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1. Introduction and main results

1.1. The main result. Let L be a compact operator on a separable Hilbert

spaceH . We will say that L is complete if its root vectors, corresponding to non-

zero eigenvalues, are complete in H . (Notice that the point 0 of the spectrum of a

compact operator plays a special role.) We will say that L is nearly complete if the

root vectors of L, corresponding to non-zero eigenvalues, span a subspace of H

of �nite codimension. One can observe that for any positive integer N , the closed

linear span M.L/ of root vectors of L, corresponding to non-zero eigenvalues, is

contained in .kerL�N /?. So, whenever kerL� ¤ 0, L cannot be complete and we

only can expect the near completeness.

If one wishes to apply the Fourier method to a linear evolution equation associ-

ated with a non-normal compact operator L, the �rst obstacle is that eigenvectors

of L need not form an orthogonal basis. The completeness of L is probably the

weakest substitute of this property. The strongest one in the non-normal case is the

Riesz basis property, and there is a whole range of intermediate properties, related

with availability of di�erent linear summation methods, such as Cesàro or Abel

summability. Most general abstract su�cient conditions for completeness are due

to Keldyš [20, 21] and Macaev [24, 25]. A good exposition of these results by

Macaev and their generalizations to operator pencils can be found in [26].

Theorem A ([Keldyš, 1951]). Let A, S be compact Hilbert space operators.

Suppose A is normal, belongs to a Schatten ideal Sp, 0 < p < 1, and its

spectrum is contained in a �nite union of rays arg z D ˛k, 1 � k � n. Suppose

kerA D ker.I C S/ D 0. Put L D A.I C S/. Then the operators L and L� are

complete.

The original statement by Keldyš referred only to the case of a selfadjoint

operator A; the above formulation appears, for instance, in [29]. A perturbation

of a compact operator A of the form A.I C S/ or .I C S/A, with S compact, is

called a weak perturbation. Macaev’s theorems also concern weak perturbations.

In [27], Macaev and Mogul0skii give an explicit condition on the spectrum of A,

equivalent to the property that all weak perturbations of A with ker.I C S/ D 0

are complete.

Our results deal with the situation which is much more special than in the

Keldyš and Macaev theorems: namely, we consider one-dimensional perturba-

tions of normal operators, which are not necessarily weak, and also treat the case

of nontrivial kernels. In this case the spectral theory of one-dimensional pertur-

bations of normal (even of selfadjoint) operators becomes rich and complicated

(see [3, 2] where a functional model for such perturbations is constructed).
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Note that one of the basic methods to prove the near completeness of an oper-

ator is to obtain growth estimates of its resolvent and then to apply some appro-

priate results from the theory of entire functions. This is essentially the method

used by Keldyš and Macaev (for a general statement of this type see [12, Theo-

rem XI.9.29]). In the present paper we consider one-dimensional perturbations

of normal operators with very sparse (lacunary) spectra. Using the resolvent es-

timates we will show that in this case a one-dimensional perturbation is nearly

complete unless it has strong degeneracy. This phenomenon is related to the la-

cunarity of the spectrum and does not appear in general.

Let ¹�nº be a sequence of complex numbers. We will say that this sequence is

lacunary if there is a positive constant " such that j�n � �mj � "max.j�mj; j�nj/

for all indices n ¤ m. This is equivalent to the condition that for some ı > 0,

the discs B.�n; ıj�nj/ are disjoint. Such sequence can accumulate only to 0 and

to 1. If �n tend to zero as n ! C1 and are numbered so that the moduli j�nj

decrease, then they decay exponentially fast, moreover, there exist some � 2 .0; 1/

and some B � 1 such that j�m=�nj � B�m�n wheneverm � n.

Suppose that A is a compact normal operator with trivial kernel. By the

Spectral Theorem,

A D
X

n2N

snPn; (1.1)

where N D ¹1; 2; : : : º, sn ¤ 0, sn ! 0, and Pn are �nite dimensional orthogonal

projections inH such thatPnPm D 0 form ¤ n and
P

n Pn D I . Our main object

of study will be a one-dimensional perturbation of A of the following form:

Lx D Ax C hx; bi a; a; b 2 H: (1.2)

To formulate our results, we need to introduce the following sequence of “mo-

ment” equations

X

n

s�1
n hPna; bi D �1; .M1/ (1.3a)

X

n

s�k
n hPna; bi D 0; .Mk/ (1.3b)

k D 2; 3; : : : . Note that, for a general one-dimensional perturbation, the above

series need not converge.

Our �rst main result is Theorem 1.3 below. It might be instructive to precede

it with two simpler statements.
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Theorem 1.1. Let A be a normal operator given by (1.1) which belongs to a

Schatten ideal Sp, 0 < p < 1, and whose spectrum is contained in a �nite

union of rays arg z D ˛`, 1 � ` � n. Let L be a one-dimensional perturbation

of A, given by (1.2). Assume that, for some k 2 N, we have

X

n

jsnj�k jhPna; bij < 1;

but the equality .Mk/ does not hold. Then L and L� are nearly complete.

Moreover, for any " > 0 there is a radius r > 0 such that the intersection of

the non-zero spectrum �.L/ n ¹0º with the disc B.0; r/ is contained in the union

of angles ˛` � " < arg z < ˛` C ", 1 � ` � n.

This assertion can be obtained by an application of standard methods based on

resolvent estimates, see Section 2.

Another simple observation is that
S

n kerL�n is orthogonal to M.L/. So, if

the linear manifold
S

n kerL�n is in�nite dimensional, then, obviously, L is not

nearly complete. It is easy to see that the following fact holds.

Proposition 1.2.
S

n kerL�n is in�nite dimensional if and only if b 2 RanAn for

any integer n > 0 and the equalities .Mk/ hold for all k � 1.

The next theorem shows that a stronger statement than Theorem 1.1 holds for

the case of a lacunary spectrum (with arbitrary geometry). At the same time, it

can be seen as a partial converse of the above su�cient condition for the failure

of near completeness.

Theorem 1.3. Let L given by (1.2) be a one-dimensional perturbation of a

compact normal operator A, given by (1.1), whose spectrum is lacunary. If L

is not nearly complete, then the equalities .Mk/ are valid for all k � 1.

Remarks. 1. Since L�x D A�xC hx; aib, it follows that the same criterion holds

for near completeness of L�, where equalities .Mk/ are literally the same.

2. In the case when all moment equalities .Mk/; k � 1, are ful�lled, the

operatorLmay be complete or incomplete. In [3, Theorem 1.3], given any compact

selfadjoint operator A with simple point spectrum and trivial kernel, a bounded

rank one perturbation L of A with real spectrum was constructed such that L is

complete and kerL D 0, while L� is even not nearly complete. Therefore the near

completeness of L is not equivalent to the near completeness of L�, even for rank

one perturbations of normal operators with lacunary spectrum we are considering

here.
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It is essential for the construction in [3] that all moment equalities hold. For

the lacunary spectra this follows also from our Theorem 1.3.

3. It would be interesting to know whether an analogue of Theorem 1.3 holds

true for �nite rank perturbations. It also would be interesting to know whether in

the conclusion of this theorem, one can replace the completeness with the spectral

synthesis property.

1.2. Sharpness of Theorem 1.3. Our second main result says that the lacunarity

condition in Theorem 1.3 cannot be weakened much. Namely, if the spectrum of

A is at least slightly more dense than a lacunary one, then there exists a rank one

perturbation, which is not nearly complete, but already the �rst moment does not

exist,
X

n

jsnj�1jhPna; bij D 1: (1.4)

To make the conditions on the spectrum clearer it is better to pass to the inverses

tn D s�1
n . Note that the lacunarity implies that nT .r/ D O.log r/, r ! 1. Here

nT is the counting function of the sequence ¹tnº: nT .r/ D #¹nW jtnj < rº. We

show that rank one perturbations satisfying (1.4), which fail to be nearly complete,

always exist unless nT .r/ D O.log2 r/, r ! 1.

