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Minkowski dimension of Brownian motion with drift

Philippe H. A. Charmoy, Yuval Peres, and Perla Sousi

Abstract. We study fractal properties of the image and the graph of Brownian motion in Rd

with an arbitrary càdlàg drift f . We prove that the Minkowski (box) dimension of both the
image and the graph of B C f over A � Œ0; 1� are a.s. constants. We then show that for all
d � 1 the Minkowski dimension of .B C f /.A/ is at least the maximum of the Minkowski
dimension of f .A/ and that of B.A/. We also prove analogous results for the graph. For
linear Brownian motion, if the drift f is continuous and A D Œ0; 1�, then the corresponding
inequality for the graph is actually an equality.
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1. Introduction

Let .Bt / be a standard Brownian motion in Rd and f W Œ0; 1� ! Rd a càdlàg function.
By the Cameron-Martin theorem, the law of B C f is equivalent to the law of B
when f is in the Dirichlet space

DŒ0; 1� D
�
f 2 C Œ0; 1� W f .t/ D

Z t

0

g.s/ds for some function g 2 L2Œ0; 1�

�
;

and singular to the law of B otherwise.
In [11] it is shown that if f is any continuous function, then the Hausdorff di-

mension of the image and the graph of B C f are almost surely constants. In the
same paper it is also proved that if A is a closed subset of Œ0; 1�, then the Hausdorff
dimension of .BCf /.A/ is at least maxfdimH B.A/; dimH f .A/g and similarly for
the dimension of the graph of B C f over A.

In this paper we prove analogous results for the Minkowski (or otherwise called
box) dimension of the same sets. We would like to emphasize that the presence of the
drift f implies that we cannot use techniques relying on self-similarity of the paths.

Before stating our main results, we recall the definition of Minkowski dimension.
For other equivalent definitions and properties see [4], Definition 3.1.
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Definition 1.1. Let A be a non-empty bounded subset of Rd . For " > 0 let P.A; "/
be the maximum number of disjoint balls of radius " with centers in A:

P.A; "/ D maxfk W 9 x1; : : : ; xk 2 A s.t. B.xi ; "/ \ B.xj ; "/ D ; if i ¤ j g:
The upper and lower Minkowski dimensions of A are defined as

dimM .A/ D lim sup
"!0

logP.A; "/

log "�1
and dimM .A/ D lim inf

"!0

logP.A; "/

log "�1

respectively. Whenever these two limits are equal, we call the common value the
Minkowski dimension of A.

Let f W Œ0; 1� ! Rd be a càdlàg function andA a subset of Œ0; 1�. In this paper we
first prove that the Minkowski dimension of the image and the graph of B C f over
the set A are a.s. constants. The 0–1 law (Theorem 2.1) from [11] used to prove the
a.s. constancy of the Hausdorff dimension of .B C f /.A/ cannot be used to prove
the a.s. constancy in this case, since the Minkowski dimension does not satisfy the
countable stability property; this means that the Minkowski dimension of a countable
union of sets is not in general the supremum of their dimensions.

Theorem 1.2. Let .Bt / be a standard Brownian motion in d dimensions. Let
f W Œ0; 1� ! Rd be a càdlàg function and let A be a subset of Œ0; 1�. Then, there
exist constants c1 and c2 such that, almost surely,

dimM .B C f /.A/ D c1 and dimM .B C f /.A/ D c2:

For a function h W Œ0; 1� ! Rd and a set A � Œ0; 1� we denote by GA.h/ D
f.t; h.t// W t 2 Ag the graph of h over A.

Theorem 1.3. Let .Bt / be a standard Brownian motion in d � 1 dimensions,
f W Œ0; 1� ! Rd a càdlàg function andA a subset of Œ0; 1�. Then, there exist constants
c3 and c4 such that, almost surely,

dimMGA.B C f / D c3 and dimMGA.B C f / D c4:

We prove Theorems 1.2 and 1.3 in Section 2 by relating the Minkowski dimension
to the expected volume of the “sausage” around the graph or the image. In the same
section we also give an alternative proof of Theorem 1.3 using Lévy’s construction
of Brownian motion.

Having established that the Minkowski dimension of the image and the graph
of Brownian motion with a càdlàg drift are a.s. constants we show that adding a
deterministic drift to the Brownian motion cannot decrease the dimension of the
image and the graph.
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Theorem 1.4. Let .Bt / be a standard Brownian motion in d � 1 dimensions. Let A
be a subset of Œ0; 1� and f W Œ0; 1� ! Rd a càdlàg function. Then almost surely

dimM .B C f /.A/ � maxfdimMB.A/; dimMf .A/g;
dimM .B C f /.A/ � maxfdimMB.A/; dimMf .A/g:

McKean’s theorem (see for instance [10], Theorem 4.33) states that ifA is a closed
subset of Œ0;1/, then dimH B.A/ D .2 dimH A/ ^ d , where dimH stands for the
Hausdorff dimension. In the case of Minkowski dimension there cannot be such a
formula as the following corollary shows.

Corollary 1.5. Let .Bt / be a standard Brownian motion in d � 1 dimensions and
f W Œ0; 1� ! Rd a càdlàg function. Then, for every subset A of Œ0; 1�, if d D 1, then
almost surely,

dimM .B C f /.A/ � 2dimMA

dimMAC 1
; and dimM .B C f /.A/ � 2dimMA

dimMAC 1
:

The lower bounds can be achieved. If d � 2, then the right hand side in these
inequalities is replaced by 2dimMA and 2dimMA respectively.

Remark 1.6. Inequalities analogous to Corollary 1.5 for packing dimension of images
X.A/ where X is a multi-parameter fractional Brownian motion were established by
Talagrand and Xiao in [15].

