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Intersections of multiplicative translates

of 3-adic Cantor sets

William C. Abram1 and Je�rey C. Lagarias2

Abstract. �is paper is motivated by questions concerning the discrete dynamical system

on the 3-adic integers Z3 given by multiplication by 2. �e exceptional set E.Z3/ is de�ned

to be the set of all elements of Z3 whose forward orbits under this action intersect the 3-adic

Cantor set †3;N2 (of 3-adic integers whose expansions omit the digit 2) in�nitely many times.

It has been shown that this set has Hausdor� dimension at most 1
2
, and it is conjectured that

it has Hausdor� dimension 0. Upper bounds on its Hausdor� dimension can be obtained

with su�cient knowledge of Hausdor� dimensions of intersections of multiplicative trans-

lates of Cantor sets by powers of 2. �is paper studies more generally the structure of �nite

intersections of general multiplicative translates S D †3;N2 \ 1
M1

†3;N2 \ � � � \ 1
Mn

†3;N2 by

integers 1 < M1 < M2 < � � � < Mn. �ese sets are describable as sets of 3-adic integers

whose 3-adic expansions have one-sided symbolic dynamics given by a �nite automaton.

�is paper gives a method to determine the automaton for given data .M1; : : : ; Mn/ and to

compute the Hausdor� dimension, which is always of the form log3.ˇ/ where ˇ is an alge-

braic integer. Computational examples indicate that in general the Hausdor� dimension of

such sets depends in a very complicated way on the integers M1; : : : ; Mn. Exact answers

are obtained for certain in�nite families, which show as a corollary that a relaxed notion of

generalized exceptional set has a positive Hausdor� dimension.
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1. Introduction

We call the subset of the 3-adic integers Z3 whose 3-adic expansions use only

digits 0 and 1 the 3-adic Cantor set, and denote it †3 WD †3; N2. By a multiplicative

translate of such a Cantor set we mean a multiplicatively rescaled set �†3 D
¹�x W x 2 †3º, with � 2 Z3; choosing � D 2 recovers the Cantor set using digits 0

and 2. In this paper we mainly restrict attention to cases where � D p
q

2 Q\Z3 is

a rational number that is 3-integral, meaning that 3 does not divide q; the case of

general � 2 Z3 is addressed in Section 2.4. �is paper studies sets given as �nite

intersections of multiplicative translates of the form

C.r1; r2; : : : ; rn/ WD
n

\

iD1

1

ri

†3; (1.1)

where each fraction 1=ri 2 Q is 3-integral. �ese sets are fractals and our object

is to obtain bounds on their Hausdor� dimensions.

Our results are based on the fact that the Hausdor� dimension of a given

C.r1; r2; : : : ; rn/ above is e�ectively computable in a closed form. We show that

each such set has the property that the 3-adic expansions of all the members of

C.r1; r2; : : : ; rn/ are characterizable as the output labels of all in�nite paths in a

labeled �nite automaton which start from a marked initial vertex. General sets of

such path labels associated to a �nite automaton form symbolic dynamical systems

that we call path sets and which we have studied in [2]. �e sets C.r1; r2; : : : ; rn/

are then special cases of a p-adic path set fractal (with p D 3), a notion intro-

duced in [3]. Here p-adic path set fractals are collections of all p-adic numbers

whose p-adic expansions have digits described by the labels along in�nite paths

according to a digit assignment map taking path labels in the graph to p-adic dig-

its. In [3, �eorem 2.10] we showed that a p-adic path set fractal is any set Y in

Zp constructed by a p-adic analogue of a real number graph-directed fractal con-

struction, as given in Mauldin and Williams [16]. �is geometric object Y is given



Intersections of multiplicative translates of 3-adic Cantor sets 351

as the set-valued �xed point of a dilation functional equation using a set of p-adic

a�ne maps, cf. [3, �eorem 2.6]. We showed in [3, �eorem 1.4] that if Y is a

p-adic path set fractal then any multiplicative translate rY by a p-integral rational

number r is also a p-adic path set fractal. In addition p-adic path set fractals are

closed under set intersection, a property they inherit from path sets, see [2, �eo-

rem 1.2]. Since the 3-adic Cantor set is a 3-adic path set fractal, whose underlying

symbolic dynamical system is the one-sided shift on two symbols, these closure

properties immediately imply that every set C.r1; r2; : : : ; rn/ is a 3-adic path set

fractal.

In [3, �eorem 1.1] we showed that the Hausdor� dimension of a p-adic path

set fractal Y is directly computable from the adjacency matrix of a suitable pre-

sentation of Y . One has

dimH .Y / D logp ˇ;

in which ˇ is the spectral radius �.A/ of the adjacency matrix A of a �nite automa-

ton which gives a suitable presentation of the given path set; see Section 3. �is

spectral radius coincides with the Perron eigenvalue ([13, De�nition 4.4.2]) of the

nonnegative integer matrix A ¤ 0, which is the largest real eigenvalue ˇ � 0 of A.

For adjacency matrices of graphs containing at least one directed cycle, which are

nonnegative integer matrices, the Perron eigenvalue is necessarily a real algebraic

integer, and also has ˇ � 1: In the case at hand we know a priori that 1 � ˇ � 2;

as detailed below.

Our motivation for studying the intersection sets (1.1) originally arose from

a problem of Erdős [7] described in Section 1.1 below. It concerns an ergodic-

theoretic question on the behavior of the dynamical system that iterates the map

x ! 2x acting on the 3-adic integers, called here the exceptional set problem,

which was raised in [11]. �is problem directly leads to the study of various inter-

section sets (1.1). Such sets also provide a vehicle to formulate various relaxations

of this problem, including the generalized exceptional set problem given in Sec-

tion 1.2. �e study of Hausdor� dimension of intersection sets seems directly of

interest in its own right, to shed light on a class of semigroup intersection problems

initiated by Furstenberg [8] in 1970, see Section 2.4.

1.1. Erdős ternary expansion problem. Erdős [7] conjectured that for every

n � 9, the ternary expansion of 2n contains the ternary digit 2. A weak version

of this conjecture asserts that there are only �nitely many n such that the ternary

expansion of 2n consists of only 0’s and 1’s. Both versions of this conjecture

appear to be very di�cult problems.
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In [11] the second author proposed a 3-adic generalization of this problem, as

follows. Let Z3 denote the 3-adic integers, and let a 3-adic integer ˛ have 3-adic

expansion

.˛/3 WD .: : : a2a1a0/3 D a0 C a1 � 3 C a2 � 32 C : : : ; with all ai 2 ¹0; 1; 2º:

De�nition 1.1. �e 3-adic exceptional set E.Z3/ is given by

E.Z3/ WD ¹� 2 Z3 W for in�nitely many n � 0, .2n�/3 omits the digit 2º:

�e weak version of Erdős’s conjecture above is equivalent to the assertion that

E.Z3/ does not contain the integer 1.

�e exceptional set seems an interesting object in its own right. It is forward

invariant under multiplication by 2, and one may expect it to be a very small set

in terms of measure or dimension. At present it remains possible that E.Z3/ is a

countable set, or even that it consists of the single element ¹0º: �e second author

previously put forward a conjecture asserting that the exceptional set is small in

the sense of Hausdor� dimension ([11, Conjecture 1.7]), as follows.

Conjecture 1.2. (Exceptional Set Conjecture) �e 3-adic exceptional set E.Z3/

has Hausdor� dimension zero, i.e.

dimH .E.Z3// D 0: (1.2)

�e de�nition of p-adic Hausdor� dimension can be found in Abercrombie

[1, p. 311–312], and is analogous to the real case. �e paper [11] showed that the

Hausdor� dimension of E.Z3/ is at most 1
2
; as explained below. �at paper initi-

ated a strategy to obtain upper bounds for dimH .E.Z3// based on the containment

relation

E.Z3/ �
1
\

kD1

E.k/.Z3/; (1.3)

where

E.k/.Z3/ WD ¹� 2 Z3 W at least k values of .2n�/3 omit the digit 2º: (1.4)

�ese sets form a nested family

†3; N2 D E
.1/.Z3/ � E

.2/.Z3/ � E
.3/.Z3/ � : : : :

�e containment relation (1.3) yields inequalities relating the Hausdor� dimension

of these sets,

dimH .E.Z3// � �; (1.5)
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where the nesting constant � is de�ned by

� WD lim
k!1

dimH .E.k/.Z3//: (1.6)

�is upper bound leads to the subsidiary problem of obtaining upper bounds for �,

which in turn requires obtaining bounds for the individual dimH .E.k/.Z3//. We

note the possibility that dimH .E.Z3// < � may hold.

�e analysis of the sets E.k/.Z3/ for k � 2 leads to the study of particular sets

of the kind (1.1) considered in this paper. We have

E.k/.Z3/ D
[

0�m1<���<mk

C.2m1 ; : : : ; 2mk /: (1.7)

We next give a reduction, showing that for the purposes of computing Haus-

dor� dimension we may, without loss of generality, restrict this set union to subsets

having m1 D 0, so that 2m1 D 1:

De�nition 1.3. �e restricted 3-adic exceptional set E1.Z3/ is given by

E1.Z3/ WD ¹� 2 Z3 W for n D 0 and in�nitely many other n, .2n�/3 omits digit 2º:

It is easy to see that

E.Z3/ D
1
[

nD0

1

2n
E1.Z3/:

Since the right side is a countable union of sets we obtain

dimH .E.Z3// D sup
n�0

�

dimH

� 1

2n
E1.Z3/

��

D dimH .E1.Z3//;

and we also have E1.Z3/ � †3; N2. We now de�ne

E
.k/
1 .Z3/ WD ¹� 2 †3; N2 W there are k values of n � 0; including n D 0;

for which .2n�/3 omits the digit 2º:

Lemma 1.4. �e nesting constant

� D lim
k!1

dimH .E
.k/
1 .Z3//: (1.8)

In addition

dimH .E
.k/
1 .Z3// D sup

0<m1<���<mk�1

.dimH .C.1; 2m1; : : : ; 2mk�1///: (1.9)
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Proof. For 0 < m1 < m2 < � � � < mk we have the set identities

C.2m1 ; : : : ; 2mk / D 1

2m1
C.1; 2m2�m1 ; : : : ; 2mk�m1/:

�ese identities yield E.k/.Z3/ D
S1

nD0 2�nE
.k/
1 .Z3/: Again, since this is a count-

able union of sets, we obtain the equality

dimH .E.k/.Z3// D sup
k�1

.dimH .2�nE
.k/
1 .Z3// D dimH .E

.k/
1 .Z3//:

It also follows that (1.8) holds. We also have

E
.k/
1 .Z3/ D

[

0<m1<���<mk�1

C.1; 2m1 ; : : : ; 2mk�1/: (1.10)

�e right side of this expression is a countable union of sets, so (1.9) follows.