The precise formulation of our second main result is as follows:

Theorem 1.4. Let A0 be a compact selfadjoint operator, which has a representa-

tion of the form (1.1), where sn 2 R, sn ¤ 0. Suppose that rankPn D 1 for all n.

Put tn D s�1
n . Assume that infn¤k jtn � tk j > 0 and that, for any N > 0, we have

lim inf
jnj!1

jtnj
N

Y

kW 1
2 �

tk
tn

�2; k¤n

ˇ

ˇ

ˇ

ˇ

tk � tn

tk

ˇ

ˇ

ˇ

ˇ

D 0: (1.5)

Then there exists a rank one perturbation L0 D A0C h�; bi a of A0 such that (1.4)

holds, but L0 is not nearly complete. It is true, in particular, if

lim sup
r!1

nT .r/

log2 r
D C1: (1.6)

We will show, in fact, that (1.6) implies (1.5) (see Corollary 6.2). One can

express the condition (1.5) in equivalent ways, see the remark in Subsection 6.3.

1.3. Methods of the proof. This work can be considered as a continuation of

our papers [3, 4], where the completeness and related properties (e.g., the spectral

synthesis) were studied for similar class of perturbations of selfadjoint operators
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without an assumption on the lacunarity of the spectrum. As in [3, 4], here we also

will consider (singular) rank one perturbations of unbounded normal operators

with discrete spectrum and obtain parallel completeness results for them.

The spectral analysis of the perturbation (1.2) of operator A leads to a consid-

eration of the function

ˇ.z/ D 1Ch.A�z�1/�1a; bi D 1�zh.I �zA/�1a; bi D 1C
X

n

cn

� 1

tn � z
�
1

tn

�

;

(1.7)

where tn D 1=sn and cn D �s�2
n hPna; bi. This function is meromorphic in C. It

is easy to see that the zero set of ˇ coincides with the set ¹��1W� 2 �.L/; � ¤ 0º.

We will adopt the following notation. If A is a measurable subset of Œ0;C1/,

its linear density is de�ned as limR!C1R�1m.Œ0; R� \ A/. Given a function f

on C, we will write lim�
z!1 f .z/ D w if there exists a closed set A � Œ0;C1/ of

linear density one such that

lim
z!1; jzj2A

f .z/ D w:

Our main complex variable tool for proving Theorem 1.3 will be the following

statement.

Theorem 1.5. Suppose that a complex sequence ¹tnº goes to in�nity, is lacunary

and tn ¤ 0 for all n. Let ~ 2 C and let cn be any complex coe�cients, not all

equal to zero, such that
P

n jcn=t
2
n j < C1. Put

ˇ.z/ D ~ C
X

n

cn

� 1

tn � z
�
1

tn

�

: (1.8)

If for any s 2 N,

lim�
z!1 zsˇ.z/ D 0; (1.9)

then
P

n t
�1
n cn D ~ and

P

n t
k
n cn D 0 for k 2 Z, k � 0.

It is easy to see that the conditions
P

n t
�1
n cn D ~ and

P

n t
k
n cn D 0, k � 0,

imply that lim zsˇ.z/ D 0 as jzj ! 1 for any s and dist .z; ¹tnº/ � 1. Theorem 1.5

shows that in the lacunary case the converse is true. The proof of this theorem uses

a lemma on “peaks” of numerical sequences by Pólya [31], which enables us to

obtain some estimates of the function ˇ from below.

Let us mention that in [33], Shkalikov obtained lower estimates for meromor-

phic functions outside small “exceptional” sets, which he applied in [34] to get a

new criterion for eigenvectors of a perturbed selfadjoint operator to form a basis

with parenthesis.
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The proof of Theorem 1.3 is based on the above Theorem 1.5 and deals directly

with resolvent estimates. On the other hand, an important tool in proving Theo-

rem 1.4 is a passage to the functional model of L in a so-called de Branges space

H.E/ of entire functions, associated to an entire functionE in the Hermite–Bieler

class (see Subsection 6.1 below). The completeness property for L� turns out to be

equivalent to completeness of a certain system of reproducing kernels in H.E/.

This allows us to apply complex analysis tools, such as factorizations of entire

functions and partial fraction expansions of their quotients.

De Branges spaces and the related model spaces associated to meromorphic

inner functions have numerous and well-known applications to the spectral the-

ory of discrete selfadjoint operators. For instance, Makarov and Poltoratski apply

this approach in [28] to get broad extensions of several classical results such as

Borg’s two spectra theorem and the Hochstadt–Lieberman theorem concerning

the unique determination of Schrödinger operators on a �nite interval by their

spectra. In [35], de Branges spaces were applied to model a subclass of singular

Schrödinger operators. In our previous papers [3, 4], we applied the model ap-

proach to the completeness of nonselfadjoint rank one perturbations of a discrete

selfadjoint operator. These papers also exploit the property of spectral synthe-

sis, which is weaker than the existence of whatever linear summation method for

expansions in eigenvectors. Completeness problems for “mixed” systems were

treated in recent papers [8, 5, 6, 7]. In particular, in [8], Riesz bases of reproduc-

ing kernels in spaces of Cauchy transforms of discrete lacunary measures in C

have been described. It seems that there are some relations between this work and

the questions we study here.

We also wish to mention here papers [30] and [36], where de Branges spaces

were applied to the spectral theory in a context close to the context of [3, 4].

A result on completeness or near completeness of an abstract compact operator

in a Schatten class Sp is contained in [12, Theorem XI.9.29], where power

estimates of the resolvent in certain angles are assumed. We remark that, although

Keldyš and Macaev’s theorems can be deduced from this theorem, the condition

ker.I C S/ D 0 is crucial for getting these power estimates (see the Example 4.4

below).

We refer to [1, 34, 38] for some recent abstract results about completeness and

bases of eigenvectors and to the books [16, 17, 12, 29] and the review [32] for

an extensive exposition. The papers [19, 15, 14] contain some general results on

spectral properties of �nite dimensional perturbations of diagonal operators (in

particular, on the existence of invariant subspaces). It seems that not much is

known in general for weak perturbations with ker.I C S/ ¤ 0 and for non-weak

perturbations.
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The paper is organized as follows. In Section 2 we collect some preliminary

results relating the near completeness to properties of some entire (meromorphic)

functions de�ned in terms of resolvents. Section 3 contains the proof of our main

result, Theorem 1.3. Some additional remarks on the general properties of nearly

complete operators are given in Section 4. In Section 5 we introduce (unbounded)

singular rank one perturbations and state the counterpart of the main result for this

case. Theorem 1.4 about the necessity of some (slightly weaker than lacunarity)

sparseness condition is proved in Section 6 by an application of a functional

model.

Selfadjoint operators with lacunary spectrum are not so seldom in practice. In

Section 4, we give examples of convolution operators on L2, which are normal,

compact and lacunary. In Section 5, we comment on Jacobi matrices, which de�ne

unbounded selfadjoint lacunary operators. They arise, in particular, in relation

with q-harmonic oscillator and q-orthogonal polynomials.

Acknowledgements. The authors express their gratitude to R. Romanov, G. Ros-

enblum and to late M. Solomyak for helpful discussions and bibliographical

remarks. We are also indebted to the anonymous referee for valuable suggestions,

which helped us to improve the exposition.

A. Baranov was supported by the grant MD-5758.2015.1 and by RFBR grants

16-01-00674-a and 14-01-00748-a. D. Yakubovich was supported by the project

MTM2015-66157-C2-1-P and the ICMAT Severo Ochoa project SEV-2015-0554

of the Ministry of Economy and Competitiveness of Spain.

2. Preliminary results on near completeness

We start with several simple remarks which will be used in what follows. Note

that they are true for general compact operators (not necessarily with lacunary

spectra).

Proposition 2.1. Let L be a general compact operator on a Hilbert space H . If

L is nearly complete, then the linear set
S

n kerL�n is �nite dimensional, there

is some k � 0 such that kerL�n D kerL�k for all n > k and M.L/? D
S

n kerL�n D kerL�k .

The proof is immediate from the fact that L�jM.L/? is always quasinilpotent.