We prove Theorem 1.4 and Corollary 1.5 in Section 3.

We now state our results concerning the Minkowski dimension of the graph of
B C f . We prove them in Section 4.

Theorem 1.7. Let .Bt / be a standard Brownian motion in d dimensions and let
f W Œ0; 1� ! Rd be a càdlàg function. Then, for every subset A of Œ0; 1�, we have,
almost surely,

dimMGA.B C f / � maxfdimMGA.B/; dimMGA.f /g
dimMGA.B C f / � maxfdimMGA.B/; dimMGA.f /g:

In one dimension, when the drift function f is continuous andA D Œ0; 1�, equality
is achieved in the inequalities of Theorem 1.7. This follows from [5], Lemmata 2.2
and 2.3, but we include the proof of the following theorem in Section 4 for the
convenience of the reader.
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Proposition 1.8. Let .Bt / be a standard Brownian motion in one dimension and
f W Œ0; 1� ! R a continuous function. Then, almost surely,

dimMGŒ0;1�.B C f / D maxfdimMGŒ0;1�.B/; dimMGŒ0;1�.f /g;
dimMGŒ0;1�.B C f / D maxfdimMGŒ0;1�.B/; dimMGŒ0;1�.f /g:

Remark 1.9. The equalities in Proposition 1.8 can fail if f is not continuous. In
Section 5 we describe a càdlàg function f such that dimMGŒ0;1�.f / D 5=3 and
dimMGŒ0;1�.B C f / � 7=4 a.s.

Remark 1.10. Even if f is continuous, the equality in Proposition 1.8 does not
hold for Hausdorff dimension. An example is provided in [13], based on an explicit
formula for the Hausdorff dimension of the graph of B C f .

Related results. Fractal properties of images X.A/, whereX is a Lévy process or a
multi-parameter fractional Brownian motion were investigated in [8], [9], [14], [15],
and [17]. Here we restrict attention to Brownian motion; the new feature is the effect
of the drift function f . Similar results for the Hausdorff dimension of graphs of sums
of fractional Brownian motion and functions above sets can be found in the recent
paper [1].

Acknowledgements. We thankYimin Xiao for providing references and the referees
for useful comments.

2. A 0–1 law

In this section we prove Theorems 1.2 and 1.3 by first stating and proving a more
general result for any càdlàg adapted process with stationary and independent incre-
ments. At the end of the section we give a second proof of Theorem 1.3 using Lévy’s
construction of Brownian motion.

We introduce some notation that will be used throughout the paper. If

g W RC �! Rd

is a measurable function and A a subset of Œ0; 1�, then for any r > 0 we define

Vg.A; r/ D vol
� [

s2A

B.g.s/; r/
�
; (2.1)

where B.x; r/ stands for the ball centered at x of radius r .
We are now ready to state the main result of this section.
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Proposition 2.1. Let .Ft / be a right continuous filtration and .Xt / a càdlàg adapted
process taking values in Rd , d � 1, with stationary and independent increments. Let
f W Œ0; 1� ! Rd be a càdlàg function and A a subset of Œ0; 1�. Then almost surely we
have

dimM .X C f /.A/ D lim sup
"!0

log EŒVXCf .A; "/�

log 1
"

;

dimM .X C f /.A/ D lim inf
"!0

log EŒVXCf .A; "/�

log 1
"

:

Before proving it we explain how Theorems 1.2 and 1.3 follow.

Proof of Theorem 1.2. Setting Xt D Bt , since Brownian motion satisfies the as-
sumptions of Proposition 2.1, the theorem follows.

Proof of Theorem 1.3. For t 2 RC, let Xt D .t; Bt / and g.t/ D .t; f .t//. Then X
and g clearly satisfy the assumptions of Proposition 2.1, and hence this finishes the
proof.

We now devote the rest of the section to the proof of Proposition 2.1. First we state
a standard fact about Minkowski dimensions whose proof can be found e.g. in [4],
Proposition 3.2.

Claim 2.2. Let A be a bounded subset of Rd . Then

dimMA D lim sup
"!0

log vol.AC B.0; "//

log 1
"

C d;

dimMA D lim inf
"!0

log vol.AC B.0; "//

log 1
"

C d:

The main ingredient of the proof of Proposition 2.1 is the following lemma on the
concentration of the volume of the sausage around its mean.

Lemma 2.3. Let .Ft / be a right continuous filtration and .Xt / a càdlàg adapted
process taking values in Rd , d � 1, with stationary and independent increments. Let
f W Œ0; 1� ! Rd be a càdlàg function and A a subset of Œ0; 1�. Then almost surely we
have

lim sup
"!0

logVXCf .A; "/

log 1
"

D lim sup
"!0

log EŒVXCf .A; "/�

log 1
"

;

lim inf
"!0

logVXCf .A; "/

log 1
"

D lim inf
"!0

log EŒVXCf .A; "/�

log 1
"

:
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Claim 2.4. Let .Ft / be a right continuous filtration and .Xt / a càdlàg adapted
process taking values in Rd , d � 1. Let D be an open set in Rd and F a subset of
Œ0; 1�. Then

� D infft 2 F W Xt 2 Dg
is a stopping time.

Proof. Let F1 be a countable dense subset of F . Then for all t 2 Œ0; 1� we deduce

f� < tg D
[

q2F1;q<t

fXq 2 Dg;

since X is càdlàg and D is an open set. Hence f� < tg 2 Ft . Writing

f� � tg D
\

n

f� < t C 1=ng;

we get that f� � tg 2 FtC D Ft .

