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Scattering theory of the Hodge–Laplacian

under a conformal perturbation

Francesco Bei, Batu Güneysu, and Jörn Müller

Abstract. Let g and Qg be Riemannian metrics on a noncompact manifold M , which are

conformally equivalent. We show that under a very mild �rst order control on the conformal

factor, the wave operators corresponding to the Hodge–Laplacians �g and � Qg acting on

di�erential forms exist and are complete. We apply this result to Riemannian manifolds

with bounded geometry and more speci�cally, to warped product Riemannian manifolds

with bounded geometry. Finally, we combine our results with some explicit calculations

by Antoci to determine the absolutely continuous spectrum of the Hodge–Laplacian on

j -forms for a large class of warped product metrics.
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Introduction

One of the most fundamental problems in geometry is the determination of the

spectrum of the Laplace operator corresponding to a Riemannian manifold .M; g/.

Here, one is particularly interested in the Hodge–Laplace operator�
.j /
g which acts

on di�erential j -forms, as the latter is directly linked to the de Rham complex,

thus the topology of M . If M is compact, then the spectrum �.�
.j /
g / of �

.j /
g

consists of eigenvalues with a �nite multiplicity and thus the situation is rather

simple. On the other hand, if M is noncompact, then �.�
.j /
g / usually contains

some continuous part, which cannot be controlled in general, that is, without any

further assumptions on .M; g/.

A systematic approach to control the absolutely continuous part �ac.�
.j /
g / of

�.�
.j /
g / in the noncompact case is directly motivated by quantum mechanics,

namely, the usage of scattering theory. Here the essential idea is as follows:

Assume that there is a quasi-isometric metric Qg on M such that we have some

good information about the absolutely continuous part .�
.j /

Qg /ac of �
.j /

Qg . Then

once we can show that the wave operators W˙
�
Hg ; H Qg

�
exist and are complete

(cf. Theorem A.1 for a precise de�nition of completeness), they induce unitary

equivalences

.�
.j /

Qg /ac � .�.j /g /ac; in particular, one has �ac.�
.j /

Qg / D �ac.�
.j /
g /:

Now in order to actually carry through the above program, a typical approach has

been to assume thatM has a special topological structure and that both metrics g,

Qg are in some sense compatible with the latter, e.g. in the situation of manifolds

with cylindrical ends or cusp ends, see in particular [13] and more recently [16]. For

further references we refer to the extensive literature cited in [15]. This approach

ultimately leads to the study of direct sums of Sturm-Liouville type operators,

which is of course a classical and well-understood �eld.

A major new development in the scattering approach to spectral geometry has

been the paper [21], where the authors allow arbitrary Riemannian manifolds.

There the authors consider Laplacians acting on functions, that is 0-forms, and

their main result can be rephrased as follows (cf. Theorem 0.1 [21]), where from

now on we assume dim.M/ � 2:

Assume that g, Qg are complete Riemannian metrics inM with jSecg j; jSecg j � L

for some L > 0, such that the covariant C2-deviation 2jg � Qgjg of g from Qg is
bounded pointwise from above by a function ˇ W M ! .0;1/ of moderate decay
(in particular g and Qg are quasi-isometric), in a way such that for appropriate
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constants a; b; c; C one has

ˇa 2 L
1.M; g/; jˇb.x/finjg.x/

c j � C for all x;

where
finjg .x/ WD min

®
�

12
p
L
; injg.x/

¯
:

Then the wave operatorsW˙.�
.0/
g ; �

.0/

Qg / exist and are complete.

On the other hand, this scalar result has been generalized recently in [15], using

harmonic radius estimates on the Sobolev scale from [1]: There, using a certain

decomposition formula (cf. Lemma 3.4 in [15]) of the operator

V .0/ D .�
.0/

Qg C 1/�n.�.0/Qg ��.0/g /.�.0/g C 1/�n; (1)

the authors prove (cf. Theorem 3.7 in [15]) that the assumptions of Belopol0skii–

Birman’s theorem (cf. Theorem A.1 below) are satis�ed under an integrability

condition of the form
Z

M

d.g; Qg/.x/h�.dim.M/C2/.x/volg .dx/ < 1; (2)

where d.g; Qg/WM ! .0;1/ is a function which only measures a zeroth order de-
viation of the metrics (and not a second order one), and where hWM ! .0; 1�

is an arbitrary common lower bound on both Sobolev-harmonic radii rg ; r Qg .

Ultimately, the authors of [15] end up with condition (2), by using generally valid

elliptic estimates of the form

j.�.0/g C 1/�nf .x/j � C min¹1; rg.x/º� dim.M/=2kf k
L2.M;g/; (3a)

jd.�.0/g C 1/�nf .x/jg � C min¹1; rg.x/º�.dim.M/=2C1/kf kL2.M;g/; (3b)

where n is large enough, in order to estimate the trace norm of V .0/.

As these are all scalar results for functions, the natural question which we

address in this paper is

to what extent can one prove a scattering result for the Hodge–Laplacian�.j /� on
j -forms, which only requires a lower order control on the deviation of the metrics?

To this end, in order to make an e�ective use of Belopol0skii–Birman’s theorem

as in [15], we restrict ourselves to the particularly important case of conformal

perturbations. Ultimately, the restriction to conformal perturbations turns out
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to be not restrictive at all for many applications, as e.g. any two su�ciently

well-behaved warped product metrics automatically are “essentially conformally

equivalent” (see the proof of Proposition 4.9 below for a precise statement).

