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Abstract. Kazhdan–Lusztig–Stanley polynomials are combinatorial generalizations of Kazhdan–
Lusztig polynomials of Coxeter groups that include g-polynomials of polytopes and Kazhdan–
Lusztig polynomials of matroids. In the cases of Weyl groups, rational polytopes, and realizable
matroids, one can count points over finite fields on flag varieties, toric varieties, or reciprocal planes
to obtain cohomological interpretations of these polynomials. We survey these results and unite
them under a single geometric framework.
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1. Introduction

Given aCoxeter groupW alongwith a pair of elementsx; y2W , Kazhdan andLusztig [24]
defined a polynomial Px;y.t/ 2 ZŒt �, which is non-zero if and only if x � y in the Bruhat
order. This polynomial has a number of different interpretations in terms of different areas
of mathematics:

Combinatorics. There is a purely combinatorial recursive definition of Px;y.t/ in terms
of more elementary polynomials, called R-polynomials. See [30, Proposition 2], as well
as [4, §5.5] for a more recent account.

Algebra. The Hecke algebra ofW is a q-deformation of the group algebra CŒW �, and the
polynomials Px;y.t/ are the entries of the matrix relating the Kazhdan–Lusztig basis to
the standard basis of the Hecke algebra [24, Theorem 1.1].
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Geometry. If W is the Weyl group of a semisimple Lie algebra, then Px;y.t/ may be
interpreted as the Poincaré polynomial of a stalk of the intersection cohomology sheaf on
a Schubert variety in the associated flag variety [25, Theorem 4.3].

Representation theory. Again if W the Weyl group of a semisimple Lie algebra, then the
coefficients of Px;y.t/ are equal to the dimensions of Ext groups between simple and
Verma modules indexed by x and y. This was conjectured by Vogan [42, Conjecture 3.4]
(building on a weaker conjecture in the original paper of Kazhdan and Lusztig [24,
Conjecture 1.5]), and it was proved independently by Beilinsion and Bernstein [2] and
by Brylinski and Kashiwara [9, Theorem 8.1], both of whom used the aforementioned
geometric interpretation in their proofs.

The purely combinatorial definition of these polynomials was later generalized by
Stanley, who replaced the Bruhat poset of a Coxeter group with an arbitrary locally graded
poset [41, Definition 6.2(b)]. Stanley’s main motivation was the observation that the
g-polynomial of a polytope, which he introduced in [39], arises very naturally in this
way [41, Example 7.2]. The combinatorial theory was further developed by Dyer and
Brenti [7, 8, 17], who dubbed the corresponding polynomials Kazhdan–Lusztig–Stanley
polynomials. Another special class of Kazhdan–Lusztig–Stanley polynomials is the class
of Kazhdan–Lusztig polynomials ofmatroids. These polynomials, whichwere first studied
by Elias, Wakefield, and the author [18], have been the subject of much recent activity;
see for example [21] and [29] and references therein.

For each of the two classes of Kazhdan–Lusztig–Stanley polynomials discussed in
the previous paragraph, there is a subclass that admits a geometric interpretation. In the
setting of polytopes, the analogue of a Weyl group is a rational polytope. When a polytope
is rational, it has an associated projective toric variety, and the g-polynomial was shown by
Denef and Loeser [15, Theorem 6.2] and independently by Fieseler [20, Theorem 1.2] to
be equal to the Poincaré polynomial for the intersection cohomology of the affine cone over
this toric variety. More generally, the g-polynomial associated with any interval in the face
poset of of a rational polytope is equal to the Poincaré polynomial of the stalk of a certain
intersection cohomology sheaf on that variety. In the setting of matroids, the analogue of
a Weyl group is a matroid associated with a hyperplane arrangement. Given a hyperplane
arrangement, one can construct a variety called the Schubert variety of the arrangement,
and the Kazhdan–Lusztig polynomial associated with an interval in the lattice of flats is
equal to the Poincaré polynomial of the stalk of an intersection cohomology sheaf on the
Schubert variety [18, Theorem 3.10].

The original proofs of these geometric interpretations are all similar in spirit to the
proofs of the analogous result of Kazhdan and Lusztig; in particular, they all use the
Lefschetz fixed point formula for the Frobenius automorphism in `-adic étale cohomology
to derive a combinatorial recursion for the Poincaré polynomials that matches the defining
combinatorial recursion for Kazhdan–Lusztig–Stanley polynomials. Unfortunately, each
proof involves a rather messy induction, and it can be difficult to determine exactly what
ingredients are needed to make the argument work. The purpose of this document is to do
exactly that.

After reviewing the combinatorial theory of Kazhdan–Lusztig–Stanley polynomials
(Section 2), we lay out a basic geometric framework for interpreting such polynomials as
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Poincaré polynomials of stalks of intersection cohomology sheaves on a stratified variety
(Section 3). When the strata are affine spaces, as is the case for Schubert varieties (both the
classical ones and the ones associated with hyperplane arrangements), we explain how to
interpret the coefficients of the Kazhdan–Lusztig–Stanley polynomials as dimensions of
Ext groups between simple and standard objects of a certain category of perverse sheaves,
generalizing Vogan’s representation theoretic interpretation of classical Kazhdan–Lusztig
polynomials (Section 3.5). Finally, we show that each of the aforementioned classes of
Kazhdan–Lusztig–Stanley polynomials that admit geometric interpretations (along with a
fewmore classes) can be obtained as an application of our general machine without having
to redo the inductive argument each time (Section 4).

1.1. Z -polynomials. Though ourmain purpose is to survey and unify various old results,
there is one new concept that we introduce and study here. When defining Kazhdan–
Lusztig–Stanley polynomials, there is a left versus right convention that appears in the
definition. The left Kazhdan–Lusztig–Stanley polynomials for a weakly graded poset P
coincide with the right Kazhdan–Lusztig–Stanley polynomials for the opposite poset P �
(Remark 2.4). In particular, since the Bruhat poset of a finite Coxeter group is self-opposite
and the face poset of a polytope is opposite to the face poset of the dual polytope, the
left/right issue (while at times confusing) is not so important. The same statement is not
true of the lattice of flats of a matroid, and indeed the right Kazhdan–Lusztig–Stanley
polynomials of a matroid are interesting while the left ones are trivial (Example 2.13). We
introduce a class of polynomials called Z-polynomials (Section 2.3) that depend on both
the left and right Kazhdan–Lusztig–Stanley polynomials. In the case of the lattice of flats
of a matroid, these polynomials coincide with the polynomials introduced in [36].

Under certain assumptions, we use another Lefschetz argument to interpret our
Z-polynomials a Poincaré polynomials for the global intersection cohomology of the
closure of a stratum in our stratified variety. In particular, in the case of the Bruhat poset
of a Weyl group, the Z-polynomials are intersection cohomology Poincaré polynomials
of Richardson varieties (Theorem 4.3); in the case of the lattice of flats of a hyperplane
arrangements, they are intersection cohomology Poincaré polynomials of arrangement
Schubert varieties (Theorem 4.17); and in the case of an affine Weyl group, they are
intersection cohomology Poincaré polynomials of closures of Schubert cells in the affine
Grassmannian (Corollary 4.8).

It would be interesting to know whether the Z-polynomial of a rational polytope has
a cohomological interpretation in terms of toric varieties. These polynomials are closely
related to a family of polynomials defined by Batyrev and Borisov (Remark 2.15), but they
are not quite the same.

1.2. Things that this paper is not about. There are many interesting questions about
Kazhdan–Lusztig–Stanley polynomials that we will mention briefly here but not address
in the main part of the paper.

– By giving a geometric interpretation of a class of Kazhdan–Lusztig–Stanley polynom-
ials, one can infer that these polynomials have non-negative coefficients. There is a rich
history of pursuing the non-negativity of certain classes Kazhdan–Lusztig polynomials in
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the absence of a geometric interpretation. This was achieved by Elias and Williamson
for Kazhdan–Lusztig polynomials of Coxeter groups that are not Weyl groups [19,
Conjecture 1.2(1)] and by Karu for polytopes that are not rational [23, Theorem 0.1]
(see also [5, Theorem 2.4(b)]). Braden, Huh, Matherne, Wang, and the author are
currently working to prove an analogous theorem for matroids that are not realizable by
hyperplane arrangements.

