complexity of this direct approach grows very quickly but we have been able to

compute g� for all permutations � of length at most 5, using a computer. For

some special classes of permutations � , we have been able to use the results on

the discrete chain, see Section 3.2, to understand the probability density function

g� for the continuous distribution „n when the particles form the permutation � .

Our �rst result is a formula for pw0
where w0 D n.n � 1/ : : : 1 is the reverse

permutation.

Theorem 3.2. For any n � 2 and 0 � q1 < � � � < qn < 1 we have

gw0
.q1; : : : ; qn/ D nŠ

Y

1�k<l�n

.ql � qk/:

Proof. By setting qi D bi =N in the formula in de�nition (b) and letting N ! 1

in Proposition 3.7, the result follows with an easy calculation. �

We note that a similar formula is proven in [2] for the TASEP speed process,

namely for the distribution function of the “TASEP speeds” .U1; : : : ; Un/ condi-

tioned on U1 > � � � > Un (so that particles 1; : : : ; n never cross). We cannot see

any closer similarity between our process and the speed process than that in these

two particular cases, the computation boils down to counting the same type of

MLQ’s (which in turn are closely related to Gelfand–Tsetlin patterns).
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Next, we study the permutations skw0 D n : : : .k C 2/k.k C 1/.k � 1/ : : : 21,

where the numbers k and k C1 have switched places in w0. We have the following

result for k D 1; 2, which was surprisingly di�cult to prove. As above, the proof

follows by setting qi D bi =N and letting N ! 1 in a corresponding statement

for the discrete chain Theorem 3.8.

Theorem 3.3. For any 0 � q1 < � � � < qn < 1, we have

gs1w0
D

� @

@qn

� 1
�

gw0
; for n � 2,

gs2w0
D

�1

2

@2

@qn�1@qn

� 1
�

gw0
; for n � 3:

Our computational data for n � 5 suggest the following for any k � 1.

Conjecture 3.4. For any n > k � 1 and any 0 � q1 < � � � < qn < 1, we have

gskw0
D

� 1

kŠ

@k

@qn�kC1 : : : @qn

� 1
�

gw0
:

Example 3.5. For n D 4, we know the following to be true

g4321 D 4Š
Y

1�i<j �4

.qj � qi /; g4312 D
� @

@q4

� 1
�

g4321;

g4231 D
�1

2

@2

@q3@q4

� 1
�

g4321; g3421 D
�1

6

@3

@q2@q3@q4

� 1
�

g4321:

The polynomials gw satisfy some interesting relations whose general form

we have not been able to pin down exactly. For example, for n � 4, all the

gw.x1; : : : ; xn/ satisfy Laplace’s equation

@2gw

@x2
1

C
@2gw

@x2
2

C � � � C
@2gw

@x2
n

D 0:

It’s a classical fact [5] that any such harmonic polynomial can be expressed

as a linear combination of partial derivatives of a Vandermonde determinant

(the converse, that any such combination is harmonic, is immediate). Since gw0

is a Vandermonde determinant, it follows that for each w, there is some linear

combination of its partial derivatives whose value is gw . In each case there seems
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to be a particularly simple one. Here are some examples:

g132 D
�

1 C
@

@q1

C
1

2

@2

@q2
1

�

g321;

g1432 D
�

� 1 �
@

@q1

�
1

2

@2

@q2
1

�
1

6

@3

@q3
1

�

g4321;

g4132 D
�

1 �
@

@q3

�
@

@q4

C
1

2

@2

@q3@q4

�

g4321;

g4213 D
�

1 �
@

@q4

C
1

2

@2

@q2
4

�

g4321:

For n D 5, we have found that only 15 of the 24 (up to cyclic shifts) polynomials

gw satisfy Laplace’s equation.

Since g�.q1; : : : ; qn/ D g�.q1 C t; : : : ; qn C t / for in�nitely many t , this holds

on the level of polynomials. Using this, it is easy to check that, as polynomials,

g�1:::�n
.q1; : : : ; qn/ D g�2:::�n�1

.q2; q3; : : : ; qn; 1Cq1/. Hence it su�ces to check

that the Laplacian vanishes on a candidate from each cyclic class to conclude

that it vanishes on all of them. Thus, there cannot be any linear recursion using

di�erentiation operators between the polynomials gw in general.

Open problem. Is there some other set of operators which coincides with di�er-

entiation for small n and does extend the pattern above to larger n?

The reader may note that the part of maximal degree in gu appears to be ˙gw0
,

where w0 D 4321, and we choose C if and only if `.w0/ � `.u/ is even.

We end this section with a more general conjecture. We reached this conjecture

by contemplating the proof of Theorem 3.8. We have checked it for n � 5.