Upper bounds for the right side of equation (1.9) are obtained by bounding

above the Hausdor� dimensions of all the individual sets C.1; 2m1 ; : : : ; 2mk�1/,

of the form (1.1). Lower bounds may be obtained by determining the Hausdor�

dimension of speci�c individual sets C.1; 2m1; : : : ; 2mk�1/. By this means the sec-

ond author [11, �eorem 1.6 (ii)] obtained the upper bound

� � dimH .E.2/.Z3// D dimH .E
.2/
1 .Z3// � 1

2
; (1.11)

which by (1.5) yields the upper bound

dimH .E.Z3// � 1

2
: (1.12)

1.2. Generalized exceptional set problem. One may consider approaches to

upper bounding the Hausdor� dimension of the exceptional set E.Z3/ that pro-

ceed by relaxing its de�ning conditions. Here we consider the relaxation that

allows arbitrary positive integers M in place of powers of 2 in its de�nition. Since

the 3-adic Cantor set †3; N2 is forward invariant under multiplication by 3, we will

restrict to integers M 6� 0 . mod 3/. Furthermore Lemma 1.4 indicates that we ob-

tain a relaxation if we consider only the restricted family of sets C.1; M1; : : : ; Mn/,

i.e. taking M0 D 1. �erefore we de�ne a relaxed version of the restricted 3-adic

exceptional set, as follows.

De�nition 1.5. �e 3-adic generalized exceptional set is the set

E?.Z3/ WD ¹� 2 Z3 W there are in�nitely many M � 1, M 6� 0 .mod 3/,

including M D 1; such that

the 3-adic expansion .M�/3 omits the digit 2º:
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When considering intersection sets C.1; M1; : : : ; Mn/, we can then further re-

strict to require all Mi � 1 .mod 3/, since any M � 2 .mod 3/ has C.1; M/ D ¹0º:
We have E1.Z3/ � E?.Z3/ � †3; N2 and therefore

dimH .E.Z3// D dimH .E1.Z3// � dimH .E?.Z3//: (1.13)

�us upper bounds for the Hausdor� dimension of the generalized exceptional set

yield upper bounds for that of the exceptional set.

Problem 1.6 (generalized exceptional set problem). Determine upper and lower

bounds for the Hausdor� dimension of the generalized exceptional set E?.Z3/.

In particular, determine whether dimH .E?.Z3// D 0 or dimH .E?.Z3// > 0 holds.

To approximateE?.Z3/ we next introduce a family of sets in parallel to E
.k/
1 .Z3/

above. We de�ne

E
.k/
? .Z3/ WD ¹� 2 Z3 W there exist 1 D M0 < M1 < � � � < Mk ,

for all Mi � 1.mod 3/ such that

the 3-adic expansion .Mi �/3 omits the digit 2º:

Next we de�ne the generalized nesting constant

�? WD lim
k!1

dimH .E
.k/
? .Z3// (1.14)

and note that Lemma 1.4 yields � � �?:

In parallel to the case above, we have

E
.k/
? .Z3/ D

[

1<M1<���<Mk�1
Mi �1. mod 3/

C.1; M1; : : : ; Mk�1/:

In consequence we have the inclusion

E?.Z3/ �
1
\

kD1

E
.k/
? .Z3/;

which yields the upper bound

dimH .E?.Z3// � ��: (1.15)

A priori it is possible that dimH .E?.Z3// < ��.

�e second author [11, �eorem 1.6] previously obtained the upper bound

�� � dimH .E
.2/
? .Z3// � 1

2
: (1.16)
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Improved bounds on �� translate to improved bounds on the Hausdor� dimension

of the generalized exceptional set. Our motivation in studying this set stems in part

from the fact that if it were true that dimH .E?.Z3// D 0, then the Exceptional Set

Conjecture 1.2 would follow.

1.3. Overview. �is paper presents theoretical and experimental results con-

cerning intersection sets (1.1). �e main results are stated in Section 2. �ese

results are based on an e�cient presentation of the underlying path set of C.1; M/

for integers M � 1, with an algorithm to compute it given in Section 4. �is algo-

rithm is slightly simpler than the general construction given in [2, Proposition 4.3]

and we extend it to multiple intersections C.1; M1; M2; : : : ; Mn/. In Section 5 we

describe two in�nite families of integers ¹Nk W k � 1º whose 3-adic expansions

have an especially simple form, for which the associated path set presentation au-

tomata for C.1; Nk/ can be completely analyzed.

An interesting feature of this investigation is the nature of the dependence of

dimH .C.r1; r2; : : : ; rn// on the rational numbers .r1; : : : ; rn/. In Sections 4 and 5

we present examples showing that the structure of the associated automata de-

pends in a very complicated way on 3-adic arithmetic properties of the integers

Mi , as do their Hausdor� dimensions. �is complexity of the examples indicates

a very complicated behavior of the Hausdor� dimension function under intersec-

tion. From the perspective of analogous problems concerning intersections of

general additive translates (see Section 2.4), this complexity is perhaps not so sur-

prising. However the exact nature of how the Hausdor� dimension depends on

arithmetic properties of the data ri certainly remains to be better understood.

�is investigation led to a resolution of the generalized exceptional set prob-

lem. In Section 6 we �rst establish, using one in�nite family, that �� � 1
2

log3 2:

We then present a result using the same in�nite family, due to A. Bolshakov, es-

tablishing the same lower bound for the Hausdor� dimension of the generalized

exceptional set , i.e. dimH .E?.Z3// � 1
2

log3 2: �is result limits the upper bounds

attainable on dimH .E.Z3// via the inclusion of E.Z3/ in the generalized excep-

tional set. In Section 6 we present further computational results related to the

exceptional set.

�e results of this paper concern very special cases of properties of intersec-

tions of p-adic path set fractals (as de�ned in [3]). �ese more general intersection

sets may be studied by similar methods. �e algorithmic methods obtained in this

paper also apply to p-adic numbers for any prime p and to the g-adic numbers

considered by Mahler [14] for any integer g � 2.
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2. Results

�e paper presents both algorithmic results and exact results on the Hausdor�

dimension of speci�c in�nite families of intersections.

2.1. Algorithmic results. We study the size of intersections of multiplicative

translates of the 3-adic Cantor set †3 WD †3; N2, as measured by Hausdor� dimen-

sion. We study the sets

C.1; M1; : : : ; Mn/ WD †3; N2 \ 1

M1

†3; N2 \ � � � \ 1

Mn

†3; N2:

where 1 < M1 < � � � < Mn are positive integers. As remarked above, via results

in [2] and [3] these sets have a nice description, with their members having p-adic

expansions describable by �nite automata, which permits e�ective computation

of their Hausdor� dimension. �ese results are reviewed in Section 3, and the

necessary de�nitions for presentations of a path set used in the following theorem

appear there.

�eorem 2.1 (dimension of C.1; M1; : : : ; Mn/). (1) �ere is a terminating algo-

rithm that takes as input any �nite set of integers 1 � M1 < � � � < Mn, and gives

as output a labeled directed graph G D .G;L/ with a marked starting vertex v0,

which is a presentation of a path set X D X.1; M1; M2; : : : ; Mn/ describing the

3-adic expansions of the elements of the space

C.1; M1; : : : ; Mn/ WD †3 \ 1

M1

†3 \ � � � \ 1

Mn

†3:

�is presentation is right-resolving and all vertices are reachable from the marked

vertex. �e graph G has at most
Qn

iD1.1 C b1
2
Mic/ vertices.

(2) �e topological entropy ˇ of the path set X is the Perron eigenvalue of the

adjacency matrix A of the directed graph G. It is a real algebraic integer satisfying

1 � ˇ � 2. Furthermore the Hausdor� dimension

dimH .C.1; M1; : : : ; Mn// D log3 ˇ:

�is dimension falls in the interval Œ0; log3 2�.

�is construction is quite explicit in the special case C.1; M/. In that case al-

ready the associated graphs G can be very complicated, and there exist examples

where the graph has an arbitrarily large number of strongly connected compo-

nents, cf. [4].
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We have computed Hausdor� dimensions of many examples of such intersec-

tions. �ey exhibit a bewildering complexity in general. However in the process

we have found several in�nite families of integers (whose members satisfy a linear

recurrence) where the graph structures are analyzable, see Section 5 and further

examples in [4]. From the viewpoint of fractal constructions, the sets so con-

structed give speci�c interesting examples of graph-directed fractals, which ap-

pear to have structure depending on the integers .M1; ::; Mn/ in an intricate way.

2.2. Hausdor� dimension results: two in�nite families. �ere are some sim-

ple properties of the 3-adic expansion of M (which coincides with the ternary

expansion of M , read backwards) which restrict the Hausdor� dimension of sets

C.1; M/: We begin with some simple restrictions on the Hausdor� dimension

which can be read o� from the 3-adic expansion of M . We write the ternary

expansion

.M/3 WD .akak�1 : : : a1a0/3 for M D
k

X

j D0

aj 3j :

If the �rst nonzero 3-adic digit a0 D 2, then C.1; M/ D ¹0º, whence its Haus-

dor� dimension dimH .C.1; M// D 0. On the other hand, if the positive integers

M1; : : : ; Mk each have all digits aj D 0 or aj D 1 in their 3-adic expansions, then

the Hausdor� dimension dimH .C.1; M1; M2; : : : ; Mk// must be positive.

We have found several in�nite families of integers having ternary expansions

of a simple form, whose path set presentations have a regular structure in the

family parameter k that permits their Hausdor� dimension to be determined. �e

simplest family takes M1 D 3k D .10k/3. In this trivial case C.1; 3k/ D †3; N2,

whence

dimH .C.1; Mk// D dimH .†3; N2/ D log3 2 � 0:630929: (2.1)

In Section 5 we analyze two other in�nite families in detail, as follows. �e �rst

of these families is Lk D 1
2
.3k � 1/ D .1k/3, for k � 1.

�eorem 2.2 (in�nite family Lk D 1
2
.3k � 1/). (1) Let Lk D 1

2
.3k � 1/ D .1k/3.

