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1. Introduction

Spherical varieties form a big family of rational and normal complex varieties, including

toric varieties and flag varieties. Here, we list some types of singularities of these varieties

and we give combinatorial criteria of these singularities. Most of the results of this paper

are already known or are quite easy corollary of known results.

We will only consider types of singularities that appear in birational geometry: in the

Minimal Model Program or in the study of (singular) Fano varieties.

The paper is organized as follows. In Section 2, we describe the theory of spherical

varieties and fix notations. In Section 3, we deal with smooth, locally factorial and

Q-factorial spherical varieties. In Section 4, we quickly give the criteria of Gorenstein

and Q-Gorenstein singularities for spherical varieties. In Section 5, we characterize

terminal, canonical and kawamata log terminal (klt) singularities for spherical varieties.

And in Section 6, we conclude by an overview diagram.

We illustrate the theory of spherical varieties and their singularities with a common

example all along Section 2 and in Section 6.

Acknowledgements. The author would like to thank the referee for his wise comments

that improved the quality of the paper.

2. Notations

In all the paper, G denotes a connected reductive algebraic group over C and varieties are

algebraic varieties over C.

A spherical variety X is combinatorially associated to:

� a lattice M of characters of a Borel subgroup B of G (and its dual N );

� a cone V in NQ WD N ˝Z Q (called the valuation cone);

� the finite set D of B-stable, but not G-stable, irreducible divisors of X ;

� an injective map � from the set of G-invariant valuations of C.X/ to V � NQ (and a

map, still called � from D to N );

� and a colored fan FX in NQ.

In this section, we describe all these objects and their connections to spherical varieties,

and we recall the results we will need in the next sections. The main references of the

theory summarized here are [20] and [15] for the classification of spherical varieties,

[3] for properties of divisors of spherical varieties, [6] and [19] for the description of

anticanonical divisors of spherical varieties.
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2.1. Spherical embeddings.

Definition 2.1. A G-variety X is an algebraic variety over C equipped with an algebraic

action of G on X .

A spherical G-variety is a normal G-variety X such that there exists x 2 X and a

Borel subgroup B of G satisfying that the B-orbit of x is open in X .

Remark that, since the Borel subgroups of G are all conjugated, we can fix a Borel

subgroup B of G and give the following equivalent definition.

Definition 2.2. A spherical G-variety is a normal G-variety with an open B-orbit.

In the rest of the paper, we also fix a maximal torus in B , so that we can work with the

root system of .G; B; T /.

When there is no possible confusion about the group acting on varieties, we write

spherical varieties instead of spherical G-varieties.

We can easily remark that spherical varieties have an open G-orbit, and have finitely

many B-orbits and G-orbits. The open G-orbit of a spherical variety X is isomorphic

to an homogeneous space G=H that is spherical as a G-variety. We say that G=H is a

spherical homogeneous space. Note that we can always choose H such that BH is open

in G.

Among spherical varieties, we can distinguish several subfamilies of varieties: flag

varieties (when H is a parabolic subgroup of G and then X D G=H ), toric varieties

(when G D .C�/n and H D f1g), horospherical varieties (when H contains a maximal

unipotent subgroup of G) and symmetric varieties (when H is an open subgroup of the

fixed points set of an involution � in the automorphism group of G).

The classification of spherical varieties is divided into two parts: the classification

of spherical homogeneous spaces and the classification of spherical varieties with some

fixed open G-orbit (isomorphic to some fixed G=H ). In this paper, we explicitly use the

second classification called the Luna–Vust theory of spherical embeddings, and which

generalizes the classification of toric varieties in terms of fans.

Definition 2.3. Let G=H be an homogeneous space. A G=H -embedding is a pair .X; x/,

where X is a normal G-variety and x is a point of X such that G � x is open in X and H

is the stabilizer of x in G.

Two G=H -embeddings .X; x/ and .X 0; x0/ are isomorphic if there exists a G-equivariant

isomorphism from X to X 0 that sends x to x0.

Note that, if G=H is a spherical (resp. toric, horospherical, symmetric) homogeneous

space and .X; x/ is a G=H -embedding, then X is a spherical (resp. toric, horospherical,

symmetric) variety. Conversely, if X is a spherical (resp. toric, horospherical, symmetric)

G-variety, let x be a point in the open G-orbit of X and let H be the stabilizer in G of x;

then G=H is a spherical (resp. toric, horospherical, symmetric) homogeneous space and

.X; x/ is a G=H -embedding.

By abuse, we often forget the point x and say that X is a G=H -embedding if X is a

normal variety with an open G-orbit isomorphic to G=H .

Example 2.4. We consider the homogenous space G=H where G D SL3.C/ and H is

the maximal unipotent subgroup of G consisting of lower triangular matrices with ones

on the diagonal. We fix T to be the set of diagonal matrices in G and B to be the upper
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triangular matrices in G. Then it is easy to check that BH=H is open in G=H so that

G=H is spherical. In fact, since H is the unipotent radical of the Borel subgroup B� of G

consisting of lower triangular matrices in G, G=H is a horospherical. Also note that the

projection � W G=H �! G=B� is a torus fibration.