Proof of Lemma 2.3. First notice that by the monotonicity of the volume we have

lim sup
"!0

logVXCf .A; "/

log 1
"

D lim sup
k!1

logVXCf .A; 2
�k/

log 2k

and

lim inf
"!0

logVXCf .A; "/

log 1
"

D lim inf
k!1

logVXCf .A; 2
�k/

log 2k
:

Hence it suffices to show that a.s. for all large enough k we have

1

2k
EŒVXCf .A; 2

�k/� � VXCf .A; 2
�k/ � k2EŒVXCf .A; 2

�k/�:

The upper bound follows easily from Markov’s inequality and the Borel-Cantelli
lemma. We now show the lower bound. In fact, note that by Borel-Cantelli, it
suffices to show that for all k we have

P
�
VXCf .A; 2

�k/ � 1

2k
EŒVXCf .A; 2

�k/�
�

� 1 �
�7
8

�k

: (2.2)

We first show that for any measurable F � RC and any ı > 0 we have

EŒ.VXCf .F; ı//
2� � 2.EŒVXCf .F; ı/�/

2: (2.3)
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For any x 2 Rd we write

�x D infft 2 F W X.t/C f .t/ 2 B.x; ı/g
with the convention that �x is infinite, if X C f does not hit the ball B.x; ı/. We
have

EŒ.VXCf .F; ı//
2� D

Z
Rd

Z
Rd

P.�x < 1; �y < 1/dx dy

D 2

Z
Rd

Z
Rd

P.�x � �y < 1/dx dy

D 2

Z
Rd

P.�x < 1/

Z
Rd

P.�x � �y < 1 j �x < 1/ dy dx

D 2

Z
Rd

P.�x < 1/EŒVXCf .F \ Œ�x ;1/; ı/ j �x < 1� dx:

(2.4)

Since X and f are càdlàg and the filtration is right continuous, it follows from
Claim 2.4 that �x is a stopping time. By the stationarity, the independence of in-
crements and the càdlàg property of X , we get that X satisfies the strong Markov
property (see [2], Proposition I.6). Thus the conditional law of the process fX.�x C s/

�X.�x/gs�0 given that f�x < 1g, is identical to the law of fX.s/gs�0. Let X 0 be
a process independent of X but with the same law as X . The Markov property of
X 0 and its independence from �x implies that the conditional law of the process
fX 0.�x C s/ � X 0.�x/gs�0 given that f�x < 1g, is also identical to the law of
fX.s/gs�0. Therefore given �x < 1, the two random paths fX.t/ � X.�x/gt��x

and fX 0.t / � X 0.�x/gt��x
have the same law. Since the volume is unaffected by

translation,

E
�
VXCf .F \ Œ�x;1/; ı/

ˇ̌
�x < 1� D EŒVX 0Cf .F \ Œ�x;1/; ı/ j �x < 1�

� EŒVX 0Cf .F; ı/ŒD EŒVXCf .F; ı/�;

and hence this together with (2.4) concludes the proof of (2.3).
Therefore, from (2.3), applying the second moment method to the random variable

VXCf .F; ı/ we get that for any set F and any ı > 0

P

�
VXCf .F; ı/ � 1

2
EŒVXCf .F; ı/�

	
� 1

8
: (2.5)

We set t0 D 0. It is easy to see that EŒVXCf .A \ Œ0; t �; 2�k/� is continuous as a
function of t . Hence for j D 1; : : : ; k we can define

tj D inf
n
t � 0 W EŒVXCf .A \ Œ0; t �; 2�k/� D j

k
EŒVXCf .A; 2

�k/�
o
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and we write
Ij D Œtj �1; tj �:

By the subadditivity property of the volume, we get that for all j

EŒVXCf .A \ Ij ; 2�k/�

� EŒVXCf .A \ Œ0; tj �; 2
�k/�� EŒVXCf .A \ Œ0; tj �1�; 2

�k/�

D 1

k
EŒVXCf .A; 2

�k/�:

Therefore we get

P
�
VXCf .A; 2

�k/ � 1

2k
EŒVXCf .A; 2

�k/�
�

� P
�
9j W VXCf .A \ Ij ; 2

�k/ � 1

2
EŒVXCf .A \ Ij ; 2�k/�

�

D 1 �
kY

j D1

P
�
VXCf .A \ Ij ; 2�k/ <

1

2
EŒVXCf .A \ Ij ; 2

�k/�
�

� 1�
�7
8

�k

;

where the equality follows by the independence of the increments of X and the last
inequality follows from (2.5). This finishes the proof of (2.2), and hence concludes
the proof of the lemma.

Remark 2.5. We note that if X and f are càdlàg and A is a subset of Œ0; 1�, then
VXCf .A; "/ is a random variable. Indeed, let A1 be a countable dense subset of A,
then VXCf .A; "/ D VXCf .A1; "/. Now VXCf .A1; "/ D limn!1 VXCf .An; "/,
where An are finite sets. By the continuity of the volume (see [12], Lemma 4.1)
VXCf .An; "/ is a random variable for each n.

Proof of Proposition 2.1. The statement of the proposition follows directly from Lem-
ma 2.3 and Claim 2.2.

2.1. Another proof of Theorem 1.3. In this section we give an alternative proof
of Theorem 1.3 that relies on Lévy’s construction of Brownian motion. The only
properties of Minkowski dimension that are used in this proof are stability under
finite unions and under adding linear functions.