Conjecture 3.6. For k such that n > k1 > k2 C 1 > k3 C 2 > � � � > kr C r � 1 >

r � 1 and any 0 � q1 < � � � < qn < 1,

gsk1
:::skr w0

D
� 1

kr Š

@kr

@qn�krC1 : : : @qn

� 1
�

gsk1
:::skr�1

w0
:

An example, where the conjecture is true, is n D 4; k1 D 3; k2 D 1:

g3412 D
�1

6

@3

@q2@q3@q4

� 1
�� @

@q4

� 1
�

g4321:
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3.2. Probabilities of the discrete chain. In this section, we will prove some

exact formulas for G� , which are used to establish the probability density functions

g� in Section 3.1. We start with the easiest case, which is the reverse permutation

w0 D n.n � 1/ : : : 1. We say that a bully path wraps when it moves from the right

side to the left, that is, from .i; N � 1/ to .i; 0/.

Proposition 3.7. For any N � n � 2 we have

Gw0
.b1; : : : ; bnI N / D det

��
bi C j � 1

j � 1

��

1�i;j �n

D
Y

1�k<l�n

.bl � bk/

n�1
Y

dD1

1

dŠ
:

Proof. Suppose we have a discrete MLQ whose bottom row n is labeled by the

reverse permutation, with a particle labeled nC 1� i at position bi , for 1 � i � n,

where b1 < � � � < bn. It is a direct consequence of the construction of MLQs

that the positions of the boxes in row n � 1, b0
1 < � � � < b0

n�1 must be such that

bi < b0
i � biC1 for 1 � i < n, hence they must also correspond to the reverse

permutation (of length n � 1). It follows by induction that each row is labeled by

a reverse permutation.

Thus the bully paths do not wrap and are non-intersecting, so to enumerate

them we may use the Lindström–Gessel–Viennot lemma, see for example [15,

Chapter 2.7]. Extend each bully path to start at the beginning of the row, that is at

positions .r; 0/ for 1 � r � n (matrix notation). See Figure 5 for an illustration.

The number of (non-wrapping) paths using only right and down steps from

.r; 0/ to .n; bi / is
�

bi Cn�r
n�r

�

. Setting j D n C 1 � r gives the determinant in the

proposition. The factor
Qn�1

dD1
1
dŠ

can be taken out and using column operations

we reduce to the standard form of the Vandermonde determinant. �

.1; 0/� ı1

.2; 0/� ı2 ı1

.3; 0/� ı3 ı2 ı1

ı3 ı2 ı1

:::
: : :

: : :
: : :

.n; 0/� � : : : � � �

.n; b1/ .n; bn�2/ .n; bn�1/ .n; bn/

Figure 5. Counting multiline queues with lattice paths.
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Our next task is to prove the statement for the discrete MLQ’s used in the proof

of Theorem 3.3. For 1 � k � n, let Ak be the matrix with entries
�

bi Cj �1
j �1

�

in rows

1 � i � n � k and entries
�

bi Cj �2
j �2

�

in rows n � k < i � n. Also, let Pi be the

bully path of the i th class particle extended so it starts at .i; 0/.

Theorem 3.8. For k D 1; 2, we have

Gskw0
D

�
N

k

�

det Ak � Gw0
:

Proof. We will �rst consider the case k D 1. We distinguish between two di�erent

types of MLQ’s that can result in the permutation s1w0, depending on whether or

not P1 is wrapping.

The �rst type is an MLQ q where there is no bully path wrapping. Then P1

and P2 will touch at some point .r; c/, after which P1 will be below or on P2

(bully paths may, however, coincide only in points and horisontal segments), see

Figure 6.

.1; 0/� ı1

.2; 0/� ı2 ı1

.3; 0/� ı3 ı1 ı2

ı3 ı1 ı2

:::
: : :

: : :
: : :

.n; 0/� � : : : � � �

.r; c/

.n; b1/ .n; bn�2/ .n; bn�1/ .n; bn/

Figure 6. Paths of type I for the case k D 1.

We could also describe this as the reverse permutations on the �rst r � 1 rows

of q, after which the 1 and 2 switch places.

To count MLQ’s of the �rst type, we de�ne an injection into sets of cer-

tain non-intersecting paths LI D ¹Ln; : : : ; L1º. The path L1 is formed by

concatenating P1 from .1; 0/ to .r; c/ with P2 from .r; c/ to .n; bn/ and then

lifting the resulting path one step upwards. So, L1 is a path from .0; 0/ to

.n � 1; bn/ that passes through .r � 1; c/. The path L2 is formed by concate-

nating P2 from .2; 0/ to .r; c/ with P1 from .r; c/ to .n; bn�1/. For 3 � i � n,

Li D Pi . Thus LI is a set of non-intersecting lattice paths with starting
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positions SI D ¹.n; 0/; : : : ; .3; 0/; .2; 0/; .0; 0/º and ending positions MI D

¹.n; b1/; : : : ; .n; bn�2/; .n; bn�1/; .n � 1; bn/º. By the Lindström–Gessel–Viennot

lemma, all such sets of paths are counted by the determinant of the matrix:

DI D

2

6
6
6
6
6
4

: : :
::: : :

: :::

� � �
�

bi Cj �1
j �1

�

� � �
�

bi Cn
n

�

: :
: :::

: : :
:::

� � �
�

bnCj �2
j �2

�

� � �
�

bnCn�1
n�1

�

3

7
7
7
7
7
5

:

Sets of paths LI where the vertical distance between L1 and L2 is always two

or more do not come from an MLQ q of the �rst type. Since if we lower L1 one

vertical step they would still not intersect. To subtract this over-count, we may thus

count the number of non-intersecting paths from S D ¹.n; 0/; : : : ; .2; 0/; .1; 0/º to

M D ¹.n; b1/; : : : ; .n; bn�1/; .n; bn/º, which is precisely Gw0
by Proposition 3.7.