To construct a G=H -embedding, consider the trivial G-module C and the fundamental

G-modules C3 and
V

C3. Denote by .e1; e2; e3/ the canonical basis of C3. Let

x0 WD Œ1; e3; e3 ^ e2� 2 P
�

C ˚ C3 ˚
^

C3
�

' P 6:

Then the stabilizer of x0 in G is H , and the closure X of G � x0 in P 6 is a cone of vertex

Œ1; 0; : : : ; 0� over the Grassmannian of planes in C4. Indeed, if .e0; e1; e2; e3/ denote the

canonical basis of C ˚ C3, then the map defined by x C y ^ z 7�! x ^ e0 C y ^ z

gives an isomorphism of G-modules from C3 ˚
V

C3 to
V2

C4. And then, by an

argument on dimensions, X is the cone of vertex Œ1; 0; : : : ; 0� over the Grassmannian

SL4.C/ � e3 ^ .e0 C e2/ in P .
V2

C4/. In particular, .X; x0/ (or by abuse X ) is a

G=H -embedding.

As an exercise, the reader can compute the seven G-orbits of X : one is open and three

are closed.

2.2. The lattices M , N , and the colors of G=H . The field C.X/ of rational functions on

a spherical variety X can be described by a lattice M by noticing the following multiplicity

free property.

Remark 2.5. Let X be a spherical G-variety. The field C.X/ of rational functions of X

is naturally a G-module. Let � be a character of the Borel subgroup B and f1, f2 be

in C.X/nf0g such that, for any b 2 B , b � f1 D �.b/f1 and b � f2 D �.b/f2. Then
f1

f2
is

a rational function fixed by B . Since B acts with an open orbit on X , we deduce that
f1

f2

is a constant.

Definition 2.6. Let G=H be a spherical homogeneous space.

(1) We denote by M the lattice of weights � of B such that there exists f� 2 C.G=H/nf0g

satisfying, for any b 2 B , b � f� D �.b/f . Note that, by Remark 2.5, for any � 2 M

the rational function f� is unique up to a scalar. We say that f� is a rational function

of X of weight �.

(2) The dual HomZ.M; Z/ of M is denoted by N .

(3) We denote by MQ (resp. NQ) the Q-vector space M ˝Z Q (resp. N ˝Z Q).

(4) The colors of the spherical homogeneous space G=H are the B-stable irreducible

divisors of G=H .

(5) We denote by D the set of colors of G=H .

The rank of the lattice M (which is also the rank of N ) is called the rank of G=H (or

the rank of X if X is any G=H -embedding).

Example 2.7. Let G=H be as in Example 2.4. Denote by $1 and $2 the fundamental

weights of .G; B; T / (i.e. $1..aij / 2 B/ D a11 and $2..aij / 2 B/ D a11a22).



A survey on the singularities of spherical varieties 5

Then, there are two particular functions f� as in Definition 2.6(1): f1 WD f$1
and

f2 WD f$2
defined by the H -invariant maps .aij / 2 SL3.C/ 7�! a22a33 � a23a32 and

.aij / 2 SL3.C/ 7�! a33 respectively.

Hence, the lattice M equals the lattice of weights of B (i.e. Z$1˚Z$2). In particular,

N is the lattice genrerated by the two simple coroots ˛_
1 and ˛_

2 of .G; B; T /. And the

rank of G=H is 2.

Moreover, G=H has two colors: the two B-stable irreducible divisors D1 and D2

of G=H defined as the zero sets of f1 and f2 respectively. In fact, D1 and D2 can also be

defined as the inverse image by the fibration � of Schubert divisors of G=B�.

2.3. The valuation cone and the maps � . Let first recall the definition of a valuation in

our context.

Definition 2.8. Let X be a normal variety. A valuation of X is a map � from C.X/nf0g

to Q satisfying:

� for any f1 and f2 in C.X/nf0g such that f1Cf2 ¤ 0, �.f1Cf2/ � min.�.f1/; �.f2//;

� for any f1 and f2 in C.X/nf0g, �.f1f2/ D �.f1/ C �.f2/;

� � vanishes on constant functions.

Moreover, if X is a G-variety, the valuation � is said to be G-invariant if for any g 2 G

and for any f 2 C.X/nf0g we have �.g � f / D �.f /.

Definition 2.9. Let G=H be a spherical homogeneous space.

(1) The set of G-invariant valuations of G=H is a cone V that can be identified to a cone

in NQ by the injective map � W V �! NQ defined by, for any � 2 V and any � 2 M ,

�.�/.�/ D �.f�/ where f� is as in Definition 2.6(1). The image of V in NQ is called

the valuation cone of G=H .

(2) Any color D of the spherical homogeneousspace G=H defines a B-invariant valuation

on C.G=H/nf0g, and then it defines (similarly to the definition of �) a point in NQ

that we also denote by �.D/. It is called the image of the color D in NQ. (In fact,

�.D/ 2 N .)

Remark 2.10.

� The valuation cone of G=H equals NQ if and only if G=H is horospherical [7, Coroll-

aire 5.4].

� Since the colors of a spherical homogeneous space G=H are not G-stable, it could

happen that two colors of G=H have the same image in NQ.

� The opposite �V
_ of the dual in MQ of the valuation cone is simplicial, and generated

by positive roots of .G; B; T / and sums of two strongly orthogonal positive roots of

.G; B; T / [4].