– For many specific classes of Kazhdan–Lusztig–Stanley polynomials, it is interesting
to ask what polynomials can arise. Polo proved that any polynomial with non-negative
coefficients and constant term 1 is equal to the Kazhdan–Lusztig polynomial associated
with some Bruhat interval in some symmetric group [34]. In contrast, the g-polynomial
of a polytope cannot have internal zeros [5, Theorem 1.4]. If the polytope is simplicial,
then the sequence of coefficients is an M-sequence [40], and this is conjecturally the case
for all polytopes; see [5, Section 1.2] for a discussion of this conjecture. Kazhdan–Lusztig
polynomials of matroids are conjectured to always be log concave with no internal zeros
[18, Conjecture 2.5] and even real-rooted [21, Conjecture 3.2]. A similar conjecture has
also been made for Z-polynomials of matroids [36, Conjecture 5.1].

– Classical Kazhdan–Lusztig polynomials were originally defined in terms of the
Kazhdan–Lusztig basis for the Hecke algebra. More generally, Du defines the notion
of an IC basis for a free ZŒt; t�1�-module equipped with an involution [16], and Brenti
proves that this notion is essentially equivalent to the theory of Kazhdan–Lusztig–Stanley
polynomials [8, Theorem 3.2]. Multiplication in the Hecke algebra is compatible with the
involution, which Brenti shows is a very special property [8, Theorem 4.1]. Furthermore,
the structure constants for multiplication in the Kazhdan–Lusztig basis of the Hecke
algebra are positive [19, Conjecture 1.2(2)], and Du asks whether this holds in some
greater generality [16, Section 5]. In the case of Kazhdan–Lusztig polynomials of
matroids, a candidate algebra structure was described and positivity was conjectured
[18, Conjecture 4.2], but that conjecture turned out to be false (see Section 4.6 of the
arXiv version). It is unclear whether this conjecture could be salvaged by changing
the definition of the algebra structure, or more generally when a particular collection of
Kazhdan–Lusztig–Stanley polynomials comes equipped with a nice algebra structure on
its associated module.

Acknowledgements. This work was greatly influenced by conversations with many
people, including Sara Billey, Tom Braden, Ben Elias, Jacob Matherne, Victor Ostrik,
Richard Stanley, Minh-Tam Trinh, Max Wakefield, Ben Webster, Alex Yong, and Ben
Young. The author is also grateful to the referee for many helpful comments. The author
is supported by NSF grant DMS-1565036.

2. Combinatorics

We begin by reviewing the combinatorial theory of Kazhdan–Lusztig–Stanley polynomi-
als, which was introduced in [41, Section 6] and further developed in [7, 8, 17]. We also
introduce Z-polynomials (Section 2.3) and study their basic properties.
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2.1. The incidence algebra. Let P be a poset. We say that P is locally finite if, for all
x � z 2 P , the set

Œx; z� WD fy 2 P j x � y � zg

is finite. Let
I.P / WD

Y
x�y

ZŒt �:

For any f 2 I.P / and x < y 2 P , let fxy.t/ 2 ZŒt � denote the corresponding
component of f . If P is locally finite, then I.P / admits a ring structure with product
given by convolution:

.fg/xz.t/ WD
X
x�y�z

fxy.t/gyz.t/:

The identity element is the function ı 2 I.P / with the property that ıxy D 1 if x D y

and 0 otherwise.
Let r 2 I.P / be a function satisfying the following conditions:

– rxy 2 Z � ZŒt � for all x � y 2 P (we will refer to rxy.t/ simply as rxy);
– if x < y, then rxy > 0;
– if x � y � z, then rxy C ryz D rxz .
Such a function is called a weak rank function [7, Section 2]. We will use the terminology
weakly ranked poset to refer to a locally finite poset equipped with a weak rank function,
and we will suppress r from the notation when there is no possibility for confusion.

For any weakly ranked poset P , let I.P / � I.P / denote the subring of functions f
with the property that the degree of fxy.t/ is less than or equal to rxy for all x � y.
The ring I.P / admits an involution f 7! xf defined by the formula

xfxy.t/ WD t
rxyfxy.t

�1/:

Lemma2.1. An elementf 2 I.P / has an inverse (left or right) if and only iffxx.t/ D ˙1
for all x 2 P . In this case, the left and right inverses are unique and they coincide.
If f 2 I.P / � I.P / is invertible, then f �1 2 I.P /.

Proof. An element g is a right inverse to f if and only if gxx.t/ D fxx.t/�1 and

fxx.t/gxz.t/ D �
X
x<y�z

fxy.t/gyz.t/

for all x < z. The first equation has a solution if and only if fxx.t/ D ˙1, in which case
the second equation also has a unique solution. If f 2 I.P /, it is clear that g 2 I.P /, as
well. The argument for left inverses is identical, so it remains only to show that left and
right inverses coincide.

Let g be right inverse to f . Then g is also left inverse to some function, which we
will denote h. We then have

f D f ı D f .gh/ D .fg/h D ıh D h;

so g is left inverse to f , as well.
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2.2. Right and leftKLS-functions. Anelement �2I.P / is called aP -kernel if �xx.t/D1
for all x 2 P and ��1 D x�. Let

I1=2.P / WD
˚
f 2 I.P / j fxx.t/ D 1 for all x 2 P

and degfxy.t/ < rxy=2 for all x < y 2 P
	
:

Various versions of the following theorem appear in [41, Corollary 6.7], [17, Proposi-
tion 1.2], and [7, Theorem 6.2].
Theorem2.2. If �2I.P / is aP-kernel, there exists a unique pair of functionsf; g2I1=2.P /

such that xf D �f and xg D g�.

Proof. We will prove existence and uniqueness of f ; the proof for g is identical. Fix
elements x < w 2 P , and suppose that fyw.t/ has been defined for all x < y � w. Let

Qxw.t/ WD
X

x<y�w

�xy.t/fyw.t/ 2 ZŒt �:

The equation xf D �f for the interval Œx; w� translates to

xfxw.t/ � fxw.t/ D Qxw.t/:

It is clear that there is at most one polynomial fxw.t/ of degree strictly less than rxw=2
satisfying this equation. The existence of such a polynomial is equivalent to the statement

t rxwQxw.t
�1/ D �Qxw.t/:

To prove this, we observe that

t rxwQxw.t
�1/ D t rxw

X
x<y�w

�xy.t
�1/fyw.t

�1/ D
X

x<y�w

t rxy�xy.t
�1/t rywfyw.t

�1/

D

X
x<y�w

x�xy.t/ xfyw.t/ D
X

x<y�w

x�xy.t/.�f /yw.t/

D

X
x<y�w

x�xy.t/
X

y�z�w

�yz.t/fzw.t/ D
X

x<y�z�w

x�xy.t/�yz.t/fzw.t/

D

X
x<z�w

fzw.t/
X
x<y�z

x�xy.t/�yz.t/ D
X

x<z�w

fzw.t/
�
.x��/xz.t/ � �xz.t/

�
D �

X
x<z�w

�xz.t/fzw.t/ D �Qxw.t/:

Thus there is a unique choice of polynomial fxw.t/ consistent with the equation xf D �f
on the interval Œx; w�.

Remark 2.3. Stanley [41] works only with the function g, as does Brenti in [7], while
Brenti later switches conventions and works with the function f in [8] (though he notes
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in a footnote that both functions exist). Dyer [17] defines versions of both functions, but
with normalizations that differ from ours.

Brenti refers to g in [7] and f in [8] as the Kazhdan–Lusztig–Stanley function assoc-
iated with �. We will refer to f as the right Kazhdan–Lusztig–Stanley function associated
with �, and to g as the left Kazhdan–Lusztig–Stanley function associated with �. For
any x � y, we will refer to the polynomial fxy.t/ or gxy.t/ as a (right or left) Kazhdan–
Lusztig–Stanley polynomial. We will write KLS as an abbreviation for Kazhdan–Lusztig–
Stanley.
Remark 2.4. Given a locally finite weakly graded poset P , let P � denote the opposite
of P , which means that y � x in P � if and only if x � y in P , in which case r�yx D rxy .
For any function f 2 I.P /, define f � 2 I.P �/ by putting f �yx.t/ WD fxy.t/ for
all x � y 2 P . If � is a P -kernel with right KLS-function f and left KLS-function g,
then �� is a P �-kernel with left KLS-function f � and right KLS-function g�. Thus one
can go between left and right KLS-polynomials by reversing the order on the poset.

It will be convenient for us to have a converse to Theorem 2.2. A version of this
proposition appears in [41, Theorem 6.5].
Proposition 2.5. Suppose that f 2 I1=2.P /. Then:
1. f is invertible.
2. xf f �1 is a P -kernel with f as its associated right KLS-function.
3. f �1 xf is a P -kernel with f as its associated left KLS-function.

