
Ann. Inst. Henri Poincaré Comb. Phys. Interact. 3 (2016), 45–53

DOI 10.4171/AIHPD/24

A short proof of the Kac–Ward formula

Marcin Lis

Abstract. We present a new short proof of the Kac–Ward formula for the partition function

of the Ising model on planar graphs.
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Let G D .V; E/ be a �nite graph embedded in the complex plane with non-

intersecting edges drawn as straight line segments. For a directed edge e D

.te; he/, its reversal is �e D .he; te/, and its undirected version is Ne D ¹te; heº 2 E.

For two directed edges e; g, the turning angle from e to g is

†.e; g/ D Arg
�hg � tg

he � te

�

2 .��; ��

(see Figure 1). Let x D .x Ne/ Ne2E be a vector of real edge weights. �e transition
matrix is a matrix indexed by the directed edges and is given by

ƒe;g D

´

x Nee
i
2

†.e;g/ if he D tg and g ¤ �eI

0 otherwise:

An even subgraph is a set H � E such that the degree of each vertex of .V; H/ is

even. Let

Z D
X

H even

Y

Ne2H

x Ne

be the generating function of even subgraphs, where the product over the empty set

is taken to be 1. If x Ne 2 .0; 1/, then Z is the partition function of the Ising model [5]

de�ned on G. We refer the reader to [7] for more details on the connection with the

Ising model. �e main result of this note is a short proof of the following theorem.



46 M. Lis

�eorem 1 (Kac–Ward formula).

det.Id � ƒ/ D Z2; (1)

where Id is the identity matrix.

Figure 1. �e turning angle and an even subgraph of the hexagonal lattice

Many papers appeared in the physics and mathematics literature where the

Kac–Ward formula is proved or claimed to be proved. �e original proof of Kac

and Ward [6] famously contained an error. Subsequently, several papers appeared

where attempts were made to �x it. We mention the contributions of Sherman [10],

Burgoyne [1], and Vdovichenko [11], where loop expansions of the determinant

were used. However, these papers still left a lot to wish for in terms of mathemat-

ical rigour. In the light of the accessible computation of the partition function due

to Kasteleyn [8], who expressed it as the partition function of a dimer model on a

decorated graph, the combinatorics involved in the Kac–Ward formula seemed un-

necessarily complicated. �is was probably the reason why its �rst rigorous proof

was given only much later by Dolbilin et al. [3]. In recent years more rigorous but

still combinatorially involved proofs appeared [2, 7, 4]. We refer the reader to [7]

for a longer discussion on the history of this theorem. We also need to mention that

there exists a short proof due to Chelkak, Cimasoni and Kassel, who discovered

it while investigating the double Ising model (private communication).

In this note a new short proof based on the loop expansion of the determi-

nant is presented. Like all the previous proofs it relies on cancellations between

certain weighted combinatorial objects. In our case, these objects are loops. �e

main improvement in comparison with [7] is that there is no need for expanding

the generating functions into generating functions of collections of loops, which

complicates the picture. �e cancellations of loop weights fall into two categories:
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generic and speci�c (Lemma 4 and Lemma 5 respectively). �e generic cancella-

tions follow from the general theory of loop-erased walks. �e speci�c cancella-

tions are an easy consequence of the unique sign-changing property of the weights

induced by the transition matrix. �e combinatorial mechanism of the Kac–Ward

formula is therefore as transparent as the one of the loop-erased walk.

Walks and loops

A (non-backtracking) walk ! of length j!j D n is a sequence of directed edges

! D .!1; : : : ; !nC1/ such that t!iC1
D h!i

and !iC1 ¤ �!i for 1 � i � n. Note

that the length of a walk is the number of steps the walk makes between the edges

rather than the number of edges itself. By We;g we denote the set of all walks

starting at e and ending at g. For ! 2 We;g and !0 2 Wg;h,

! ˚ !0 D .!1; : : : ; !j!jC1; !0
2; : : : ; !0

j!0jC1/ 2 We;h

is the concatenation of ! and !0, and !�1 D .�!j!jC1; : : : ; �!1/ 2 W�g;�e is

the reversal of !. If 1 � k � l � j!j C 1, then !k;l D .!k; : : : ; !l/. Loops are

walks of length larger than 2 belonging to We;e for some directed edge e, and are

denoted by `. A loop ` is self-avoiding if each vertex appears in exactly two edges

of `1;j`j.

�e transition matrix induces complex-valued weights on walks:

�.!/ D

j!j
Y

iD1

ƒ!i ;!iC1
D e

i
2

˛.!/x.!/;

where

x.!/ D

j!j
Y

iD1

x!i
; and ˛.!/ D

j!j
X

iD1

†.!i ; !iC1/:

Note that the weight of the last edge is not included in the weight of the walk. �e

crucial properties of these weights are stated below.