�e path set presentation .G; v0/ for the path set X.1; Lk/ underlying C.1; Lk/ has

exactly k vertices and is strongly connected.

(2) For every k � 1,

dimH .C.1; Lk// D dimH C.1; .1k/3/ D log3 ˇk;

where ˇk is the unique real root greater than 1 of �k � �k�1 � 1 D 0.
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(3) For all k � 3 there holds

dimH .C.1; Lk// D log3 k

k
C O

� log log.k/

k

�

:

�e Hausdor� dimension of the set dimH .C.1; Lk// is positive but approaches

0 as k ! 1. �is result is proved in Section 5.2.

Secondly, we consider the family Nk D 3k C 1 D .10k�11/3. Our main results

concern this family.

�eorem 2.3 (in�nite family Nk D 3k C 1). (1) Let Nk D 3k C 1 D .10k�11/3.

�e path set presentation .G; v0/ for the path set X.1; Nk/ underlying C.1; Nk/ has

exactly 2k vertices and is strongly connected.

(2) For every integer k � 1, there holds

dimH .C.1; Nk// D dimH C.1; .10k�11/3/ D log3

�1 C
p

5

2

�

� 0:438018:

Here the Hausdor� dimension is constant as k ! 1. �eorem 2.3 is a di-

rect consequence of results established in Section 5.3 (�eorem 5.5 and Proposi-

tion 5.6).

�e particular path sets associated to the families Lk and Nk actually have

shift-invariant symbolic dynamics, and are one-sided shifts of �nite type, as was

pointed out by a reviewer (see Remarks 5.4 and 5.8). Consequently, the Haus-

dor� dimension results in �eorems 2.2 and 2.3 obtained from the constructed

path set graphs are obtainable using standard facts in symbolic dynamics, without

requiring the extension of the theory to path sets. Nevertheless many C.1; M/ do

correspond to path sets that are not shift-invariant, cf. Example 4.6.

In a sequel [4] we will analyze a third in�nite family Pk D .20k�11/3 D 2 �
3kC1, whose underlying path set graphs exhibit much more complicated behavior;

they have an unbounded number of strongly connected components as k ! 1.

2.3. Hausdor� dimension results: generalized exceptional set. We give sev-

eral applications to bounding Hausdor� dimensions in Section 6. It is easy to

see that for each of the in�nite families Lk and Nk above, the Hausdor� dimen-

sions of arbitrarily large intersections are always positive. In �eorem 6.2 we

exhibit by explicit construction multiple intersection sets using Nk that establish

�? � 1
2

log3 2:

Following this result, A. Bolshakov noted a simple construction for members

of the family Nk , allowing in�nite intersections. It yields the following result,

which we present in Section 6.2.
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�eorem 2.4 (generalized exceptional set lower bound). �e generalized excep-

tional set E? satis�es

dimH .E?/ � 1

2
log3 2 � 0:315464:

�is result is based on showing that

dimH .¹� 2 †3; N2 W N2kC1� 2 †3; N2 for all k � 1º/ � 1

2
log3 2; (2.2)

which is done in �eorem 6.3. �is bound (2.2) has a short, self-contained proof.

�eorem 2.4 establishes that the generalized exceptional set cannot be used to

resolve the Exceptional Set Conjecture 1.2 a�rmatively.

In Section 6.3 we give numerical improvements on the lower bounds in [11],

for small k, for the Hausdor� dimension of the enclosing sets E.k/.Z3/ that upper

bound that of the exceptional set E.Z3/. �ese improvements come via explicit

examples.

2.4. Extensions of results: � 2 Z3. One may consider the problem of under-

standing the behavior of the Hausdor� dimension of general intersection sets

C.�1; �2; : : : ; �n/ WD
n

\

iD1

1

�i

†3;

as a function of the parameters �i 2 Z�
3 . �e simplest case of such variation

concerns the one-parameter function

f .�/ WD dimH .C.1; �// D dimH

�

†3 \ 1

�
†3

�

:

As a by-product of our Hausdor� dimension calculations for one in�nite family,

we deduce that f .�/ is a discontinuous function of � with respect to the 3-adic

metric on Z�
3 at � D 1, see Remark 5.9.

Analogous problems concern the behavior of Hausdor� dimension of inter-

sections of additive translates of the classical middle-third Cantor set X � Œ0; 1�,

whose members have ternary expansions that omit the digit 1. �is problem was

�rst raised by Furstenberg [8] in 1970, in a more general context. Set

Yt WD X \ .X C t / for 0 � t � 1:

�e following two contrasting results are known.
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(1) Hawkes [9] showed in 1975 that for a set of t of full Lebesgue measure the

sets Yt have constant Hausdor� dimension dimH .Yt / D 1
3

log3 2: �at is,

the Hausdor� dimension of Yt takes a “generic” value. Later Kenyon and

Peres [10] substantially generalized this result.

(2) On the other hand, Davis and Hu [5] showed in 1995 for each 0 � ˛ � log3 2

that the set of t for which dimH .Yt / D ˛ is dense in Œ�1; 1�.

�ese two results together show that the function g.t/ D dimH .Yt / must be dis-

continuous everywhere in Œ�1; 1� in a very strong sense.

It would be interesting to determine to what extent analogues of these results

hold for the function f .�/, and for more general multiplicative intersection sets in

the p-adic setting. �e results for additive translates above do not directly carry

over to the multiplicative setting, in part because p-adic addition and multiplica-

tion have signi�cant di�erences compared to the real number operations, as shown

in [3]. If an analogue of the “generic” Hausdor� dimension result in (1) above were

valid in the 3-adic case, then it would follow that the particular � D 1
r

2 Z�
3 \ Q

studied in this paper will give “non-generic” values of the Hausdor� dimension.

2.5. Notation. �e notation .m/3 refers to either the base 3 radix expansion of

the positive integer m, or to the 3-adic expansion of a general 3-adic integer .m/3.

In the 3-adic case this expansion is to be read right to left, to be compatible with the

ternary expansion. �at is, ˛ D
P1

j D0 aj 3j would be written .: : : a2a1a0/3, unless

explicitly stated otherwise. However when we write out symbolic dynamics of

paths as regular expressions, these are to be read from left to right, e.g. 1100.10/1

corresponds to the 3-adic integer : : : 01010011:

3. Symbolic dynamics and graph-directed constructions

�e constructions of this paper are based on the fact that the points in intersections

of multiplicative translates of 3-adic Cantor sets have 3-adic expansions that are

nicely describable in terms of symbolic dynamics. �is section recalls these basic

connections.

3.1. Symbolic dynamics, graphs and �nite automata. We consider symbolic

dynamics on certain closed subsets of the one-sided shift space † D AN with �xed

symbol alphabet A, which for our application will be specialized to A D ¹0; 1; 2º.
A basic reference for directed graphs and symbolic dynamics, which we follow, is

Lind and Marcus [13].
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By a graph we mean a �nite directed graph, allowing loops and multiple edges.

A labeled graph is a graph assigning labels to each directed edge; these labels are

drawn from a �nite symbol alphabet. A labeled directed graph can be interpreted

as a �nite automaton in the sense of automata theory. In our applications to 3-adic

digit sets, the labels are drawn from the alphabetA D ¹0; 1; 2º: In a directed graph,

a vertex is a source if all directed edges touching that vertex are outgoing; it is a

sink if all directed edges touching that edge are incoming. A vertex is essential

if it is neither a source nor a sink, and is called stranded otherwise. A graph is

essential if all of its vertices are essential. A graph G is strongly connected if for

each two vertices i; j there is a directed path from i to j . We let SC.G/ denote

the set of strongly connected component subgraphs of G.

A (vertex-vertex) adjacency matrix A D AG of a directed graph G has entry

aij counting the number of directed edges from vertex i to vertex j . �e adjacency

matrix is irreducible (i.e. for each entry .i; j / some power of the matrix is positive

in this entry) if and only if the associated graph is strongly connected; and we

term the graph irreducible in this case. �e adjacency matrix of a directed graph

is primitive (i.e some power of the matrix has strictly positive entries) if and only

if the graph is strongly connected and aperiodic, i.e. the greatest common divisor

of its (directed) cycle lengths is 1.

We use basic facts from Perron–Frobenius theory of nonnegative matrices.

�e Perron eigenvalue ([13, De�nition 4.4.2]) of a nonnegative real matrix A ¤ 0

is the largest real eigenvalue ˇ � 0 of A. A nonnegative matrix is irreducible

if for each row and column .i; j / some power Am has .i; j /-th entry nonzero.

A nonnegative matrix A is primitive if some power Ak for an integer k � 1 has all

entries positive; primitivity implies irreducibility but not vice versa. �e Perron–

Frobenius theorem [13, �eorem 4.2.3] for an irreducible nonnegative matrix A

states that

(1) the Perron eigenvalue ˇ is geometrically and algebraically simple, and has

an everywhere positive eigenvector v;

(2) all other eigenvalues � have j�j � ˇ, so that ˇ D �.A/, the spectral radius

of A;

(3) any everywhere positive eigenvector must be a positive multiple of v.

For a general nonnegative real matrix A ¤ 0, the Perron eigenvalue need not be

simple, but it still equals the spectral radius �.A/ and it has at least one everywhere

nonnegative eigenvector. For an adjacency matrix of a graph containing at least

one directed cycle, its Perron eigenvalue is necessarily a real algebraic integer

ˇ � 1 of a special kind called a Perron number. See Lind [12] for a characterization

of these numbers.
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3.2. p-adic path sets and one-sided so�c shifts. Our basic symbolic dynamics

objects are special cases of the following notion of path set, which we study in

detail in [2]. A pointed graph is a pair .G; v/ consisting of a directed labeled

graph G D .G;E/ and a marked vertex v of G. Here G is a (directed) graph and E

is an assignment of labels .e; `/ D .v1; v2; `/ to the edges of G, where every edge

gets a unique label, and no two triples are the same (but multiple edges and loops

are permitted otherwise).

De�nition 3.1. Given a pointed graph .G; v/ its associated path set P D XG.v/ �
AN is the set of all in�nite one-sided symbol sequences .x0; x1; x2; : : : / 2 AN,

giving the successive labels of all one-sided in�nite walks in G issuing from the

distinguished vertex v. Some graphs may have �nite walks from the given vertex

that cannot be further extended; such walks do not belong to XG;v .