Definition 2.11. The primitive elements of the rays of the simplicial cone �V
_ are called

the spherical roots of G=H .
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Example 2.12. We still consider the same horospherical homogeneous space G=H as in

Examples 2.4 and 2.7. Then, by Remark 2.10, the valuation cone of G=H equals NQ.

Moreover, since the colors D1 and D2 are defined as the zero sets of f1 and f2

respectively, it is easy to see that �.Di /.fj / is zero if i ¤ j and one if i D j . In other

words, for any i 2 f1; 2g, �.Di / equals the coroots ˛_
i .

2.4. Colored fans.

Definition 2.13. Let G=H be a spherical homogeneous space, NQ, D , V and � defined

as above.

(1) A colored cone in NQ is a pair .C ; F / such that

� F is a subset of D ;

� C is a cone in NQ generated by finitely many elements of N \ V and the �.D/

with D in F ;

� the relative interior of C intersects V ;

� �.D/ ¤ 0 for any D 2 F and C contains no line.

(2) A colored face of a colored cone .C ; F / is a pair .C 0; F
0/ where C

0 is a face of the

cone C , whose relative interior intersects V , and F
0 D fD 2 F j �.D/ 2 C

0g. It is

in particular a colored cone.

(3) A colored fan in NQ is a finite set F of colored cones such that: any colored face of a

colored cone of F is in F , and for any u 2 NQ \ V there exists at most one colored

cone .C ; F / of F such that u is in the relative interior of C .

(4) A fan is complete if
S

.C ;F /2F C � V .

Note that if G=H D .C�/n, then D is empty (i.e. there is no color), V D NQ, and

the definitions of colored cones and colored fans are equivalent to the definitions of cones

and fans in toric geometry.

See Figure 2, at the end of the paper, to get several examples of complete colored fans

in the case where G=H is as in Example 2.4. Note that, in that case, the images of the

colors are all distinct. Then, to represent a colored fan, we only draw the edges of the fan

and we represent a color of the fan by bordering in grey the white circle corresponding to

the image of the color of G=H .

2.5. The classification of G=H -embeddings. To any G=H -embedding .X; x/, we as-

sociate a colored fan as follows.

For any G-orbit Y of X , denote by XY the G-stable subset fx 2 X j G � x � Y g.

Denote by DG;Y the set of G-stable irreducible divisors in XY and denote by FY the set

of D 2 F such that the closure of D in XY contains Y . For any D 2 DG;Y , denote

by �.D/ the image by � of the G-invariant valuation on C.G=H/nf0g associated to D.

Denote by CY the cone in NQ generated by the �.D/ with D 2 DG;Y and the �.D/ with

D 2 FY .

We can now state the classification of G=H -embeddings when G=H is spherical.
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Theorem 2.14 ([15]). Let G=H be a spherical homogeneous space.

Let .X; x/ be a G=H -embedding. Then, for any G-orbit Y of X , .CY ; FY / is a colored

cone in NQ and the set of .CY ; FY / with Y in the set of G-orbits of X is a colored fan

in NQ. It is called the colored fan of X and denoted by FX .

The map from the set of isomorphic classes of G=H -embeddings to the set of colored

fans in NQ that sends the class of .X; x/ to FX is well-defined and bijective.

Moreover, X is complete if and only if FX is complete.

The set of colors of X (or of FX ) is the union FX WD
S

.C ;F /2F F . It is a subset

of D .

Example 2.15. We consider the horospherical homogeneous space G=H and the G=H -

embedding X of Example 2.4. We can compute that there are three closed G-orbits: the

vertex of the cone X , P .C3/ and P .
V2

C3/. Also, there is only one G-stable irreducible

divisor X1 in X , which is the intersection of X with P .C3 ˚
V2

C3/ and is isomorphic

to the Grassmannian of planes in C4.

It is easy to check that X1 contains the two 2-dimensional closed G-orbits, and that

the closures in X of the two colors of G=H contains the vertex of the cone X and exactly

one of the other closed G-orbits.

In fact, if we denote by W0; W1; W2; W3; W12; W13; W23 the coordinates in P .C ˚

C3 ˚
V2

C3/, then the fonctions f1 and f2 (defining the colors D1 and D2 of G=H )

correspond to the functions W23

W0
and W3

W0
respectively. Also, the G-stable divisor X1 is

defined by W0 D 0. Hence, we also deduce that �.X1/ is �˛_
1 � ˛_

2 .

Combining all we said above, we can prove that the colored fan of X is the following

one.

2.6. G -equivariant morphisms between G=H -embeddings. The G-equivariant mor-

phisms between spherical G-varieties are very well understood. We state here the descrip-

tion of birational G-equivariant morphisms (i.e. between two embeddings of the same

spherical homogeneous space).

Note that if f W X �! Y is a proper morphism between algebraic varieties such that

f�.OX / D OY , and if G acts on X , by a result of Blanchard (see also [8, Prop. 4.2.1]),

then there exists a unique action of G on Y such that f is G-equivariant. In particular, it

is not so restrictive to only consider G-equivariant morphisms.
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Proposition 2.16. Let G=H be a spherical homogeneous space. Let .X; x/, .Y; y/ be

two G=H -embeddings. Then, there exists a G-equivariant morphism f W X �! Y with

f .x/ D y if and only if for any colored cone .C ; F / 2 FX , there exists a colored cone

.C 0; F
0/ 2 FY such that C � C

0 and F � F
0.