Thus the number of MLQ’s of the type I is det.D1/ � Gw0
.

The second type of MLQ’s q, has a bully path wrapping and the only pos-

sibility is that P1 wraps in row 2 before �nding a box to label 1, see Figure 7.

Thus P1 will overlap with P2 in the beginning of row two and possibly more

later. Apart from that, no paths are touching. We now describe a bijection

from such MLQ’s to non-intersecting lattice paths LII D ¹Ln; : : : ; L1; L0º with

starting positions SII D ¹.n; 0/; : : : ; .2; 0/; .1; 0/; .0; 0/º and ending positions

MII D ¹.n; b1/; : : : ; .n; bn�2/; .n; bn�1/; .n � 1; bn/; .1; N � 1/º. We de�ne L0

as a translation one step upwards of P1 from .1; 0/ to .2; N � 1/. The path L1

is a translation one step upwards of P2. L2 is the part of P1 going from .2; 0/ to

.n; bn�1/. For 3 � i � n, Li D Pi .

By the Lindstöm–Gessel–Viennot lemma all such sets of non-intersecting

paths are counted by the determinant of the .n C 1/ � .n C 1/-matrix:

DII D

2

6
6
6
6
6
6
6
4

1 � � �
�

b1Cj �1
j �1

�

� � �
�

b1Cn
n

�

:::
:::

:::
:::

1 � � �
�

bn�1Cj �1
j �1

�

� � �
�

bn�1Cn
n

�

0 � � �
�

bnCj �2
j �2

�

� � �
�

bnCn�1
n�1

�

0 � � � 0 1
�

N
1

�

3

7
7
7
7
7
7
7
5

:

Hence the total number of MLQ’s is

Gs1w0
.b1; : : : ; bnI N / D det DII C det DI � Gw0

:

Expanding DII along the bottom row gives det DII D N � det A1 � det DI and

the statement for k D 1 follows.
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� ı1

� ı1 ı2 �

� ı3 ı1 ı2

ı3 ı1 ı2

:::
: : :

: : :
: : :

� � : : : � � �

b1 bn�2 bn�1 bn

�

� �

�

�

: : :

:::
: : :

: : : �

� � : : : � �

b1 bn�2 bn�1 bn

L0

L1

L2

L3

Ln

Figure 7. On top is a schematic image of an MLQ projecting to s1w0 of type II. Below is

the corresponding set LII of non-intersecting lattice paths as in the proof of Theorem 3.8.

The case k D 2 is very similar but more complicated. This time there are three

di�erent types of MLQ’s.

� Type I: no bully path wraps.

� Type II: P2 wraps in row 3.

� Type III: P2 wraps in row 3 and P1 wraps in row 2.

These are all the cases since if P1 wraps then P2 must also wrap for the 1

to end up last in the permutation. For each type we give an injection to a set

of tuples of non-intersecting paths, which can be counted using the Lindström–

Gessel–Viennot Lemma.

Type I. Assume P1 and P2 intersect for the �rst time at .r; c/. No other

bully paths touch. We map such MLQ’s injectively to LI D ¹Ln; : : : ; L1º,

with starting positions SI D ¹.n; 0/; : : : ; .3; 0/; .1; 0/; .0; 0/º and ending positions
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MI D ¹.n; b1/; : : : ; .n; bn�2/; .n � 1; bn�1/; .n � 1; bn/º. Let L1 be P1 translated

one step upwards. Let L2 be the translation one step upwards of the concatenation

of P2 from .2; 0/ to .r; c/, and P3 from .r; c/ to .n; bn�1/. Let L3 be the concate-

nation of the remaining pieces of P2 and P3 and Li D Pi , for 4 � i � n. The

total number of such n-tuples of non-intersecting paths is the determinant of the

following n � n-matrix:

EI D

2

6
6
6
6
6
6
6
6
6
4

1
: : :

::: : :
: :::

:::
::: � � �

�
bi Cj �1

j �1

�

� � �
�

bi Cn�1
n�1

� �
bi Cn

n

�

1 : :
: :::

: : :
:::

:::

0 � � �
�

bn�1Cj �2
j �2

�

� � �
�

bn�1Cn�2
n�2

� �
bn�1Cn�1

n�1

�

0 � � �
�

bnCj �2
j �2

�

� � �
�

bnCn�2
n�2

� �
bnCn�1

n�1

�

3

7
7
7
7
7
7
7
7
7
5

:

As in the type I case above we must subtract those where the vertical distance

between L2 and L3 is at least 2 all the time, which again is Gw0
.