In order to formulate our main results, we �x a Riemannian metric g onM . If

Qg is another metric on M which is quasi-isometric to g, then we denote with

I D Ig; Qg W�L2.M; g/ �! �L2.M; Qg/; ! 7�! !

the canonical identi�cation operator. Let  WM ! R be smooth, so that the

conformally equivalent metric g WD e2 g is quasi-isometric to g, if and only

if  is bounded.

For any K > 0 and any function hWM ! .0;1/, we introduce the following

notation: MK;h.M/ stands for the space of complete metrics g0 on M with

min¹1; r 0
gº � h, and with curvature endomorphism bounded from below by �K.

Note that this de�nition is clearly motivated by the elliptic estimates (3a), (3b).

Furthermore, given a Borel function hWM ! .0;1/, the conformal factor  will

be called an h-scattering perturbation of g, if

Z

M

d.g;  /.x/h�.dim.M/C2/.x/volg.dx/ < 1; (4)

where now

d.g;  /.x/ WD max¹sinh.2j .x/j/; jd .x/jgº; x 2 M: (5)

Then with � D
L
j �

.j / the total Hodge–Laplacian, our main result reads as

follows:

Theorem 3.3. Let  WM ! R be smooth with  ; jd jg bounded, and as-
sume that g; g 2 MK;h.M/ for some pair .K; h/, in a way such that  is an
h-scattering perturbation of g. Then the wave operators W˙.�g ; �g ; I / exist
and are complete. Moreover, theW˙

�
�g ; �g ; I

�
are partial isometries with ini-

tial space Im Pac.�g/ and �nal space Im Pac.�g /.

It is straightforward to check that this theorem applies to the case of arbitrary

compactly supported perturbations (see Corollary 4.1). Moreover, combining this

Theorem 3.3 with a result from [6] we get the following result, which states

that under slightly stronger curvature assumptions, we can drop the conformal

equivalence on a compact set:



Scattering theory of the Hodge–Laplacian 239

Corollary 4.2. Let .M; g/ and .M; Qg/ be conformal at in�nity, i.e. there are a
compact set K � M and a smooth function  WM ! R such that Qg D e2 g

on M n K. Assume that  , jd jg are bounded, that Secg is bounded, and that
g; g 2 ML;h.M/ for some pair .L; h/, in a way such that  is a h-scattering
perturbation of g.

Then the wave operatorsW˙.� Qg ; �g ; I / exist and are complete; moreover they
are partial isometries with inital space Im Pac.�g/ and �nal space Im Pac.� Qg/.

Corollary 3.4 in Section 3 below states that Theorem 3.3 also holds in every

di�erential form degree. Moreover when restricted to 0-forms, it is still more

general than the above mentioned Theorem 0.1 from [21] when applied to the

conformal case. This follows from:

Proposition 4.4. Assume that  WM ! R is a smooth bounded function, that
g is complete such that jSecg j; jSecg j � L for some L > 0, and furthermore
that there is a function ˇ which is exponentially bounded from below (see De�ni-
tion 4.3), such that the following conditions are satis�ed:

(i) for some constant C > 0 one has 1jg � g j � C � ˇ.

(ii) there are constants b 2 .0; 1/ with ˇb 2 L
1.M; g/, and C1 > 0 such that for

all x 2 M ,
finjg.x/ � C1 � ˇ.x/

1�b
dim.M/C2 :

Then the assumptions of Theorem 3.3 are satis�ed.

We also have the following consequence of Theorem 3.3:

Corollary 4.6. Let g be such that jSecg j is bounded and that g has a positive
injecitivity radius (in particular, g is complete). Assume that WM ! R is smooth
with max¹ ; jd jg ; jHessg. /jgº bounded, and

Z

M

max¹sinh.2j .x/j/; jd .x/jgºvolg.dx/ < 1:

Then the wave operatorsW˙.Hg ; Hg ; I / exist and are complete.

Corollary 4.6 can be brought into a very applicable form in the case of warped

product metrics. Ultimately, as indicated above, we are going to use our scattering

results together with results by Antoci [3] to control the absolutely continuous

j -form spectrum for a large class of warped product metrics, from the knowledge

of the spectrum of one special warped product metric. These facts are included

in Section 4.
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The reader should notice that in all these results our assumptions on the

deviation of the metrics are purely �rst order ones.

Let us add some remarks on the technical issues of the assumptions, and the

proof of Theorem 3.3, which also indicate in what sense the case of di�erential

forms is analytically much more involved than the case of functions.

An e�ective use of a decomposition formula as (1) which re�ects elliptic

estimates such as (3b), requires the underlying operators to be of the form D�D.

Thus we are led to work with total di�erential forms and not with forms of a �xed

degree, so that we can use the underlying Dirac structure �g D D�
gDg D D2

g ,

where Dg is the Gauss-Bonnet operator. However, Dg D d C ıg depends itself

on g, while on functions it is just the di�erential d. Ultimately, this is the reason

that now we have to require a �rst order control in the de�nition (5), which cannot

be expected to be dropped. More speci�cally, in this setting the generalization of

the decomposition formula for (1) takes the following form:

Proposition 3.1. Let g be complete and let  ; jd jg be bounded. Then for � > 0,
n � 1, the bounded operator

V WD Rng ;�.�g I � I�g/R
n
g;� W �L2.M; g/ �! �L2.M; g /

can be decomposed as

V D Rng ;�.Dg � 2 sinh.2 /IDg CDg I.1� e�2 /d � d ı .1 � e2 /IDg

CDg intg .d / � I � � intg.d /Dg/R
n
g;�;

where R�;� WD .�� C �/�1 denotes the resolvent, and where � is multiplication
by a constant in each degree.