See examples of proper G-equivariant morphisms between G=H -embeddings in Fig-

ure 2, with G=H as in Example 2.4.

2.7. Divisors, Cartier divisors. Let G=H be a spherical homogeneous space.

Let .X; x/ be a G=H -embedding associated to the colored fan FX . Denote by

X1; : : : ; Xm the irreducible G-stable divisors of X (m � 0). For any i 2 f1; : : : ; mg, we

denote by xi the image by � of the valuation associated to Xi . Recall that it is a primitive

element of an edge of FX that has no color (i.e. contains no �.D/ with D 2 FX ).

Proposition 2.17.

(1) Any Weil divisor of X is linearly equivalent to a B-stable divisor, i.e. of the form

ı D
Pm

iD1 ıiXi C
P

D2D
ıDD.

(2) Such a divisor is Cartier if and only if for any .C ; F / 2 FX there exists � 2 M such

that for any i 2 f1; : : : ; mg such that xi 2 C , h�; xi i D ıi and for any D 2 F ,

h�; �.D/i D ıD .

Then any Cartier divisor ı D
Pm

iD1 ıiXi C
P

D2D
ıDD of a complete spherical

variety X is associated to a unique piecewise linear function hı on FX (well-defined

function on V), linear on each cone in FX , such that 8i 2 f1; : : : ; mg, hı.xi / D ıi

and 8D 2 FX , hı.�.D// D ıD . In that case, for any maximal cone C of FX (i.e. for

any maximal colored cone .C ; F /), we denote by �C ;ı the element of M associated to the

linear function defining hı on C .

Definition 2.18. A piecewise linear function hı on FX is convex if:

� for any maximal cone C of FX and any x 2 NQ, we have hı.x/ � h�C ;ı ; xi;

� and for any D 2 DnFX , hı.�.D// � ıD .

We say that it is strictly convex if:

� for any maximal cone C of FX and any x 2 NQnC , we have hı.x/ > h�C ;ı ; xi;

� and for any D 2 DnFX , hı.�.D// < ıD .

Proposition 2.19. A Cartier divisor ı D
Pm

iD1 ıiXi C
P

D2D
ıDD of a complete spher-

ical variety X is globally generated (respectively ample) if and only if hı is convex

(respectively, strictly convex).

Anticanonical divisors of spherical varieties are described in [6, Propostion 4.1] and

in [19, Section 3.6], by dividing the colors of G=H into three types. The description of

these three types was recently reconsider in [16] and in [12] in a simpler way by using that

B-orbits of G=H correspond to H -orbits in BnG. In the following theorem, we gather

together their results that we will need later.



A survey on the singularities of spherical varieties 9

For any simple root ˛ of .G; B; T /, denote by P˛ the minimal parabolic subgroup

of G containing B such that �˛ is a weight of the Lie algebra of P˛ .

Let G=H be a spherical homogeneous space.

Denote by P the stabilizer in G of the open B-orbit of G=H (it is a parabolic subgroup

of G containing B), and denote by SP the set of simple roots ˛ of .G; B; T / such that

P˛ 6� P .

Theorem 2.20. With the notation above, let D 2 D . Choose a simple root ˛ of .G; B; T /,

such that P˛ � D ¤ D (in particular, ˛ 2 SP ).

Recall that the spherical roots of G=H are the primitive elements of �V
_. Then one

and only one of the following case occurs:

(a) ˛ is a spherical root of G=H ;

(2a) 2˛ is a spherical root of G=H ;

(b) neither ˛ nor 2˛ is a spherical root of G=H .

Moreover, the case occurring does not depend on the choice of ˛. Then, we say that D is

of type (a), (2a) and (b) respectively.

Denote by ˛_
M the restriction to M of the coroot ˛_; it is an element of N . Then, the

images �.D/ of D in NQ satisfy, respectively in each case:

(a) h˛; �.D/i D 1;

(2a) �.D/ D 1
2
˛_

M , in particular h˛; �.D/i D 1;

(b) �.D/ D ˛_
M .

For any D 2 D , we define an integer aD as follows: if D is of type (a) or (2a),

aD D 1; and if D is of type (b), aD D h
P

˛2R
C

P

˛; ˛_i (which is greater or equal to 2),

where R
C
P is the set of positive roots with at least one non-zero coefficient for a simple

root of SP .

Let .X; x/ be a G=H -embedding. Denote by DX the set of irreducible G-stable divi-

sors of X . Then, an anticanonical divisor of a G-spherical embedding .X; x/ associated

to a colored fan FX is

�KX D
X

D2DX

D C
X

D2D

aDD:

Corollary 2.21. For any B-stable irreducible divisor D of X , the coefficient attached

to D in �KX is a positive integer. Moreover, if D is not G-stable and aD D 1, then �.D/

is not in the valuation cone V .

Proof. If aD D 1, then D is of type (a) or (2a). In particular, ˛ or 2˛ is in �V
_. Hence,

for any v 2 V � N , we get h˛; vi � 0. But we also have that h˛; �.D/i D 1. Thus �.D/

is not in V .