Lemma 2.

�.! ˚ !0/ D �.!/�.!0/ for ! 2 We;g and !0 2 Wg;h; (i)

�.!/ D ��.!�1/ D ˙ix.!/ for ! 2 We;�e; (ii)

�.`/ D �.`�1/ D ˙x.`/ for a loop `; (iii)

�.`/ D �x.`/ for a self-avoiding loop `: (iv)
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Proof. Multiplicativity follows from the de�nition. To obtain (ii) and (iii), recall

that Arg.z=w/ D Arg.z/ � Arg.w/ (mod 2�) for any z; w ¤ 0, and therefore

˛.!/ D †.e; g/ .mod 2�/ for ! 2 We;g . It is now enough to notice that ˛.!/ D

�˛.!�1/ for any walk !. Finally, if ` is self-avoiding, then ˛.`/ is the sum of

the exterior angles of the polygon de�ned by `. Hence, ˛.`/ D ˙2� , and (iv)

follows.

Before proving the theorem, we need to de�ne a few more notions. A loop `

is rooted at e if ` 2 We;e . �e signed measure of a loop ` is given by

w.`/ D
�.`/

j`j
:

Unrooted loops are equivalence classes of loops under the cyclic shift relation

` � `i;j`jC1 ˚ `1;i , and are denoted by `ı. With a slight abuse of notation, if f is a

function de�ned on loops which is invariant under cyclic shifts, then f .`ı/ is the

evaluation of f at any representative of `ı.

�e multiplicity of a loop `, denoted by m`, is the largest number m such that

` D .`0/˚m for some loop `0. We say that ` visits a directed edge e k times if e

appears k times in `1;j`j. Note that for each edge e, the number of times ` visits e

is always divisible by, but not necessarily equal to m`.

If L is a set of loops, then we will write �.L/ D
P

`2L �.`/ and w.L/ D
P

`2L w.`/. Unnecessary brackets will be omitted in this notation, i.e. w¹: : :º D

w.¹: : :º/. Note that since L can be in�nite, it will always be assumed that kxk1 D

max Ne2E jx Nej is su�ciently small to guarantee that all such power series are abso-

lutely summable. �is in particular implies that the order in which the sums are

taken is irrelevant. Since the walks are non-backtracking, it is actually enough to

take kxk1 < 1=.� � 1/, where � is the maximal degree of G.

Proof of �eorem 1

Note that since both sides of (1) are polynomials, it is enough to prove the desired

equality for small kxk1.

�e �rst two lemmas use only the fact that � is a multiplicative weight.

Lemma 3 (Loop expansion of the determinant). Let L be the set of all rooted
loops. �en,

det.Id � ƒ/ D exp
�

� w.L/
�

:
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Proof. Let ˛i be the eigenvalues of ƒ. �en,

w.L/ D

1
X

nD1

X

j`jDn

�.`/

n

D

1
X

nD1

trƒn

n

D
X

i

1
X

nD1

˛n
i

n

D � ln
Y

i

.1 � ˛i /

D � ln det.Id � ƒ/:

�e next lemma is a variant of Lemma 9.3.2 of [9], which is used to prove the

exponential formula for the law of the loop-erased walk.

Lemma 4 (Generic cancellations). Let L1
e be the set of loops rooted at e which

visit e only once and do not visit �e. �en,

exp.�w¹` visits e and not � eº/ D 1 � �.L1
e/:

In particular, the left-hand is linear in x Ne.

Proof. LetLe be the set of loops which visit e and do not visit �e, and letL�
e � Le

be the set of loops rooted at e. Let Lı
e be the set of unrooted loops which have a

representative in L�
e . Note that Le is the set of all representatives of the unrooted

loops from Lı
e.

Let k` be the number of times ` visits e. Observe that the number of all rep-

resentatives of `ı 2 Lı
e is j`ıj=m`ı , and the number of its representatives in L�

e is

k`ı=m`ı . Grouping the loops by their unrooted versions, the negated logarithm of

the left-hand side of the desired equality becomes

X

`2Le

�.`/

j`j
D

X

`2Le

�.`/

m`

m`

j`j
D

X

`ı2Lı
e

�.`ı/

m`ı

D
X

`2L�
e

�.`/

m`

m`

k`

D
X

`2L�
e

�.`/

k`

:

Note that each ` 2 L�
e has a unique representation ` D `1 ˚ `2 ˚ � � � ˚ `k , where

`i 2 L1
e . It follows thatL�

e is a disjoint union of .L1
e/˚k taken over all k. �erefore,

by multiplicativity,

X

`2L�
e

�.`/

k`

D

1
X

kD1

X

`2.L1
e/˚k

�.`/

k
D

1
X

kD1

�.L1
e/k

k
D � ln.1 � �.L1

e//:
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�e next lemma is the only place where property (ii) is used.