Path sets are closed sets in the shift topology, but in general they are not in-

variant under the one-sided shift operator, �.a0a1a2a3 : : : / D a1a2a3 : : : in the

sense that �.X/ 6� X may occur. �e symbolic dynamics literature typically treats

shift-invariant sets (�.X/ � X), and this theory requires some minor extensions

to cover the case of path sets, for which see [2]. We require the extra generality of

path sets here because the multiplicative translation operation can yield non-shift

invariant sets even if one starts with shift-invariant inputs, cf. Example 4.6 below.

Many di�erent pointed graphs .G; v/ may give rise to the same path set P, and

we call any such .G; v/ a presentation of the path set P. An important class of

path set presentations have the following extra properties. We say that a directed

labeled graph G D .G; v/ is right-resolving if for each vertex of G all directed

edges outward have distinct labels. (In automata theory G is called a deterministic

automaton.) We say it is reachable if every vertex ofG can be reached by a directed

path from the initial vertex. Every path set possesses a right-resolving presentation

that is reachable ([2, �eorem 3.2]).

Basic properties of path sets include the following.

(1) �e collection of path sets X WD XG;v0
in a given alphabet is closed under

�nite union and intersection ([2, �eorem 1.2]).

(2) �e shift-closure of a path set X is the set of all paths obtainable by applying

the one-sided shift repeatedly to paths in X . For a reachable presentation, the

shift-closure is the set union of the path sets starting from all vertices of G.

�e class of shift-invariant path sets P coincides with the class of one-sided

so�c shifts in symbolic dynamics, see �eorem 1.4 of [2]. �e notion of so�c

shift was �rst introduced in the two-sided case by Weiss [18].
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(3) �e symbolic dynamics analogue of Hausdor� dimension is topological en-

tropy. �e topological entropy of a path set Htop.X/ is given by

Htop.X/ WD lim sup
n!1

1

n
log Nn.X/;

where Nn.X/ counts the number of distinct blocks of symbols of length n

appearing in elements of X . �e topological entropy is easy to compute for

a right-resolving presentation of a path set. By [2, �eorem 1.13], it is

Htop.X/ D log ˇ (3.1)

where ˇ is the Perron eigenvalue of the adjacency matrix A D AG of the

underlying directed graph G of G, e.g. the spectral radius of A.

3.3. p-adic path set fractals, graph directed constructions and Hausdor� di-

mension. We can view the elements of a path set X on the particular alphabet

A D ¹0; 1; 2; : : : ; p � 1º geometrically as describing the digits in the p-adic ex-

pansion of a p-adic integer. �e associated map fp W AN ! Zp having fp..a0; a1;

a2; : : : // D
P1

j D0 aj pj is a homeomorphism of topological spaces.

De�nition 3.2. Given a path set X D XG.v/ � AN on the alphabet A D ¹0; 1;

2; : : : ; p � 1º, the image set K D fp.X/ � Zp is called a p-adic path set fractal.

We study p-adic path set fractals in detail in [3], whose Proposition 2.9 shows

that the de�nition of p-adic path set fractal above is equivalent to the de�nition

used in that paper. �e class C.Zp/ of all p-adic path set fractals is closed under

�nite union and intersection, a property such sets inherit from path sets. Further-

more [3] shows that C.Zp/ is closed under both p-adic addition and p-adic multi-

plication by rational numbers r 2 Q that lie in Zp. �e e�ects of these operations

are e�ectively computable at the level of path set presentations; the p-adic arith-

metic operations applied to p-adic path set fractals are treated in [3], and union

and intersection of path sets are treated in [2].

�e paper [3] shows that p-adic path set fractals are alternatively obtainable

via p-adic analogues of graph-directed fractal constructions over real numbers,

for which see Mauldin and Williams [16] and [17], Mauldin and Urbanski [15],

and Edgar [6, Chapter 6]. �is graph-directed fractal interpretation has the con-

sequence that the Hausdor� dimension of a p-adic path set fractal is computable

directly from a suitable presentation of the underlying path set X D XG.v/.
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Proposition 3.3. Let p be a prime, and let K be a set of p-adic integers whose

allowable p-adic expansions are described by the symbolic dynamics of a p-adic

path set X . Let .G; v0/ be a presentation of this path set that is right-resolving.

(1) �e map �p W Zp ! Œ0; 1� taking ˛ D
P1

kD0 akpk 2 Zp to the real number

with base p expansion �p.˛/ WD
P1

kD0
ak

pkC1 is a continuous map. �e image

of K under this map, K 0 WD �p.K/ � Œ0; 1�, is a graph-directed fractal in the

sense of Mauldin and Williams.

(2) �e Hausdor� dimension of the p-adic path set fractal K is

dimH .K/ D dimH .K 0/ D logp ˇ; (3.2)

where ˇ is the spectral radius of the adjacency matrix A of the underlying

graph G of G.

Proof. �ese results are proved in �eorem 3.1 of [3]. �e Hausdor� dimension

formula in (2) matches the standard formula for graph-directed fractals of Mauldin

and Williams [17] in the real number case. �e map in (1) sends a path set to a

Mauldin-Williams construction sub-object, see �eorem 2.10 of [3].

�e 3-adic Cantor set †3; N2 is a 3-adic path set fractal, and the general clo-

sure properties above guarantee that the intersection sets C.r1; r2; : : : ; rn/ for ra-

tional ri are also 3-adic path set fractals. In principle path set presentations for

C.r1; r2; : : : ; rn/ are e�ectively computable by general algorithms. In the next sec-

tion we formulate an algorithm which directly computes a path set presentation for

an intersection set C.1; M/ with M a positive integer satisfying M � 1 .mod 3/.

�is algorithm takes advantage of the special form of the intersection set and of

M to reduce the size of the state space of the presentation; it is su�cient for our

applications.

4. Structure of intersection sets C.1; M1; M2; : : : ; Mn)

We show directly that the sets C.1; M1; : : : ; Mn/ consist of those 3-adic integers

whose 3-adic expansions are describable as path sets X.1; M1; : : : ; Mn/. We also

present an algorithm which when given the data .M1; : : : ; Mn/ as input produces

as output a presentation G D .G; v0/ of the path set X.1; M1; : : : ; Mn/.

4.1. Constructing a path set presentation of X.1; M/. We describe an algo-

rithmic procedure to obtain a path set presentation of X.1; M/ for the 3-adic ex-

pansions of elements in C.1; M/. Since C.1; 3j M/ D C.1; M/, we may reduce to
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the case M 6� 0 .mod 3/ and since C.1; M/ D ¹0º if M � 2 .mod 3/ it su�ces

to consider the case M � 1 .mod 3/.

�eorem 4.1. For M � 1, with M � 1 .mod 3/, the set C.1; M/ D †3 \ 1
M

†3

has 3-adic expansions given by a path set X.1; M/ which has an algorithmically

computable path set presentation .G; v0/, in which the vertices vm are labeled

with a subset of the integers 0 � m � b1
2
M c, always including m D 0, and

of cardinality at most bM
2

c. �is presentation is right-resolving, connected, and

essential.

Proof. �e labeled graph G D .G;L/ will have path labels drawn from ¹0; 1º and

the vertices vN of the underlying directed graph G will be labeled by a subset of

the integers N satisfying 0 � N � bM
2

c: �e marked vertex v0 corresponds to

N D 0 and is the starting vertex of the algorithm.

�e idea is simple. Suppose that

˛ WD
1

X

j D0

aj 3j 2 †3 \ 1

M
†3:

Here all aj 2 ¹0; 1º, and in addition

M˛ D
1

X

j D0

bj 3j 2 †3:

Suppose that the �rst n digits

˛n D
n�1
X

j D0

aj 3j ;

are chosen. Since M � 1 .mod 3/ this uniquely speci�es the �rst n digits of

M˛n WD
mCn�1

X

j D0

b
.n/
j 3j ;

namely

b
.n/
j D bj ; for 0 � j � n � 1;
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which have bj 2 ¹0; 1º; for 0 � j � n � 1: Here the remaining digits b
.n/

nCk
for

1 � k � m are unrestricted, with

m D blog3 M c C 1:

We have followed a path in the graph G corresponding to edges labeled .a0; a1; : : : ;

an�1/. �e vertex we arrive at after these steps will be labeled by the value of the

“carry-digit” part of ˇn, which is

N D
mCn�1

X

j Dn

b
.n/
j 3j �n:

�e value of the bottom 3-adic digit b
.n/
n of N will determine the allowable

exit edges from vertex vN , and the label of the vertices reached. �e requirement

is that the next digit an satisfy

an C b.n/
n � 0; 1.mod 3/ (4.1)

If such a value is chosen, then we will be able to create a valid ˛nC1, and ˇnC1 WD
M˛nC1 will have

b.nC1/
n D an C b.n/

n .mod 3/:

�ere always exists at least one exit edge from each reachable vertex vN , since for

b
.n/
n D 0 the admissible an D 0; 1; for b

.n/
n D 1 the only admissible an D 0, and

for b
.n/
n D 2 the only admissible an D 1, in order that the next digits anC1; bnC1

both belong to ¹0; 1º.
�e important point is that the vertex label N fully determines the admissible

exit edges possible in the next step, since its bottom digit determines the allowable

exit edge values a � ¹0; 1º by requiring

a C N � 0; 1 .mod 3/; (4.2)

and for an exit edge labeled a one can determine the new vertex label vN 0 as

N 0 WD
�

N C Ma

3

�

: (4.3)

To the graph G one adds a directed edge for each allowable value an D 0 or 1

from N to N 0 labeled by an.

Furthermore it is easy to see that the are only �nitely many vertices vN that

can be reached from the vertex v0. One shows by induction on the number of steps

n taken that any reachable vertex vN has vertex label

0 � N �
�

M

2

�

:
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�is property holds for the initial vertex, and for the induction step, we obtain

from (4.3) that

N 0 � N C Ma

3
� M=2 C M

3
� M

2
:

�us the process of constructing the graph will halt.

It is easily seen that the presentation G D .G; v0/ obtained this way has the

desired properties.

(1) �e graph G is right-resolving because every vertex has exit edges with dis-

tinct edge-labels by construction.

(2) �e graph G is essential because every vertex has at least one admissible exit

edge, as shown above.

(3) �e graph G is connected since we include in it only vertices reachable

from v0.

Since G is essential, G is a presentation of a certain 3-adic path set via the cor-

respondence taking in�nite walks beginning at the v0-state in G to words in the

edges traversed. Denote this path set XG;0.