Proposition 2.6. Let f W Œ0; 1� ! Rd be a bounded measurable function, and � 2
Rd . Define g W Œ0; 1� ! Rd by

g.t/ D f .t/C �t:
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Then, for every subset A of Œ0; 1�, we have

dimMGA.f / D dimMGA.g/ and dimMGA.f / D dimMGA.g/:

Proof. For " 2 .0;1/ and k 2 N define

C".k/ D Œ.k � 1/"; k"� � fsome cube of edge length " in Rd g
and

C" D
[
k2N

C".k/:

WriteN D dk�k1e, and consider a covering ofGA.f / by cubes of C". Consider the
cubes of the covering that are inC".k/, and thus form a covering ofGA\Œ.k�1/";k"� .f /.
Clearly, shifting them by the vector .0; �1.k � 1/"; : : : ; �d .k � 1/"/ produces a
covering of

GA\Œ.k�1/";k"�.f C �.k � 1/"/:
But within a time interval of length ", the drift cannot move f .t/ by more than N"
in any given direction. Therefore, GA\Œ.k�1/";k"�.g/ may be covered with N d as
many cubes of C".k/ as are required to cover GA\Œ.k�1/";k"�.f /. It follows that the
covering number of GA.g/ with elements of C" is at most N d times that of GA.f /.
Therefore,

dimMGA.g/ � dimMGA.f / and dimMGA.g/ � dimMGA.f /:

Since f .t/ D g.t/ � �t , the same argument shows that

dimMGA.f / � dimMGA.g/ and dimMGA.f / � dimMGA.g/;

and completes the proof.

The stability of Minkowski dimension under finite unions yields the following
corollary.

Corollary 2.7. Let f W Œ0; 1� ! Rd be a bounded measurable function, and

h W Œ0; 1� �! Rd

be piecewise affine. Put g D f C h. Then, for every subset A of Œ0; 1�, we have

dimMGA.f / D dimMGA.g/ and dimMGA.f / D dimMGA.g/:

Proof of Theorem 1.3. We only prove the result for the lower Minkowski dimension.
The proof for the upper Minkowski dimension is identical.

Consider Lévy’s construction of Brownian motion as

B D lim
n!1Yn D lim

n!1

nX
kD1

Xk ;
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where .Xk; k 2 N/ is an independent sequence of continuous piecewise affine random
paths on Œ0; 1�, and the convergence is uniform on Œ0; 1�.

For n 2 N, put Zn D B � Yn�1. Since B C f D Zn C f C Yn�1 and Yn�1 is
piecewise affine, Corollary 2.7 implies that dimMGA.BCf / D dimMGA.Zn Cf /.
In particular, for any a > 0,

fdimMGA.B C f / � ag D fdimMGA.Zn C f / � ag 2 �.Xk ; k � n/:

Since this is true for every n, it follows that

ƒa D fdimMGA.B C f / � ag 2 T D
\

n

�.Xk; k � n/:

Therefore by Kolmogorov’s 0–1 law P.ƒa/ 2 f0; 1g. It follows that the Minkowski
dimension of GA.B C f / is almost surely constant.

Remark 2.8. An alternative proof of Theorem 1.2 can be obtained by combining the
above proof with Howroyd’s projection theorem [7], Theorem 14.

3. Dimension of the image of B C f

In this section we prove Theorems 1.4 and 1.5. We first recall Theorem 1.1 from Peres
and Sousi [12], since it is going to be used to prove that the Minkowski dimension of
the image and the graph of B C f is larger than that of B .

Theorem 3.1 ([12]). Let .B.s//s�0 be a standard Brownian motion in d � 1 di-
mensions and let .Ds/s�0 be open sets in Rd . For each s, let rs > 0 be such that
vol.B.0; rs// D vol.Ds/. Then for all t we have that

E
h
vol

� [
s�t

.B.s/CDs/
�i

� E
h
vol

� [
s�t

B.B.s/; rs/
�i
:

Definition 3.2. Let G � Rd . We call a collection of balls .B.xi ; "//i an "-packing
of G if xi 2 G for all i and the balls are pairwise disjoint.

Given an "-packing of f .A/ by P balls with centers .f .ti// we want to construct
an "-packing of .B C f /.A/. The balls of radius " centered at .B C f /.ti/ might
not all be disjoint; the following lemma controls the number of collisions.

Lemma 3.3. Let .Bt / be a standard Brownian motion in d dimensions and let
f W Œ0; 1� ! Rd be a bounded measurable function and A a subset of Œ0; 1�. Then
there exists a positive constant c such that for all " > 0, if .B.f .ti/; "//i�P"

is an
"-packing of f .A/, then

max
i�P"

EŒNi � � c log.1="/dC1;

where Ni D #fj W j.B C f /.ti/ � .B C f /.tj /j < 2"g, for i 2 f1; : : : ; P"g.
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Proof. Let" > 0 and .B.f .ti /; "//i�P"
an "-packing off .A/. We fix i 2 f1; : : : ; P"g.

For every k 2 N we define the sets

S.k/ D fj W jf .ti/ � f .tj /j 2 Œ2k"; 2kC1"/g;

S1.k/ D
n
j 2 S.k/ W jti � tj j �

� 2k"

log.1="/

�2o
;

S2.k/ D S.k/ n S1.k/:

Since f is bounded, it follows that S.k/ D ; whenever k � c1 log.1="/, for a
positive constant c1. Furthermore, if j 2 S.k/, then since .f .tj //j is an "-packing
of f .A/, the balls fB.f .tj /; "/gj are disjoint and for all such j the ball B.f .tj /; "/

is contained in B.f .ti/; .2
kC1 C 1/"/. Therefore

jS.k/j � vol.B.0; .2kC1 C 1/"//

vol.B.0; "//
� .2kC1 C 1/d : (3.1)

If we write
p.j / D P.j.B C f /.ti/ � .B C f /.tj /j < 2"/;

then by the definition of Ni we have

EŒNi � D
P"X

j D1

p.j / D
c1 log.1="/X

kD1

X
j 2S1.k/

p.j /C
c1 log.1="/X

kD1

X
j 2S2.k/

p.j /: (3.2)