Remark 2.22. If �.D/ is not in V , aD is not necessary 1. For example, if G D SL2 �SL2

and H is the diagonal in G, then G=H has only one spherical root that is the strongly

orthogonal sum of the two simple roots; in particular, the unique B-stable divisor D

of G=H is of type (b) and an easy computation gives aD D 2.
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Example 2.23. We still consider the horospherical homogeneous space G=H of the

previous examples. Since the valuation cone of G=H is NQ, the cone �V
_ is reduced

to 0. Then G=H has no spherical root and all colors of G=H is of type (b).

In that case, P D B , SP is the set f˛1; ˛2g of simple roots of .G; B; T / and R
C
P is

the set of positive roots of .G; B; T /. In particular for any i 2 f1; 2g, aDi
D 2.

If X is the G=H -embedding defined in Example 2.4, then �KX D X1 C 2D1 C 2D2.

In [12, Section 6], there are more examples of spherical homogeneous spaces with

their spherical data: SL2 =T , which admits two colors of type (a), where T is a maximal

torus; or SL2 =N , which admits one color of type (2a), where N is the normalizer of a

maximal torus; etc.

3. Smooth, locally factorial and Q-factorial varieties

Definition 3.1. A variety X is locally factorial if all Weil divisors of X are Cartier. A

variety X is Q-factorial if all Weil divisors of X are Q-Cartier.

The smoothness of spherical varieties is the type of singularities that is the most

complicated to characterize for spherical varieties. For toric varieties, it is not difficult and

well known because any locally factorial toric variety is smooth (see, for example, [10]).

For horospherical varieties, there is a more complicated criterion, simultaneously obtained

in [21] and [23], which mixes the combinatorial aspects of colored fans and root systems.

For general spherical varieties, a smoothness criterion was first given in [5], and a more

practical one was recently given in [11]. And if we admit a conjecture (satisfied by

horospherical varieties and symmetric varieties), then we get a very simple smoothness

criterion [13]. Moreover, there is another smooth criterion for horospherical varieties

in [2], which is expected to hold also for arbitrary spherical varieties.

In this paper, we will not write these smoothness criteria, but we have to note that

the main tool of their proofs is the local structure theorem of spherical varieties [7,

Proposition 3.4]. This tool easily permits to prove the following useful (and well known)

result.

Proposition 3.2. Let X be a locally factorial spherical variety such that FX is empty.

Then X is smooth.

Proof. Let G=H be a spherical homogeneous space, and .X; x/ be a G=H -embedding.

Recall that P is the stabilizer in G of the open B-orbit of G=H .

We apply the local structure theorem when FX is empty and we get that a P -stable

open set U of X is isomorphic to Ru.P / � Z, where Ru.P / is the unipotent radical

of P and Z is a toric variety under the action of the neutral component of a Levi of P .

Moreover, this open set U equals Xn
S

D2D
D (where D is the closure of D in X ). If FX

is empty, then U intersects every closed G-orbit. If X is locally factorial, then Z is a

locally factorial toric variety and so Z is smooth. We conclude that, if X is locally factorial

with FX empty, X is smooth along all its closed G-orbits. Hence X is smooth.
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We now write and prove locally factorial and Q-factorial criteria. Using the criterion

of Cartier divisors of spherical varieties (Proposition 2.17), we get the following result.

Proposition 3.3. Let X be a spherical variety associated to a colored fan FX . Then X is

locally factorial (respectively Q-factorial) if and only if for any .C ; F / 2 FX , the colors

of F have distinct images in NQ and there exists a basis .u1; : : : ; uk/ [ .�.D//D2F of

the lattice N (respectively, of the vector space NQ) such that C is generated by the family

.u1; : : : ; uk0/ [ .�.D//D2F (where k0 � k are non-negative integers).

Proof. The “if” part is quite easy, so we prove only the “only if” part.

Suppose that X is Q-factorial. Let .C ; F / 2 FX , and D1, D2 be two colors in F .

The Weil divisor ı D D1 is Q-Cartier, so that there exists �C ;ı 2 MQ such that

h�C ;ı ; �.D1/i D 1 and h�C ;ı ; �.D2/i D 0. In particular, �.D1/ ¤ �.D2/. Now,

denote by u1; : : : ; uk0 the primitive elements of the edges of C that are not generated by

some �.D/ with D 2 F . We can suppose that u1; : : : ; uk0 correspond to the G-stable

irreducible divisors X1; : : : ; Xk0 respectively.

For any i 2 f1; : : : ; k0g, Xi is Q-Cartier, so there exists �C ;Xi
2 MQ such that

h�C ;Xi
; ui i D 1, h�C ;Xi

; uj i D 0, for any j 2 f1; : : : ; k0gnfig, and h�C ;Xi
; �.D/i D 0,

for any D 2 F . Similarly, for any D0 2 F , there exists �C ;D0 2 MQ such that

h�C ;D0 ; �.D0/i D 1, h�C ;D0 ; uj i D 0, for any j 2 f1; : : : ; k0g, and h�C ;D0; �.D/i D 0,

for any D 2 F nfD0g.