Type II. Let .r; c/ be the point where P1 and P2 intersect the �rst time. In

the beginning of row 3, P2, which wraps, and P3 will overlap. Here L0 is the

translation two steps upwards of the concatenation of P1 to .r; c/ and P2 from

.r; c/ to .3; N � 1/ before it wraps. L1 is the translation one step upwards of the

concatenation of P2 from .2; 0/ to .r; c/ and P1 from .r; c/ to .n; bn/. Let L2 be

the translation one step upwards of P3 and let L3 be P2 after it has wrapped, that

is, from .3; 0/ to .n; bn�2/.

We map these MLQ’s injectively to LII D ¹Ln; : : : ; L1; L0º, with starting

positions SII D ¹.n; 0/; : : : ; .2; 0/; .1; 0/; .�1; 0/º and ending positions MII D

¹.n; b1/; : : : ; .n; bn�2/; .n � 1; bn�1/; .n � 1; bn/; .1; N � 1/º. To count the number

of MLQ’s of type II we have to subtract of the sets LII where the vertical distance

between L0 and L1 is 2 or more in each column, which can be counted by lowering

the start and endpoints of L0 by one. This means that the number of MLQ’s of

type II is counted by the di�erence det.EII / � det.E 0
II /, where EII , E 0

II are the

following .n C 1/ � .n C 1/-matrices:

EII D

2

6
6
6
6
6
6
6
6
6
6
4

1
: : :

::: : :
: :::

� � �
�

bi Cj �1
j �1

�

� � �
�

bi CnC1
nC1

�

1 : :
: :::

: : :
:::

0 � � �
�

bn�1Cj �2
j �2

�

� � �
�

bn�1Cn
n

�

0 � � �
�

bnCj �2
j �2

�

� � �
�

bnCn
n

�

0 � � � � � � 0 1
�

N C1
2

�

3

7
7
7
7
7
7
7
7
7
7
5

;
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E 0
II D

2

6
6
6
6
6
6
6
6
6
6
4

1
: : :

::: : :
: :::

:::

� � �
�

bi Cj �1
j �1

�

� � �
�

bi Cn�1
n�1

� �
bi Cn

n

�

1 : :
: :::

: : :
:::

:::

0 � � �
�

bn�1Cj �2
j �2

�

� � �
�

bn�1Cn�2
n�2

� �
bn�1Cn�1

n�1

�

0 � � �
�

bnCj �2
j �2

�

� � �
�

bnCn�2
n�2

� �
bnCn�1

n�1

�

0 � � � � � � 0 1
�

N
1

� �
N C1

2

�

3

7
7
7
7
7
7
7
7
7
7
5

:

Type III. The MLQ’s where both P1 and P2 wrap around can similarly be

bijectively mapped to n C 2-tuples of non-intersecting paths starting in posi-

tions SIII D ¹.n; 0/; : : : ; .1; 0/; .0; 0/; .�1; 0/º and ending positions MIII D

¹.n; b1/; : : : ; .n; bn�2/; .n � 1; bn�1/; .n � 1; bn/, .1; N � 1/; .0; N � 1/º. These

are counted by the determinant of the matrix:

EIII D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

1
: : :

::: : :
:

1 � � �
�

bi Cj �1
j �1

�

� � �

1 : :
: :::

: : :

0 � � �
�

bn�1Cj �2
j �2

�

� � �

0 � � �
�

bnCj �2
j �2

�

� � �

0 � � � 0 1
�

N
1

� �
N C1

2

�

0 � � � 0 0 1
�

N
1

�

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Expanding the matrices EI ; EII ; E 0
II ; EIII along the bottom rows most terms of

the determinants cancel to give the claimed result. �

One way to prove Conjecture 3.4 would be to �rst establish the following

formula for the discrete chain.

Conjecture 3.9. For N � n > k � 1 and 0 � b1 < � � � < bn � N � 1 the number

of MLQ’s with bottom row skw0 is

Gskw0
.b1; : : : ; bnI N / D

�
N

k

�

det Ak � Gw0
:

The following more general conjecture for commuting simple re�ections im-

plies Conjecture 3.6 . For a partition k D .k1 � � � � kr � 1/, let k0 denote the

conjugate partition. For a subset S � Œr �, let k.S/ be the partition consisting of

the parts ki ; i 2 S . With k.S/0 we denote the conjugate of k.S/. Let AS be the

matrix with entries
�bi Cj �1�knC1�i .S/0

j �1�knC1�i .S/0

�

, where ki .S/0 D 0 if i > kmin S .
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Conjecture 3.10. For N � n and k such that n > k1 > k2 C 1 > k3 C 2 > � � � >

kr C r � 1 > r � 1 and 0 � b1 < � � � < bn � N � 1, we have

Gsk1
:::skr w0

.b1; : : : ; bnI N / D
X

S�Œr�

.�1/r�jS j
Y

i2S

�
N

ki

�

det AS :

Note that A; is the Vandermonde matrix so it specializes to Conjecture 3.9 for

r D 1. We have checked this conjecture for n � 5 (this only includes cases with

r � 2).