If j 2 S1.k/, then for a positive constant c2 we have

p.j / D 1

.2�jti � tj j/d=2

Z
B.f .ti /�f .tj /;2"/

exp
n

� jxj2
2jti � tj j

o
dx

� log.1="/d

2dk"d .2�/d=2
vol.B.0; 2"//

D c2

log.1="/d

2dk
:

(3.3)

If j 2 S2.k/, then for a positive constant c3 we have by the Gaussian tail estimate if
k � 2

p.j / � P.jB.ti/ � B.tj /j > jf .ti/ � f .tj /j � 2"/
� P.jB.ti/ � B.tj /j > .2k � 2/"/
� 2 exp.�c3.log.1="//2/:

(3.4)

Plugging the estimates (3.3) and (3.4) in (3.2) and using (3.1) concludes the proof of
the lemma.
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Proof of Theorem 1.4. From Proposition 2.1 we infer that a.s.

dimM .B C f /.A/ D lim sup
"!0

log EŒVBCf .A; "/�

log 1
"

; (3.5)

dimM .B C f /.A/ D lim inf
"!0

log EŒVBCf .A; "/�

log 1
"

: (3.6)

Let Ds D B.f .s/; "/ if s 2 A and Ds D ; if s … A. Then applying Theorem 3.1
we get

EŒVBCf .A; "/� � EŒVB.A; "/�: (3.7)

From (3.5), (3.6) and (3.7) we deduce the a.s. inequalities

dimM .B C f /.A/ � dimMB.A/ and dimM .B C f /.A/ � dimMB.A/:

It now remains to show that almost surely

dimM .B C f /.A/ � dimMf .A/ and dimM .B C f /.A/ � dimMf .A/: (3.8)

First we note that in the definition of upper and lower Minkowski dimension it
suffices to take " which is tending to 0 along powers of 2.

We fix k and consider a 2�k-packing of f .A/ with Pk.f / balls. Let the centers
of the balls be f .ti/ with ti 2 A for i 2 f1; : : : ; Pk.f /g.

For every i 2 f1; : : : ; Pk.f /g define

Ni D #fj ¤ i W j.B C f /.ti / � .B C f /.tj /j < 21�kg
and

G D
Pk.f /X

iD1

1.Ni < k
2EŒNi �/:

We call a point ti good if Ni < k2EŒNi � and bad otherwise. Thus G counts the
number of good points. By applying Markov’s inequality twice we get

P
�
G � Pk.f /

2

�
D P

� Pk.f /X
iD1

1.Ni � k2EŒNi �/ � Pk.f /

2

�
� 2

k2
: (3.9)

We now want to get a 2�k-packing of .BC f /.A/ from the packing of f .A/. We do
this by recursively picking good points ti and removing the Ni balls

B..B C f /.tj /; 2
�k/

that intersect B..BCf /.ti /; 2�k/. This leaves us with a 2�k-packing of .BCf /.A/
with ‰k balls, which on the event fG � Pk.f /=2g satisfies

‰k � Pk.f /

2.1C k2 maxi EŒNi �/
� Pk.f /

2.1C ck2 log.2k/dC1/
;
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where the last inequality follows from Lemma 3.3. From (3.9) we now deduce that

P
�
‰k <

Pk.f /

2.1C ck2 log.2k/dC1/

�
� 2

k2
;

and hence by Borel–Cantelli we conclude that a.s. eventually in k

‰k � Pk.f /

2.1C ck2 log.2k/dC1/
:

Taking log of both side, dividing by log.2k/ and taking lim sup and lim inf as k ! 1
finishes the proof.

Remark 3.4. We note that dimM .B C f /.A/ can be much larger than the maxi-
mum between dimM B.A/ and dimM f .A/. We recall an example given in [11],
Example 5.4. Let d D 3 and let f .t/ D .f1.t /; 0; 0/, where f1 is a fractional
Brownian motion independent of B of Hurst index ˛. Then dimM f Œ0; 1� D 1 a.s.
For ˛ small we have that almost surely dimH .B C f /Œ0; 1� D 3 � 2˛, which is
a special case of [3], Theorem 1, which was later corrected by Xiao [16]. Since
dimM .B C f /Œ0; 1� � dimH .B C f /Œ0; 1�, we get dimM .B C f /.A/ � 3 � 2˛.

We will now prove Corollary 1.5. We start with a standard result about Hölder
continuous functions and we include its proof here for the sake of completeness.

Claim 3.5. Let
g W RC �! R

be a � -Hölder continuous function and let

Aˇ D fn�ˇ W n 2 Ng [ f0g
for ˇ 2 .0;1/. Then

dimMg.Aˇ / � 1

1C �ˇ
:

Proof. Without loss of generality we can assume that g.0/ D 0. Let L be the Hölder
constant of g. For k 2 N and n � k, we have

jg.n�ˇ /j � Ln��ˇ � Lk��ˇ :

Fix " > 0. The set fg 

n�ˇ

� W n > kg[f0g may be covered with d2Lk��ˇ="e closed
balls of diameter ". The set fg 


n�ˇ
� W n � kg may be covered with k such closed

balls. Therefore, the covering number satisfies

N."/ �
l2Lk��ˇ

"

m
C k:
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Taking k of the order "�1=.�ˇC1/ shows that

N."/ � c"�1=.1C�ˇ/;

and hence the result follows immediately.

Proof of Corollary 1.5. By Theorem 1.4 it suffices to prove the inequalities for f D
0. The case d � 2 follows from [14], Lemma 2.3(a). The case d D 1 can then be
inferred by projecting a planar Brownian motion on a line in a random direction and
applying [6], Theorem 3. However, we give a self-contained proof below.