Proof. By Lemma 2.1, f is invertible. We have�
xf f �1

��1
D f xf �1 D xf f �1;

so xf f �1 is a P -kernel. Since xf D xf .f �1f / D . xf f �1/f , the uniqueness part of
Theorem 2.2 tells us that f is equal to the associated right KLS-function. The last
statement follows similarly.

2.3. The Z -function. Wewill call a functionZ 2 I.P / symmetric if xZ D Z. Let � be a
P -kernel with right KLS-function f and left KLS-function g. LetZ WD g�f 2 I.P /; we
will refer toZ as theZ-function associated with �, and to eachZxy.t/ as aZ-polynomial.
Proposition 2.6. We have Z D xgf D g xf . In particular, Z is symmetric.

Proof. Since xgDg�, we have ZDg�f D xgf . Since xf D �f , we have ZDg�f Dg xf .

We have the following converse to Proposition 2.6.
Proposition 2.7. Suppose that f; g 2 I1=2.P /. Then f and g are the right and left
KLS-functions for a single P -kernel � if and only if xgf is symmetric.

Proof. Let �f WD xf f �1 and �g WD g�1xg. By Proposition 2.5, f is the right KLS-
function of �f and g is the left KLS-function of �g . Then xgf D g�gf and g xf D g�f f .
Multiplying on the left by g�1 and on the right by f �1, we see that these two functions
are the same if and only if �f D �g .
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The following version of Proposition 2.7 will be useful in Section 3.4. It allows us to
relax both the symmetry assumption and the conclusion of Proposition 2.7.

Proposition 2.8. Let � be a P -kernel, and let f; g 2 I1=2.P / be the associated right and
left KLS-functions. Suppose we are given x 2 P and h 2 I1=2.P / such that, for all z � x,
we have .xhf /xz.t/ D .h xf /xz.t/. Then for all z � x, hxz.t/ D gxz.t/.

Proof. We proceed by induction on rxz . When z D x, we have hxx.t/ D 1 D gxx.t/.
Now assume that the statement holds for all y such that x � y < z. We haveX

x�y�z

xgxy.t/fyz.t/ D .xgf /xz.t/ D .g xf /xz.t/ D
X
x�y�z

gxy.t/ xfyz.t/

and X
x�y�z

xhxy.t/fyz.t/ D .xhf /xz.t/ D .h xf /xz.t/ D
X
x�y�z

hxy.t/ xfyz.t/:

Subtracting these two equations and applying our inductive hypothesis, we have

xgxz.t/ � xhxz.t/ D t
rxz
�
gxz.t/ � hxz.t/

�
:

Since deg.gxz � hxz/ < rxz=2, this implies that gxz.t/ D hxz.t/.

Proposition 2.9. Let � 2 I.P / be a P -kernel, and let P � be the opposite of P . Then
Z� 2 I.P �/ is the Z-polynomial associated with the P �-kernel ��.

Proof. By Remark 2.4, the left KLS-polynomial associated with �� is f �, and the right
KLS-polynomial is g�. Thus the Z-polynomial is f ���g� D .g�f /� D Z�.

Remark 2.10. Let � be a P -kernel with right KLS-function f , left KLS-function g and
Z-functionZ. Proposition 2.5 says that, if you know f or g, you can compute �. Similarly,
we observe that if you know Z, you can compute f and g, and therefore �. This can be
proved inductively. Indeed, assume that we can compute f and g on any interval strictly
contained in Œx; z�. Then we have

Zxz.t/ D
X
x�y�z

xgxy.t/fyz.t/ D fxz.t/C xgxz.t/C
X
x<y<z

xgxy.t/fyz.t/;

and therefore
fxz.t/C xgxz.t/ D Zxz.t/ �

X
x<y<z

xgxy.t/fyz.t/: (1)

By our inductive hypothesis, we can compute the right-hand side, which determines the
left-hand side. Since f; g 2 I1=2.P /, this determines fxz.t/ and gxz.t/ individually.

On the other hand, it is not true that every symmetric function Z 2 I.P / with
Zxy.0/ D 1 for all x � y 2 P is the Z-function associated with some P -kernel. This is
because Equation (1) cannot be solved if rxz is even and the coefficient of t rxz=2 on the
right hand side is nonzero.
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2.4. Alternating kernels. Given a function h 2 I.P /, we we define yh 2 I.P / by the
formula yhxy.t/ WD .�1/rxyhxy.t/. The map h 7! yh is an involution of the ring I.P /

that commutes with the involution h 7! xh. We will say that h is alternating if xh D yh. A
version of the following result appears in [41, Corollary 8.3].
Proposition 2.11. Let � 2 I.P / be an alternating P -kernel, and let f; g 2 I1=2.P / be
the associated right and left KLS-functions. Then yg D f �1 and yf D g�1.

Proof. Since xg D g�, we have yxg D yg y� D yg x�. Then

ygf D xyg xf D yxg xf D yg x��f D ygf;

thus ygf is symmetric. However, since f; g 2 I1=2.P /, we have deg.ygf /xy.t/ < rxy=2

for all x < y, so this implies that .ygf /xy.t/ D 0 for all x < y. On the other hand,
.ygf /xx.t/ D ygxx.t/fxx.t/ D 1. Thus ygf D ı, and therefore yg D f �1. The second
statement follows immediately.

2.5. Examples. We now discuss a number of examples of P -kernels along their assoc-
iated KLS-functions andZ-functions. All of these examples will be revisited in Section 4.
Example 2.12. Let W be a Coxeter group, equipped with the Bruhat order and the rank
function given by the length of an element of W . The classical R-polynomials

fRvw.t/ j v � w 2 W g

form a W -kernel, and the classical Kazhdan–Lusztig polynomials

ffxy.t/ j v � w 2 W g

are the associated rightKLS-polynomials. These polynomialswere introduced byKazhdan
and Lusztig [24], and they were one of the main motivating examples in Stanley’s work
[41, Example 6.9].

If W is finite, then there is a maximal element w0 2 W , and left multiplication
by w0 defines an order-reversing bijection of W with the property that, if v � w, then
Rvw.t/ D R.w0w/.w0v/.t/ [32, Lemma 11.3]. It follows from Remark 2.4 that gvw.t/ D
f.w0w/.w0v/.t/. In addition, R is alternating [24, Lemma 2.1(i)], hence Proposition 2.11
tells us that yg D f �1 and yf D g�1.
Example 2.13. Let P be any locally finite weakly ranked poset. Define � 2 I.P / by the
formula �xy.t/ D 1 for all x � y 2 P . The element

� WD ��1 2 I.P /

is called the Möbius function, and the product

� WD �x� D ��1x�

is called the characteristic function of P . We then have ��1 D x��1� D x�, so � is a
P -kernel. Proposition 2.5(3) tells us that the associated left KLS-function is �; this was



108 N. Proudfoot

observed by Stanley in [41, Example 6.8]. However, the associated right KLS-function f
can be much more interesting! (In particular, � is generally not alternating.) For example,
ifP is the lattice of flats of a matroidM with the usual weak rank function, with minimum
element 0 and maximum element 1, then f01.t/ is the Kazhdan–Lusztig polynomial ofM
as defined in [18], and Z01.t/ is the Z-polynomial of M as defined in [36]. In general,
the coefficients of fxy.t/ can be expressed as alternating sums of multi-indexed Whitney
numbers for the interval Œx; y� � P ; see [7, Corollary 6.5], [43, Theorem 5.1], and
[36, Theorem 3.3] for three different formulations of this result.
Example 2.14. Let P be any locally finite weakly ranked poset. Define � 2 I.P / by
the formula �xy.t/ D .t � 1/rxy for all x � y 2 P . The weakly ranked poset P is
called locally Eulerian if �xy.t/ D .�1/rxy for all x � y 2 P , which is equivalent to the
condition that � is a P -kernel [41, Proposition 7.1]. The poset of faces of a polytope, with
weak rank function given by relative dimension (where dim; D �1), is Eulerian. More
generally, any fan is an Eulerian poset.