3.3. Probability of given permutation. One obvious question to ask about the

distribution „n is the probability p� that the particles form a certain permutation

� . We can compute the exact probability of the reverse permutation w0.

Theorem 3.11. The probability that the particles form the reverse permutation

w0 is

pw0
D

1
Qn�1

kD1

�
2kC1
kC1

� :

Proof. As in the proof of Proposition 3.7, each row i of an MLQ corresponding

to w0 is labeled by the reverse permutation of length i . Furthermore, the positions

of the boxes on row i � 1 interleave the positions of the boxes on row i . Such

placements (in the sense of Remark 3.1) have been studied before in other contexts

and are called Gelfand-Tsetlin patterns, see [14]. The enumeration of all such

patterns seems to have been done �rst in [17], where it is proven that the number

of such patterns is
�

nC1
2

�

Š
Qn�1

iD1 i Š
Qn�1

iD1.2i C 1/Š
:

Think of the
�

nC1
2

�

boxes in the MLQ as chosen in the interval Œ0; 1/, and then

selecting which boxes end up on which line. By Remark 3.1 we conclude that the

pw0
is the number of placements yielding w0 divided by the total number,

�.nC1
2 /

1;:::;n

�

,

of placements. This gives the stated formula. �

We have computed p� for all permutations of length n � 6. For n D 2; 3 they

are as follows:

� 12 21 123 231 312 132 213 321

p�
2
3

1
3

25
60

13
60

10
60

5
60

5
60

2
60
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Unfortunately we cannot see any obvious general pattern, regardless of whether

or not we mod out by the cyclic action. For example, in general, p�=pw0
is not an

integer and the chain is not symmetric: pw0�w0
¤ p� in general. We note, how-

ever, that pw0
appears to be the smallest of the probabilities, and pid the largest.

4. Correlations

Even though the stationary probability p� of a given permutation � seems di�cult

to describe in general, the correlation of two adjacent elements seems to exhibit

interesting patterns for the continuous TASEP. Let

ci;j .n/ D P.wa D i; waC1 D j; for some a/;

where a C 1 is modulo n. See Table 1 for the values of ci;j .6/.

Table 1. Table showing ci;j .n/, for n D 6.

inj 1 2 3 4 5 6

1 0 1=2 1=6 2=15 6=55 1=11

2 1=14 0 25=42 2=15 6=55 1=11

3 5=42 1=21 0 19=30 6=55 1=11

4 16=105 17=210 1=30 0 106=165 1=11

5 68=385 81=770 19=330 4=165 0 7=11

6 37=77 41=154 34=231 5=66 1=33 0

The most obvious observation is that the columns in the upper right part seem

to be constant. To be more precise:

Conjecture 4.1. For every i C 1 < j we have ci;j .n/ D n=
�

nCj
2

�

.

From this, it would also follow that cn�1;n D .n C 1/=.2n � 1/ and c1;2 D

4=.n C 2/, since
P

i ci;j D
P

j ci;j D 1.

It seems the denominator is always a product of small primes. The data for

n � 6 suggest a conjecture covering all the ci;j s. Our main conjecture for the

correlations in the continuous TASEP on a ring is the following.
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Conjecture 4.2. For n � 2, we have the following two-point correlations at

stationarity

ci;j .n/ D

8

ˆ
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
<

ˆ
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
:

n
�

nCj
2

� ; if i C 1 < j � n;

n
�

nCj
2

� C
ni

�
nCi

2

� ; if i C 1 D j � n;

n
�

nCj
2

� �
n

�
nCi

2

� ; if j < i < n;

n.j C 1/
�

nCj
2

� �
n.j � 1/
�

nCj �1
2

� �
n

�
2n
2

� ; if j < i D n:

So, according to the conjecture, for any j > 1 the most likely position is

(directly) to the right of j � 1. If j is close to n, then this will happen roughly

half the time. For small j (1 < j < n=3) the second most likely position for j is

to the right of n.

Remark 4.3. According to the conjecture, n is always a factor for the probabilities.

It is tempting to divide with n and say that we are interested in the case when

w1 D i; w2 D j . This would, however, not be an equivalent formulation. The

spacing between the particles is not uniform, and hence the distribution of which

particle is �rst in a given Œ0; 1/ interval is not uniform.

We can prove a few cases of this conjecture.

Proposition 4.4. The following two-point correlations hold for any n � 3:

(1) c2;1 D
n

�
nC1

2

� �
n

�
nC2

2

� D
4

.n C 1/.n C 2/
,

(2) c1;2 D
n

�
nC2

2

� C
n

�
nC1

2

� D
4

.n C 2/
,

(3) cn;n�1 D
n2

�
2n�1

2

� �
n.n � 2/
�

2n�2
2

� �
n

�
2n
2

� D
3

.2n � 1/.2n � 3/
.