Let b1; : : : ; bk0 and, for any D 2 F , bD be rational numbers such that

b1u1 C � � � C bk0uk0 C
X

D2F

bD�.D/ D 0: (�)

Applying �C ;Xi
for i 2 f1; : : : ; k0g and �C ;D0 for D0 2 F to (�), we get that

b1 D � � � D bk0 D 0 and bD D 0

for any D 2 F . The family .u1; : : : ; uk0/ [ .�.D//D2F is linearly independent (and

generates C ), in particular we can complete it to get a basis .u1; : : : ; uk/ [ .�.D//D2F

of NQ.

Suppose moreover that X is locally factorial. Then, we can choose the elements �C ;Xi

for i 2 f1; : : : ; k0g, and �C ;D0 for D0 2 F , in the lattice M . With the same proof as above,

we can prove that the family .�C ;X1
; : : : ; �C ;Xk0 / [ .�C ;D/D2F / is linearly independent.

Also, for any element u in the intersection of N with the Q-vector space generated by

.u1; : : : ; uk0/ [ .�.D//D2F , we have

u D h�C ;X1
; uiu1 C � � � C h�C ;Xk0 ; uiuk0 C

X

D2F

h�C ;D; ui

and then u is in the sublattice generated by .�C ;X1
; : : : ; �C ;Xk0 / [ .�C ;D/D2F . We

conclude, by Lemma 3.4, that we can find uk0C1; : : : ; uk in N such that .u1; : : : ; uk/ [

.�.D//D2F is a basis of N .
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A particular case of a classical theorem on free modules over a principal rings [18, III,

Theorem 7.8] gives the following result.

Lemma 3.4. Let L be a lattice. Let E be a linearly independent family of elements of L.

Denote by L0 the sublattice generated by E and suppose that L0 equals the intersection

of L with the Q-vector space generated by E . Then we can complete E into a basis of L.

Remark 3.5. A consequence of Propositions 2.16, 3.2 and 3.3 is that, for any spherical

variety X , a G-equivariant resolution f W V �! X is given by erasing all colors in FX

and by sufficiently subdividing the cones in FX . (Such a subdivision exists for example

by [9, Theorem 1.5].)

Moreover, the exceptional locus of f is G-stable. But, still by Propositions 3.2

and 3.3, G-stable irreducible subvarieties of V are smooth. Then, by blowing-up the

irreducible components of the exceptional locus of f of codimension at least 2, we obtain

a G-equivariant resolution Qf W QV �! X such that the exceptional locus of Qf is of pure

codimension one. Remark also that, since F QV is empty, the exceptional divisors of QV ,

which are G-stable, are smooth.

By the local structure theorem (already used in Proposition 3.2), we can also prove

that the exceptional locus of Qf is a simple normal crossing divisor.

4. Gorenstein and Q-Gorenstein varieties

Definition 4.1. A normal variety X is Gorenstein (respectively Q-Gorenstein) if the

anticanonical divisor �KX is Cartier (respectively Q-Cartier).

The criterion of these types of singularities for spherical varieties is an easy conse-

quence of the criterion of Cartier divisors of spherical varieties (Proposition 2.17) and the

description of anticanonical divisor (Theorem 2.20).

Proposition 4.2. Let G=H be a spherical homogeneous space. For any color D 2 D ,

we define aD as in Section 2.7. Let .X; x/ be a G=H -embedding associated to a col-

ored fan FX . Then X is Gorenstein (respectively Q-Gorenstein) if and only if for any

.C ; F / 2 FX , there exists mC 2 M (respectively mC 2 MQ) such that, for any primitive

element x of an edge of C that is not generated by some �.D/ with D 2 D , hmC ; xi D 1,

and for any D 2 F , hmC ; �.D/i D aD .

5. (log) terminal and canonical singularities

Definition 5.1. Let X be a normal Q-Gorenstein variety. Let f W V �! X be

a resolution of X (i.e. f is a proper birational morphism and V is smooth). Then

KV � f �.KX/ D
P

i2I
ciEi where fEi j i 2 Ig is the set of exceptional divisors of f .

We say that X has:

� canonical singularities if, for any i 2 I, ci � 0;

� terminal singularities if, for any i 2 I, ci > 0.
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Note that the definition does not depend on the choice of the resolution. Moreover, if X

is spherical, recall that, by Remark 3.5, we can construct a resolution by deleting the colors

of X and by taking subdivision of the cones of FX . Then, still with the criterion of Cartier

divisors of spherical varieties, we get the following characterizations of canonical and

terminal singularities.

Proposition 5.2.Let G=H be a spherical homogeneous space. Let .X; x/ be a Q-Gorenstein

G=H -embedding associated to a colored fan FX . For any colored cone .C ; F / of FX ,

denote by hC the linear function such that for any D 2 F , hC .�.D// D aD and, for any

primitive element u of an edge of C that is not generated by some �.D/ with D 2 F ,

hC .u/ D 1.

� X has canonical singularities if and only if for any colored cone .C ; F / of FX , for any

x 2 C \ N \ V , hC .x/ � 1.

� X has terminal singularities if and only if for any colored cone .C ; F / of FX , for any

x 2 C \ N \ V , hC .x/ � 1 implies that x is the primitive element of an edge of C

that is not generated by some �.D/ with D 2 F (i.e. x D xi with our notation).

We begin by proving the following result.