Next, let us make the following observation. Let H 1 be the smallest reducing

subspace of A containing the vectors a; b, and put H 2 D H 	 H 1. Then L
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decomposes as L D L1 ˚ A2, where L1x D Ax C hx; bia, x 2 H 1 and

A2 D AjH 2. This implies that it su�ces to prove Theorem 1.3 for the case when

the smallest reducing subspace of A containing vectors a; b coincides with H .

From now on, we will assume that this property is ful�lled. It follows that all

spectral projections Pn in (1.1) have at most rank two.

Put M D M.L/. Given any x 2 H and any y 2 M?, the function

fx;y.�/ D h.I � �L/�1x; yi

is entire.

We will use an easy formula

.L � z/�1 D .A � z/�1 � .A � z/�1a ˇ�1.z�1/ b�.A � z/�1; (2.1)

where ˇ.z/ is de�ned in (1.7) (here b�WH ! C, b�.h/ D hh; bi). To check it, one

can write down the second resolvent identity

.L � z/�1 � .A � z/�1 D �.A � z/�1ab�.L � z/�1:

By multiplying it by b� on the left, one gets b�.L�z/�1 D ˇ�1.z�1/b�.A�z/�1,

which gives (2.1). Then, for any s 2 N, x 2 H and y 2 M? we have

z�s�3fx;y.z/

D z�s�4y�.z�1 � L/�1x

D z�s�4y�.z�1 � A/�1x

C Œz�2y�.A � z�1/�1a� � z�sˇ�1.z/ � Œz�2b�.A � z�1/�1x�:

(2.2)

Proposition 2.2. Suppose N 2 Z, N � 0 and L is a compact operator. Then the

following statements are equivalent:

(i) M? � kerL�N ;

(ii) For any x 2 H and any y 2 M?, fx;y.�/ is a polynomial in � of degree less

than N .

Proof. Since fx;L�y.�/ D ��1Œfx;y.�/�fx;y.0/�, it follows that (ii) is equivalent

to the condition fx;L�Ny � 0 for all x 2 H , y 2 M?, that is, to the condition

M? � kerL�N . This gives the statement. �

Suppose, in particular, that kerL�N is �nite dimensional for any N 2 N (it is

true for the operator L, given by (1.2)). Then, by the Propositions 2.2 and 2.1, L

is nearly complete if and only if there is an integer N > 0 such that for any x 2 H

and any y 2 M?, fx;y.�/ is a polynomial in � of degree less than N .
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Remark. If the series in .M1/ converges absolutely, then L is what we called

in [3] a generalized weak perturbation of A. The case when the hypotheses of

Theorem 1.1 hold for k D 1 was treated in [3, Theorem 3.3] for rank one pertur-

bations of selfadjoint operators (the assumption that A 2 Sp can be dropped). In

this case the completeness of a perturbation can be also derived from the results

of Macaev as in the proof of [3, Proposition 1.1].

Proof of Theorem 1.1. Assume that k 2 N is the smallest positive integer such

that
P

n jsnj�k jhPna; bij < 1 but the equality .Mk/ does not hold. By the above

remark, assume that k � 2. Put tn D s�1
n and de�ne ˇ.z/ by (1.7), where

cn D �t2nhPna; bi. Then we have
P

n jtnj
k jcnj < 1 and

P

n t
k
n cn D  ¤ 0.

By the obvious formula

1

z � tn
D

k
X

jD0

t
j
n

zjC1
C

tkC1
n

zkC1.z � tn/
;

we have

ˇ.z/ D �
1

zkC1

X

n

tkn cn C
1

zkC1

X

n

tkC1
n cn

tn � z
D



zkC1
C

1

zkC1

X

n

tkC1
n cn

tn � z
:

Recall that ¹tnº is contained in a �nite union of rays arg z D ˛`, 1 � ` � n. Hence,

for any " > 0, we have

jˇ.z/j >
c"

jzjkC1

when j arg z � ˛`j � ", 1 � ` � n and jzj is su�ciently large. Clearly,

k.A�z�1/�1k also admits a power estimate for such values of z and we conclude,

by (2.2), that jfx;y.z/j admits a power estimate for j arg z � ˛`j � ". Since

A 2 Sp, we get that fx;y is a function of �nite order and, by the Phragmén–

Lindelöf principle, we conclude that fx;y is a polynomial of degree less than some

�xed N for any x 2 H , y 2 M?. �

Now we pass to the analysis of the case when the spectrum is lacunary.

Given an entire function F , we use notations MF .r/ D maxjzjDr jF.z/j,

mF .r/ D minjzjDr jF.z/j, and put nF .r/ to be the number of zeros ofF in the disc

jzj < r , counted with multiplicities. In what follows, we will say that an entire

function F is of class Slow if it is of zero order and logMF .r/ D O
�

.log r/2
�

as

r ! 1; the last condition can be replaced by the condition nF .r/ D O.log r/.

We will use the following version of [10, Theorem 3.6.1].

Theorem B. For any entire function F of the class Slow, which is not a polyno-

mial, and any N 2 N, one has lim�
z!1 jzj�N jF.z/j D C1.
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Lemma 2.3. Let x 2 H and y 2 M?. Then the entire function fx;y belongs to

the class Slow.

Proof. It is well-known that L�jM? is quasinilpotent (see, for instance, [29]).

Given a linear operator B on a Hilbert space, we denote by ¹�j .B/ºj�1 the

sequence of its singular numbers. The lacunarity of the spectrum of A, the

property that rankPn � 2 for all n and the well-known estimates for singular

numbers of the sum of two operators [12, Corollary XI.9.3] imply that

�j .L
�jM?/ � �j .L

�/ � C�j ;

where � < 1 is a constant. In particular, L�jM? is a trace class operator. By

applying the arguments employed in the proof of [12, Theorem XI.9.26], we get

that

k.I � N�L�/�1jM?k D k det..I � N�L�/jM?/ � .I � N�L�/�1jM?k

�

1
Y

jD1

�j ..I � N�L�/jM?/

�

1
Y

jD1

.1C j�j�j .L
�jM?//

� exp.C.log j�j/2/

(notice that det
�

.I � N�L�/jM?
�

� 1 for all �). Since

jfx;y.�/j D jhx; .I � N�L�/�1yij � kxk � kyk � k.I � N�L�/�1jM?k;

the assertion of Lemma follows. �

Lemma 2.4. For any normal compact operator A with lacunary spectrum and

any ı > 1, one has lim�
z!1 jzj�ı k.A � z�1/�1k D 0.

Proof. Let 1 < ı1 < ı, and consider the discs Bn WD B.sn; jsnj
ı1/. Assume that

jzj � 1. If z�1 …
S

n Bn, then jz�1 � snj � "jzj�ı1 for all n, where " > 0 is

some constant (consider the cases jz�1j � 2jsnj and jz�1j < 2jsnj). Therefore

jzj�ı1k.z�1 � A/�1k � "�1 for all z such that z�1 … C n
S

nBn. One gets from

the lacunarity of the spectrum that the set
®

jzj�1W z 2
S

n Bn
¯

has linear density

zero, which implies the statement. �
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Lemma 2.5. If L is not nearly complete, then for any s 2 N,

lim�
z!1 zsˇ.z/ D 0;

where ˇ.z/ is de�ned in (1.7).

Proof. Suppose L is not nearly complete, so thatM? is in�nite dimensional. Fix

some s 2 N. By Proposition 2.2, Lemma 2.3 and Theorem B, there exist x 2 H

and y 2 M? such that lim�
z!1 jzj�s�3jfx;y.z/j D C1. By Lemma 2.4,

lim�
z!1 z�2u�.A � z�1/�1v D 0

for any pair of vectors u; v 2 H . Since the limit lim� of the modulus of the

left hand part in (2.2) equals C1 and the �nite intersection of any subsets of

Œ0;C1/ of linear density one has linear density one, the assertion of the lemma

follows. �

3. Proof of Theorems 1.5 and 1.3

First we show how to deduce Theorem 1.3 from Theorem 1.5.

Proof of Theorem 1.3 assuming Theorem 1.5. Let L have the form given in the

Theorem. Put tn D s�1
n and de�ne ˇ.z/ by (1.7), where cn D �t2nhPna; bi.