It remains to prove the claim that XG;0 is the path set X.1; M/ corresponding

to C.1; M/. To prove the claim, let ˆ W XG;0 ! Z3 be the map

: : : a2a1a0 7�!
1

X

kD0

ak3k :

ˆ is clearely an injection. ˆ.XG;0/ � C.1; M/: since : : : a2a1a0 2 XG;0 is a word

in the full shift on ¹0; 1º, ˆ.: : : a2a1a0/ D
P1

kD0 ak3k omits the digit 2, so that

ˆ.XG;0/ � †3. But the algorithm was constructed speci�cally so that, given a

path � D alal�1 : : : a2a1a0 in G originating at 0, there is an edge labeled alC1 2
¹0; 1º from the terminal vertex t .�/ if and only if each digit of the 3-adic expansion

of M �
�

PlC1
kD0 ck3k

�

which cannot be altered by any potential .l C 2/nd digit is

either 0 or 1. �is shows both that ˆ.XG;0/ � 1
M

†3 and C.1; M/ � ˆ.XG;0/, so

that

ˆjˆ�1.C.1;M // W XG;0 �! C.1; M/

is a bijection. Assigning the appropriate metric to XG;0 makes ˆ an isomorphism

in a now obvious way, proving the claim.

We obtain an algorithm to construct G D .G; v0/ based on the construction

above. In this algorithm M must be a positive integer, M � 1 .mod 3/:
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Algorithm A (construction of path set presentation of X.1; M/)

(1) Initial step. Start with initial marked vertex v0, and initial vertex set

I0 WD ¹v0º. Add an exit edge with edge label 0 giving a self-loop to v0,

and add another exit edge with edge label 1 going to new vertex vm with ver-

tex label m WD bM=3c; Add these two edges and their labels to form (labeled)

edge table E1. Form the new vertex set I1 WD ¹vmº, and go to Recursive Step

with j D 1.

(2) Recursive step. Given value j , a nonempty new vertex set Ij of level j

vertices, a current vertex set Vj and current edge set Ej . At step j C 1 deter-

mine all allowable exit edge labels from vertices vN in Ij , using the criterion

(4.2), and compute vertices reachable by these exit edges, with reachable ver-

tex labels computed by update equation (4.3). Add these new edges and their

labels to the current edge set to make the updated current edge set Ej C1.

Collect all vertices reached that are not in the current vertex set Vj into a new

vertex set Ij C1. Update the current vertex set Vj C1 D Vj [ Ij C1: Go to Test

Step.

(3) Test Step. If the current vertex set Ij C1 is empty, halt, with the complete

presentation G D .G; v0/ given by sets Vj C1; Ej C1. If Ij C1 is nonempty,

reset j 7! j C 1 and go to Recursive Step.

�e correctness of the algorithm follows from the discussion above.

4.2. Constructing a path set presentation of X.1; M1; : : : ; Mn/. Given inte-

gers 1 � M1 < � � � < Mn, we now have a way to construct graph presentations of

the path sets X.1; Mi / for each i . Since

X.1; M1; : : : ; Mn/ D
n

\

iD1

X.1; Mi /;

we need to know how to combine these graphs.

Recall the following de�nition from Lind and Marcus [13].

De�nition 4.2. Let G1 and G2 be labeled graphs with the same alphabet A, and let

their underlying graphs be G1 D .V1;E1/ and G2 D .V2;E2/. �e label product

G1 ? G2 of G1 and G2 has underlying graph G with vertex set V D V1 � V2, edge

set E D ¹.e1; e2/ 2 E1 � E2 W e1 and e2 have the same labelsº.
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In [2, Proposition 4.3], we show that if .Gi ; vi/ is a graph presentation of the

path set Pi , then .G1 ? G2; .v1; v2// is a graph presentation for P1 \ P2. It follows

that we can form a presentation of C.1; M1; : : : ; Mn/ as the label product

.G; v/ D .G1 ? G2 ? � � � ? Gn; .v1; v2; : : : ; vn//;

where .Gi ; vi/ is the presentation of C.1; Mi / just constructed.

�eorem 4.3. For 1 < M1 < M2 < � � � < Mn, with all Mi � 1 .mod 3/, the set

C.1; M1; M2; : : : ; Mn/ D
n

\

iD1

C.1; Mi / D †3 \
�

n
\

iD1

1

Mi

†3

�

has 3-adic expansions of its elements given by a path set X.1; M1; M2; : : : ; Mn/.

�is path set has an algorithmically computable presentation .G; v0/, in which the

vertices vN are labeled with a subset of integer vectors N D .N1; N2; : : : ; Nn/

with 0 � Ni � 1
2
Mi , always including the zero vector 0. �e presentation has

at most
Qn

iD1.1 C b1
2
Mi c/ vertices in the underlying graph. �is presentation is

right-resolving, connected and essential.

Proof. �e presentation is obtained by recursively applying the label product con-

struction to the presentations C.1; Mi /, see Algorithm B below. Each step pre-

serves the properties of the presentation graph being right-resolving, connected

and essential. �e number of states of the label product construction is at most

the product of the number of states in the two presentations being constructed.

By �eorem 4.1, the presentation of C.1; Mi / has at most 1 C b1
2
M c vertices.

�e bound given follows by induction on the successive label product construc-

tions.

In Algorithm B each Mi must be a positive integer, Mi � 1 .mod 3/:

Algorithm B (Construction of path set presentation of X.1; M1; : : : ; Mn/)

(1) Initial step. Construct presentations Gi D .Gi ;Li/ for X.1; Mi / corre-

sponding to C.1; Mi/ for 1 � i � n, using Algorithm A. Apply the label

product construction to form H2 WD G1 ? G2.

(2) For 2 � i � n � 1, apply the label product construction to form

HiC1 D Hi ? GiC1:

Halt when Hn is computed.
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4.3. Path set characterization of C.1; M1; : : : ; Mn/. From �eorem 4.3 we

easily derive the following result.

�eorem 4.4. For any integers 1 � M1 < � � � < Mn, let

C.1; M1; : : : ; Mn/ WD †3 \ 1

M1

†3 \ � � � \ 1

Mn

†3:

�is is the set of all 3-adic integers � 2 †3 such that Mj � omits the digit 2 in its

3-adic expansion. �en,

(1) the complete set of the 3-adic expansions of numbers in C.1; M1; : : : ; Mn/ is

a path set in the alphabet A D ¹0; 1; 2º;

(2) the Hausdor� dimension of C.1; M1; : : : ; Mn/ is log3 ˇ, where log ˇ is the

topological entropy of this path set. Here ˇ necessarily satis�es 1 � ˇ � 2,

and ˇ is a Perron number, i.e. it is a real algebraic integer ˇ � 1 such that all

of its other algebraic conjugates satisfy j�.ˇ/j < ˇ:

Proof. �eorem 4.3 gives an explicit construction of a presentation .G; v/ showing

that C.1; M1; : : : ; Mn/ is a p-adic path set.

By Proposition 3.3 the Hausdor� dimension of C.1; M1 : : : ; Mn/ is log3 ˇ,

where ˇ is the spectral radius of the adjacency matrix A of the underlying graph G.

Since A is a 0-1 matrix, by Perron–Frobenius theory the spectral radius equals the

maximal eigenvalue in absolute value, which is necessarily a positive real num-

ber ˇ. It is a solution to a monic polynomial over Z, so that ˇ is necessarily an

algebraic integer. By construction, the sum of the entries of any row in A is either 1

or 2, so that we also have 1 � ˇ � 2.

Remark 4.5. �e adjacency matrix A in the sets above can sometimes be re-

ducible, i.e. it may have more than one strongly connected component. Exam-

ple 4.3 below presents a graph C.1; 19/ having a reducible matrix A– the underly-

ing graph G has two strongly connected components.

Combining the results above yields �eorem 2.1.

Proof of �eorem 2.1. (1) �e existence of a terminating algorithm follows from

�eorem 4.1 and �eorem 4.3, with the algorithm for constructing a presentation

of the path set X.1; M1; M2; : : : ; Mn/ given by combining Algorithm A and Al-

gorithm B.

(2) �is follows from �eorem 4.4.
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4.4. Examples. We present several examples of path set presentations.

Example 4.1. �e 3-adic Cantor set †3 D C.1/ D C.1; 1/ has a path set presenta-

tion .G; v0/ pictured in Figure 4.1. It is the full shift on two symbols, and the initial

vertex is the vertex labeled 0. �e underlying graph G of G is a double cover of a

one vertex graph with two symbols. �e advantage of the graph G pictured is that

a path for it is completely determined by the set of vertex symbols that it passes

through.

0 10

1

0

1

Figure 4.1. Path set presentation of Cantor shift †3 D C.1/. �e marked vertex is 0.

Example 4.2. A path set presentation of C.1; 7/, with 7 D .21/3, is shown in

Figure 4.2. �e vertex labeled 0 is the marked initial state.

0

12

10

0

1

1

1 0

0

Figure 4.2. Path set presentation of C.1; 7/: �e marked vertex is 0.

�e graph in Figure 4.2 has adjacency matrix

A D

0

B

B

B

@

1 1 0 0

0 0 1 0

0 0 1 1

1 0 0 0

1

C

C

C

A

;
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which has Perron–Frobenius eigenvalue ˇ D 1C
p

5
2

, so

dimH .C.1; 7// D log3

�1 C
p

5

2

�

� 0:438018:

Example 4.3. A path set presentation of C.1; 19/, with 19 D .201/3, is shown in

Figure 4.3. �e vertex labeled 0 is the marked initial state.

0

1

10

100

22

20

21

2

0

1

10

1

1

1 0

0

0

1

0

Figure 4.3. Path set presentation of C.1; 19/: �e marked vertex is 0.

�e graph in Figure 4.3 has adjacency matrix

A D

0

B

B

B

B

B

B

B

B

B

B

B

@

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

;
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which has Perron eigenvalue ˇ � 1:465571, so

dimH .C.1; 19// D log3 ˇ � 0:347934:

Example 4.4. We consider implementation of the algorithm for C.1; 7; 19/. We

start from the presentations of C.1; 7/ and C.1; 19/ in Example 4.1. Taking the

label product gives us a presentation of C.1; 7; 19/, which is shown in Figure 4.4.

0-0

2-20

10-22

10-100

1-10

0-1

0

1

1

1 0

0

0

1

Figure 4.4. Path set presentation of C.1; 7; 19/. �e marked vertex is 0 � 0.