We set ˛ D dimMA and ˇ D dimMA.
Again we take " tending to 0 along powers of 2. Let ık D 2�2k=.˛C1/ and consider

a ık-packing of A with Pık
.A/ balls with centers .ti /i�Pık

.A/. We call a point ti
good if

Ni D #fj ¤ i W jB.ti/ � B.tj /j < 21�kg < k2EŒNi �;

and bad otherwise. LetG D Gk denote the number of good points. Then by Markov’s
inequality as in (3.9) we get that

P
�
G � Pık

.A/

2

�
� 2

k2
:

We now want to get a 2�k-packing ofB.A/ from the ık-packing ofA. We do this
by recursively picking good points ti and removing the Ni balls B.B.tj /; 2

�k/ that
intersect B.B.ti/; 2

�k/. This yields a 2�k-packing of B.A/ with‰k balls, which on
the event fG � Pık

.A/=2g satisfies

‰k � Pık
.A/

2.1C k2 maxi EŒNi �/
: (3.10)

Since the points .ti/ are a ık-packing of the set A, it follows that jtiC` � ti j � ık`,
and hence we can bound

EŒNi � D
Pık

.A/X
j D1
j ¤i

P
�
j.B C f /.ti/ � .B C f /.tj /j < 21�k

�

�
Pık

.A/X
`D�iC1

`¤0

c2�kpj`jık

� c0
q
Pık

.A/:

Substituting this in (3.10) we get

P
�
‰k <

Pık
.A/

2.1C c0k2
p
Pık

.A//

�
� 2

k2
;
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and hence by Borel-Cantelli again we get that a.s. eventually in k

‰k � Pık
.A/

2.1C c0k2
p
Pık

.A//
: (3.11)

Taking log of both sides, dividing by log.2k/ and taking lim sup and lim inf as
k ! 1 concludes the proof of the first part of the corollary.

For the second part, let ˛ > 0 and set ˇ D 1=˛ � 1. It is easy to check that the
set Aˇ from Claim 3.5 satisfies dimM Aˇ D .1 C ˇ/�1 D ˛. Now pick � < 1=2.
Since almost all Brownian paths are � -Hölder continuous, Claim 3.5 guarantees that

dimMB.Aˇ / � 1

1C �ˇ
�! 1

1C ˇ=2
D 2˛

˛ C 1
as � ! 1=2:

4. Dimension of the graph

In this section we give the proofs of the theorems stated in the Introduction concerning
the Minkowski dimension of the graph of B C f .

We start by proving a lemma analogous to Lemma 3.3 in the case of the graph.

Lemma 4.1. Let .Bt / be a standard Brownian motion in d dimensions and let
f W Œ0; 1� ! Rd be a bounded measurable function, and A a subset of Œ0; 1�. Then
there exists a positive constant c such that for all " > 0, if .B..ti ; f .ti//; 2"//i�P"

is
a 4"-packing of GA.f /, then

max
i�P"

EŒNi � � c log.1="/dC1;

where

Ni D #fj W j.ti ; .B C f /.ti// � .tj ; .B C f /.tj //j < 2"g; for i 2 f1; : : : ; P"g:

Proof. Let " > 0 and .B..ti ; f .ti//; 4"//i�P"
a 4"-packing of GA.f /. We fix i 2

f1; : : : ; P"g. For every k 2 N we define the sets

S.k/ D fj W jti � tj j < 2" and jf .ti/ � f .tj /j 2 Œ2k"; 2kC1"/g;

S1.k/ D
n
j 2 S.k/ W jti � tj j �

� 2k"

log.1="/

�2o
;

S2.k/ D S.k/ n S1.k/:

Again since f is bounded, S.k/ D ; when k � c1 log.1="/. Furthermore, if j 2
S.k/, then since .tj ; f .tj //j is a 4"-packing of GA.f /, the balls fB.f .tj /; "/gj are
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disjoint and for all such j the ball B.f .tj /; "/ is contained in B.f .ti/; .2
kC1 C1/"/.

Hence

jS.k/j � vol.B.0; .2kC1 C 1/"//

vol.B.0; "//
� .2kC1 C 1/d : (4.1)

We now set

q.j / D P.j.ti ; .B C f /.ti// � .tj ; .B C f /.tj //j < 2"/
� P.j.B C f /.ti/ � .B C f /.tj /j < 2"/:

Proceeding as for the estimate for p.j / in Lemma 3.3 gives that if j 2 S1.k/, then
for a positive constant c2

q.j / � c22
�dk log.1="/d :

Similarly to the proof of Lemma 3.3, if j 2 S2.k/ for k � 2, we get for a positive
constant c3

q.j / � 2 exp.�c3.log.1="//2/:

Plugging these two estimates above in the expression for EŒNi � and using (4.1) we
deduce

EŒNi � � c log.1="/dC1;

where c is a positive constant and this concludes the proof of the lemma.