Assume L is not nearly complete; then by Lemma 2.5, equality (1.9) holds

for any positive integer s. Therefore Theorem 1.5 gives us the conclusions of

Theorem 1.3. �

The rest of this section is devoted to the proof of Theorem 1.5.

Lemma 3.1. Let r be a positive integer and let f 2 C r Œa; b� be a real function.

If jf .r/j > " > 0 on Œa; b�, then there exists a subinterval Œc; d � of Œa; b� of length
b�a
3r such that jf .x/j �

�

b�a
6

�r
" for all x 2 Œc; d �.

Proof. Consider �rst the case when r D 1. Then we can assume without loss

of generality that f 0 > " on Œa; b�. Let Œa; b� D I1 [ I2 [ I3 be the subdivision

of Œa; b� into three subsequent equal intervals. Then one can take Œc; d � D I1 if

f .aCb
2
/ < 0 and Œc; d � D I3 in the opposite case.

The case of general r now follows by an obvious induction argument. �
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We will use the following result by G. Pólya (1923).

Lemma C (see Pólya [31], p. 170). Let ¹p.n/º, ¹˛.n/º and ¹q.n/º .n 2 N) be

sequences such that p.n/ � 0, q.n/ � 0, ˛.n/ > 0, and q.n/ D ˛.n/p.n/ for all

n. Suppose that lim supp.n/ D C1, lim q.n/ D 0, and that the sequence ¹˛.n/º

decreases and tends to 0. Then there exists an increasing index sequence ¹mkº

such that

(1) p.mk/ D max¹p.s/W 1 � s � mkº for all k;

(2) q.mk/ D max¹q.s/W s � mkº for all k;

(3) limk p.mk/ D C1.

The main step in the proof of Theorem 1.5 will be the following statement.

Lemma 3.2. Suppose that the sequences ¹tnº, ¹cnº and a complex number ~ meet

all the conditions of the above Theorem 1.5, but instead of (1.9), we only require

that

lim�
jzj!C1 zˇ.z/ D 0: (3.1)

Then
P

n jt�1n cnj < C1 and
P

n t
�1
n cn D ~.

Proof. Since ¹tnº is lacunary, it follows that for some constant  > 0, jtm � tnj �

 max.jtmj; jtnj/ for all m ¤ n. Also, there are some constants g; B > 1 such that

jtn=tmj � Bgn�m for all n < m. We assume that the sequence ¹jtnjº increases.

First let us prove that
P

n jt�1n cnj < 1. Assume it is not so. Choose

some u 2 .1; g/ close to 1. Put p.n/ D unjcnjjtnj
�1, ˛.n/ D u�njtnj

�1,

q.n/ D jtnj
�2jcnj. Since the series

P

n jt�1n cnj diverges and the series
P

n jt�2n cnj

converges, it follows that all the hypotheses of Pólya’s lemma are satis�ed. Let

¹mkº be an index sequence that has properties (1)–(3).

Properties (1) and (2) imply that

jcnj � umk�n jtnj

jtmk
j

jcmk
j � B.g�1u/mk�n jcmk

j for n < mk I (3.2a)

jcnj

jtnj2
�

jcmk
j

jtmk
j2

for n > mk : (3.2b)

By (1.8),

ˇ00.z/

2
D

1
X

nD1

cn

.z � tn/3
:
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Let jz � tmk
j � "jtmk

j, where " is a small positive constant, which will be chosen

later. If n < mk , then

jz � tnj � jtn � tmk
j � jz � tmk

j � . � "/jtmk
j:

Similarly, if n > mk , then jz � tnj � jtn � tmk
j � jz � tmk

j � . � "/jtnj: Hence

inequalities (3.2) imply the estimates

ˇ

ˇ

ˇ

ˇ

ˇ00.z/

2
�

cmk

.z � tmk
/3

ˇ

ˇ

ˇ

ˇ

�

mk�1
X

nD1

jcnj

. � "/3 jtmk
j3

C

1
X

nDmkC1

jcnj

. � "/3 jtnj3

�
Bjcmk

j

jtmk
j3. � "/3

mk�1
X

nD1

�u

g

�mk�n

C
B

. � "/3

1
X

nDmkC1

jcmk
j

jtmk
j3
g�nCmk

� K."/

ˇ

ˇ

ˇ

ˇ

cmk

.z � tmk
/3

ˇ

ˇ

ˇ

ˇ

for 0 < jz � tmk
j < "jtmk

j;

(3.3)

where

K."/
def
D B

� "

 � "

�3h u

g � u
C

1

g � 1

i

:

Choose a small " 2 .0; / such that K."/ < 1
2
. Let now "1 2 .0; "/ be a

constant and assume that z 2 Œ.1 C "1/tmk
; .1 C "/tmk

/. Then the inequality

ja�3 � b�3j � 3ja � bj
�

min.jaj; jbj/
��4

and (3.3), together with the triangle

inequality, give

ˇ

ˇ

ˇ

ˇ

ˇ00.z/

2
�

cmk

..1C "1/tmk
� tmk

/3

ˇ

ˇ

ˇ

ˇ

�
2

3

ˇ

ˇ

ˇ

ˇ

cmk

..1C "1/tmk
� tmk

/3

ˇ

ˇ

ˇ

ˇ

(3.4)

if "1 is su�ciently close to ". By property (3) from Lemma C, jcmk
j D

u�mk tmk
p.mk/ � "2 > 0 for all k. Now it follows from (3.4) that there are

constants � 2 C, j�j D 1 and � > 0 such that

jf 00.t /j � �jtmk
j�3jcmk

j � � "2 jtmk
j�3

for all k and all t 2 Œ.1C "1/jtmk
j; .1C "/jtmk

j/, where

f .t/ D Re.�ˇ.t � tmk
=jtmk

j//:

So Lemma 3.1 yields that there is a subinterval of Œ.1C "1/jtmk
j; .1C "/jtmk

j/ of

length ."� "1/jtmk
j=9 on which jf .t/j � "3t

�1, where "; "1; "3 > 0 do not depend

on k. This contradicts the assumption (3.1).
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We conclude that the sum
P

n jt�1n cnj converges. Take some � 2 .0; 
2
/. Then

the discs B.tn; � jtnj/ are pairwise disjoint. Let U D U.�/ be their union. Choose

� so small that the set

A D ¹r > 0W @B.0; r/ � C n U.�/º

satis�es lim supR!1R�1jA \ Œ0; R�j > 0. Now one can apply the Lebesgue

dominated convergence theorem to the sum ˇ.z/ D ~ C
P

n
cnz

tn.tn�z/
. Since

jz=.tn � z/j � C.�/ < 1 for all z … U and all n, one gets that the limit of ˇ.z/ as

jzj ! 1; jzj 2 A, exists and equals ~ �
P

n t
�1
n cn. Hence

P

n t
�1
n cn D ~. �

Proof of Theorem 1.5. Given an integer ` � 1, consider the statements:

.1/`
P

n jcnt
`�2
n j < 1;

.2/`
P

n cnt
`�2
n D 0 if ` � 2 and

P

n cnt
`�2
n D ~ if ` D 1;

.3/` ˇ.z/ D z�`ˇ`.z/, where

ˇ`.z/ D
X

n

cnt
`
n

� 1

tn � z
�
1

tn

�

D z
X

n

cnt
`�1
n

1

tn � z
:

Lemma 3.2 gives .1/1, .2/1 and .3/1. If for some ` � 1, .1/`, .2/` and .3/` have

been obtained, one applies Lemma 3.2 to Qcn D cnt
`
n and to ˇ` and gets properties

.1/`C1 and .2/`C1, which imply that ˇ`C1.z/ D zˇ`.z/. This gives .3/`C1.

So, by induction, the equalities .1/`, .2/` and .3/` hold for any ` � 1. �

4. Some additional remarks

First let us give an example of a natural class of compact normal lacunary opera-

tors.