Let � be a polytope, let P be the poset of faces of �, and let f and g be the
associated right and left KLS-functions. Then g;�.t/ is called the g-polynomial of �
[41, Example 7.2]. Since the dual polytope �� has the property that its face poset is
opposite to P , and since � depends only on the weak rank function, Remark 2.4 tells us
that the right KLS-polynomial f;�.t/ is equal to the g-polynomial of ��. On the other
hand, since � is clearly alternating, Proposition 2.11 tells us that yg D f �1 and yf D g�1
[41, Corollary 8.3].
Remark 2.15. For P locally Eulerian, Batyrev and Borisov define an element

B 2
Y

x�y2P

ZŒu; v�

[1, Definition 2.7]. Let B 0 2 I.P / be the function obtained from B by setting u D �t
and v D �1. The defining equation for B transforms into the equation B 0 xyf D f . Using
the fact that yf D g�1, this means that B 0 D f xg. Thus B 0 is similar to Z D xgf , but it is
not quite the same. In particular, B 0 need not be symmetric.
Example 2.16. Let M be a matroid with lattice of flats L. Let r 2 I.L/ be the usual
weak rank function, and let � 2 I.L/ be the characteristic function. In this example, we
will be interested in the weakly ranked poset .L; 2r/, where 2r is 2 times the usual weak
rank function.

Define � 2 I.L; 2r/ by the following formula:

�FH .t/ WD .t � 1/
rFH

X
F�G�H

.�1/rFG�FG.�1/�GH .t/:

Define hbc 2 I1=2.L; 2r/ by letting

hbcFG.t/ WD .�t /
rFG�FG.1 � t

�1/

be the h-polynomial of the broken circuit complex ofMF
G , whereMF

G is the matroid on
the ground set G X F whose lattice of flats is isomorphic to the interval ŒF;G� � L.
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Proposition 2.17. The function � is an .L; 2r/-kernel, and hbc is its associated left KLS-
function.

Proof. By Proposition 2.5(3), it will suffice to show that hbc D hbc�. We follow the
argument in the proof of [35, Theorem 4.3]. We will write �FG and ıFG to denote the
constant polynomials �FG.t/ and ıFG.t/. For allD � J , we have

.hbc�/DJ .t/ D
X

D�F�J

hbcDF .t/�FJ .t/

D

X
D�F�H�J

.t � 1/rFJ .�1/rFH�FH .�1/�HJ .t/.�t /
rDF �DF .1 � t

�1/

D

X
D�E�F�G

�H�I�J

.t � 1/rFJ .�1/rFH�FG.�1/
rGH�HI t

rIJ .�t /rDF�DE .1 � t
�1/rEF

D

X
D�E�F�G

�H�I�J

�DE�FG�HI .�1/
rDG t rDECrIJ .t � 1/rEJ

D

X
D�E�G�I�J

�DE .�1/
rDG t rDECrIJ .t � 1/rEJ

X
E�F�G

�FG
X

G�H�I

�HI

D

X
D�E�G�I�J

�DE .�1/
rDG t rDECrIJ .t � 1/rEJ ıEGıGI

D

X
D�E�J

�DE .�1/
rDE t rDJ .t � 1/rEJ D .�t /rDJ

X
D�E�J

�DE .1 � t /
rEJ

D t2rDJ .�t�1/rDJ �DJ .1 � t / D t
rDJ hbcDJ .t

�1/ D hbcDJ .t/:

This completes the proof.

3. Geometry

In this section we give a general geometric framework for interpreting right KLS-
polynomials in terms of the stalks of intersection cohomology sheaves on a stratified space.
Under some additional assumptions, we also give cohomological interpretations for the
associated Z-polynomials. Our primary reference for technical properties of intersection
cohomology will be the book of Kiehl and Weissauer [26], however, a reader who is
learning this material for the first time might also benefit from the friendly discussion in
the book of Kirwan and Woolf [27, Section 10.4].

3.1. The setup. Fix a finite field Fq , an algebraic closure Fq , and a prime ` that does not
divide q. For any variety Z over Fq , let ICZ denote the `-adic intersection cohomology
sheaf on the variety Z.Fq/. We adopt the convention of not shifting ICZ to make it
perverse. In particular, if Z is smooth, then ICZ is isomorphic to the constant sheaf in
degree zero.
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Suppose that we have a variety Y over Fq and a stratification

Y D
G
x2P

Vx :

By this we mean that each stratum Vx is a smooth connected subvariety of Y and the
closure of each stratum is itself a union of strata. We define a partial order on P by putting
x � y ” Vx � xVy , and a weak rank function by the formula rxy D dimVy � dimVx .
Fix a point ex 2 Vx for each x 2 P .

Next, suppose that we have a stratification preserving Gm-action �x WGm ! Aut.Y /
for each x 2 P and an affine Gm-subvariety Cx � Y with the following properties:

– Cx is a weighted affine cone with respect to �x with cone point ex . In other words, the
Z-grading on the affine coordinate ring FqŒCx � induced by �x is non-negative and the
vanishing locus of the ideal of positively graded elements is fexg.

– For all x; y 2 P , let

Uxy WD Cx \ Vy and Xxy WD Cx \ xVy :

We require that the restriction of IC xVy to Cx.Fq/ is isomorphic to ICXxy .

Note that the variety Xxy is a closed Gm-equivariant subvariety of Cx , therefore it is
either empty or a weighted affine cone with cone point ex . We have

ex 2 Xxy ” ex 2 xVy ” x � y;

so Xxy is nonempty if and only if x � y.

Lemma 3.1. For all x � z, we have Xxz D
F
x�y�z Uxy .

Proof. We have
Xxz D Cx \ xVz D Cx \

G
y�z

Vy D
G
y�z

Uxy :

If x is not less than or equal to Y , then Xxy is empty, thus so is Uxy .

The condition on restrictions of IC sheaves is somewhat daunting. In each of our
families of examples, we will check this condition by means of a group action, using the
following lemma.

Lemma3.2. Suppose thatY is equippedwith an action of an algebraic groupG preserving
the stratification. Suppose in addition that, for each x 2 P , there exists a subgroup
Gx � G such that the composition

'x WGx � Cx ,! G � Y ! Y

is an open immersion. Then for all x � y 2 P , the restriction of IC xVy to Cx.Fq/ is
isomorphic to ICXxy .
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Proof. Since 'x is an open immersion, we have '�1x IC xVy Š IC'�1x . xVy/
as sheaves on

Gx.Fq/�Cx.Fq/ for all x; y 2 P . Since the action ofG on Y preserves the stratification,
we have

'�1x . xVy/ D Gx � .Cx \ xVy/ D Gx �Xxy ;

so '�1x IC xVy Š ICGx � ICXxy . Since Gx is smooth, ICGx is the constant sheaf on Gx .
Thus, if we further restrict to Cx.Fq/ Š fidGx g � Cx.Fq/, we obtain ICXxy .

Remark 3.3. In some of our examples (Sections 4.2 and 4.3), the Gm-action �x will not
actually depend on x. In other examples (Sections 4.1 and 4.4), it will depend on x.

3.2. Intersection cohomology. Wewill write IH�.Z/ and IH�c .Z/ to denote the ordinary
and compactly supported cohomology of ICZ . Given a pointp 2 Z, wewill write IH�p.Z/
to denote the cohomology of the stalk of ICZ at p. Each of these graded Q`-vector spaces
has a natural Frobenius automorphism induced by the Frobenius automorphism ofZ. We
will be interested in the vector spaces IH�xy WD IH�ex . xVy/ for all x � y.

Lemma 3.4. If x � y � z and u 2 Uxy , then IH�yz Š IH�u.Xxz/.

Proof. Since u and ey lie in the same connected stratum of xVz , we have an isomorphism
of stalks IC xVz ;ey Š IC xVz ;u. Since the restriction of IC xVz to Cx.Fq/ is isomorphic to
ICXxz , we have an isomorphism of stalks IC xVz ;u Š ICXxz ;u. Putting these two stalk
isomorphisms together, we have

IH�yz D IH�ey . xVz/ D H�.IC xVz ;ey / Š H�.IC xVz ;u/ Š H�.ICXxz ;u/ D IH�u.Xxz/:

This completes the proof.

Lemma 3.5. For all y � z, IH�yz Š IH�.Xyz/.

Proof. If we apply Lemma 3.4 with x D y, we find that IH�yz Š IH�ey .Xyz/. Since Xyz
is a weighted affine cone with cone point ey , the cohomology of the stalk of the IC sheaf
at ey coincides with the global intersection cohomology [25, Lemma 4.5(a)].

We call an intersection cohomology group chaste if it vanishes in odd degrees and
the Frobenius automorphism acts on the degree 2i part by multiplication by qi [18,
Section 3.3]. (This is much stronger than being pure, which is a statement about the
absolute values of the eigenvalues of the Frobenius automorphism.)

3.3. Right KLS-polynomials. Define f 2 I.P / by putting

fxy.t/ WD
X
i�0

t i dim IH2ixy

for all x � y. We observe that f 2 I1=2.P / by Lemma 3.5 and [18, Proposition 3.4].
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Theorem 3.6. Suppose that we have an element � 2 I.P / such that, for all x � y and
all positive integers s,

�xy.q
s/ D jUxy.Fqs /j:

Then IH�xz is chaste for all x � z, � is a P -kernel, and f is the associated right KLS-
function.