Indeed, it is essential in the latter result to assume that jd jg is bounded,

already to make the right hand side of the formula for V well-de�ned at all.

Next, we remark that in order to estimate the trace norm of the operator V

in terms of the quantitity (4), the approach from [15] would require �rst order
estimates as in (3b), but now for ARn

g;�
, where A 2 ¹Dg ; d; ıgº. Such estimates

seem hard to establish in general. Instead, we take a di�erent approach which

relies on the commutator relations ŒA; Rn
g;�
� D 0, and which allows us to restrict

ourselves to the di�erential form analogue of the zeroth order estimate (3a). This

is the content of:



Scattering theory of the Hodge–Laplacian 241

Proposition 3.2. Assume that g 2 MK;h.M/ for some pair .K; h/. Then for all
su�ciently large n D n.dim.M// 2 N there is a C D C.n; dim.M// > 0, such
that for all su�ciently large � D �.K;m/ > 0 the operator Rn

g;�
is an integral

operator, with a Borel integral kernel

M �M 3 .x; y/ 7�! Rng;�.x; y/ 2 Hom.
V
jT�
yM;

V
jT�

xM/

which satis�es
Z

M

jRng;�.x; y/j2J2volg.dy/ � C � h.x/� dim.M/ for all x 2 M;

where j � jJ2 stands for the Hilbert–Schmidt norm on the �bers Hom.
V
jT�

yM ,V
jT�

xM/ (with respect to g).

This paper is organized as follows: In Section 1 we establish some geometric

and functional analytic notation, and we provide the reader with some formu-

lae from conformal geometry. In Section 2 we prove and collect some facts on

Sobolev harmonic coordinates and the class of metrics MK;h.M/. Section 3 is

devoted to the proofs of the above Proposition 3.1, Proposition 3.2, as well as

our main result Theorem 3.3. Finally, Section 4 contains the above applications

Corollary 4.2, Proposition 4.4, and Corollary 4.6, as well as some explicit ap-

plications of Corollary 4.6 (such as warped product Riemannian manifolds and

the above mentioned determination of absolutely continuous j -form spectra of

warped product metrics).

Acknowledgements. The authors would like to thank Jochen Brüning for a

helpful discussion. We would also like to thank the anonymous referee for very

helpful hints that ultimately lead to the formulation of Proposition 4.9. This

research has been �nancially supported by the SFB 647: Raum–Zeit–Materie.

1. Setting and some facts from conformal Riemannian geometry

LetM be a connected smooth manifold without boundary, withm WDdim.M/�2.
The tangent bundle TM and all bundles that can be constructed in a smooth

functorial way out of it will be considered as complexi�ed, like for example the

exterior product
V
jT�M and the full exterior bundle

V
T�M D

Lm
jD0

V
jT�M ,

with the usual convention
V
0T�M WD M � C. Given smooth complex vector

bundles E1 ! M , E2 ! M , the complex linear space of smooth linear partial

di�erential operators from E1 to E2 of order � k 2 N�0 is denoted with
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D
.k/
C1.M IE1; E2/, where we write D

.k/
C1.M IE1/ instead of D

.k/
C1.M IE1; E1/.

If nothing else is said, given P 2 D
.k/
C1.M IE1; E2/, f 2 �

L
1
loc
.M;E1/, the

expression Pf is always understood in the distributional sense. For ˛ 2 �1
C1.M/

we denote with

ext.˛/ 2 D
.0/
C1 .M I

V
T�M/

the operator of exterior multiplication with ˛.

All Riemannian metrics on M are understood to be smooth, and we �x once
for all a Riemannian metric g on M .

The metric is extended canonically to a Hermitian structure on all vector

bundles E ! M that can be constructed in a “smooth functorial way” from TM

(like e.g. E D
V
jT�M ), and this Hermitian structure will always be denoted by

.�; �/g , where then

j jg WD . ;  /1=2g for any section  in E �! M . (6)

denotes the corresponding �ber norm. Likewise, the Levi-Civita connection rg
extends to all such bundles to give a Hermitian covariant derivative. In the

particular case of E D
V
jT�M we will sometimes indicate the corresponding

data by an index “j ”, like e.g. rg;j , or .�; �/g;j . For example, the Hessian of a

smooth function f WM ! C becomes Hessg.f / D rg;1df .

We denote with �g the Riemannian Borel measure on M , and with

Qg 2 D
.0/
C1.M I

V
2TM/

its curvature endomorphism, and with Secg the sectional curvature.

Recall that if Rg stands for the usual Riemannian curvature, then Qg is self-

adjoint and determined by the equation

.Qg.X ^ Y /; Z ^W /g D .Rg.X; Y /W;Z/g

for all smooth vector �elds W;X; Y;Z on M .

Moreover, injg.x/ 2 .0;1� stands for the g-injectivity radius at x 2 M ,

dg.x; y/ the geodesic distance, and the corresponding open geodesic balls will

be denoted with Bg.x; r/, r > 0, x 2 M .
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We will denote by �L2.M; g/ the complex separable Hilbert space of equiva-

lence classes ˛ of Borel forms on M such that

k˛k2g WD
Z

M

j˛.x/j2g �g.dx/ < 1;

with its inner product

h˛; ˇig D
Z

M

.˛.x/; ˇ.x//g �g.dx/;

with an analogous notation for the Hilbert space of Borel j -forms �
j

L2
.M; g/. In

view of
V

T�M D
Lm
jD0

V
jT�M , we also have �L2.M; g/ D

Lm
jD1�

j

L2
.M; g/.