Example 4.1. Let � be an analytic function in an annulus A D ¹z 2 CW r < jzj <

Rº, where 0 < r < 1 < R. Suppose it has the form �.z/ D �0.z/ C �1.z/,

where �0.z/ D �1.R � z/�a C �2.r
�1 � z�1/�a and �1 is smoother than �0 in the

sense that �1 2 Hp.A/ for some p > 1=a (the powers are de�ned by using the

principal branch of the logarithm). Assume that a > 1, �1; �2 2 C are nonzero and

�1=�2 … .0;C1/. Denote by T the unit circle in C. Then the convolution operator

.A�f /.e
i�/ D

1

2�

Z 2�

0

�.ei.��x//f .eix/ dx
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on L2.T/ is compact, normal and has lacunary spectrum. Indeed, in the Fourier

representation A� is just the multiplication operator on `2.Z/ by the sequence of

Fourier coe�cients ¹ O�.n/º of the function �jT. Notice that O�0.n/ � �1R
�a�nna�1

as n ! C1 and O�0.n/ � �2r
a�njnja�1 as n ! �1, whereas the assumption on

�1 implies that O�1.n/= O�0.n/ ! 0 as n ! ˙1, see [13, Theorem 6.4]. This gives

our assertion.

The next proposition gives an explicit form of the space
S

n kerL�n whenever

this space is �nite dimensional.

Proposition 4.2. Let L be given by (1.2) and not all conditions .Mn/ are ful�lled.

Choose the integer k � 0 so that .M1/; : : : ; .Mk/ are ful�lled and .MkC1/ either

is not ful�lled or has no sense (that is, the sum diverges). Let ` � 0 be the largest

integer such that b 2 RanA�`, and put b D A�sbs, where bs 2 H (s D 1; : : : ; `).

Then
S

n kerL�n D kerL�m D span¹b1; : : : ; bmº;

where m D min.k; `/.

We omit the proof, which is completely straightforward. The same calculations

imply Proposition 1.2.

Let L1;L2 be two bounded operators on Hilbert spaces H1, H2, respectively.

In [3], we used the following de�nition: L2 is said to be d -subordinate to L1

(L1
d
� L2) if there exists a bounded linear operator Y WH1 ! H2, which inter-

twines L1 with L2 and has a dense range:

YL1 D L2Y I clos RanY D H2:

As it was mentioned there, if L1
d
� L2 andL1 is complete then L2 is complete.

In connection with the present article, we can also mention the following fact.

Proposition 4.3. If L1 and L2 are compact, M.L1/ D closLN1 H and L2 is

d -subordinate to L1 then M.L2/ D closLN2 H .

The proof is straightforward, and we leave it to an interested reader.

As it follows from (2.1) and Theorem 1.5, if some of the in�nite sequence of

moment equalities (1.3) fail, then there is an estimate

k.L � z/�1k � jzj�s

for the resolvent of L for a set of the form ¹zW jzj�1 2 Aº, where A � Œ0;C1/

is a closed subset of linear density 1 at in�nity. This can be compared with the
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estimates, which are used in the proof of the Keldyš theorem: in the conditions

of this theorem, for any " > 0, an estimate k.L � z/�1k � C"jzj
�1 holds for

su�ciently small jzj in the complement of the union of the angles ˛k�" � arg z �

˛k C " (see [29], Lemma 3.2). In particular, for each " > 0 there exists ı > 0 such

that all non-zero spectrum of L, which is contained in the disc jzj < ı, lies in the

union of the above angles.

The next example shows that for weak perturbations L D A.I C S/ that do

not satisfy the requirement ker.I C S/ D 0, the last geometric property of the

spectrum does not hold in general.

Example 4.4. There is an operatorL D A.ICS/, which has the form (1.2), where

A is a cyclic selfadjoint operator with lacunary spectrum ¹2�nW n 2 Nº such that

�.L/ D ¹0º [ ¹i2�nW n 2 N; n � 2º.

To construct this operator, consider the function

 .z/ D
2

2� z

1
Y

nD2

'n.z/; where 'n.z/ D
2n C iz

2n � z
:

Notice that, given any constant K 2 .0; 1/, there exists CK > 0 such that

j'n.z/�1j � CK2
�njzj if 2�njzj < K and j'n.z/Ci j � CK2

njzj�1 if 2njzj�1 < K.

It follows that the above product converges for any z ¤ 2n; n 2 N, and de�nes a

meromorphic function on C. The residues cn D � Res2n  satisfy jcnj � 1. The

above estimates for 'n.z/ imply that maxjzjD3�2k j .z/j � C2�k . Put tn D 2n. By

writing down the residue theorem for the function  .�/
.�/��

on the contours jzj D 3�2k,

where � is �xed and letting k ! 1, one gets

 .�/ D
X

n2N

cn

tn � �
D 1C

X

n2N

cn

� 1

tn � �
�
1

tn

�

(here we use that .0/ D 1). Take any sequences a D ¹anº and b D ¹bnº such that

¹2nanº and ¹bnº are in `2 and cn D �t2nanbn. (For instance, one can put an D t
�3=2
n

and bn D �cnt
�1=2
n .) The operator A on H D `2, de�ned by A ¹xnº D ¹2�nxnº,

is cyclic, compact, selfadjoint and has trivial kernel. Since ¹2nanº is in `2, the

operator L D A C ab� on `2 has the form L D A.I C S/, where S is a

rank one operator, so L is a weak perturbation of A. Since for this perturbation,

ˇ.z�1/ D  .z/, we get that the spectrum of L is ¹0º [ ¹i2�nW n 2 N; n � 2º.

Notice that in this example, we get that
P

anbns
�1
n D �

P

cnt
�1
n D �1, so

that the �rst moment equation .M1/ holds and one has absolute convergence in its

left hand part. The general term of the sum
P

anbns
�2
n in .M2/ does not tend to
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zero. So the hypotheses of Theorem 1.1 do not hold. This example shows that in

this case, although the perturbation is weak, its spectrum is not contained in the

union of angles, given by Theorem 1.1. By our Theorem 1.3, L and L� are nearly

complete.

In fact, it is easy to get that jˇ.z/j � C jzj�1 for jzj � 1, z outside arbitrarily

small angles around the two coordinate axes. So in this particular case, it is easy

to get that L and L� are nearly complete either by using the argument of the proof

of Theorem 1.1 or the criterion of completeness, given in [3], Proposition 3.1.

5. The case of singular perturbations of unbounded normal operators

In this section we consider an analogue of Theorem 1.3 for rank one perturbations

of unbounded normal operators. Let A0 be a compact normal operator and let L0

be its rank one perturbation such that kerA0 D kerL0 D 0. Put A D A�1
0 and

let L D L�1
0 be the algebraic inverse of L0 de�ned on the range of L0 (In the

last two sections, to distinguish between the bounded and unbounded operators,

we use the notation A0, L0 for compact operators and A, L for their unbounded

inverses.) One should expect that L is in a certain sense a rank one perturbation

of the unbounded normal operator A. However, it is not necessarily a relatively

compact (rank one) perturbation A. To formalize this we need to introduce the

notion of a singular rank one perturbation.

Now let A be an unbounded normal operator on a Hilbert space H and let

G.A/ stand for the graph of A; it is a subspace of H ˚H . We assume that A�1

exists and is bounded. We say that L is a singular balanced rank one perturbation

of A ifG.A/\G.L/ has codimension one in both spacesG.A/ andG.L/. Here we

follow [3]; in this paper a de�nition of singular balanced rank n perturbations of a

not necessarily normal operator A was also given. If one takes for A an ordinary

di�erential operator on an interval and changes its de�ning boundary conditions

without changing the formal di�erential expression, then one obtains this kind of

perturbation of A.

If L0 is a usual rank one perturbation of A0 D A�1, which has zero kernel

and L D L�1
0 is its algebraic inverse, then L is a singular rank one perturbation of

A; moreover, as it will be explained a little bit later, “most” of singular rank one

perturbations of A are obtained in this way. In this Section we reformulate our

completeness result, Theorem 1.3, for singular rank one perturbations, and give

some examples where singular rank one perturbations of operators with lacunary

spectra appear.
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To give a description of all singular rank one perturbations, we need to in-

troduce some new notions. We de�ne the extrapolation Hilbert space AH as

the set of formal expressions Ax, where x ranges over the whole space H . Put

kAxkAH D kxkH for all x 2 H . The formula x D A.A�1x/ allows one to

interpret H as a linear submanifold of AH . We consider the scale of spaces

D.A/ � H � AH:

Notice that D.A/ D D.A�/. The pairing hx; yi
def
D hAx;A��1yi, x 2 D.A/; y 2

AH , gives rise to a natural identi�cation D.A/ D .AH/�.