Proof of Theorem 1.7. Let " > 0 and

C";dC1 D fŒ.`1 � 1/"; `1"� � : : : � Œ.`dC1 � 1/"; `dC1"� W `1; : : : ; `dC1 2 Zg:
By [4], Definition 3.1, the Minkowski dimension of GA.B C f / is determined by
counting the boxes in C";dC1 that intersect GA.BCf /. We take " tending to 0 along
powers of 2, i.e. take " D 2�n. Let the minimal number of boxes in the covering be
N."/ D Nn. Setting Ik D Œ.k � 1/2�n; k2�n� and

Ak;n D #fboxes in C";d intersecting .B C f /.Ik \ A/g

we have Nn D P2n

kD1 Ak;n. Just as in the proof of Claim 2.2 we get that there exist
positive constants c1 and c2 such that

c12
nd

2nX
kD1

VBCf .Ik \ A; 2�n/ � Nn � c22
nd

2nX
kD1

VBCf .Ik \ A; 2�n/

and

c12
.dC1/nVG.BCf /.A; 2

�n/ � Nn � c22
.dC1/nVG.BCf /.A; 2

�n/;

where G.B C f / stands for the process .t; B.t/C f .t//t .
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Since the process .s; B.s// is càdlàg and has independent and stationary incre-
ments and .s; f .s// is càdlàg, Lemma 2.3 together with the above inequalities give
that a.s.

dimMGA.B C f / D lim sup
n!1

log
� 2nX

kD1

EŒVBCf .Ik \ A; 2�n/�
�

log.2n/
C d:

Fix k 2 f1; : : : ; 2ng. For s 2 Ik \ A define Ds D B.f .s/; 2�n/ and for s … Ik \ A
let Ds D ;. Then Theorem 3.1 gives

EŒVBCf .Ik \ A; 2�n/� � EŒVB.Ik \ A; 2�n/�;

and hence it follows that a.s.

dimMGA.B C f / � dimMGA.B/:

The inequality for the lower Minkowski dimension ofGA.BCf / follows in exactly
the same way.

It now remains to show that a.s.

dimMGA.B C f / � dimMGA.f /

and similarly for lower Minkowski. The proof of that follows in the same way as the
proof of Theorem 1.4. We point out the differences. We call a point .ti ; f .ti// good
ifNi < k

2EŒNi �, whereNi is as defined in the statement of Lemma 4.1 for " D 2�k .
Then we proceed in exactly the same way as in Theorem 1.4 and on the event that
the number of good points is at least Pk.f /=2 we get a 2�k-packing of GA.f / with
at least

Pk.f /

2.1C k2 maxi EŒNi �/

balls of radius2�k . Using Lemma 4.1 and the Borel-Cantelli lemma as in Theorem 1.4
concludes the proof.

The rest of this section is devoted to the proof of Proposition 1.8.

Proposition 4.2. Let f and g W Œ0; 1� ! R be two continuous functions. Assume that
dimM GŒ0;1�.f / exists. Then,

dimMGŒ0;1�.f C g/ � maxfdimMGŒ0;1�.f /; dimMGŒ0;1�.g/g;
dimMGŒ0;1�.f C g/ � maxfdimMGŒ0;1�.f /; dimMGŒ0;1�.g/g:

Furthermore, in both cases, when the dimensions on the right hand side are different,
we even have equality.
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Proof. We shall only prove the inequality for the lower Minkowski dimension. The
other case is proved similarly.

Set
˛ D dimM GŒ0;1�.f / and ˇ D dimMGŒ0;1�.g/

and consider the collection of squares

C" D fŒ.k � 1/"; k"� � Œ.` � 1/"; `"� W k; ` 2 Zg:
Let h W Œ0; 1� ! R be a continuous function. A covering of GA.h/ is given by taking
all the elements of C" that intersect GŒ0;1�.h/; and that many are needed. Let S".h/

be the number of these squares. Take " D 2�n and set Ik D Œ.k � 1/"; k"� and
�k;n.h/ D d2n.maxs2Ik

h.s/ � mins2Ik
h.s//e. Then it is easy to see that

2nX
kD1

�k;n.h/ � S2�n.h/ � 2

2nX
kD1

�k;n: (4.2)

It is straightforward to check that

�k;n.g/ ��k;n.f / � �k;n.f C g/ � �k;n.f /C�k;n.g/: (4.3)

Let ."n/ be a subsequence of .2�n/ along which logS"n
.g/= log.1="n/ ! ˇ as

n ! 1. Fix ı 2 .0;1/. Then S"n
.g/ � "

�ˇ�ı
n for all n large enough. Since

dimM GŒ0;1�.f / exists, it follows that for all n large enough S"n
.f / � "�˛�ı

n . Thus
for all n sufficiently large we obtain

S"n
.f C g/ � 2S"n

.f /C 2S"n
.g/ � 4"� maxf˛;ˇg�ı

n :

Taking logarithms of both sides, dividing by log.1="n/ and taking the limit as n ! 1
gives that for all ı > 0

dimMGŒ0;1�.f C g/ � maxf˛; ˇg C ı;

and hence letting ı ! 0 gives dimMGŒ0;1�.f C g/ � maxf˛; ˇg.
It only remains to show the final statement of the proposition. Suppose that˛ < ˇ.

We will show that
dimMGŒ0;1�.f C g/ � ˇ:

The other cases are treated similarly.
Take ı > 0 small enough so that ˇ > ˛ C 2ı. Using (4.2) and the left hand side

inequality of (4.3) we deduce that for all n sufficiently large

Sn.f C g/ � 2n.ˇ�ı/

2
� 2n.˛Cı/;

and hence it easily follows that in this case dimMGŒ0;1�.f Cg/ � ˇ, which together
with the inequality previously shown completes the proof.

Proof of Proposition 1.8. The proposition follows directly from Proposition 4.2 and
Theorem 1.7.
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5. Example

Example 5.1. Let ' W RC ! R be a function with period 1 defined in Œ0; 1� via
'.x/ D maxfx; 1� xg. For n 2 N we define  n W Œ0; 1� ! RC via

 n.x/ D n�3=4bp
n'.nx/c

adjusted to be càdlàg. Let nk D 26k
and define f D P1

kD1  nk
. Since f is the

uniform limit of càdlàg functions, it is also càdlàg. We will show that

dimMGŒ0;1�.f / D 5

3
and dimMGŒ0;1�.B C f / � 7

4
a.s.