Remark 3.7. The first time that you read the proof of Theorem 3.6, it is helpful to pretend
that we already know that IH�xz is chaste for all x � z. In this case, the proof simplifies
to a straightforward application of Poincaré duality and the Lefschetz formula, along with
Lemmas 3.1, 3.4, and 3.5. The actual proof as it appears is made significantly more subtle
by the need to fold the chastity statement into the induction.

Proof of Theorem 3.6. We begin with an inductive proof of chastity. It is clear that IH�xx
is chaste for all x 2 P . Now consider a pair of elements x < z, and assume that IH�yz is
chaste for all x < y � z. Let s be any positive integer. Applying the Lefschetz formula
[26, III.12.1(4)], along with Lemmas 3.1 and 3.4, we find thatX

i�0

.�1/i tr
�
Frs Õ IHic.Xxz/

�
D

X
u2Xxz.Fqs /

X
i�0

.�1/i tr
�
Frs Õ IHiu.Xxz/

�
D

X
x�y�z

X
u2Uxy.Fqs /

X
i�0

.�1/i tr
�
Frs Õ IHiu.Xxz/

�
D

X
x�y�z

X
u2Uxy.Fqs /

X
i�0

.�1/i tr
�
Frs Õ IHiyz

�
D

X
x�y�z

�xy.q
s/
X
i�0

.�1/i tr
�
Frs Õ IHiyz

�
:

By Poincaré duality [26, II.7.3], we have

tr
�
Frs Õ IHic.Xxz/

�
D qsrxz tr

�
Fr�s Õ IH2rxz�i .Xxz/

�
:

By our inductive hypothesis, we have
P
i�0.�1/

i tr.Frs Õ IH�yz/ D fyz.q
s/ for all

x < y � z. Moving the x D y term from the right hand side to the left hand side, the
Lefschetz formula becomesX
i�0

.�1/i
�
qsrxz tr

�
Fr�s Õ IH2rxz�ixz

�
� tr

�
Frs Õ IHixz

��
D

X
x<y�z

�xy.q
s/fyz.q

s/:

(2)
Wenow follow the proof of [18, Theorem3.7]. Letbi D dim IHixz . Let .˛i;1; : : : ; ˛i;bi /

2 SQbi
`
be the eigenvalues of the Frobenius action on IHixz (with multiplicity, in any order).

Then Equation (2) becomes

X
i�0

.�1/i
biX
jD1

�
.qrxz=˛i;j /

s
� ˛si;j

�
D

X
x<y�z

�xy.q
s/fyz.q

s/:
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By Lemma 3.5 and [18, Proposition 3.4], IHixz D 0 for i � rxz , and for any i < rxz=2,
˛i;j has absolute value qi=2 < qrxz=2. It follows that qrxz=˛i;j has absolute value
qrxz�i=2 > qrxz=2, and therefore that the numbers that appear with positive sign on the
left-hand side of Equation (2) are pairwise disjoint from the numbers that appear with
negative sign. Since the right-hand side is a sum of integer powers of qs with integer
coefficients, [18, Lemma 3.6] tells us that each ˛i;j must also be an integer power of q.
This is only possible if bi D 0 for odd i and ˛i;j D qi=2 for even i , thus IH�xz is chaste.

Now that we have established chastity, Equation (2) becomes

qsrxzfxz.q
�s/ � fxz.q

s/ D
X
x<y�z

�xy.q
s/fyz.q

s/;

or equivalently

xfxz.q
s/ D qsrxzfxz.q

�s/ D
X
x�y�z

�xy.q
s/fyz.q

s/ D .�f /xz.q
s/:

Since this holds for all positive s, it must also holdwith qs replaced by the formal variable t ,
thus xf D �f . The fact that � is a P -kernel with f as its associated right KLS-function
now follows follow from Proposition 2.5(2).

The same idea used in the proof of Theorem 3.6 can be used to obtain the following
converse.

Theorem 3.8. Suppose that IH�xz is chaste for all x � z, and let � WD xf f �1. Then for
all s > 0 and x � z,

�xz.q
s/ D jUxz.Fqs /j:

Proof. We proceed by induction. When x D z, we have �xz.t/ D 1 and Uxz D fexg, so
the statement is clear. Now assume that �xy.qs/ D jUxy.Fqs /j for all x � y < z. By
Poincaré duality the Lefschetz formula, we have

xfxz.q
s/ D

X
x�y�z

jUxy.Fqs /jfyz.q
s/ D jUxz.Fqs /j C

X
x�y<z

�.qs/fyz.q
s/:

By the definition of �, we have

xfxz.q
s/ D

X
x�y�z

�.qs/fyz.q
s/:

Comparing these two equations, we find that jUxz.Fqs /j D �.qs/.

Remark 3.9. In Section 4.2, we will apply Theorem 3.8 when Y is the affine Grassmann-
ian. Then Y is an ind-scheme rather than a variety, but each xVx is an honest variety, and
the proof goes through without modification.
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3.4. Z -polynomials. In this section we will explain how to give a cohomological
interpretation of Z-polynomials under certain more restrictive hypotheses. Specifically,
we will assume that IH�xy is chaste for all x � y, let � WD xf f �1, and let g be the left
KLS-function associated with �. We will also assume that there is a minimal element
0 2 P and a function h 2 I1=2.P / such that xh0x.qs/ D jVx.Fqs /j for all x 2 P and s > 0.
Finally, we will assume that xVy is proper for all y 2 P .

Theorem 3.10. Suppose that all of the above hypotheses are satisfied. Then for all y 2 P ,
we have g0y.t/ D h0y.t/, IH�. xVy/ is chaste, andX

i�0

t i dim IH2i . xVy/ D Z0y.t/:

Proof. Following the proof of Theorem 3.6, we apply the Lefschetz formula to obtainX
i�0

.�1/i tr
�
Frs Õ IHic. xVy/

�
D

X
v2 xVy.Fqs /

X
i�0

.�1/i tr
�
Frs Õ IH�v. xVy/

�
D

X
x�y

X
v2Vx.Fqs /

X
i�0

.�1/i tr
�
Frs Õ IH�v. xVy/

�
D

X
x�y

xh0x.q
s/
X
i�0

.�1/i tr
�
Frs Õ IH�xy

�
D

X
x�y

xh0x.q
s/fxy.q

s/ D .xhf /0y.q
s/:

Since xVy is proper, compactly supported intersection cohomology coincides with ordinary
intersection cohomology. Poincaré duality then tells us that .xhf /0y.qs/ D .h xf /0y.q

s/.
Since this is true for all s, we must have .xhf /0y.t/ D .h xf /0y.t/. By Proposition 2.8, we
may conclude that h0y.t/ D g0y.t/ for all y 2 P , and therefore thatX

i�0

.�1/i tr
�
Frs Õ IHi . xVy/

�
D Z0y.q

s/: (3)

Let bi D dim IHi . xVy/. Let .˛i;1; : : : ; ˛i;bi / 2 SQ
bi
`
be the eigenvalues of the Frobenius

action on IHi . xVy/ (with multiplicity, in any order). Then Equation (3) becomes

X
i�0

.�1/i
biX
jD1

˛si;j D Z0y.q
s/:

By Deligne’s theorem [14, Theorems 3.1.5 and 3.1.6], each ˛i;j has absolute value qi=2.
Since the right-hand side is a sum of integer powers of qs with integer coefficients,
[18, Lemma 3.6] tells us that each ˛i;j must also be an integer power of q. This is only
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possible if bi D 0 for odd i and ˛i;j D qi=2 for even i . This proves that IHi . xVy/ is chaste,
and Equation (3) becomes X

i�0

qis dim IH2i . xVy/ D Z0y.qs/:

Since this holds for all positive s, it must also hold with qs replaced by the formal
variable t .

Remark 3.11. We will apply Theorem 3.10 in the case where Y is a flag variety
(Section 4.1), an affineGrassmannian (Section 4.2), or the Schubert variety of a hyperplane
arrangement (Section 4.3). In the first and third cases, we will be able to make an even
stronger statement, namely thatX

i�0

t i dim IH2i . xCx \ xVy/ D Zxy.t/

(Theorems 4.3 and 4.17). However, this seems to be true for different reasons in the two
cases, and we are unable to find a unified proof; see Remark 4.19 for further discussion.