�is graph G for C.1; 7; 19/ has adjacency matrix A given by

A D

0

B

B

B

B

B

B

B

@

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 0 0 1

1 0 0 0 0 0

1

C

C

C

C

C

C

C

A

:

�e Perron eigenvalue ˇ � 1:46557 of this matrix is the largest real root of

�6 � 2�5 C �4 � 1 D 0: �e Hausdor� dimension of C.1; 7; 19/ is then

dimH .C.1; 7; 19// D log3 ˇ � 0:347934: (4.4)
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Example 4.5. �e set C.1; 43/, with N D 43 D .1121/3 has M � 1 . mod 3/, but

nevertheless has Hausdor� dimension 0. A presentation of the path set associated

to C.1; 43/ is given in Figure 4.5.

0112

201

20 121

2

12

120

0
1

1

0

1

0
0

1

1

0

1

Figure 4.5. Path set presentation of C.1; 43/. �e marked vertex is 0.

�e graph in Figure 4.5 has four strongly connected components, with vertex

sets ¹0º; ¹112º; ¹2; 120; 201; 20º; and ¹12; 121º respectively, each of whose topo-

logical entropy is 0. �e vertex 0 is the marked initial state.

Example 4.6. A path set presentation of C.1; 16/ D C.1; .121/3/ is shown in

Figure 4.6.

0

12

21 2

20

0

1 0

1

1

0

1

Figure 4.6. Path set presentation of †3 D C.1/. �e marked vertex is 0.

�is path set is not invariant under the shift operator, since the path 0110.01/1

(read left to right) is an element of the path set X.1; 16/, but the in�nite path .01/1

is not. In particular, this path set is not a one-sided so�c shift in the sense of [2].
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5. In�nite families

5.1. Basic properties. We have the following simple result, showing the in�u-

ence of the digits in the 3-adic expansion of M , Mi on the size of the sets C.1; M/

and C.1; M1; M2; : : : ; Mn/.

�eorem 5.1. (1) If the smallest nonzero 3-adic digit in the 3-adic expansion of

the positive integer M is 2, then C.1; M/ D ¹0º, and

dimH .C.1; M// D 0: (5.1)

(2) If positive integers M1; M2; : : : ; Mn 2 †3 all have the property that their

3-adic expansions .Mi /3 (equivalently their ternary expansions) contain only dig-

its 0 and 1, then

dimH .C.1; M1; M2; : : : ; Mn// > 0: (5.2)

Remark. For neither (1) nor (2) does the converse hold. �e example M D 43 D
.1121/3 has dimH .C.1; M// D 0, but its 3-adic expansion has smallest digit 1. �e

example M D 64 D .2101/3 has dimH .C.1; M// > 0, but its 3-adic expansion

has a digit 2.

Proof. of �eorem 5.1. (1) Suppose the smallest nonzero 3-adic digit in the 3-adic

expansion of the positive integer M is 2. �en for any N 2 †3, the small-

est nonzero digit of MN is 2, so MN … †3. �us, C.1; M/ D ¹0º, hence

dimH .C.1; M// D 0.

(2) Suppose M1; : : : ; Mn 2 †3 are positive integers such that all of their 3-adic

expansions have only the digits 0 and 1. For each Mi , let mi be the largest nonzero

ternary position of Mi (i.e. Mi D 3mi C lower order terms). �en in the graph

presentation constructed for X.1; Mi/ by Algorithm A, the walk starting at the

origin, then moving along an edge labeled 1 (which exists since .Mi /3 omits the

digit 2), then moving along mi consecutive edges labeled 0, is a directed cycle

at 0. Since the edge labeled 0 is a loop at 0, if we let m D max1�i�n mi , then

the graph presentation of the path set X.1; M1; : : : ; Mn/ of C.1; M1; : : : ; Mn/ has

a directed cycle at 0 of length m C 1 given by �rst traversing the edge labeled 1,

then traversing m consecutive edges labeled 0. �is cycle and the loop of length

one at 0 are distinct directed cycles at 0. It follows that the associated path set has

positive topological entropy, and hence C.1; M1; : : : ; Mn/ has positive Hausdor�

dimension by [3, �eorem 3.1 (iii)].
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5.2. �e family Lk D .1k/3 D
1

2
.3k

� 1/. �e path set presentations .G; v0/ of

the sets X.1; Lk/ are particularly simple to analyze.

�eorem 5.2. (1) For k � 1, and Lk D 1
2
.3k � 1/, there holds

dimH .C.1; Lk// D log3 ˇk ; (5.3)

where ˇk is the unique real root greater than 1 of

�k � �k�1 � 1 D 0: (5.4)

(2) For k � 6, the values ˇk satisfy the bounds

1 C log k

k
� 2 log log k

k
� ˇk � 1 C log k

k
: (5.5)

�en for all k � 3,

dimH .C.1; Lk// D log3 k

k
C O

� log log k

log k

�

: (5.6)

Table 5.1. Hausdor� dimensions of C.1; Lk/ (six decimal places).

Set Perron eigenvalue Hausdor� dim

C.1; L1/ 2:000000 0:630929

C.1; L2/ 1:618033 0:438018

C.1; L3/ 1:465571 0:347934

C.1; L4/ 1:380278 0:293358

C.1; L5/ 1:324718 0:255960

C.1; L6/ 1:285199 0:228392

C.1; L7/ 1:255423 0:207052

C.1; L8/ 1:232055 0:189948

C.1; L9/ 1:213150 0:175877

We �rst analyze the structure of the directed graph .G; v0/ in this presentation.

Proposition 5.3. For Lk D .1k/3 D 1
2
.3k � 1/ the path set X.1; Lk/ has a pre-

sentation .G; v0/ given by Algorithm A which has exactly k vertices. �e vertices

vm have labels m D 0 and m D .1j /3, for 1 � j � k � 1. �e underlying directed

graph G is strongly connected and primitive.
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Proof. �e presentation .G; v0/ of X.1; Lk/ has an underlying directed graph G

having k vertices vN with N D 0 and N D .1j /3 for 1 � j � k �1. �e vertex v0

has two exit edges labeled 0 and 1, and all other vertices have a unique exit edge

labeled 0. �e edges form a self-loop at 0 labeled 0, and a directed k-cycle, whose

vertex labels are

0 �! .1k�1/3 �! .1k�2/3 �! � � � �! .12/3 �! .1/3 �! 0:

�is cycle certi�es strong connectivity of the graph G, and in it all edge labels

are 0 except the edge 0 ! .1k�1/3 labeled 1. Primitivity follows because it has a

cycle of length 1 at vertex .0/3.

Proof of �eorem 5.2. (1) By appropriate ordering of the vertices, the adjacency

matrix A of G is the k � k matrix

A D

0

B

B

B

B

B

B

B

@

1 1 0 : : : 0

0 0 1
: : :

:::
:::

:::
: : :

: : : 0

0 0 : : : 0 1

1 0 : : : 0 0

1

C

C

C

C

C

C

C

A

:

�e characteristic polynomial of this matrix is

pk.�/ WD det.�I � A/ D det

0

B

B

B

B

B

B

B

@

� � 1 �1 0 : : : 0

0 � �1
: : :

:::
:::

:::
: : :

: : : 0

0 0 : : : � �1

�1 0 : : : 0 �

1

C

C

C

C

C

C

C

A

:

Expansion of this determinant by minors on the �rst column yields

pk.�/ D .� � 1/�k�1 C .�1/k�1.�1/.�1/k�1 D �k � �k�1 � 1: (5.7)

�e Perron eigenvalue of the nonnegative matrix A will be a positive real root

˛k � 1 of p.�/. By (3.1) the topological entropy of the path set X.1; Lk/ associ-

ated to C.1; Lk/ is log ˇk , while by Proposition 3.3 the Hausdor� dimension of

the 3-adic path set fractal C.1; Lk/ itself is log3 ˇk .
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(2) We estimate the size of ˇk . �ere is at most one real root ˇk � 1 since for

� > 1 � 1=k one has

p0
k.�/ D k�k�1 � .k � 1/�k�2 D �k�2.k� � .k � 1// > 0:

For the lower bound, we consider pk.�/ for � > 1 and de�ne variables y > 0,

x > 1 by � D 1 C y
k

with y > 0, and x WD �k > 1, noting that x D �k D
.1 C y

k
/k < ey : Now

�k�1 C 1 D x

1 C y
k

C 1 � x
�

1 � y

k

�

C 1 � x C
�

1 � xy

k

�

;

which exceeds x whenever xy � k. �us we have pk.1 C y
k

/ < 0 whenever

xy < yey � k. �e choice y D log k � 2 log log k gives, for k � 3,

yey � log k.elog k�2 log log k/ � k

log k
� k:

�us we have, for k � 3, pk.1 C log k

k
� 2

log log k

k
/ < 0, so

ˇk � 1 C log.k/

k
� 2

log log k

k
;

which is the lower bound in (5.5).

For the upper bound, it su�ces to show pk.1 C log k

k
/ > 0 for k � 6. We wish

to show .1 C log k

k
/k�1.

log k

k
/ > 1 for k � 6. �is becomes .1 C log k

k
/k�1 > k

log k
,

and on taking logarithms requires

.log k � 1/ log
�

1 C log k

k

�

> log k � log log k:

Using the approximation log.1Cw/ � w� 1
2
w2 valid for 0 < w < 1, we verify this

inequality holds for k � 6, and the upper bound in (5.5) follows. �e asymptotic

estimate (5.6) for the Hausdor� dimension of C.1; Lk/ immediately follows by

taking logarithms to base 3 of the estimates above.

�e results above imply �eorem 2.2 in the introduction.

Proof of �eorem 2.2. Assertion (1) follows from Proposition 5.3. Assertions (2)

and (3) follow from �eorem 5.2.

Remark 5.4. �e path set corresponding to C.1; Lk/ is easily seen to be shift-

invariant under the one-sided shift. It is actually a one-sided shift of �nite type,

i.e. it is characterized as all strings not containing any of a �nite set of forbidden

blocks. It is easy to see that the 3-adic expansions in C.1; Lk/ are the set of all

elements of †3;2 that do not contain any of the blocks 10j 1 with j 2 ¹0; 1; : : : ;

k � 1º.
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5.3. �e family Nk D .10k�11/3 D 3k
C 1. We prove the following result.

�eorem 5.5. For every integer k � 0, and Nk D 3k C 1 D .10k�11/3,

dimH .C.1; Nk// D dimH C.1; .10k�11/3/ D log3

�1 C
p

5

2

�

� 0:438018: (5.8)

To prove this result we �rst characterize the presentation G D .G; v0/ associ-

ated to Nk by the construction of �eorem 4.1.