Proof. For the �rst two statements, we will use the process of the last row on n

boxes labeled 1; : : : ; n. Assume that the particles of classes 2 and 1 are positioned

at q2 and q1 respectively in the preceding row. By rotation we may assume that

q2 < q1. The only way to obtain a 2 followed by a 1 after the process of the last

row is to have exactly one particle in the interval Œq2; q1�. This is due to the fact
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that the class 1 particle will land at the �rst available position and after that the

class 2 particle will do the same. Let y D 1� .q1 �q2/. We know by Theorem 3.2

that g21.q1; q2/ D 2.q2 � q1/ D 2.1 � y/. If we think of this as the limit of the

stationary distribution of TASEP, it is clear that the particles of classes higher than

2 will not in�uence the relative positions of 2 and 1. The probability that exactly

one of the n particles lies in the interval Œq2; q1� is
�

n
1

�

.1 � y/yn�1. We thus obtain

c2;1 D P.2 followed by 1/ D

Z 1

0

2n.1 � y/2yn�1dy D
4

.n C 1/.n C 2/
:

The computation of c1;2 is similar.

This time, there are three possibilities of getting a 1 followed by a 2: either

there are no particles in the interval Œq2; q1�, or all the particles are in this interval,

or all particles but one are in the interval. Summing these three integrals gives the

desired formula. Note that the method used above could in principle be extended

to ci;j for i; j � x, if we know g� for � 2 Sx, but it quickly becomes intractable.

The computation of cn;n�1 is more involved. We use continuous multiline

queues. As discussed in Remark 3.1, to determine cn;n�1, it su�ces to count the

number of placements .aij / of the boxes in the multiline queue that give a bottom

row starting with n; n � 1 (by rotation we may assume that the leftmost box is

labelled n). We will refer to such placements as valid. So to compute cn;n�1, we

will compute the ratio of valid placements to all placements.

Note that the values of aij for i � n�3 do not in�uence whether an assignment

is valid or not. Therefore we can instead count the number of placements .bij / for

n � 2 � i � n; j � i , where bij is the number of boxes to the right of box .i; j /

in the bottom three rows, including the box itself. Recall that j is the number of

the box counting from the right. Such a placement .bij / is valid if it comes from

a valid placement .aij /.

It is easy to check that being valid amounts to the following systems of inequal-

ities:

bn;1 < � � � < bn;n�2

< <

bn�1;1 < � � � < bn�1;n�2

< <

bn�2;1 < : : : < bn�2;n�2

and bn�1;n�2 < bn;n�1

< <

bn�2;n�2 < bn�1;n�1 < bn;n:

The left system of inequalities comes from the fact that there is no wrapping

in the bottom three rows and the second set of inequalities comes from the word

starting with n; n�1 : : : . From the inequalities it follows directly that bn;n D 3n�3

and bn�1;n�1 D 3n � 4. If bn;n�1 D 2n C i � 1 then bn�2;j D 2n C j � 3 for all
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i < j � n � 2. The remaining entries, which form the set ¹1; : : : ; 2n � 3 C iº,

form a standard Young tableau (transpose the �gure of the inequalities above)

with columns of length n � 2; n � 2; i . Let SYTn�2;n�2;i denote the number of

standard Young tableaux of this type. We refer to [16] for basic facts about standard

Young tableaux including the hook-length formula from which one may deduce

that SYTn�2;n�2;i D .2n�4Ci/Š.n�i/.n�i�1/
iŠnŠ.n�1/Š

. The rotation gives a factor of 3n � 3

and we get

cn;n�1 D
.3n � 3/

Pn�2
iD0 SYTn�2;n�2;i

�
3n�3

n;n�1;n�2

� D
.n � 2/Š

Pn�2
iD0

.2n�4Ci/Š.n�i/.n�i�1/
iŠ

.3n � 4/Š
:

Now, expand .n � i/.n � i � 1/ D n.n � 1/ � .2n � 2/i C i.i � 1/ and use
Px

iD0

�
yCj

j

�

D
�

yCxC1
x

�

for j D i; i � 1 and i � 2. Collect all terms and we get
3

.2n�1/.2n�3/
, as desired. �

5. Correlation function for initial decreasing sequence

In this section, we prove a formula for the probability that a word sampled from the

discrete TASEP starts with a given decreasing word. By remarkable coincidence

it is the same formula as in Proposition 3.7. Fix the length N of the ring and

let m D .1; : : : ; 1
„ ƒ‚ …

N

/. Suppose u is picked from the stationary distribution of the

m-TASEP. We now ask, what is the probability that u has some �xed word as a

pre�x? In general the answer appears to be complicated (see [7] for pre�xes of

length at most 3). However in the case of a word of the type xnxn�1 : : : x2 where

xn > xn�1 > � � � > x2, we show that there is a simple answer to this question.