3.5. Category O. In this section we assume that the hypotheses of Theorem 3.6 are
satisfied, and we make the additional assumption that each stratum Vx is isomorphic to
an affine space. Though this is a very restrictive assumption, it is satisfied by two of our
main families of examples (Sections 4.1 and 4.3).

For each x 2 P , let Lx WD IC xVx ŒdimVx �, and let O denote the Serre subcategory
of Q`-perverse sheaves on Y.Fq/ generated by fLx j x 2 P g. Let �x WVx ! Y be the
inclusion, and define

Mx WD .�x/ŠQ`Vx ŒdimVx � and Nx WD .�x/�Q`Vx ŒdimVx �:

Then O is a highest weight category in with simple objects fLxg, standard objects fMxg,
and costandard objects fNxg [3, Lemmas 4.4.5 and 4.4.6]. For all x � y 2 P , we have
Extj

O
.Mx ;Ly/ D 0 unless j C rxy is even, and

fxy.t/ D
X
i�0

t i dimExtrxy�2i
O

.Mx ;Ly/: (4)

Motivated by the examples in Section 4.1, Beilinson, Ginzburg, and Soergel prove that
the category O admits a grading, and the graded lift zO of O is Koszul [3, Theorem 4.4.4].
The Grothendieck group of zO is a module over ZŒt; t�1� whose specialization at t D 1

is canonically isomorphic to the Grothendieck group of O. If zLx and zNx are the natural
lifts to zO of Lx and Nx , then we have [10, Equation (3.0.6)]

Œ zLy � D
X
x�y

xfxy.t
2/Œ zNx �: (5)

More generally, Cline, Parshall, and Scott study abstract frameworks for obtaining
categorical (rather than cohomological) interpretations of Kazhdan–Lusztig–Stanley
polynomials [10, 11].
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4. Examples

In this section we apply the results of Section 3 to a number of different families of
examples.

4.1. Flag varieties. Let G be a split reductive algebraic group over Fq . Let B;B� � G
be Borel subgroups with the property that T WD B \ B� is a maximal torus. Let
W WD N.T /=T be the Weyl group. Let Y WD G=B be the flag variety of G. For
all w 2 W , let

Vw WD fgB j g 2 BwBg and Cw WD fgB j g 2 B
�wBg:

Let ew WD wB be the unique element of Cw \ Vw . The variety Vw is called a Schubert
cell, and Cw is called an opposite Schubert cell. The flag variety is stratified by Schubert
cells, and the induced partial order on W is called the Bruhat order.

The existence of the homomorphism �w WGm ! T � G exhibiting Cw as a weighted
affine cone is proved in [24, Lemma A.6] (see alternatively [25, Section 1.5]). LetN � B
and N � � B� be the unipotent radicals, and for each w 2 W , letNw WD N \ wN �w�1.
ThenNw acts freely and transitively on Vw and the action map Nw �Cw ! Y is an open
immersion [25, Section 1.4]. In particular, Lemma 3.2 applies.

For all v � w, let Uvw WD Cv \ Vw . Kazhdan and Lusztig show that Rvw.q/ D
jUvw.Fq/j in [24, Lemma A.4] (see alternatively [25, Section 4.6]), where R is the
W -kernel of Example 2.12. We therefore obtain the following corollary to Theorem 3.6,
which first appeared in [25, Theorem 3.3].
Corollary 4.1. Let f 2 I1=2.W / be the right KLS-function associated with R 2 I.W /.
For all v � w 2 W , IH�ev . xVw/ is chaste and

fvw.t/ D
X
i�0

t i dim IH2iev . xVw/:

For each w 2 W , the Schubert cell Vw Š Nw is isomorphic to an affine space of
dimension `.w/ D rew (where e 2 W is the identity element) [25, Section 1.3]. We
therefore obtain the following corollary to Theorem 3.10, which originally appeared in
[25, Corollary 4.8].
Corollary 4.2. For all w 2 W , gew.t/ D 1, IH�. xVw/ is chaste, and

Zew.t/ D
X
i�0

t i dim IH2i . xVw/:

Next, we use features unique to this particular class of examples to describe Zvw.t/
for arbitrary v � w 2 W . Let zw0 2 N.T / � G be a lift of w0 2 W . Then we have
zw0Vw D Cw0w and zw0Cw D Vw0w . In particular, this implies that IH�ew . xCv/ is chaste
for all v � w, and

gvw.t/ D f.w0w/.w0v/.t/ D
X
i�0

t i dim IH2iew . xCv/ (6)

for all v � w 2 W . Consider the Richardson variety xCv \ xVw .
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Theorem 4.3. For all x � w 2 W , IH�. xCx \ xVw/ is chaste and

Zxw.t/ D
X
i�0

t i dim IH2i . xCx \ xVw/:

Proof. Knutson, Woo, and Yong [28, Section 3.1] prove that, for all x � y � z � w 2 W
and u 2 Uyz , we have

IH�u. xCx \ xVw/ Š IH�u. xCx/˝ IH�u. xVw/ Š IH�ey . xCx/˝ IH�ez . xVw/; (7)

and therefore X
i�0

.�1/i tr
�
Frs Õ IH�u. xCx \ xVw/

�
D gxy.q

s/fzw.q
s/:

Applying the Lefschetz formula, we haveX
i�0

.�1/i tr
�
Frs Õ IHi . xCx \ xVw/

�
D

X
u2 xCw.Fqs /\xVx.Fqs /

X
i�0

.�1/i tr
�
Frs Õ IH�u. xCw \ xVx/

�
D

X
x�y�z�w

X
u2Uyz.Fqs /

X
i�0

.�1/i tr
�
Frs Õ IH�u. xCw \ xVx/

�
D

X
x�y�z�w

gxy.q
s/Ryz.q

s/fzw.q
s/

D .gRf /xz.q
s/ D Zxz.q

s/:

By the same argument employed in the proofs of Theorems 3.6 and 3.10, this implies that
IH�. xCx \ xVw/ is chaste and Zxw.t/ D

X
i�0

t i dim IH2i . xCx \ xVw/:

Remark 4.4. By the observation at the end of Example 2.12, we have gxy.t/ D
f.w0y/.w0x/.t/, and therefore

Zxw.t/ D
X

x�y�w

xgxy.t/fyw.t/ D
X

x�y�w

xf.w0y/.w0x/.t/fyw.t/:

Thus it is possible to express the intersection cohomology Poincaré polynomial of a
Richardson variety as a sum of products of classical Kazhdan–Lusztig polynomials
(one of which is barred). If x D e (as in Corollary 3.10), then f.w0y/.w0x/.t/ D 1,
so xf.w0y/.w0x/.t/ D t rxy and we obtain the well-known formula for the intersection
cohomology Poincaré polynomial of xVw .
Remark 4.5. Since each Vw is isomorphic to an affine space, the results of Section 3.5
apply. The category O is equivalent to a regular block of the Bernstein–Gelfand–Gelfand
category O for the Lie algebra Lie.G/.
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4.2. The affine Grassmannian. Let G be a split reductive group over Fq with maximal
torus T � G, and let G_ be the Langlands dual group. Let ƒ denote the lattice of
coweights ofG (equivalently weights ofG_), and letƒ_ be the dual lattice. Let 2�_ 2 ƒ_
be the sum of the positive roots of G. LetƒC � ƒ be the set of dominant weights of G_,
equipped with the partial order � � � if and only if ��� is a sum of positive roots. This
makes ƒC into a locally finite poset, and we endow it with the weak rank function

r�� WD h� � �; 2�
_
i:

Let Y WD G..s//=GJsK be the affine Grassmannian for G. We have a natural bijection
between ƒ and T ..s//=T JsK. For any � 2 ƒC � ƒ Š T ..s//=T JsK, let z� be a lift of �
to T ..s// � G..s//, and let e� be the image of z� in Y , which is independent of the choice
of lift. Let

V� WD Gr� WD GJsK � e� � Y:

This subvariety is smooth of dimension h�; 2�_i, and we have a stratification

Y D
G
�2ƒC

V�

inducing the givenweakly ranked poset structure onƒC; see, for example, [6, Lemma 2.2].
For any � � �, let L.�/� denote the � weight space of the irreducible representation

of G_ with highest weight �. The vector space L.�/� is filtered by the annihilators of
powers of a regular nilpotent element of Lie.G_/, and it follows from the work of Lusztig
and Brylinski that the intersection cohomology group IH��� is canonically isomorphic as a
graded vector space to the associated graded of this filtration [6, Theorem 2.5]. Moreover,
it is chaste [22, Theorem 2.0.1]. (The vanishing of IH��� in odd degree is originally due
to Lusztig [31, Section 11], and the discussion there makes it clear that he was aware that
it is chaste, but the full statement of chastity does not appear explicitly.) The polynomial

f��.t/ WD
X
i�0

t i dim IH2i��

goes by many names, including spherical affine Kazhdan–Lusztig polynomial, Kostka–
Foulkes polynomial, and the t -character of L.�/�. For a detailed discussion of various
combinatorial interpretations, see [33, Theorem 3.17].