Proposition 5.6. For Nk D 3k C 1 the path set X.1; Nk/ has a presentation

G D .G; v0/

given by Algorithm A with the following properties.

(1) �e vertices vm have labels m that comprise those integers

0 � m � 1

2
.3k � 1/

whose 3-adic expansion .m/3 omits the digit 2.

(2) �e directed graph G has exactly 2k vertices.

(3) �e directed graph G is strongly connected and primitive.

Proof. (1) Any vertex vm reachable from v0 has a 3-adic expansion (equivalently

ternary expansion) .m/3 that omits the digit 2, and has at most k 3-adic digits. �is

is proved by induction on the number of steps n taken. �e base case has the vertex

.0/3. For the induction step, every vertex in the graph has an exit edge labeled 0,

and vertices with labels m � 0 .mod 3/ also have an exit edge labeled 1. �e exit

edges labeled 0 map m D .bk�1bk�2 : : : b1b0/3 to m0 D .0bk�1bk�2 : : : b2b1/3.

�e exit edges labeled 1 map m to m0 D .1bk�1bk�2 : : : b2b1/3. For both types of

exit edges the new vertex reached at the next step omits the digit 2 from its 3-adic

expansion, completing the induction step.

(2) �ere are exactly 2k possible such vertex labels m in which .m/3 omits the

digit 2. Call such vertex labels admissible. �e largest such m D 1
2
.3k � 1/:

(3) To show the graph Gk is strongly connected it su�ces to establish that

(R1) every possible such vertex vm with admissible label m is reachable

by a directed path in G from the initial vertex 0 D .00 : : : 0/3;

(R2) all admissible vertices vm have a directed path in G from vm to v0.
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Note that (R1) and (R2) together imply that G is strongly connected. To show (R1),

write m D .bk�1 : : : b0/3, with all bj D 0 or 1, and let i be the smallest index with

bi D 1. Starting from v0, we may add a directed series of exit edges labeled in

order bi ; biC1; biC2; : : : ; bk�1 to arrive at vm. Such edges exist in G, because all

intermediate vertices vm0 reached along this path have m0 � 0 .mod3/, so that

exit edges labeled both 0 and 1 are admissible at that step. Indeed, the j -th step

in the path has .mj /3 having k � j initial 3-adic digits of 0, and k � 1 � i � k � 1.

To show (R2) we observe that for any vertex vm, following a path of exit edges

all labeled 0 will eventually arrive at the vertex v0. �is is permissible since .m/3

has all digits 0 or 1. Now Gk is strongly connected, and it is primitive since it has

a loop at vertex 0. �is completes the proof.

To obtain an adjacency matrix for this graph, we must choose a suitable or-

dering of the vertex labels. Order the vertices of G recursively as follows: the

.0k�1/3-vertex is �rst, I1, and the .10k�1/3-vertex is second, I2. Now, suppose

that at step j we have ordered the vertices I1; : : : ; Im, in that order, with m D 2j .

�en for 1 � j < k, we assert that there will be precisely 2m vertices, all dis-

tinct from I1; : : : ; Im, to which some Ii has an out edge. We can label these

J11; J12; : : : ; Jm1; Jm2 so that Ji1 has an in-edge labeled 0 from Ii , and Ji2 has

an in-edge labeled 1 from Ii . Assuming this assertion, at the j -th step we expand

our ordering to I1 : : : ; Im; J11; J12; : : : ; Jm1; Jm2.

Proposition 5.7. �e ordering of the vertices above is valid, and the adjacency

matrix A of the underlying graph G of G is the 2k � 2k matrix A D .aij /,

aij D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1 if 1 � i � 2k�1 and j 2 ¹2i � 1; 2iº;

1 if 2k�1 < 1 and j D 2.i � 2k�1/ � 1;

0 otherwise.

�is description is consistent and exhaustive, characterizing A.

To illustrate this proposition, we have for k D 3,

A D

0

B

B

B

B

B

B

B

B

B

B

B

@

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

A

:
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Proof. First, we address the ordering of the vertices of G. According to the pre-

scription of the proposition, I1 D .0/3, I2 D .10k�1/3. In the next step, there

is an out-edge labeled 1 from vertex .10k�1/3 to .110k�2/3, and an out-edge la-

beled 0 from vertex .10k�1/3 to vertex .10k�2/3. �is gives I3 D .110k�2/3,

I4 D .10k�2/3. In general, for k1 C � � � C kr < k all nonnegative, if we have a

vertex

.1k10k21k3 : : : 1kr 0k�†ki /3;

then it has an out-edge labeled 1 to a vertex

.1k1C10k21k3 : : : 1kr 0k�1�†ki /3

and an out-edged labeled 0 to a vertex

.1k10k21k3 : : : 1kr 0k�1�†ki /3:

On the other hand, a vertex labeled

.1k10k21k3 : : : 1kr /3

ending in 1 has a single out-edge labeled 0 to the vertex

.1k10k21k3 : : : 1kr �1/3:

�us, if an edge-walk originating at the 0-vertex has label .erer�1 : : : e1/3, the

terminal vertex of this edge walk is the vertex .erer�1 : : : e10k�r /3. Now, for any

vertex ending in 0, edges labeled 0 and 1 are both admissible, which means that

an edge walk labeled e1e2 : : : ek is admissible for all values ej D 0 or ej D 1 for

all 1 � j � k. But this, then, says that all possible vertex labels from ¹0; 1ºk are

achieved. Moreover, we showed above that a vertex with label from ¹0; 1ºk has

out-edges only to other vertices labeled from ¹0; 1ºk, so this is precisely the set of

vertices of G. �e r th step of the vertex ordering procedure adds precisely those

vertices which end in 0k�r , of which there are 2r�1 D 2 �2r�2. �e procedure ends

at the kth step with those vertices which end in 1. In all, there are 2k vertices, one

for each label from ¹0; 1ºk.

Now we can understand the de�nition of the coe�cients aij of the adjacency

matrix A of the underlying graph G of G. Vertex .0/3 maps into itself and vertex

.10k/3, which are ordered �rst and second with respect to the ordering. �us

a11 D a12 D 1, a1j D 0 for j > 2. Now suppose a vertex is ordered i th (Ii ) at the

r th stage, and r � k�1, so that not all vertices have yet been ordered. �ere are 2r

vertices ordered so far (so 1 � i � 2r ), and the .r C 1/st stage of the construction

orders the next 2r vertices precisely so that the out-edges from vertex Ii go to

vertices I2i�1 and I2i . �is gives the prescription for aij for 1 � i � 2k�1.
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Observe that the vertices I2k�1C1; I2k�1C2; : : : ; I2k have labels ending in 1.

Such a vertex labeled m has a single out-edge to the vertex labeled .m � 1/=3. But

if m is the label of I2k�1Cr , then .m � 1/=3 is the label of I2r�1. But .2k�1 C r;

2r � 1/ can be rewritten .i; 2.i � 2k�1/ � 1/. �is gives the result.

We are now ready to prove �eorem 5.5.

Proof of �eorem 5.5. Let Ak be the adjacency matrix of the presentation of the

set X.1; Nk/ constructed via our algorithm. We directly �nd a strictly positive

eigenvector vk of Ak having AkvT
k

= .1C
p

5
2

/vT
k

. Here vk is a 2k � 1 row vector,

with vT
k

its transpose, and let v
.j /

k
denote its j -th entry. �e Perron–Frobenius

�eorem [13, �eorem 4.2.3] then implies that ˛ D 1C
p

5
2

is the Perron eigenvalue

of Ak. �eorem 2.1 will then give us that

dimH .C.1; Nk// D log3

�1 C
p

5

2

�

:

Let � D 1C
p

5
2

be the golden ratio. We de�ne the vector vk recursively as follows:

(1) v1 D .�; 1/ D .�1; �0/;

(2) If vj �1 D .�k1 ; �k2; : : : ; �k
2j �1 /, then

vj D .�k1C1; �k2C1; : : : ; �k
2j �1 C1; �k1 ; �k2 ; : : : ; �k

2j �1 /:

Note that vj is obtained from vj �1 by adjoining �vj �1 to the front of vj �1.

We need now to check that AvT
k

D �vT
k

. We will argue by induction on k. �e

base case is easy. Now observe that if we write

Ak D
�

Tk

Bk

�

for Tk and Bk each 2k�1 � 2k blocks, then we have

BkC1 D
�

Bk 0

0 Bk

�

;

and

TkC1 D
�

Tk 0

0 Tk

�

:

It follows easily from this and the de�nition of the vectors vk that if AkvT
k

D
�vT

k
, then AkC1vT

kC1
D �vT

kC1
. �is proves the theorem.
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Proof of �eorem 2.3. Here (1) follows from Proposition 5.6, and (2) follows from

�eorem 5.5.

Remark 5.8. �e path set corresponding to C.1; Nk/ is also one-sided shift-in-

variant, and is a one-sided shift of �nite type. It is easy to see that the 3-adic

expansions of elements in C.1; Nk/ are the set of all
P1

j D0 aj 3j 2 †3 such that

for every j � 0, aj aj Ck ¤ 11

Remark 5.9. Using the in�nite family Nk D 3k C 1 it is easy to see that f .�/ WD
dimH .C.1; �// for � 2 Z3 is discontinuous in the 3-adic topology. In this topology

we have limk!1 Nk D 1: �eorem 5.5 now gives

lim
k!1

dimH

�

C

�

1;
1

Nk

��

D log3

�1 C
p

5

2

�

< dimH .C.1; 1// D log3.2/;

exhibiting a discontinuity at � D 1.

6. Applications

6.1. Hausdor� dimension bounds for C.1; M1; : : : ; Mn/ with Mi in families.

�e path set structures of each of the three in�nite families are compatible with

each other, as a function of k, so that the associated C.1; M1; : : : ; Mn/ all have

positive Hausdor� dimension. We treat them separately.