For any smooth 1-form ˛ on M , we get the formal adjoint corresponding to

exterior muliplication with ˛,

intg .˛/ WD ext.˛/�g 2 D
.0/
C1 .M I

V
T�M/ ;

which is in fact nothing but contraction by the vector �eld that corresponds to ˛

via g. Let us note (recalling the convention (6)):

Lemma 1.1. For any � 2 �1
C1.M/; ! 2 �C1.M/ one has the pointwise inequal-

ity

jintg.�/!jg � j�jg j!jg ; (7)

in particular, as an operator on�L2.M/, the norm of contraction with a one-form
is bounded by

kintg.�/kg � k�kg;1 WD sup
x2M

j�.x/jg 2 Œ0;1�:

Proof. We omit the dependence on g of several data in the notation. Because

contraction is an anti-derivation, the pointwise equality

jint.�/!j2 D .ext.�/int.�/!; !/

D ..int.�/�/!; !/� .int.�/ext.�/!; !/

D j�j2j!j2 � jext.�/!j2

holds. This shows the �rst statement, and the second statement then follows from

j Œint.�/!�.x/j � k�k1j!.x/j: �
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We denote by

d.j / 2 D
.1/
C1.M I

V
jT�M;

V
jC1T�M/;

ı.j /g 2 D
.1/
C1.M I

V
jT�M;

V
j�1T�M/

the exterior di�erential on j -forms and, respectively, the formal adjoint of d.j�1/.
Then we can form the Hodge–Laplacian

�.j /g WD ı.jC1/
g d.j / C d.j�1/ı.j /g 2 D

.2/
C1.M I

V
jT�M/;

whose Friedrichs realization in �
j

L2
.M; g/ will be denoted with H .j / � 0. With

d WD
mM

jD0
d.j /; ıg WD

mM

jD0
ı.j /g 2 D

.1/
C1.M I

V
T�M/

we get the underlying Dirac type operator, and respectively the total Hodge Lapla-

cian

Dg WD d C ıg 2 D
.1/
C1.M I

V
T�M/; �g WD D2

g 2 D
.2/
C1.M I

V
T�M/;

where the Friedrichs realization of�g in�L2.M; g/will be denoted withHg � 0.

In view of

�g D
mM

jD0
�.j /g ;

we also have

Hg D
mM

jD0
H .j /
g as self-adjoint operators.

If g is (geodesically) complete, then Dg , �g and �
.j /
g are essentially self-adjoint

on the corresponding space of smooth compactly supported forms [12, 23]. For

� > 0, we denote the resolvents with

R
.j /

g;�
WD .H .j /

g C �/�1 2 L.�
j

L2
.M; g//;

Rg;� WD .Hg C �/�1 2 L.�L2.M; g//:

Finally, let Qg denote the sesquilinear form quadratic form corresponding to

Hg : It is the closure of the form given by

.˛; ˇ/ 7�!
Z

M

.Dg˛.x/;Dgˇ.x//g�g.dx/; .˛; ˇ/ 2 �C
1
c
.M/ ��C

1
c
.M/;
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and by functional analytic facts one always has Dom.Qg / D Dom.
p
Hg/.

An observation that will be essential for us in the sequel is that the commuta-

tor ofDg and a, say, smooth function f onM is given in terms of the underlying

Cli�ord multiplication, namely,

ŒDg ; f � D cg.df / WD ext.df / � intg.df / 2 D
.0/
C1 .M I

V
T�M/ ; (8)

which is ultimately equivalent to saying that Dg is of Dirac type [5]. Given a

smooth function  on M we de�ne

� WD
mM

jD0
.m � 2j /1V

jT�M 2 D
.0/
C1.M I

V
T�M/;

e � WD
mM

jD0
e.m�2j / 1V

jT�M 2 D
.0/
C1.M I

V
T�M/:

If Qg is a quasi-isometric metric, then we denote with

I D Ig; Qg W�L2.M; g/ �! �L2.M; Qg/; ! 7�! !

the canonical identi�cation operator. Given a smooth function  WM ! R, we

de�ne another metric g WD e2 g, noting that g and g are quasi-isometric, if and

only if  is bounded. We will frequently use the following results for conformal

perturbations:

Proposition 1.2. Let  W M ! R be smooth.
a) One has

.�; �/g ;j D e�2j .�; �/g;j for any j 2 ¹0; : : : ; mº, (9a)

�g D em �g ; (9b)

intg .˛/ D e�2 intg.˛/ for any ˛ 2 �1
C1.M/; (9c)

rg ;XY D rg;XY C d .X/Y C d .Y /X � .X; Y /g gradg. / (9d)

for all smooth vector �elds X , Y on M ,

ıg D e�2 .ıg � intg.d /�/; (9e)

�g D e�2 .�g � 2� Liegradg. /
C2intg.d / ı d

C 4ext.d /intg.d /� � 2ext.d /ıg/; (9f)

Rg D e�2 
�
Rg � g

�
Hessg. / � d ˝ d C 1

2
jd j2g

��
; (9g)

where denotes the Kulkarni–Nomizu tensor product.
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b) If  is bounded, then one has

I� D e �I�1: (10)

c) Assume that  and jd jg are bounded. Then one has

I Dom.Qg/ D Dom.Qg /:

Proof. The proof of part a) is straightforward, the formulas can be found in [4],

pp. 58 and 59. Part b) then follows easily from (9a) and (9b).