Lemma 5.3. Let G=H be a spherical homogeneous space. Let .X; x/ and .V; v/ be two

G=H -embeddings respectively associated to colored fans FX and FV . Suppose that there

exists a G-equivariant dominant morphism f W V �! X . And let ı be a Cartier divisor

of X .

Recall that ı is associated to a piecewise linear function hı on FX . Then, for any

colored cone .C ; F / of FX , we denote by hC ;ı the restriction of hı on .C ; F /. Moreover,

there exists an element �C ;ı of M such that hC ;ı is the restriction of the linear form �C ;ı .

Let E be an exceptional divisor of f . Since f is birational and G-equivariant, it is

G-stable. Then, for any .C ; F / in FX such that �.E/ 2 C , the coefficient attached to E

in f �.ı/ is hC ;ı.�.E//.

Proof of Lemma 5.3. To describe f �.ı/ we need to look deeper at the Cartier criterion.

Since ı is a B-stable Cartier divisor of X , O.ı/ is given by .UC ; f��C;ı
/, where

.C ; F / runs through the set of maximal colored cones in FX , where UC is the open set

of X associated to the colored cone .C ; F / and f��C;ı
is a non-zero rational function

on X associated to the weight ��C ;ı (unique up to a scalar). Moreover, for any maximal

colored cones .C ; F / in FX , div.f�fflC;‹
/ equals �ı on the open set UC . Then f �

O.ı/ is

given by .f �1.UC /; f��C;ı
ı f /.

Now, we remark that the map from C.X/ to C.V / that sends g to g ı f is a

G-equivariant isomorphism, so that f��C;ı
ı f is a rational function on V associated

to the weight ��C ;ı . And we also notice that f �1.UC / is the union of the open set of V

associated to the colored cones .C 0; F
0/ of FV such that C

0 � C (and F
0 � F ). Then,

for any irreducible G-stable divisor E of V , the coefficient attached to E in f �.ı/ is

h�C ;ı ; �.E/i for any maximal .C ; F / 2 FX such that �.E/ 2 C .

Hence, for any .C ; F / 2 FX such that �.E/ 2 C , the coefficient attached to E in

f �.ı/ is hC ;ı.�.E//.
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Proof of Proposition 5.2. Let f W V �! X be a G-equivariant resolution of X . We can

apply Lemma 5.3 to the Cartier divisor ı D �kKX for a large enough positive integer k.

In that case, for any .C ; F / 2 FX , hC ;ı D khC . Then, for any i 2 I and for any

.C ; F / 2 FX such that �.Ei / 2 C , the coefficient attached to Ei in k.KV � f �.KX // is

khC .�.E//�k, so that the coefficient ci attached to Ei in KV �f �.KX / is hC .�.Ei //�1.

� Suppose that X has canonical singularities. Let .C ; F / 2 FX and x 2 C \ N \ V . We

can suppose that x is primitive in N . By Remark 3.5, there exists a resolution V of X

such that x is the primitive element of an edge without color of the colored fan of V .

Then x is the image by � of an exceptional (G-stable and irreducible) divisor Ei of V .

Since ci � 0 and ci D hC .x/ � 1, we get hC .x/ � 1.

The “if” part proof works with the same arguments.

� The proof is almost the same as above with “>” instead of “�”.

Definition 5.4. Let X be a normal variety and let D be an effective Q-divisor such that

KX C D is Q-Cartier. The pair .X; D/ is said to be klt (Kawamata log terminal) if for

any resolution f W V �! X of X such that KV D f �.KX C D/ C
P

i2I
ciEi , we have

ci > �1 for any i 2 I.

We say that X has log terminal singularities if X is Q-Gorenstein and .X; 0/ is klt.

Remark 5.5.

(1) In fact, it is enough to check the above property for one log-resolution to say that a

pair .X; D/ is klt.

(2) The condition “ci > �1 for any i 2 I” can be replaced by: bDc D 0 and for any

i 2 I such that Ei is exceptional for f , ci > �1.

Still with the criterion of Cartier divisors of spherical varieties (Proposition 2.17), we

get the following result.

Proposition 5.6 ([1]). Let X be a spherical variety. Then X has log terminal singularities.

In fact, in [1], V. Alexeev and M. Brion proved that, if X is a spherical G-variety

and D be an effective Q-divisor of X such that D C KX is Q-Cartier, bDc D 0 and

D D DG C DB where DG is G-stable and DB is stable under the action of a Borel

subgroup B of G, then .X; DG C D0
B / has klt singularities for general D0

B in the linear

system jDB j.

We can give a short proof of the proposition.

Proof. Let f W V �! X be G-equivariant log-resolution of .X; 0/, i.e. such that the

exceptional locus of f is a simple normal crossing divisor (see Remark 3.5). With the

same arguments as in the first part of the proof of Proposition 5.2, we can prove that, for

any exceptional divisor Ei of f , we have ci D hC ;ı.�.Ei // � 1 where �.Ei / 2 C and

ı D �KX .

By Proposition 2.20, we notice that hC ;ı.x/ > 0 for any x 2 Cnf0g. In particular

hC ;ı.�.Ei // > 0 and then ci > �1.
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To complete what we know on klt singularities of spherical varieties, we note that

the author prove in [22] the following result, by using Bott–Samelson resolutions of flag

varieties.