�eorem 6.1. For the family Lk D 1
2
.3k�1/ D .1k/3, for 1 � k1 < k2 < � � � < kn,

the pointed presentation G.0; : : : ; 0/ of the path set X.1; Lk1
; : : : Lkm

/ associ-

ated to C.1; Lk1
; : : : ; Lkn

/ is isomorphic to the pointed graph .Gkn
; 0/ presenting

X.1; Lkn
/. In particular

dimH .C.1; Lk1
; Lk2

; : : : ; Lkn
// D dimH .C.1; Lkn

//: (6.1)

Proof. �e presentation .Gk; 0/ ofC.1; Lk/ constructed with Algorithm A consists

of a self-loop at the 0-vertex and a cycle of length k at the 0-vertex. Taking in

Algorithm B the label product Gk1
? � � �?Gkn

gives a graph G with a self-loop at the

.0; : : : ; 0/-vertex plus a cycle of length kn sending .0; : : : ; 0/ to .1k1�1; : : : ; 1kn�1/

to .1k1�2; : : : ; 1kn�2/ which eventually reaches .0; : : : ; 0; 1/ and .0; 0; : : : ; 0/. �e

graph G is isomorphic to Gkn
by an isomorphism sending .0; : : : ; 0/ to 0.

We next treat multiple intersections drawn from the second family Nk .
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�eorem 6.2. For the family Nk D 3k C 1 D .10k�11/3 the following hold.

(1) For 1 � k1 < k2 < � � � < kn, one has

dimH .C.1; Nk1
; Nk2

; : : : ; Nkn
// � dimH .C.1; LknC1// (6.2)

Equality holds when kj D j for 1 � j � n.

(2) For �xed n � 1, choosing Nk�1Cj .1 � j � n/ one has

lim inf
k!1

dimH .C.1; Nk; NkC1; : : : ; NkCn�1// � 1

2
.log3 2/ � 0:315464: (6.3)

In particular, �? � 1
2
.log3 2/:

Proof. (1) It is easy to see that the set C.1; Nk1
; Nk2

; : : : ; Nkn
/ contains the set

Ykn
WD

°

� D
1

X

j D1

3`1C���C j̀ 2 Z3 W all j̀ � kn C 1
±

;

where here we allow �nite sums, corresponding to some j̀ D C1. �is fact

holds by observing that if � 2 Ykn
then Nkj

� 2 †3; N2 for 1 � j � n, because

Nkj
� D

�

1
X

j D1

3`1C���C j̀

�

C
�

1
X

j D1

3`1C���C j̀ Ckj

�

;

and the 3-adic addition has no carry operations since all exponents are distinct.

�e set Ykn
is a 3-adic path set fractal and it is easily checked to be identical with

C.1; LnkC1/, using the structure of its associated graph. �is proves (6.2). To show

equality holds, one must show that allowable sequences for each of N1; N2; : : : ; Nn

require gaps of size at least n C 1 between each successive nonzero 3-adic digit in

an element of C.1; N1; N2; : : : ; Nn/: �is can be done by induction on the current

non-zero 3-adic digit; we omit details.

(2) We study the symbolic dynamics of the elements of the underlying path

sets in C.1; NkCj �1/, for 1 � j � n, given in �eorem 5.5, and use this to lower

bound the Hausdor� dimension.

Claim. �e 3-adic path set underlying C.1; Nk; : : : ; NkCn/ contains all symbol

sequences which, when subdivided into successive blocks of length 2k C n, have

every such block of the form

.00 : : : 00akak�1 : : : a3a21/3 with each ai 2 ¹0; 1º:
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Proof of claim. It su�ces to show that all sequences split into blocks of length

2k C n of the form .00 : : : 00akak�1 : : : a3a21/3 occur in C.1; Nj / for each k �
j � k C n, since this will imply the statement for the label product. Consider the

presentation .Gj ; 0/ of X.1; Nj / given by our algorithm. Beginning at the 0-vertex,

an edge labeled 1 takes us to the state .10j �1/3. From a vertex whose label ends

in 0, one may traverse an edge with label 1 or 0. But if we are at a vertex labeled

a0, an edge labeled 0 takes us to a vertex labeled a, and an edge labeled 1 takes us

to a vertex labeled 1a (this is speci�c to the case of Nj ). In other words, we apply

the truncated shift map to our vertex label and either concatenate with 1 on the

left or not. It follows that from the vertex .10j �1/3 the next j � 1 edges traversed

may be labeled either 0 or 1.

At this point the initial 1 from .10j �1/3 has moved to the far right of our ver-

tex label. �erefore, our choice is restricted: we must traverse an edge labeled 0.

Since our vertex label, whatever it is, consists of only 0’s and 1’s, we can in any

case traverse j or more consecutive edges labeled 0 to get back to the 0-vertex.

�us, �rst traversing an edge labeled 1, then traversing edges labeled 0 or 1 freely

for the next .k�1/-steps, then traversing kCn edges labeled 0 and returning to the

0-vertex, is possible in the graph Gj for each k � j � k C n. It follows that all se-

quences of the desired form are in each C.1; Nj /, and hence in C.1; Nk : : : ; NkCn/,

proving the claim.

With this claim in hand, we see that each block of size .2k C n/ contains at

least 2k�2 admissible .2k C n/-blocks in C.1; Nk; : : : ; NkCn/. We conclude that

the maximum eigenvalue ˇn;k of the adjacency matrix of the graph Gn;k of

C.1; Nk ; NkC1; : : : ; NkCn�1/ must satisfy .ˇn;k/2nCk � 2k�2: �is yields

ˇn;k � 2
k�2

kC2n :

and hence lim infk!1 ˇn;k �
p

2. �e Hausdor� dimension formula in Proposi-

tion 3.3 then yields

lim sup
k!1

dimH .C.1; Nk; : : : ; NkCn// � lim sup
k!1

log3 ˇn;k � 1

2
log3 2; (6.4)

as asserted. �e lower bound �? � 1
2

log3 2 follows immediately, see (1.14).

6.2. Hausdor� dimension of the generalized exceptional set E?.Z3/. �eo-

rem 6.2 (2) shows that there are arbitrarily large families C.1; Nk1
; : : : ; Nkn

/ hav-

ing Hausdor� dimension uniformly bounded below. We now show that if one

properly restricts the choice of the Nkj
then one can directly choose an in�nite
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set of Nkj
with this property; this observation is due to A. Bolshakov, whom we

thank for allowing its inclusion here.

�eorem 6.3. (1) Consider the subset Y of the 3-adic Cantor set †3; N2 given by

Y WD
°

� WD
1

X

j D0

aj 3j W all a2k 2 ¹0; 1º and all a2kC1 D 0
±

� Z3:

It is a 3-adic path set fractal having dimH .Y / D 1
2

log3 2 � 0:315464. �is set

satis�es

Y � C.1; N2kC1/; for all k � 0;

where Nk D 3k C 1, and in consequence

Y �
1
\

kD1

C.1; N2kC1/:

(2) Set Z WD ¹� 2 †3; N2 W N2kC1� 2 †3; N2 for all k � 0º. �en

dimH .Z/ � dimH .Y / D 1

2
log3 2:

Proof. (1) �e 3-adic path set fractal property of Y � †3; N2 has the underlying

graph of its symbolic dynamics pictured in Figure 6.1, certifying that it is a 3-

adic path set fractal. �e Perron eigenvalue of its adjacency matrix is
p

2, and its

Hausdor� dimension is 1
2

log3 2 by Proposition 3.3.

0 1
1

0

0

Figure 6.1. Presentation of Y .

�e elements of Y can be rewritten in the form � D
P1

j D0 b2j 32j ; with all

b2j 2 ¹0; 1º. We then have

N2kC1� D
1

X

j D0

b2j 32j C
1

X

j D0

b2j 32j C2kC1 2 †3; N2;

and the inclusion in the Cantor set †3; N2 follows because the sets of 3-adic expo-

nents in the two sums on the right side are disjoint, so there are no carry operations

in combining them under 3-adic addition. �is establishes that Y � C.1; N2kC1/.
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(2) All elements � 2 Y have N2kC1� 2 †3; N2 for all k � 1. �us

Y � Z WD ¹� 2 †3; N2 W N2kC1� 2 †3; N2 for all k � 1º:

Now dimH .Z/ � dimH .Y / � 1
2

log3 2, by (1).

Proof of �eorem 2.4. �e generalized exceptional set E�.Z3/ has Hausdor� di-

mension bounded below by

dimH .E�.Z3// � dimH .Z/ � 1

2
log3 2 � 0:315464;

the last inequality being �eorem 6.3 (2).

6.3. Bounds for approximations to the exceptional set E.Z3/. We present nu-

merical results concerning Hausdor� dimensions of the upper approximation sets

E.k/.Z3/ to the exceptional set E.Z3/. Recall that the only powers of 2 that are

known to have ternary expansions that omit the digit 2 are 20 D 1 D .1/3; 22 D
4 D .11/3, and 28 D 256 D .10111/3.

�eorem 6.4. �e following bounds hold for sets E.k/.Z3/:

dimH .E.2/.Z3// � log3

�1 C
p

5

2

�

� 0:438018

and

dimH .E.3/.Z3// � log3 ˇ1 � 0:228392;

where ˇ1 � 1:28520 is a root of �6 � �5 � 1 D 0.

Proof. We have

dimH .E.2/.Z3// � dimH .C.20; 22// D log3

�1 C
p

5

2

�

and

dimH .E.3/.Z3// � dimH .C.20; 22; 28// D log3 ˇ1 � 0:228392;

where ˇ1 � 1:28520 : : : is a root of �6 � �5 � 1 D 0:

We conclude with results about the sets C.1; 2m1; : : : ; 2mn/ obtained via Algo-

rithm A and Algorithm B. Since we are interested in cases of positive Hausdor�

dimension we may suppose all mi � 0 .mod2/ so that 2mi � 1 .mod3/. �e

data in Table 6.1 reveals that the Hausdor� dimension of C.1; 22n/ oscillates as n

increases.
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Table 6.1. Hausdor� dim. of C.1; 2m1 ; : : : ; 2mk / (six decimal places).

Set Hausdor� dim. Set Hausdor� dim.

C.1; 22/ 0.438018 C.1; 22; 24/ 0

C.1; 24/ 0.255960 C.1; 22; 26/ 0

C.1; 26/ 0.278002 C.1; 22; 28/ 0.228392

C.1; 28/ 0.287416 C.1; 22; 210/ 0

C.1; 210/ 0.215201 C.1; 24; 26/ 0

C.1; 212/ 0.244002 C.1; 24; 28/ 0

C.1; 214/ 0.267112 C.1; 24; 210/ 0

In addition to the data presented in Table 6.1, we computed the Hausdor�

dimensions of C.1; 26; 22k/ for 8 � 2k � 14 and of C.1; 22; 28; 22k/ for 10 �
2k � 16 and found these dimensions to be 0 in all cases. It is unclear whether

dimH .E.k/.Z3// is positive for any k � 4.
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