For part c), note that Dom.Qg / is the closure of �C
1
c
.M/ with respect to the

Dirac graph norm

! 7�! .k!k2g C kDg!k2g/1=2:
Moreover one has

kDg!k2g D kd!k2g C kıg!k2g :
Applying (9e) and Lemma 1.1, we obtain

kıg !k2g � ke�2 k21kıg!k2g C Cmkde�2 k2g;1k!k2g
Writing g D e�2 g , the same argument shows

kıg!k2g � keC2 k21kıg !k2g C CmkdeC2 k2g ;1k!k2g 
and therefore that the graphs norms w.r.t g and g are equivalent. This proves the

claim. �

2. Harmonic Sobolev coordinates and the class of metrics MK;h.M/

In this section, we collect and prove some facts on harmonic coordinates, that will

play an essential for our main results. First we recall the classical de�nition of the

Sobolev harmonic radius rg.x; p; q/ from [1].

De�nition 2.1. Let p 2 .m;1/, q 2 .1;1/, x 2 M . Then the W
1;p
g -harmonic

radius at x with Euclidean distortion q, rg.x; p; q/ 2 .0;1�, is de�ned to be the

supremum of all r > 0 such that there is a �
.0/
g -harmonic chart

ˆWBg.x; r/ �! U � R
m

which, with respect to the ˆ-coordinates, satis�es the estimates

q�1.ıij / � gij � q.ıij / as symmetric bilinear forms; (11a)

r1�m
p

� Z

U

j@kgij .y/jpdy

�1=p
� q � 1 for all i; j; k 2 ¹1; : : : ; mº: (11b)
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The following de�nitions will be convenient for the formulation of our main

results. Recall that Q stands for the curvature endomorphism.

De�nition 2.2. a) For any K > 0 and any function hWM ! .0;1/, let

MK;h.M/ WD
®

Qg
ˇ̌

Qg is a complete metric on M with Q Qg � �K
and min¹1; rg.�; p; q/º � h

for some p 2 .m;1/; q 2 .1;
p
2/

¯
:

b) Given a Borel function hWM ! .0;1/ and a smooth function  WM ! R

de�ne

d.g;  /.x/ WD max¹sinh.2j .x/j/; jd .x/jgº; x 2 M;

dh.g;  / WD
Z

M

d.g;  /.x/h.x/�.mC2/ �g.dx/ 2 Œ0;1�:

Then  is called a h-scattering perturbation of g, if one has dh.g;  / < 1.

It is not obvious from the de�nition that rg.x; p; q/ > 0, but ultimately this

follows from classical elliptic PDE theory (cf. [8]), or it can also by deduced from

from applying Proposition 2.5 below near x. Furthermore one has the following

fact:

Lemma 2.3. For all p; q, the capped W1;pg -harmonic radius min¹1; rg.�; p; q/º is
1-Lipschitz continuous with respect to g, that is, for all x; y 2 M one has

j min¹1; rg.x; p; q/º � min¹1; rg.y; p; q/ºj � dg.x; y/: (12)

Proof. We omit all g’s, �x p; q and set, r.x/ WD r.x; p; q/, Qr.x/ WD min¹1; r.x/º.
Let x 2 M and let y 2 B.x; Qr.x//. This implies that r.y/ � Qr.x/ � d.x; y/:

Moreover 0 < Qr.x/ � d.x; y/ < 1 because Qr.x/ D min¹1; r.x/º and d.x; y/ <

Qr.x/. Therefore we can conclude that

min¹1; r.y/º � min¹r.x/; 1º � d.x; y/ that is Qr.y/ � Qr.x/ � d.x; y/:

If Qr.x/ � Qr.y/ then we can conclude that j Qr.x/ � Qr.y/j � d.x; y/. If Qr.x/ < Qr.y/
then x 2 B.y; Qr.y//. This implies that r.x/ � Qr.y/ � d.x; y/ and this inequality,

as before, leads to the conclusion that Qr.x/ � Qr.y/�d.x; y/which in turn implies

that j Qr.x/ � Qr.y/j � d.x; y/.
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Suppose now that y … B.x; Qr.x//. If x … B.y; Qr.y// as well then we can

conclude immediately that j Qr.x/ � Qr.y/j � d.x; y/. If x 2 B.y; Qr.y// then, as

above, we have r.x/ � Qr.y/� d.x; y/ that is r.x/ � min¹r.y/; 1º � d.x; y/ which

in turn implies min¹r.x/; 1º � min¹r.y/; 1º�d.x; y/ that is Qr.x/ � Qr.y/�d.x; y/.

Finally in this last case we have Qr.y/ > Qr.x/ and so we can conclude that

j Qr.x/ � Qr.y/j � d.x; y/. �

In Proposition 2.5 below we provide the reader with harmonic radius esti-

mates under lower bounds on the Ricci curvature, that are required for the class

MK;h.M/. These estimates heavily rely on classical results from [1, 15]. In order

to make contact with our main results on scattering below, we add:

Remark 2.4. If one has Qg � �K for some K > 0, then one automatically has

Ricg � �K.m � 1/.