The idea motivating this construction is that the graph of f can be covered effi-
ciently due to the large jumps; B C f interpolates many of these jumps and hence
has a larger Minkowski dimension. Moreover, the graph of B can be covered ef-
ficiently due to cancellation of the upward and downward movement; adding f to
B eliminates much of this cancellation, so that the graph of B C f has Minkowski
dimension greater than the graph of f .

Claim 5.2. dimMGŒ0;1�.f / D 5
3

.

Proof. Let " D n
�3=4

`
and suppose that we want to cover the graph of f with boxes

of side length ". We now argue that the number of boxes needed is up to constants
the number of boxes needed to cover the graph of  n`

.
Indeed, since for all x

1X
kD`C1

 nk
.x/ � 1

2

1X
kD`C1

.26k

/�1=4 � c1.2
6`

/�3=2; (5.1)

where c1 is a positive constant, the number of "-boxes needed to cover the graph ofP
k�` nk

is up to constants the same as the number of "-boxes needed to cover the
graph of  n`

.

Note that n3=2

k
divides nkC1 for all k. Also for all k < ` the function  nk

is constant on each standard subinterval of length n�3=2

`�1
. Thus on a subinterval of

length n�3=2

`�1
adding the functions nk

for k < ` to the function
P1

kD`  nk
only shifts

the graph of
P1

kD`  nk
by a constant on each standard interval of length n�3=2

`�1
. Since

we want to cover the graph of f with boxes of side length n�3=4

`
and we can fit an

integer number of those in the subinterval of length n�3=2

`�1
, it follows that the number

of "-boxes needed is the same as the number of "-boxes needed to cover the graph ofP1
kD`  nk

.
So it only remains to calculate the number of "-boxes needed to cover the graph

of  n`
. By the construction of the function  n`

it is easy to see that the number of

"-boxes needed to cover the graph of  n`
is of order 1

n
�3=4

`

n
�1=4

`

n
�3=4

`

D n
5=4

`
.
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Figure 1. Graph of
P

k�`  nk
.

Therefore the number of boxes of side length n�3=4

`
needed to cover the graph of

f is of order n5=4

`
. From that it follows that

dimMGŒ0;1�.f / � 5

3
:

It remains to show dimMGŒ0;1�.f / � 5
3

.
Take " converging to 0 along powers of 2. Let " D 2�r and k be such that

n
�3=2

k
� " < n

�3=2

k�1
:

We consider two separate cases. To simplify notation we write n D nk .

� If " < n�3=4, then we need order "�1
p
n boxes to cover the graph of f . This

follows from (5.1), the fact that " > n�3=2 and that " divides n�3=2

`
for all ` < k.

� If " > n�3=4, then the number of boxes needed to cover the graph of  n is of
order n�1=4="2. Since the contributions of the other functions in the sum do not
matter as discussed above, this is indeed the covering number for the graph of f .

From the two cases above it follows that dimMGŒ0;1�.f / � 5
3

and this concludes
the proof.
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Figure 2. Two scales.

Proof. Suppose that we want to cover the graph of B C f with boxes of side length
n�1

`
. Then arguing as above it is enough to find the number of n�1

`
-boxes needed to

cover the graph of B C  n`
.

First we subdivide the interval Œ0; 1� into subintervals of length

n�3=2 C .log n/2n�3=2:

Thus the number of such subintervals we obtain is of order n3=2=.log n/2. For each
such subinterval Ij;n we write sj;n D inf Ij;n and we define the events

An D
°
for all j; Bsj;n

� inf
t2Ij;n

Bt � n�3=4.log n/2

2

±
:

Using the Gaussian tail estimate gives

P.Ac
n/ � c1

n3=2

.log n/2
e�c2.log n/2

;

which is summable. Hence by Borel-Cantelli we get that almost surely for all n
sufficiently large we get that in none of the intervals Ij;n Brownian motion goes down
by more than n�3=4.log n/2=2.
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We now look at the first part of these subintervals zIj;n of length n�3=2 and we
define the event

zAj;n D
n
n�3=4 � sup

t2 zIj;n

Bt � BQsj;n
� 2n�3=4

o
;

where Qsj;n D inf zIj;n. Then there exists a constant c 2 .0; 1/ so that for all j and n

P. zAj;n/ � c:

The events . zAj;n/j are independent by the independence of the increments of Brow-
nian motion. Using the Chernoff bound for Bernoulli random variables we obtain for
a positive constant c3 < 1

P
� n3=2X

j D1

1. zAj;n/ � cn3=2

4

�
� 1 � cn3=2

3 :

Thus applying Borel-Cantelli again we deduce that almost surely for alln large enough
at least cn3=2=4 of the events zAj;n will happen.

We now take n sufficiently large so thatAn holds and at least cn3=2=4 of the events
zAj;n occur.

We set n D n` and we consider the subintervals of length n�3=2 that correspond to
the events zAj;n that occur. In each of these subintervals the function  n is constant,
and by the definition of the event zAj;n, it is easy to see that the number of boxes
of side n�1 needed to cover the graph of B C  n in this time interval is at least
of order n�3=4=n�1 D n1=4. Next we skip a time interval of length n�3=2.log n/2.
Since the event An holds, during this time interval the Brownian motion did not go
down by more than .log n/2n�3=4=2. At the same time the function f increased by
n�3=4.log n/2. So it follows that we need at least of order n1=4n3=2=.log n/2 boxes
of side length n�1 to cover the graph of B C  n. Therefore we deduce that a.s.

dimMGŒ0;1�.B C f / � 7

4
:

Remark 5.3. A modification of the example yields a continuous function f and a
closed set A in Œ0; 1� so that

dimMGA.f / D 5

3
and dimMGA.B C f / � 7

4
:
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