The set of rank 1 singular balanced perturbations of A can be parametrized

by what we will call 1-data for A. By 1-data we mean a triple .a; b; ~/, where

a; b 2 AH are non-zero, ~ 2 C and the following condition is ful�lled:

(A) If a 2 H , then ~ ¤ hA�1a; bi.

Given 1-data .a; b; ~/, the corresponding rank 1 singular balanced perturbation

L D L.a; b; ~/ of A is de�ned as follows:

D.L/
def
D

®

y D y0 C cA�1a W

c 2 C; y0 2 D.A/; ~c C b�y0 D 0
¯

I
(5.1a)

L y
def
D Ay0; y 2 D.L/: (5.1b)

Condition .A/ is equivalent to the uniqueness of the decomposition y D y0 C

cA�1a for y 2 D.L/ and hence to the correctness of the de�nition of L.

As it is shown in [3], any singular balanced rank one perturbation of A has

a form L D L.a; b; ~/ for certain 1-data .a; b; ~/. Moreover, if ~ ¤ 0, then, by

[3, Proposition 2.4], L D L�1
0 (the algebraic inverse), where L0 is a rank one

perturbation of A0 D A�1:

L0 D A0 � ~�1
A0a.A

�
0b/

�: (5.2)

One can write

Ax D
X

n2N

tnPnx; (5.3)

where the �nite dimensional orthogonal projections Pn are as above: PnPm D 0

for m ¤ n,
P

n Pn D I , but now jtnj ! 1 (and tn ¤ 0 for all n). The domain of

A is the set of vectors x 2 H , for which the above sum converges.

We will say that the singular perturbationL.a;b;~/ is degenerate if hPna;biD0

for all n and at the same time ~ D 0 (it is consistent with the condition (A) if

a … H ). We will say that L.a; b; ~/ is non-degenerate in all other cases.



20 A. D. Baranov and D. V. Yakubovich

It is easy to check that the spectrum of L coincides with its point spectrum and

equals to the zero set of the meromorphic function

ˇL.�/ D ~ C �b�.A � �/�1A�1a D ~ C �
X

k

hPnA
�1a; bi

tn � �

(see [3]). So, if the operator L.a; b; ~/ is degenerate, then each point � 2 C is its

eigenvalue. If L.a; b; ~/ is non-degenerate, then its spectrum is discrete.

Whereas the point 0was a special point of the spectrum for compact operators,

in the present context of unbounded operators, this role passes to the point 1.

Analogously to the case of bounded operators, given an operator L on H with

compact resolvent, we say that L is complete if its root vectors span H and we

say that L is nearly complete if its root vectors span a subspace of H of �nite

codimension.

Theorem 5.1. Let A be a normal operator with compact resolvent, given by (5.3),

which has lacunary spectrum ¹tnºn2N. Suppose that 0 … �.A/. Let .a; b; ~/ be

1-data for A, and let L D L.a; b; ~/ be the corresponding singular perturbation

of A, which is non-degenerate. If L is not nearly complete, then the following

in�nite sequence of “moment” equations holds for all k 2 Z, k � �1:

.Sk/
X

n

tkn hPna; bi D

´

~; k D �1;

0; k � 0:

Proof. We reduce this assertion to the case of a compact operator. First we observe

that it is su�ces to consider the case when ~ ¤ 0. Indeed, by [3, Proposition 2.5],

for any � 2 �.A/, one has

L.A; a; b; ~/� �I D L.A � �I; a; b; ˇL.�//: (5.4)

Notice that the function ˇL.�/ has poles exactly at the points ¹tnº and its residue

at tn equals �hPna; bi. If all these residues are zero for all n, then ~ ¤ 0, by the

non-degeneracy assumption.

If not all numbers hPna; bi are zero, then ˇL is non-constant, and therefore

ˇL.�/ ¤ 0 for some �. Operator L � �I is nearly complete if and only if L is. A

direct calculation shows that moment equations .Sk/ hold for L if and only if they

hold for L � �I . So we may assume that ~ ¤ 0, just by replacing L with L � �I ,

where � 2 C n �.A/ is any number such that ˇL.�/ ¤ 0.

If ~ ¤ 0, then L D L
�1
0 where L0 is a rank one perturbation of A0 D A�1

given by formula (5.2). Notice that A�1 is a compact normal operator with

lacunary spectrum and that L is nearly complete if and only if L0 is. Now the

statement follows by applying Theorem 1.3 to L0. �
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Next we give examples of selfadjoint operators with compact resolvents and

their singular perturbations, which are motivated by applications.

Example 5.2. Consider an in�nite symmetric Jacobi matrix with diagonal entries

bn and o�-diagonal entries an, n D 0; 1; : : : , where at least one of the sequences

¹anº, ¹bnº grows exponentially. In many cases, these matrices give rise to un-

bounded selfadjoint operators with lacunary spectrum. As a particular example,

take the position operator of the Biedenharn–Macfarlane q-oscillator, studied by

Klimyk in [22]. It corresponds to the values bn D 0, an D ..qn � 1/=.q � 1//1=2,

where q > 1 is a �xed number. This Jacobi matrix de�nes a symmetric operator

A0 with indices .1; 1/. In [22, Theorem 1], a parametrization of all self-adjoint

extensions of A0 is given and their spectra are calculated. Any self-adjoint ex-

tension of A0 is lacunary. Therefore Theorem 5.1 applies to any operator L such

that A0 � L and dimD.L/=D.A0/ D 1. There are many other Jacobi matrices,

which give rise to di�erent classes of q-orthogonal polynomials; see [23]. By in-

specting the orthogonality relations one sees that there are other cases when the

corresponding unbounded selfadjoint operators are lacunary.

An easier case is obtained if the o�-diagonal entries of the Jacobi matrix are

subordinate to the diagonal ones. Namely, assume that bn > 0, an 2 R,

bnC1

bn
�! Q > 1 and

an

bn
�! 0 as n ! C1:

Then our Jacobi matrix de�nes an unbounded selfadjoint operator A on `2.N/,

which is semi-bounded from below and has lacunary spectrum. To see it, consider

the diagonal matrix D with the sequence ¹bnº on the diagonal. Then D de�nes a

positive unbounded selfadjoint operator on `2.ZC/. De�neA by Ax D DxCFx,

x 2 D.A/
def
D D.D/, where F is the operator given by the Jacobi matrix with the

same o�-diagonal entries an and zero entries on the diagonal. It is easy to see that

A is a relatively compact perturbation ofD and therefore A is selfadjoint and has

discrete spectrum, see [37, Theorem 9.9]. Consider the circles jz � bnj D �bn

around eigenvalues of D. If � > 0 is small, each of them contains exactly one

eigenvalue of D. Moreover, it is easy to see that k.D � z/�1F k � 1=2 if z is

outside all these circles and is su�ciently large. It follows that for large n, the

eigenvalues of the operator D C tF (which has discrete spectrum) do not cross

the circle jz � bnj D �bn when the parameter t traces the interval Œ0; 1�. By [29,

Lemma 8.1], there is exactly one eigenvalue of A D DCF inside each such circle.

Therefore in this case, A is lacunary.

We remark that in general, to �nd out whether a selfadjoint Jacobi matrix with

exponentially growing entries is selfadjoint or has defect indices .1; 1/, one can

apply [11], Theorem 2 and its Corollary.
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6. Proof of Theorem 1.4

6.1. Functional model for rank one perturbations. The proof of the main part

of Theorem 1.4 uses a functional model for singular rank one perturbations of

unbounded selfadjoint operators with discrete spectrum, which are essentially the

algebraic inverses to rank one perturbations of compact selfadjoint operators. This

model was introduced in [3]. Let us brie�y recall its statement (in the generality

we need here). For the details see [3] or [2, Section 4].