Now we can prove:

Proposition 2.5. Assume that

Ricg.x/ � � 1

ˇ2
and injg .x/ � Qh.x/ for all x 2 M ,

where ˇ > 0 is a constant and QhWM ! .0;1/ is a continuous function
(as x 7! injg.x/ itself is continuous, such a function always exists).

a) If Qh is g-Lipschitz, then for any p; q there is C D C.m; p; q/ > 0 such that
for all x 2 M one has

min¹rg.x; p; q/; 1º � C min
°
1;

Qh.x/
1C kd Qhk1;g

; ˇ
±
:

b) If there is a point x0 2 M , and constants c1 > 0, c2 � 0 such that
Qh � c1e

�c2dg.�;x0/, then for any p; q there is C D C.m; p; q/ > 0 such
that for all x 2 M one has

min¹rg.x; p; q/; 1º � C min
°
1;

c1

ec2
e�c2dg.x;x0/; ˇ

±
:

Proof. We will omit the dependence of g in the notation. Assume that the

strictly positive continuous function r0 be a lower bound of the homogenized

injectivity radius �.x/ D �g .x/ as de�ned in [15, 1]. Then a direct consequence

of Proposition 2.3 of [15] (which heavily relies on estimates from [1]) is that there
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is a C 0 D C 0.m; p; q/ > 0 such that for all x 2 M the harmonic radius is bounded

from below by

r.x; p; q/ � C 0 � h.x/; h.x/ D min
®
1; r0.x/; ˇ

¯
; (�)

so that

min¹r.x; p; q/; 1º � min¹C 0; 1º � h.x/:

In the cases a) and b) we can estimate the homogenized injectivity radius �.x/

at x 2 M and �nd an explicit expression for r0.x/. First we recall the de�nition

of �.x/. For any continuous function f W M ! R and t > 0 let

inf tf .x/ WD inf
y2B.x;t/

f .y/;

then

�.x/ WD sup¹t > 0 j inf t inj.x/ � tº:

Note that t 7! inf tf .x/ is non-increasing, and for t > 0 one has

inf t inj.x/ � inf t Qh.x/

We will choose r0.x/ such that

�.x/ D sup¹t > 0 j inf t inj.x/ � tº � sup¹t > 0 j inf t Qh.x/ � tº � r0.x/:

a) Let L WD kd Qhk1. Then inf t Qh.x/ � Qh.x/ � Lt so that

�.x/ � sup¹t > 0 j Qh.x/ � Lt � tº D
Qh.x/
1C L

DW r0.x/:

b) Let b.x/ WD d.x; x0/. For Qh.x/ D c1e
�c2b.x/,

�.x/ � sup¹t > 0 j inf t Qh.x/ � tº

D sup¹t > 0 j inf
y2B.x;t/

c1e
�c2b.y/ � tº

� sup¹t > 0 j c1e�c2.b.x/Ct/ � tº

D sup¹t > 0 j c1e�c2b.x/ � tec2tº

Because we are only interested in r0.x/ � 1, we conclude further

min¹�.x/; 1º � sup¹t 2 .0; 1� j c1e�c2b.x/ � tec2º D c1

ec2
e�c2b.x/ DW r0.x/:

This completes the proof. �
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3. Main results: The existence of the wave operators

This section is completely devoted to the formulation and the proof of our main

result Theorem 3.3 below, which deals with the existence and the completeness

of the wave operators W˙.Hg ; Hg ; I /. The following two propositions are the

main technical tools for the proof of Theorem 3.3. The �rst is a decomposition

formula for the operator Rn
g ;�

.Hg I � IHg/Rng;�:

Proposition 3.1. In the situation of Proposition 1.2c), let � > 0, n � 1 and let g
(and thus g ) be complete. Then the bounded operator

Rng ;�.Hg I � IHg/R
n
g;� �! �L2.M; g/ to �L2.M; g /

can be decomposed as

Rng ;�.Hg I � IHg/Rng;� D Rng ;�.Dg � 2 sinh.2 /IDg CDg I.1� e�2 /d

� d ı .1� e2 /IDg CDg intg .d / � I

� � intg .d /Dg/R
n
g;�:

(13)

Proof. Let us �rst note that if Qg is a complete metric, then

Dom.Q Qg/ D ¹˛j˛ 2 �L2.M; Qg/;D Qg˛ 2 �L2.M; Qg/º;

It follows from Proposition 1.2c) that

I Dom.Qg/ D Dom.Qg /:

We set g1 WD g, g2 WD g , and Rj WD Rgj ;�. Then, with an obvious notation, let

V WD Rn2.H2I � IH1/Rn1 ;

and let arbitrary fj 2 �k
L2
.M; gj /; j D 1; 2 be given. We further de�ne

hj WD Rnj fj 2 Dom.Hj
n/ � Dom.

p
Hj / D Dom.Qj /:

Then with � WD e we can calculate

hVf1; f2i2 D hRn2.H2I � IH1/Rn1f1; f2i2
D hD2Ih1; D2h2i2 � hIH1h1; h2i2
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hD2Ih1; D2h2i2 D hI.d C ��2Œı � int1.d�=�/��/h1; D2h2i2
D hD2I.d C ��2Œı � int1.d�=�/��/h1; h2i2
D hD2I��2.D1 � int1.d�=�/�/h1; h2i2

C hD2I.1 � ��2/dh1; h2i2
D hD2I��2D1h1; h2i2 C hD2I.1� ��2/dh1; h2i2

� hD2I��2int1.d�=�/�h1; h2i2

hIH1h1; h2i2 D hH1h1; �m�2kI�1h2i1 D hD1h1; D1.�m�2kI�1h2/i1
(8)D hD1h1; �m�2kD1I