Theorem 5.7. Let X be a horospherical variety and let D be an effective Q-divisor such

that KX C D is Q-Cartier. The pair .X; D/ is klt if and only if bDc D 0.

The author does not know if this result could be generalized to spherical varieties.

6. Conclusion and example

To complete the natural connections between these singularities we can also state the

following result.

Proposition 6.1. Any locally factorial spherical variety has terminal singularities. And,

any Gorenstein spherical variety has canonical singularities.

Remark 6.2. By [17, Corollary 5.24], any variety with rational and Gorenstein singular-

ities have canonical singularities. But, spherical varieties are rational, then the second

assertion of Proposition 6.1 is already known.

Remark 6.3. Remark 6.2 cannot be made for the first assertion of Proposition 6.1. Indeed,

C. Casagrande points the author the following example of a locally factorial variety with

canonical but not terminal singularities,which is the variety X 0 described in [14, Table A.4,

No. 25] with r D 2, r 0 D 1 and d D 6. It is constructed as follows. Let Y be a smooth

cubic threefold in P 4 and let S be a general linear section of Y , then S is smooth cubic

surface. Let C be a general smooth curve in j.�KY /jS j and let � W X �! Y be the

blow-up of C in Y , then �KX is globally generated and the anticanonical morphism

� W X �! X 0 contracts the strict transform D of S by � to a point. By construction, X 0

has canonical but not terminal singularities, and is a Q-factorial Fano variety. Moreover,

there exists a curve C 0 in S such that �KS � C 0 D 1, then the strict transform C 00 of C 0

by � satisfies �KX � C 00 D 0 and we have D:C 00 D �1. Hence, we deduce that X 0 is

locally factorial.

Proof. Fix a spherical homogeneous space G=H . Let X be a locally factorial G=H -

embedding and let f W V �! X be a G-equivariant resolution of X . Let Ei be an excep-

tional divisor of f . And let .C ; F / 2 FX such that �.E/ 2 C . By Proposition 3.3, the ele-

ments of F have distinct images in NQ and there exists a basis .u1; : : : ; uk/[.�.D//D2F

of the lattice N such that C is generated by the family .u1; : : : ; uk0/[ .�.D//D2F (where

k0 � k are non-negative integers). In particular, �.Ei / D
Pk0

j D1 �i ui C
P

D2F
�D�.D/,

where the �i ’s and the �D’s are non-negative integers. Moreover, either at least two of

these integers are not zero, or only one �D is not zero, because �.Ei / is a primitive

element different from the ui ’s. In the second case, we must have �.D/ in V so that, by

Corollary 2.21, aD � 2.

Hence, hC .�.Ei // D
Pk0

j D1 �i C
P

D2F
�DaD is at least two. We conclude by

Proposition 5.2.
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The proof of the second assertion is easier.

Let X be a Gorenstein G=H -embedding and let f W V �! X be a G-equivariant

resolution of X . Let Ei be an exceptional divisor of f . And let .C ; F / 2 FX such that

�.Ei / 2 C so that hC .�.Ei // is positive. Then, since X is Gorenstein, hC .�.Ei // is a

positive integer. Hence, ci D hC .�.Ei // � 1 is a non-negative integer. It implies that X

has canonical singularities.

We can now conclude the paper by the following diagram and example.

Smooth

Locally factorial

Q-factorial Gorenstein

Q-Gorenstein

terminal

singularities

canonical

singularities

log terminal

singularities

if with rational singularities

in particular if spherical

if spherical

if spherical

Figure 1. Relations between the singularities considered in this paper

Example 6.4. We consider the horospherical homogeneous space G=H that we already

considered in section 2 (Examples 2.4, 2.7, 2.12, 2.15 and 2.23).

Then we give in Figure 2a list a colored fans (corresponding to projective G=H -embed-

dings), by pointing those who are smooth, locally factorial, Q-factorial or not Q-factorial,

Gorenstein, Q-Gorenstein or not Q-Gorenstein, with terminal or canonical singularities,

or only with log terminal singularities. When the variety X is not Q-Gorenstein, we can

also precise if there exists, or not, a Q-divisor D such that the pair .X; D/ is klt.

We only write the optimal singularities. We also represent by arrows all G-equivariant

morphisms between these G=H -embeddings.

In this example, we see in particular that there exist horospherical varieties with

terminal singularities that are either not Gorenstein or not Q-factorial. It means that we

list all possible implications in Figure 1.
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Smooth

Smooth

Q-factorial, not

Gorenstein, termi-

nal singularities

Q-factorial, not

Gorenstein (and log

terminal singularities)

Not Q-factorial,

Gorenstein, termi-

nal singularities

Q-factorial, Goren-

stein (and canon-

ical singularities)

Smooth
Not Q-Gorenstein,

there exists no klt pair

Q-Gorenstein (and log

terminal singularities)

Locally factorial (and

terminal singularities)
Smooth

Q-factorial, not

Gorenstein, termi-

nal singularities Smooth

x5

Not Q-Gorenstein,

there exists klt pairs

(for example with

D D 1
2 X5 C 1

2 Dˇ )

Q-Gorenstein, ter-

minal singularities

Locally factorial (and

terminal singularities)

Figure 2. Singularities of the G=H -embeddings of Example 6.4
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