Lemma 5 (Speci�c cancellations). For any directed edge e,

w¹` visits e and � eº D 0:

Proof. Take ` which visits both e and �e, and let l be the smallest index such that

`l D e or `l D �e. Let m be the largest index such that `m D �`l . Consider

the loop `0 D `1;l ˚ .`l;m/�1 ˚ `m;j`jC1. From multiplicativity and property (ii) it

follows that w.`0/ D �w.`/. It is now enough to notice that the map ` 7! `0 is an

involution of the set of loops which visit both e and �e.

A set C � E is called a cycle if each vertex of the unique non-trivial connected

component of .V; C / has exactly two neighbors. We �rst prove the main theorem

in the case when G is trivalent, by which we mean that all vertices of G have at

most three neighbors. �e only property of trivalent graphs used here is that their

even subgraphs are collections of disjoint cycles (see Figure 1). �e general case

is then reduced to the trivalent one by a vertex decoration method.

�e trivalent case. By Lemma 3, for any directed edge e,

det.Id � ƒ/ D A exp.�w¹` visits e or � eº/;

where A does not depend on x Ne . By Lemma 5 and property (iii), the signed mea-

sure of the set of loops which visit e or �e equals

w¹` visits e and not � eº

C w¹` visits � e and not eº

C w¹` visits e and � eº

D 2w¹` visits e and not � eº:

Using Lemma 4 we conclude that det.Id � ƒ/ is a square of a linear polynomial

in x Ne. Since this holds for each undirected edge Ne, det.Id � ƒ/ is a square of a

multi-linear polynomial in x.

It is now enough to prove that the coe�cients of the polynomials given by the

square roots of the left- and right-hand side of (1) are equal. Note that to each

cycle C containing n edges, there naturally correspond 2n self-avoiding loops of

length n which traverse the cycle (including two orientations). We will write �

if the monomials which are multi-linear in x are the same in both expressions.
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Using Lemma 3 and property (iv), we have

det
1
2 .Id � ƒ/ D exp

�

�
X

`

w.`/

2

�

� exp
�

�
X

` self-av.

w.`/

2

�

D exp
�

X

` self-av.

x.`/

2j`j

�

D exp
�

X

C cycle

Y

Ne2C

x Ne

�

�

1
X

kD0

X

¹C 1;:::;C kº

C i disjoint

Y

Ne2
Sk

iD1 C i

x Ne

D
X

H even

Y

Ne2H

x Ne:

Note that the sum in the last line is taken over unordered collections of cycles so

the factor 1=kŠ coming from the exponential cancels out.

�e non-trivalent case. �e idea is to construct a trivalent graph G� which has

the same generating functions of even subgraphs and loops as G. To this end, take

a vertex v 2 V of degree k > 3. Let u1; u2; : : : ; uk be a clockwise ordering of

the neighbours of v. Consider a decoration of G where v is replaced by k new

vertices v1; v2; : : : ; vk, the edges ¹ui ; vº are replaced by new edges ¹ui ; viº, and

new edges ¹vi ; viC1º are added for i D 1; 2; : : : ; k � 1 (see Figure 2). Note that

the edge ¹vk; v1º is not added. �e edges ¹ui ; viº inherit the weight from ¹ui ; vº

and all the edges ¹vi ; viC1º get weight 1. If one repeats this procedure for every

vertex with more than three neighbors, one obtains a trivalent graph G�. Note that

there is a bijection between the edges of G and the edges of G� which inherited the

weights from G.

It is easy to see that there is a weight-preserving bijection between the even

subgraphs of G and G�. For an even subgraph of G, it is enough to take the cor-

responding edges in G� and connect them in a unique way using the edges with

weight 1. Uniqueness is guaranteed by the construction of G�. �ere is also a

weight-preserving bijection between the loops in G and G�. For a loop `, we can

construct the corresponding loop `� step by step. If ` makes a step from .ui ; v/

to .v; uj /, then `� traverses the unique path starting at .ui ; vi/, then following the
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edges of weight 1, and ending at .vj ; uj /. It is clear that x.`/ D x.`�/, and one

can check that ˛.`/ D ˛.`�/.

It is now enough to use Lemma 3 for G, and pass to G� without changing the

loop weights, then use the identity exp.�w.L// D
P

H even

Q

Ne2H x Ne for G�, and

go back to G in the even subgraph generating function.

G G�

u1u1

u2u2

u3u3

u4u4

u5u5

v v1

v2 v3

v4

v5

Figure 2. �e vertex decoration used to obtain a trivalent graph
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