�1h2i1 C hD1h1; .ext � int1/.d�
m�2k/I�1h2i1

D hD1h1; �m�2kI�1D1h2i1
C hD1h1; .ext � int1/.d�=�/�I

�h2i1
D hD1h1; I�.�2d C ��2ı/h2i1

C h�I.int1 � ext/.d�=�/D1h1; h2i2„ ƒ‚ …
DWA

D hID1h1; .�2d C ı2 � int1.d�
�2/ �

2
/h2i2 C A

D hID1h1; .ı2 C �2Œd � int2.d�
�2/ �

2
�/h2i2 C A

(since int1 D �2int2)

D h.Œı2 � �
2

� ext.d.��2//��2id C d/ID1h1; h2i2 C A

D h.ı2 ı �2id C � � ext.d�=�/C d/ID1h; h2i2 C A

D hD2 ı �2ID1h; h2i2 C h.d.1 � �2/ID1h1; h2i2
C h� � ext.d�=�/ID1h1; h2i2 C A

D hD2 ı �2ID1h1; h2i2 C h.d.1 � �2/ID1h1; h2i2
C h� � int1.d�=�/ID1h1; h2i2

Altogether we get the decomposition

V D Rn2.D2I�
�2D1 CD2I.1 � ��2/d CD2I�

�2int1.d�=�/�

�D2 ı �2ID1 � d.1� �2/ID1 � � int1.d�=�/ID1/R
n
1 ;

and the claimed formula follows from d�=� D d . �
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In the sequel the symbol Jp denotes the p-th Schatten class, p 2 Œ1;1�, of

bounded operators acting between two Hilbert spaces (so that p D 1 is the trace

class, p D 2 is the Hilbert-Schmidt class and p D 1 is the compact class etc.).

We will freely use the following well-known facts, valid for all bounded operators

A, B , C whose image and preimage spaces �t together:

kAkJp D kA�kJp ; kABCkJp � kAkkBkJpkCk for all p 2 Œ1;1�; (14)

kABkJ1 � kAkJpkBkJq for all p; q 2 .1;1/ with 1
p

C 1
q

D 1. (15)

Note that we will apply the above notation �berwise, as well as in the L2-sense.

For any smooth vector bundle E ! M let

E�
�E D

G

.x;y/2M�M
E�
y ˝Ex �! M �M

denote the corresponding (smooth) exterior bundle. One has:

Proposition 3.2. Assume that g 2 MK;h.M/ for some pair .K; h/. Then for all
n 2 N with n � m=4C 2 there is a C D C.m; n/ > 0, such that for all

� > Kdm
2

ebm
2

c C 1 D K max
jD0;:::;m

j.m � j /C 1; (16)

the operator Rn
g;�

is an integral operator, with a Borel integral kernel

M �M 3 .x; y/ 7�! Rng;�.x; y/ 2 Hom.
V

T�
yM;

V
T�
xM/ �

V
T�M �

V
TM

which satis�es

Z

M

jRng;�.x; y/j2J2�g.dy/ � Ch.x/�m for all x 2 M:

Proof. We will omit the g’s in the notation. By the Bochner–Lichnerowicz–

Weitzenböck formula, one has that

Vj WD �.j / � r�
j rj 2 D

.0/
C1.M I

V
jT�M/: (17)

Moreover, the Gallot–Meyer estimate [9] states that underQ � �K one has

Vj � �K � j.m � j /: (18)
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Then it follows from (17), (18), and semigroup domination for covariant Schrö-

dinger semigroups (cf. Theorem 2.13 in [14]) that

j expŒ�tH .j /�˛.x/j � expŒ�t .H .0/ � jK.m � j //�j˛j.x/ (19)

for all t � 0, ˛ 2 �
j

L2
.M/, where on the rhs, x 7! j˛.x/j is considered as a

nonnegative element of L2.M/. But as for any self-adjoint operator S with S � c

for some c 2 R, and any z 2 R with z < c one has

.S � z/�n D �.n/

Z 1

0

tn�1etze�tSdt;

we immediately obtain from (19) the pointwise inequality

j.H .j / C �/�n˛.x/j � .H .0/ � jK.m � j /C �/�nj˛j.x/:

Next, from a scalar elliptic resolvent estimate in harmonic coordinates (cf. Theo-

rem B.1 in [15]) and the assumption g 2 MK;h.M/ one gets a C2 D C2.m; n/ > 0

such that

.H .0/ C 1/�nj˛j.x/ � C2k˛kh.x/�m;

so putting everything together, keeping (16) in mind, we have for all ˛ 2 �j
L2
.M/

the estimate

j.H .j / C �/�n˛.x/j � C2k˛kh.x/�m;

which using

Rn� D .H C �/�n D
mM

jD0
.H .j / C �/�n

implies the existence of a C3 D C3.m; n/ > 0 such that for all ˛ 2 �L2.M/ one

has

jRn�˛.x/j � C2k˛kh.x/�m: (20)

Now let ¹eJ ºJ denote a globally de�ned Borel measurable g-orthonormal frame

for
V

T�M (which of course cannot be chosen smooth in general, but will not need

any further regularity than measurability). Combining (20) with Riesz-Fischer’s

representation theorem for bounded functionals, keeping in mind that Rn
�
˛ has a

continuous (in fact, a C4-) representative by the Sobolev embedding theorem, for

any x 2 M and any index J we get a unique Rn
�;x;J

2 �L2.M/ such that for all

˛ 2 �L2.M/ one has

Z

M

�
Rn�;x;J .y/; ˛.y/

�
�.dy/ D .Rn�˛.x/; eJ .x//:
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Moreover the norm of Rn
�;x;J

is bounded according to kRn
�;x;J

k � C2. De�ning

the Borel section

M 3 x 7�! Rn�;x.y/ 2 Hom.
V

T�
yM;

V
T�
xM/; Rn

�;x
.y/�eJ .x/ WD Rn

�;x;J
.y/;

we end up with the formula

Rn�˛.x/ D
Z

M

Rn�;x.y/˛.y/�.dy/:

It remains to show that .x; y/ 7! Rn
�
.x; y/ has a jointly Borel �-version: To this

end, it is su�cient to prove that .x; y/ 7! Rn
�;x;J

.y/ has a jointly Borel�- version.