This theorem answers [7, Conjecture 8.1].

Theorem 5.1. Suppose u is picked from the stationary distribution of the m-

TASEP. Fix N � xn > xn�1 > � � � > x2 � 1. Then, the probability f�.xn; : : : ; x2/

(� for “permutation”) that for some word v, u D xnxn�1 : : : x2v, is

1
Qn�1

iD1

�
N
i

� det

��
xiC1

j � 1

��n�1

i;j D1

:

Remark 5.2. One way to think about this theorem is to consider a state of

the TASEP as a permutation matrix of size N with 1’s in positions .i; �.i//.
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Theorem 5.1 gives the probability that the �rst n � 1 rows have the 1’s in positions

.1; xn/; : : : ; .n � 1; x2/. (By cyclic invariance the same is true for any n � 1

consecutive rows.) On the other hand, Proposition 3.7 states that the probability of

the �rst columns of the state matrix having 1’s in positions .xn; n�1/; : : : ; .x2; 1/ is

exactly the same as the expression in Theorem 5.1. This is because the probability

of the position of the smallest labels does not change if we change all labels

n; : : : ; N to just n. This interesting equality does not carry over to other patterns

in general.

Proof. For a vector .m1; : : : ; mn/ of non-negative integers with sum N , write

Ni D .Mi�1; Mi � where M0 D 0 and Mi D
P

j �i mj , 1 � i � n so that ŒN � D

¹1; 2; : : : ; N º is the disjoint union of the Ni ’s. We also assume mi � 1; i � 1, so

only the �rst interval may be empty.

Now, write fw.mn; mn�1; : : : ; m1/ (w for “word”) for the probability that a

TASEP distributed word of type m starts with the word n.n � 1/ : : : 32.

Clearly,

fw.mn; : : : ; m1/ D
X

xn2Nn

� � �
X

x22N2

f�.xn; : : : ; x2/: (1)

For given n; N , the set of possible vectors .mn; : : : ; m1/ and the set of possi-

ble vectors .xn; : : : ; x2/ both have size
�

N
n�1

�

and a bijection is given by setting

xi D Mi�1 C 1. The relation (1) thus amounts to multiplication with a square ma-

trix. Ordering .mn; : : : ; m1/ by lexicographic order and .xn; : : : ; x2/ by backward

revlex order the matrix will be lower triangular with 1’s on the diagonal and thus

invertible. So, for a �xed xn; : : : ; x2, the value of f�.xn; : : : ; x2/ can be computed

from the values of all fw.mn; : : : ; m1/. Thus, to prove the theorem, it is su�cient

to show that equation (1) is satis�ed (for all m) when substituting the claimed

formula for f� , that is,

fw.mn; : : : ; m1/ D
1

Qn�1
iD1

�
N
i

�

X

xn2Nn

� � �
X

x22N2

det

��
xiC1

j � 1

��n�1

i;j D1

: (2)

We will now make a series of manipulations to the right hand side of (2). First,

note that xiC1 only occurs in row i and use the multilinearity of the determinant

to move each sum inside its respective row. We get

1
Qn�1

iD1

�
N
i

� det

�
X

xiC12NiC1

�
xiC1

j � 1

��n�1

i;j D1

D
1

Qn�1
iD1

�
N
i

� det

��
MiC1 C 1

j

�

�

�
Mi C 1

j

��n�1

i;j D1

:
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Letting each row be replaced with the sum of the rows (weakly) above we

obtain:

det

��
MiC1 C 1

j

�

�

�
Mi C 1

j

��n�1

i;j D1

D det

��
MiC1 C 1

j

�

�

�
M1 C 1

j

��n�1

i;j D1

:

If we in the n � n matrix
��

Mi C1
j �1

��n

i;j D1
subtract the top row from every other

row, and expand along the �rst column we get the identity

det

��
Mi C 1

j � 1

��n

i;j D1

D det

��
MiC1 C 1

j

�

�

�
M1 C 1

j

��n�1

i;j D1

:

Let Fw.mn; mn�1; : : : ; m1/ D
Qn

iD1

�
N
Mi

�

� fw.mn; mn�1; : : : ; m1/ be the num-

ber of multi-line queues whose bottom row starts with n.n � 1/ : : : 32 and has

type m.