We consider the following objects.

� ¹tnº is, as above, a sequence of real points such that jtnj ! 1 as jnj ! 1,

and tn ¤ 0. We can assume without loss of generality that ¹tnº is an

increasing sequence enumerated by Z, N or �N.

� A is an entire function which is real on R and has simple zeros exactly at the

points tn.

� Two sequences ¹anº and ¹bnº, bn ¤ 0 for any n, and a complex number ~ ¤ 0

satisfy

(1)
P

n
janj2Cjbnj2

t2n
< 1;

(2)
P

n
an

Nbn

tn
¤ ~ in the case when

P

n janj
2 < 1.

� The entire function E is given by E D A � iB , where

B.z/

A.z/
D ı C

X

n

� 1

tn � z
�
1

tn

�

jbnj2; (6.1)

and ı is an arbitrary real constant. It is a Hermite–Biehler function, which

means that jE.z/j > jE. Nz/j if Im z > 0.

� The de Branges spaceH.E/, associated with the functionE. It can be de�ned

as the space of exactly those entire functions F which have the representation

F.z/

A.z/
D

X

n

unjbnj

tn � z

for some sequence ¹unº 2 `2. It is a Hilbert space with the norm given by

kF kH.E/ D k¹unºk`2 , so that H.E/ is essentially the space of the discrete

Cauchy transforms. We refer to [9] (or [3, 2]) for an alternative (more

standard) de�nition of H.E/ and more background.
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� Entire function G is given by

G.z/

A.z/
D ~ C

X

n

� 1

tn � z
�
1

tn

�

an Nbn: (6.2)

� The model operator T, de�ned by the formulas

D.T/ WD ¹F 2 H.E/W there exists c D c.F / 2 C

such that zF � cG 2 H.E/º;

TF WD zF � cG; F 2 D.T/:

Now the functional model from [3, Theorem 4.4] combined with [3, Proposi-

tion 2.4] (see also [2, Section 4]) can be stated as follows.

Theorem D. Any singular rank one perturbation L D L.A; a; b; ~/ of the self-

adjoint operator A (with simple spectrum and trivial kernel) is unitary equivalent

to the model operator T whose parameters ¹tnº D ¹s�1
n º, A and G are related to

a; b; ~ as above. Conversely, any function G as above appears in the model of

some rank one perturbation of A.

The reproducing kernels of the de Branges space H.E/ are given by

Kw.z/ D
E.w/E.z/ � E. Nw/E. Nz/

2�i. Nw � z/
D
A.w/B.z/ � B.w/A.z/

�.z � Nw/
:

One has Kw 2 H.E/ and hF;Kwi D F.w/ for any w 2 C.

If
P

n jbnj
2 D 1 or

P

n jbnj2 < 1 and
P

n t
�1
n an Nbn ¤ ~, then the adjoint

operator L� is well-de�ned and also is a singular rank one perturbation of A (see

[3, Proposition 2.2]). Moreover, in this case the eigenvectors of L� are mapped

by the same unitary equivalence as in the above theorem onto the reproducing

kernels ¹K�º�2ZG
, see [3, Lemma 5.4]. By Zf we denote the zero set of an entire

function f . To avoid unessential technicalities, we assume that all zeros of G are

simple.

6.2. Strategy of the proof of Theorem 1.4. In view of relation (5.2) between

bounded rank one perturbations of compact normal operators and singular rank

one perturbations, we can solve an equivalent problem for singular rank one

perturbations. Let A0 be a compact selfadjoint operator with simple spectrum

¹snº, sn ¤ 0 (we can identifyA0 with a diagonal operator on `2) such that tn D s�1
n

satisfy condition (1.5). Consider the unbounded operator A D A�1
0 and assume
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that we were able to construct a singular rank one perturbation L D L.A; a; b; ~/

such that ~ ¤ 0, a D ¹anº, b D ¹bnº satisfy
P

n
janj2Cjbnj2

t2n
< 1 and

X

n

jt�1n anbnj D 1; (6.3)

so that L is incomplete with in�nite defect (that is, the linear span of root vectors

of L has in�nite codimension in `2). Consider the vectors a0 D A�1a D ¹t�1n anº

and b0 D A�1b D ¹t�1n bnº from `2. Then, by (5.2)

L0 D L
�1 D A0 � ~�1a0.b0/�

is a bounded rank one perturbation of A0 whose set of root vectors has in�nite

codimension. Note that equality (6.3) coincides with
P

n js�1
n a0nb

0
nj D 1, i.e.,

nonexistence of the �rst moment for L0.

Thus, the statement of Theorem 1.4 is reduced to an equivalent problem for

singular rank one perturbations. In view of the above functional model, this

problem is equivalent to a completeness problem for a system of reproducing

kernels in de Branges spaces. Namely, to prove Theorem 1.4 we will need to

construct an entire function G such that

G.z/

A.z/
D ~ C

X

n

cn

� 1

tn � z
�
1

tn

�

;
X

n

jcnj

t2n
< 1;

X

n

jcnj

jtnj
D 1; (6.4)

and ~ ¤ 0, but the system ¹K�º�2ZG
has an in�nite defect in H.E/. Then we can

de�ne a singular rank one perturbation L of A such that L� is also a well-de�ned

singular rank one perturbation, but L� will not be complete.

We will construct G of the form A=S where S is a canonical product of

order less than one, whose zeros form a subset of the set ¹tnº. Then, necessarily,

~ D 1=S.0/, cn D �1=S 0.tn/ and the equation (6.4) rewrites as

G.z/

A.z/
D

1

S.z/
D

1

S.0/
�

X

tn2ZS

1

S 0.tn/

� 1

tn � z
�
1

tn

�

: (6.5)

In Subsection 6.3 the relations between conditions (1.5) and (1.6) will be

discussed as well as some equivalent forms of condition (1.5). The function S

from (6.5) will be constructed in Subsection 6.4, while in Subsection 6.5 the proof

of Theorem 1.4 will be completed.

6.3. Discussion of condition (1.5). We begin with the proof of the fact that any

separated sequence T D ¹tnº, for which (1.5) does not hold, satis�es nT .r/ D

O.log2 r/ (and thus is su�ciently sparse).
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Lemma 6.1. LetR > 0 and let the interval ŒR; 2R� contain at least 2M points tk.

Then there exists tn 2 ŒR; 2R� such that

Y

kWR�tk�2R;k¤n

ˇ

ˇ

ˇ

tk � tn

tk

ˇ

ˇ

ˇ
� 2�MC1:

Proof. Clearly, we can chooseM points tn1
; : : : tnM

2 ¹tkº such that jtn1
� tnj

j �

R=2, j D 2; : : : ;M . Hence, we have

Y

kWR�tk�2R;k¤n1

ˇ

ˇ

ˇ

tk � tn1

tk

ˇ

ˇ

ˇ
�

�R

2

�M�1� 1

R

�M�1

D 2�MC1

(we dropped the factors for which jtk � tn1
j > R=2 since they are anyway smaller

than 1). �

Corollary 6.2. Condition (1.6) implies (1.5).

Proof. Assume that (1.5) is not satis�ed. Given R > 0, put M D M.R/ D

ŒM 0.R/=2�, whereM 0.R/ is the number of points tk in the interval ŒR; 2R�. Then,

by Lemma 6.1, RN2�M.R/ & 1 for some N which is independent on R. Hence

M.R/ D O.logR/. Thus, we conclude that, for any m 2 N, there is always no

more thanO.m/ points tn between 2m and 2mC1, and so nT .r/ D O.log2 r/, which

contradicts (1.6). �

Remark. One can rewrite (1.5) in equivalent ways. Recall that the Krein class

consists of entire functions F which are real on R, have only simple and real

zeros and for some positive integer k and some polynomial P of degree at most k

satisfy the following absolutely convergent expansion:

1

F.z/
D P.z/C

X

n

1

F 0.tn/

� 1

z � tn
C
1

tn
C � � � C

zk�1

tkn

�

;

where sn are zeros of F .