For any � 2 ƒC, let

C� WD W� WD s
�1GŒs�1� � e� � Y:

The space C� is infinite dimensional, but, as in Section 3.1, we will only be interested in
the finite dimensional varieties

U�� WD C� \ V� and X�� WD C� \ xV�:

These varieties satisfy the two conditions of Section 3.1; that is, each X�� is a weighted
affine cone with respect to loop rotation, and the restriction of IC xV� to X��.Fq/ is
isomorphic to ICX�� [6, Lemma 2.9] (see also [44, Proposition 2.3.9]). In particular, we
have the following corollary to Theorem 3.8.
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Corollary 4.6. Let � WD xf f �1 2 I.ƒC/. Then for all s > 0 and � � � 2 ƒC,
�.qs/ D jU��.Fqs /j.

Remark 4.7. We have used the fact that IH��� is chaste to determine that jU��.Fqs /j is a
polynomial in qs , and that one can obtain a formula for this polynomial by inverting the
matrix of spherical affine Kazhdan–Lusztig polynomials. It would be interesting to prove
directly that U��.Fqs / is a polynomial in qs , both because it would be nice to have an
explicit formula for this polynomial, and because it would provide a new proof of chastity.

We now say something about the geometry of the varieties V� and Z-polynomials.
Let g;Z 2 I.ƒC/ be the left KLS-polynomial and the Z-polynomial associated with �.
For each � 2 ƒC, let P� � G be the parabolic subgroup generated by the root subgroups
for roots that pair non-positively with �. In particular, P0 D G, and P� D B for
generic �. Let W� � W be the stabilizer of � in the Weyl group. Then V� is an affine
bundle over G=P� [44, Section 2], which allows us to compute [31, Equation (8.10) and
Section 11]

jV�.Fqs /j D q
h�;2�_i��0C��

P
w2W q`.w/P
w2W�

q`.w/
:

Then we have the following corollary to Theorem 3.10.

Corollary 4.8. For all � 2 ƒC, we have

g0�.t/ D t
�0���

P
w2W t�`.w/P
w2W�

t�`.w/
;

IH�. xV�/ is chaste, and
Z0�.t/ D

X
i�0

t i dim IH2i . xV�/:

Remark 4.9. Lusztig [31, Equation (8.10)] tells us that

Z0�.t/ D
Y
˛2�C

t h�C�;˛
_i � 1

t h�;˛
_i � 1

;

where�C � ƒ_ is the set of positive roots forG. Since the geometric Satake isomorphism
identifies IH�. xV�/ with L.�/, we also obtain the equation Z0�.1/ D dimL.�/.

4.3. Hyperplane arrangements. LetV be a vector space overFq , and letADfHi j i 2Ig

be an essential central arrangement of hyperplanes in V . For each i 2 I, letƒi WD V=Hi ,
and let Pi WD P .ƒi ˚ Fq/ D ƒi [ f1g be the projective completion of ƒi . Let
ƒ WD

L
i2I ƒi and P WD

Q
i2I Pi : We have a natural linear embedding V � ƒ � P ,

and we define
Y WD xV � P :

The variety Y is called the Schubert variety of A. The translation action of ƒ on itself
extends to an action on P , and the subgroup V � ƒ acts on the subvariety Y � P .
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For any subset F � I, let eF 2 P be the point with coordinates

.eF /i D

(
0 if i 2 F ;
1 if i 2 F c ;

and let
VF WD fp 2 Y j pi D1 ” i 2 F cg:

A subset F � I is called a flat if there exists a point v 2 V such that F D fi j v 2 Hig.
Given a flat F , we define

V F WD
\
i2F

Hi :

Proposition 4.10. The variety Y is stratified by affine spaces indexed by the flats of A.
More precisely:
1. For any subset F � I, VF ¤ ; ” eF 2 Y ” F is a flat.
2. For every flat F , StabV .eF / D V F and VF D V � eF Š V=V F .
3. For every flat G, xVG D

S
F�G VF .

Proof. Item 1 is proved in [36, Lemmas 7.5 and 7.6]. For the first part of item 2, we
observe that StabV .eF / is equal to the subgroup of V � ƒ consisting of elements v that
are supported on the set fi j .eF /i D 1g D F c . This is equivalent to the condition
that v 2 Hi for all i 2 F , in other words v 2 V F . Thus the action of V on eF
defines an inclusion of V=V F into VF . The fact that this is an isomorphism follows from
[36, Lemma 7.6]. Item 3 is clear from the definition of VF .

We have a canonical action of Gm on ƒ by scalar multiplication, which extends to an
action on P and restricts to a stratification-preserving action on Y . For any flat F � I, let

AF WD fp 2 P j pi D 0 ” i 2 F g:

This is isomorphic to a vector space of dimension jF j, and the action of Gm on P restricts
to the action of Gm on AF by inverse scalar multiplication. In particular, the coordinate
ring of AF is non-negatively graded by the action of Gm, and the vanishing locus of the
ideal of positively graded elements is equal to feF g. Let

CF WD AF \ Y:

This is a closed Gm-equivariant subvariety of AF containing eF , which implies that it is
an affine cone with cone point eF . Let

UFG WD CF \ VG and XFG WD CF \ xVG :

Proposition 4.11. For allF�G, the restriction of IC xVG toCF .Fq/ is isomorphic to ICXFG .

Proof. Fix the flat F , and choose a section sWVF ! V of the projection from V to VF .
The action map 'F W s.VF / � CF ,! V � Y ! Y is an open immersion [37, Section 3],
thus we can apply Lemma 3.2.
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Let L be the lattice of flats of A, ordered by inclusion. If F is a flat, the rank
of F is defined to be the dimension of VF , and we define a weak rank function r by
putting rFG WD rkG � rkF for all F � G. Let � 2 I.L/ be the characteristic function
(Example 2.13).
Proposition 4.12. For any pair of flats F � G and any positive integer s,

�FG.q
s/ D jUFG.Fqs /j:

Proof. When F D ; and G D I, U;I D V X
S
i2I Hi is equal to the complement

of the arrangement A in V . In this case, Crapo and Rota [13, Section 16] prove that
�;I.q

s/ D jU;I.Fqs /j.
More generally, for any pair of flats F � G, consider the hyperplane arrangement

AF
G WD f.Hi \ V

F /=V G j i 2 G X F g

in the vector space V F =V G . The interval ŒF;G� � L is isomorphic as a weakly ranked
poset to the lattice of flats of AF

G , and UFG is isomorphic to the complement of AF
G

in V F =V G . Thus Crapo and Rota’s result, applied to the arrangement AF
G , tells us that

�FG.q
s/ D jUFG.Fqs /j.

The following result originally appeared in [18, Theorem 3.10].
Corollary 4.13. LetL be theweakly ranked poset of flats of the hyperplane arrangementA,
and let f 2 I.L/ be the right KLS-function associated with the L-kernel �. For all
F � G 2 L, IH�eF . xVG/ is chaste, and

fFG.t/ D
X
i�0

t i dim IH2ieF . xVG/ D
X
i�0

t i dim IH2i .XFG/:

Proof. This follows from Lemma 3.5 and Theorem 3.6 via Propositions 4.10–4.12.

Remark 4.14. The variety XFG is called the reciprocal plane of the arrangement AF
G .

Its coordinate ring is isomorphic to the Orlik–Terao algebra of AF
G , which is by definition

the subalgebra of rational functions on V F =V G generated by the reciprocals of the linear
forms that define the hyperplanes.
Remark 4.15. By Proposition 4.10(2), the strata of Y are isomorphic to affine spaces, so
Equations (4) and (5) tell us that fxy.t/ may also be interpreted as the graded dimension
of an Ext group in category O, or as the graded multiplicity of a costandard in a simple in
the Grothendieck group of the graded lift.

Turning now to theZ-polynomialZ 2 I1=2.L/ associated with �, we have the follow-
ing corollary of Theorem 3.10. A version of this result, along with the more general
Theorem 4.17, originally appeared in [36, Theorem 7.2].
Corollary 4.16. For all F 2 L, IH�. xVF / is chaste, and

Z;F .t/ D
X
i�0

t i dim IH2i . xVF /:
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Proof. As we noted in Example 2.13, the L-kernel � has left KLS-polynomial �, and for
all F 2 L and s > 0, jVF .Fqs /j D qsr;F D x�;F .q

s/. Then Theorem 3.10 gives us our
result.