To prove equation (2), we need to show that

Fw.mn; mn�1; : : : ; m1/ D

n
Y

iD1

�
N
Mi

�

�
N

i�1

� det

��
Mi C 1

j � 1

��n

i;j D1

:

Move the product in the numerator into the rows of the matrix and the prod-

uct in the denominator into the columns. Simplify the resulting expression
. N

Mi
/.Mi C1

j �1
/

. N
j �1/

D
Mi C1

N C2�j

�
N C2�j
Mi C2�j

�

and move the factors depending only on i re-

spectively j out through the rows and columns again. Recall that Mn D N . We

get

n
Y

iD1

Mi C 1

N C 2 � i
det

��
N C 2 � j

Mi C 2 � j

��n

i;j D1

D

n�1
Y

iD1

Mi C 1

N C 1 � i
det

��
N C 2 � j

Mi C 2 � j

��n

i;j D1

:

This matrix has bottom row with all ones. We replace column j in this matrix

with the di�erence of column j and column j C 1. Then we use
�

N C2�j
Mi C2�j

�

�
�

N C1�j
Mi C1�j

�

D
�

N C1�j
Mi C2�j

�

and expand the determinant along the bottom row which

yields
n�1
Y

iD1

Mi C 1

N C 1 � i
det

��
N C 1 � j

Mi C 2 � j

��n�1

i;j D1

: (3)
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It remains to show that the last expression equals Fw.mn; : : : ; m1/. Consider a

multiline queue counted by Fw.mn; : : : ; m1/. It has n�1 rows, indexed 1; : : : ; n�1

(we use matrix notation: .i; j / refers to row i and column j ). In rows 1; 2; : : : ; .n�

1/, there are m1; m1 C m2; : : : ; N � mn particles. It is easy to see that the sites

in the “triangle” .n � 1; 1/; : : : ; .n � 1; n � 2/; .n � 2; 2/; : : : ; .n � 2; n � 2/; : : : ;

.2; n � 2/ are �lled with boxes, and that a box in such a site .i; j / is labeled n � j .

Recall that we number the columns from 0 to N � 1. We now consider the boxes

in the multiline queue that are not part of this triangle. Since the word starts with

the descending sequence, no bully paths can wrap.

Denote by zi;j the distance from the right end of the multiline queue of the

j th box from the right in the .n � i/th row. That is, if the j th particle from the

right in the .n � i/th row is at .i; r/, we let zi;j D N � r . We only include .i; j /

referring to boxes not in the triangle mentioned above. The numbers zi;j must form

a semi-standard Young tableau (SSYT) of shape � where the conjugate partition

is �0
i D Mn�i � .n� i �1/ for 1 � i � n�1. Moreover, this is a bijection from the

MLQs counted by Fw.mn; : : : ; m1/ to SSYT of shape � with entries in Œt �, where

t D N � n C 1.

Example 5.3. Here, N D 13, n D 5, m D .2; 2; 2; 3/, .M1; : : : ; M5/ D

.2; 4; 6; 9; 13/; t D 9; �0 D .6; 4; 3; 2/. The multiline queue

5 4 3 2 4 5 5 2 1 5 3 4 1

3 2 2 1 3 1

2 2 1 1

1 1

corresponds to the tableau

1 1 2 5
2 3 6 8
3 5 9
5 7
6
9

:

So, for example, the �rst row of the SSYT describes the positions from the

right of the rightmost box in the four lines in the queue.
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Now we are in a position to �nish our argument. By the de�nition of Schur

function, the number of SSYT of shape � with entries in Œt � is s�.1t /. Recall the

hook-content formula and the Jacobi-Trudi identity, see e.g. [16].

Lemma 5.4. The number of SSYT of shape � and entries in Œt � equals

Y

r2�

t C c�.r/

h�.r/
D s�.1t / D det

��
t

�0
i � i C j

��

D det

��
t C j � 1

�0
i � i C j

��

;

where for a box r D .i; j / in the Ferrers diagram of �, we let c�.r/ D j � i and

h�.r/ D �i C �0
j � i � j C 1.

The �rst two equalities are well-known, and the last is easily obtained by

column operations.

So, by the Lemma 5.4,

Fw.mn; : : : ; m1/ D
Y

r2�

N � n C 1 C c�.r/

h�.r/
:

Now let s D t C1 D N C1�n and �0
i D �0

i C1 for 1 � i � n�1. We think of

� as � with a row added on top. It is easy to see that our determinant in (3) equals

(after reversing the numbering of rows and columns)

n�1
Y

iD1

Mi C 1

N C 1 � i
det

��
s C j � 1

�0
i � i C j

��n�1

i;j D1

;

which by Lemma 5.4 (temporarily letting � and s play the roles of � and t ) equals

n�1
Y

iD1

Mi C 1

N C 1 � i

Y

r2�

N � n C 2 C c�.r/

h�.r/

To prove that Fw.mn; : : : ; m1/ equals the expression (3), it thus remains to

show that

n�1
Y

iD1

Mi C 1

N C 1 � i

Y

r2�

N � n C 2 C c�.r/

h�.r/
D

Y

r2�

N � n C 1 C c�.r/

h�.r/
;

or, in terms of �0,

Y

r2�

N � n C 1 C c�.c/

h�.c/
D

n�1
Y

iD1

�0
i C n � i

N C 1 � i

Y

r2�

N � n C 2 C c�.c/

h�.c/
:

This is easily checked. �
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Note added in proof. A proof of Conjectures 3.4, 3.6 and Conjectures 3.9, 3.10

has been announced by Aas, Grinberg and Scrimshaw in a recent preprint.
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