It is not di�cult to see that condition (1.5) is equivalent to any of the following

properties (i) and (ii):

(i) There exists an entire function Q of order less than one, whose zeros are

simple and lie in the set ¹tnº, such that for any N we have

lim inf
tn!1;tn2ZQ

jtNn Q
0.tn/j D 0

(the lower limit is taken here over those tn which are zeros of Q).
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(ii) There exists a subsequence of ¹tnº, which is not the zero set of a function in

the Krein class.

For instance, to prove that (1.5) implies (i), it su�ces to put

Q.z/ D
Y

k

Y

mWtnk
=2�tm�tnk

�

1�
z

tm

�

;

where the sequence ¹nkº grows fast enough (by the above proof of Lemma 6.3, this

product de�nes a zero order entire function). We leave the details to the reader.

6.4. A key lemma. To construct a function S satisfying (6.5) we will need the

following lemma, which is the main technical step in the proof of Theorem 1.4.

Lemma 6.3. Under the hypothesis of Theorem 1.4, there exists a canonical prod-

uct S of order less than one with zeros in the set ¹tnº such that

X

tn2ZS

1

t2n jS 0.tn/j
< 1;

X

tn2ZS

1

jtnS 0.tn/j
D 1:

Proof. Without loss of generality we assume that tn > 0 and that (1.5) holds. Put

S D
Q

k STk
, where

STk
.z/ D

Y

tn2Tk

�

1�
z

tn

�

; (6.6)

and Tk � ¹tnW n ¤ 1; tnk
=2 � tn � 2tnk

º, where nk go rapidly to in�nity so that,

for any N > 0,

tNnk
�

Y

l¤nk Wtnk
=2�tl �2tnk

ˇ

ˇ

ˇ

tnk
� tl

tl

ˇ

ˇ

ˇ �! 0; k ! 1: (6.7)

We will show that for an appropriate choice of ¹Tkº either S.z/ or .z � t1/S.z/ is

the desired function.

The sets Tk will be chosen inductively. Suppose that the sets T1; : : : Tk�1 have

been already chosen and put Uk�1 D
Qk�1
jD1 STj

. Then, clearly, jUk�1.z/j �

qk jzjNk , jzj ! 1, for some constants qk > 0 and Nk 2 N.

Let us �rst consider the case when Tk D ¹tnW tnk
=2 � tn � 2tnk

º, assuming that

nk is su�ciently large. Then, by (6.7), the corresponding function STk
satis�es

t2nk
jUk�1.tnk

/S 0
Tk
.tnk

/j D tnk
jUk�1.tnk

/j
Y

l¤nkWtnk
=2�tl�2tnk

ˇ

ˇ

ˇ

tnk
� tl

tl

ˇ

ˇ

ˇ < 1:
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In particular,
X

tn2Tk

1

jtnUk�1.tn/S
0
Tk
.tn/j

� tnk
� 1:

Now consider another extreme case where Tk consists only of the point tnk
,

that is, Tk D ¹tnk
º. Then STk

.z/ D 1 � z=tnk
, and we have

X

tn2Tk

1

jtnUk�1.tn/S
0
Tk
.tn/j

D
1

jUk�1.tnk
/j

� 1:

Hence, there exists a (not necessarily unique) set Tk � ¹tnW tnk
=2 � tn � 2tnk

º

such that STk
satis�es

X

tn2Tk

1

jtnUk�1.tn/S
0
Tk
.tn/j

> 1 (6.8)

and Tk is minimal in the sense that the estimate (6.8) no longer holds if one

removes any point from Tk. This will be our choice of Tk.

Now let tj be any point in Tk and let QSj D STkn¹tj º. Then, by the above property

of minimality,

1 �
X

tn2Tk ; tn¤tj

1

jtnUk�1.tn/ QS 0
j .tn/j

D
X

tn2Tk ; tn¤tj

1

jtnUk�1.tn/S
0
Tk
.tn/j

�
jtj � tnj

jtj j

&
X

tn2Tk ; tn¤tj

1

t2n jUk�1.tn/S
0
Tk
.tn/j

;

where the last inequality follows from the hypothesis infn¤j jtn � tj j > 0. Since

tj 2 Tk was arbitrary, we conclude that, uniformly with respect to k,

X

tn2Tk

1

t2n jUk�1.tn/S
0
Tk
.tn/j

. 1: (6.9)

Obviously, by choosing tnk
to grow su�ciently fast, we may achieve that, for

the function S D
Q

k STk
the factors STj

with j > k almost do not in�uence

the product at the points tn 2 Tk so that 1
2

�
Q1
jDkC1 jSTj

.tn/j � 2 for

tn 2 Œtnk
=2; 2tnk

�. Then

1

2

X

tn2Tk

1

jtnS 0.tn/j
�

X

tn2Tk

1

jtnUk�1.tn/S
0
Tk
.tn/j

� 2
X

tn2Tk

1

jtnS 0.tn/j
; (6.10)
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1

2

X

tn2Tk

1

t2n jS 0.tn/j
�

X

tn2Tk

1

t2n jUk�1.tn/S
0
Tk
.tn/j

� 2
X

tn2Tk

1

t2n jS 0.tn/j
: (6.11)

Also, it follows from Lemma 6.1 and from (6.9) that #Tk, the number of elements

in Tk, satis�es #Tk . Nk ln tnk
C ln qk. Since Nk and qk do not depend on the

choice of tnk
, the function S will be of zero order if tnk

grow su�ciently fast.

By the construction of STk
(namely, by (6.8) and (6.10)) we clearly have

X

tn2ZS

1

jtnS 0.tn/j
D 1:

If, at the same time,
X

tn2ZS

1

t2n jS 0.tn/j
< 1;

then our construction is completed. If the latter sum is also in�nite, then put
QS D .z � t1/S D .z � t1/

Q

k STk
. Then, clearly, j QS 0.tn/j � jtnS

0.tn/j, tn 2 ZS ,

and so, by (6.11) and (6.9), we have

X

tn2ZS

1

t2n j QS 0.tn/j
.

X

k

1

tnk

X

tn2Tk

1

t2n jUk�1.tn/S
0
Tk
.tn/j

.
X

k

1

tnk

< 1:

Thus, QS has the required properties. �

6.5. End of the proof of Theorem 1.4. Let S be the entire function constructed

in Lemma 6.3. Then the function G D A=S is entire. The proof of (6.5) follows

by the standard interpolation series argument. Indeed, the series in the right-hand

side of (6.5) converges absolutely by the conditions on S . Note that

H.z/ D
1

S.z/
�

1

S.0/
�

X

tn2ZS

1

S 0.tn/

� 1

z � tn
C
1

tn

�

is an entire function (the poles disappear). Since S is of order less than one with

real zeros, we conclude that 1=S is of Smirnov class in the upper and in the lower

half-planes, as well as the regularized Cauchy transform in the right-hand side

of (6.5). Hence, by the classical theorem of M.G. Krein (see, e.g., [18, Part II,

Chapter 1]), H is an entire function of zero exponential type. Note also that

jH.iy/j D o.jyj/, jyj ! 1, whence H is a constant. Since H.0/ D 0, we

�nally get that H � 0.

Thus, G satis�es (6.4). Put an D jcnj1=2, bn D cn=jcnj1=2. Since we

have
P

n janbnt
�1
n j D 1, we conclude that

P

n janj
2 D

P

n jbnj2 D 1.

By Theorem D, the function G corresponds to the rank one perturbation L of A,
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generated by ¹anº, ¹bnº and ~ D 1=S.0/. Moreover, L� also is a well-de�ned

singular rank one perturbation of A and the system of its eigenvectors is unitary

equivalent to the system of reproducing kernels ¹K�º�2ZG
in H.E/. It remains to

see that the latter system is not complete in H.E/. However, it is a basic fact of

the de Branges theory that ¹K�º�2ZA
is an orthogonal basis of H.E/ (see [9, The-

orem 22]). Hence, ¹K�º�2ZAnZS
is incomplete with in�nite defect. Theorem 1.4

is proved. �
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