As in Section 4.1, we can give a cohomological interpretation of ZFG.t/ for any
F � G 2 L.
Theorem 4.17. For all F � G 2 L, IH�. xCF \ xVG/ is chaste, and

ZFG.t/ D
X
i�0

t i dim IH2i . xCF \ xVG/:

Proof. The variety xCF \ xVG is isomorphic to the variety Y associated with the arrange-
ment AF

G . Similarly, the interval ŒF;G� � L is isomorphic as a weakly ranked poset to
the lattice of flats of AF

G . Thus the theorem follows from Corollary 4.16 applied to the
arrangement AF

G and the pair of flats ; � G X F .

Remark 4.18. We have chosen to work with arrangements over a finite field in order
to apply the techniques of Section 3, but this restriction is not important. First, given a
hyperplane arrangement over any field, it is possible to choose a combinatorially equivalent
arrangement (one with the same matroid) over a finite field [38, Theorems 4 & 6]. Second,
if we are given an arrangement over the complex numbers and we prefer to work with the
topological intersection cohomology of the analogous complex varieties, the formulas in
the statements of Corollary 4.13 and Theorem 4.17 still hold (see [18, Proposition 3.12]
and [36, Theorem 7.2]).
Remark 4.19. The proof of Theorem 4.3 (the analogue of Theorem 4.17 for Richardson
varieties) relied on two special facts, namely Equations (6) and (7). In the context of
hyperplane arrangements, the analogues of these two equations hold a posteriori, but it is
not clear how one would prove them directly. In particular, the variety CF is not smooth,
so the decomposition Y D

F
F 2L CF is not a stratification, and it is not possible to apply

Theorem 3.6 to obtain the analogue of Equation (6). On the other hand, the proof of
Theorem 4.17 relies on the fact that any interval in the lattice of flats of an arrangement is
isomorphic to the lattice of flats of another arrangement; the analogous statement for the
Bruhat order on a Coxeter group is false. Thus the proofs of Theorems 4.3 and 4.17 are
truly distinct.

4.4. Toric varieties. Let T be a split algebraic torus over Fq with cocharacter lattice N
and let † be a rational fan in NR. We consider † to be a weakly ranked poset ordered by
reverse inclusion, with weak rank function given by relative dimension. We will assume
that f0g 2 †; this is the maximal element of †, and we will denote it simply by 0.

Let Y be the T -toric variety associated with †. The cones of † are in bijection
with T -orbits in Y and with T -invariant affine open subsets of Y . Given � 2 †, let V�
denote the corresponding orbit, let W� denote the corresponding affine open subset, and
let T� � T be the stabilizer of any point in V� . We then have dimV� D codim � ,
and [12, Theorem 3.2.6]

� � � ” V� � xV� ” W� � W� ” W� � V� :
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For each � 2 †, we have a canonical identification V� Š T=T� , and we define e� 2 V�
to be the identity element of T=T� . In particular, we have T� � T Š V0 � Y for all � ,
and we define

C� WD W� \ xT� :

The cocharacter lattice of T� is equal toN� WD N \R� , C� is isomorphic to the T� -toric
variety associated with the cone � � N�;R, and e� 2 C� is the unique fixed point. If
� � � , then U�� WD C� \ V� is equal to the T� -orbit in C� corresponding to the face �
of � . In particular, this means that

jU�� .Fqs /j D .q
s
� 1/r�� D ��� .q

s/;

where � 2 I.†/ is the †-kernel of Example 2.14.
For each � 2 †, choose a lattice point n� 2 N lying in the relative interior of � .

Then n� is a cocharacter of T , and thus defines a homomorphism �� WGm ! T � Aut.Y /.
The fact that � lies in the relative interior of � implies that C� is a weighted affine cone
with respect to �� with cone point e� . Choose in addition a section s� WT=T� ! T of
the projection. Then the action map s� .T=T� / � C� ! Y is an open immersion, thus
Lemma 3.2 tells us that the hypotheses of Section 3.1 are satisfied. We therefore obtain
the following corollary to Theorem 3.6, which originally appeared in [15, Theorem 6.2]
(see also [20, Theorem 1.2]).
Corollary 4.20. Let f 2 I1=2.†/ be the right KLS-function associated with �. For all
� � � , IH�e� . xV� / is chaste andX

i�0

t i dim IH2ie� . xV� / D f�� .t/:

Remark 4.21. Let � be a lattice polytope, and let † be the fan consisting of the cone
over � along with all of its faces. Then †, ordered by reverse inclusion, is isomorphic to
the opposite of the face poset of�, ordered by inclusion. It follows from Remark 2.4 that,
if g 2 I1=2.�/ Š I1=2.†

�/ is the left KLS-function associated with the Eulerian poset
of faces of �, then g� D f 2 I1=2.†/. In particular, the g-polynomial g;�.t/ is equal
to fc�0.t/.

4.5. Hypertoric varieties. Let N be a finite dimensional lattice and let  WD .i /i2I be
an I-tuple of nonzero elements of N that together span a cofinite sublattice of N . Then 
defines a homomorphism fromZI toN , along with a dual inclusion fromN � toZI . As in
Section 4.3, we define a subset F � I to be a flat if there exists an elementm 2 N � � ZI

such that mi D 0 ” i 2 F . Given a flat F , we let F WD .i /i2F and we define
NF � N to be the saturation of the span of F . We also define NF WD N=NF , and we
define F to be the image of .i /i…F in NF .

Choose a prime power q with the property that, for any subset J � I, the multiset
fi j i 2 Jg is linearly independent only if its image in NFq is linearly independent. Let
Q WD FqŒzi ; wi �i2I . This ring admits a grading by the groupZI D Zfxi j i 2 Ig in which
deg zi D � degwi D xi . The degree zero part Q0 D FqŒziwi �i2I maps to SymNFq
by sending ziwi to the reduction modulo q of i . Let QN� be the subring of Q with
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basis consisting of ZI-homogeneous elements whose degrees lie in N � � ZI , and let
R WD QN� ˝Q0 SymNFq . The variety Y D Y./ WD SpecR is called a hypertoric
variety.

Let VY � Y be the open subvariety defined by the nonvanishing of all elements of R
that lift to monomials inQ. Let L be the lattice of flats of  . We have a stratification

Y D
G
F 2L

VF ;

with the property that VF Š VY .F / [35, Equation 5]. In particular, the largest stratum
is V; and the smallest stratum is VI . More generally, the partial order induced by the
stratification is the opposite of the inclusion order. For any F � G, the dimension of VF
minus the dimension of VG is equal to 2rFG , where r is the usual weak rank function
(as in Example 2.16).

At this point, we are forced to depart from the setup of Section 3.1. We are supposed
to define a subvariety CF � Y for each flat F , satisfying certain properties; then for
every F � G, we would consider the varieties UGF D CG \ VF and XGF D CG \ xVF .
Morally, we should have

CF Š Y.F /; XGF Š Y.
F
G /; and UGF Š VY .

F
G /:

Unfortunately, we do not know of any natural way to embed Y.F / into Y to achieve these
isomorphisms. Instead, we will simply define XGF and UGF as above. The conclusion
of Lemma 3.1 clearly holds for this definition, while the conclusion of Lemma 3.4 follows
from [35, Lemma 2.4]. Thus Theorem 3.6 still holds as stated. By [35, Proposition 4.2],
for all s > 0 and all flats F � G, we have jUGF .Fqs /j D �FG.q

s/, where � 2 I.L; 2r/

is the .L; 2r/-kernel of Example 2.16.
Corollary 4.22. Let hbc 2 I.L; 2r/ be the left KLS-function associated with the .L; 2r/-
kernel � of Example 2.16. For all flats F � G 2 L, IH�. xXGF / is chaste, and

hbcFG.t/ D
X
i�0

t i dim IH2i . xXGF /:

Proof. As noted above, our stratification of Y induces the weakly ranked poset .L�; 2r�/.
Let f be the right KLS-function associated with the .L�; 2r�/-kernel ��. For all s > 0

and all flats F � G, we have ��GF .q
s/ D �FG.q

s/ D jUGF .Fqs /j, thus Theorem 3.6 tells
us that IH�. xXGF / is chaste, and

fGF .t/ D
X
i�0

t i dim IH2i . xXGF /:

By Remark 2.4, we have hbc D f �, which proves the corollary.
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