Pick a countable ONB .�l/l2N of �L2.M/. In view of

hRn�;x;J ; �li D
Z

M

.Rn�;x;J .y/; �l.y//�.dy/ D .Rn��l .x/; eJ .x//;

we know that x 7! hRn
�;x;J

; �li is Borel for all l . But now the L2-expansion

Rn�;x;J D
X

l2N
hRn�;x;J ; �li�l

implies that .x; y/ 7! Rn
�
.x; y/ can be chosen jointly Borel, as the rhs of the latter

equation is jointly Borel, and the proof is complete. �

Now we can formulate and prove our main result on the existence and com-

pleteness of the wave operators W˙.Hg ; Hg ; I /. We refer the reader to Appen-

dix A for some corresponding functional analytic notation.

Theorem 3.3. Let  W M ! R be smooth with  , jd jg bounded, and assume
that g; g 2 MK;h.M/ for some pair .K; h/, in a way such that is a h-scattering
perturbation of g. Then the wave operators

W˙.Hg ; Hg ; I / D s lim
t!˙1

eitHg Ie�itHgPac.Hg/

exist and are complete. Moreover, theW˙.Hg ; Hg ; I / are partial isometries with
inital space ImPac.Hg/ and �nal space ImPac.Hg /.
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Proof. Let g1 WD g, g2 WD g . In view of Proposition 1.2b), and keeping in

mind (14) and that for all bounded intervals S � R, ` 2 R, r > 0, one has

EHj .S/.Hj C r/` D .Hj C r/`EHj .S/ 2 L.�L2.M; gj //;

we see that all assumptions of the Belopolskii–Birman theorem (cf. Theorem A.1

below) are satis�ed, once we can show that for all � as in Proposition 3.2 and all

even n � m=2C 4 one has

k.I�I � 1/Rn1;�kJ2 < 1; (21)

kRn2;�.H2I � IH1/Rn1;�kJ1 < 1: (22)

In order to see (21), we just have to note I�I D e � , and that by projecting,

Proposition 3.2 shows that at each degree the operator R
.j /;n

1;�
is an integral opera-

tor, with a Borel integral kernel

M �M 3 .x; y/ 7�! R
.j /;n

1;�
.x; y/ 2 Hom.

V
jT�

yM;
V
jT�

xM/

that satis�es the same estimate asRn
1;�
.x; y/. It follows that .e.m�2j / � id/R

.j /;n

1;�

is an integral operator, and thus we get

k.e � � 1/Rn1;�k2
J2

� C1.m/

Z

M

Z

M

j.e.m�2j / .x/ � 1/j2jR.j /;n
1;�

.x; y/j2
J2
�1.dx/�1.dy/

� C2. /

Z

M

h.x/�md.g1;  /.x/�1.dx/

D C2. /dh.g1;  /

< 1;

where we have used that  is bounded, so that

je.m�2j / .x/ � 1j2 � ke.m�2j / � 1k1je.m�2j / .x/ � 1j

� C.m; / sinh.2j .x/j/:

It remains to prove (22), which will be shown using the decomposition for-

mula (13). We only show how to estimate the �rst summand (noting that in view

of Lemma 1.1 the other summands can be treated analogously).
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Let S.x/ D sinh.2 .x//1=2 be a (complex) square root. Since under complete-

ness one has ŒDj ; R
n
j;�
� D 0, we have

Rn2;�D2 sinh.2 /ID1R
n
1;� D D2R

n=2

2;�
R
n=2

2;�
S.x/S.x/IR

n=2

1;�
R
n=2

1;�
D1

As DkR
n
k;�

D Rn
k;�
Dk and I�1 are bounded, it follows from SI D I�1S that

kRn2;�D2 sinh.2 /ID1R
n
1;�kJ1 � kD2Rn=22;�

k kRn=2
2;�
SkJ2kSIRn=21;�

kJ2kRn=21;�
D1k

� CkRn=2
2;�
SkJ2kSRn=21;�

kJ2

D Ck.Rn=2
2;�
S/�kJ2kSRn=21;�

kJ2

D CkSRn=2
2;�

kJ2kSRn=21;�
kJ2 :

However, by Proposition 3.2, the operator SR
n=2

k;�
is an integral operator which

satis�es

kSRn=2
k;�

kJ2 � C.m; n/
p

dh.g1;  / < 1:

This completes the proof. �

Corollary 3.4. Under the assumptions of Theorem 3.3, let j 2 ¹0; : : : ; mº and let

I .j / D I .j /g;g 
W�j

L2
.M; g/ �! �

j

L2
.M; g /; ! 7�! !

be the canonical identi�cation acting on j -forms. Then the wave operators

W˙.H
.j /
g 
; H .j /

g ; I .j // D s lim
t!˙1

e
�itH

.j/
g I .j /eitH

.j/
g Pac.H

.j /
g /

exist and are complete. Moreover, the W˙.H
.j /
g ; H

.j /
g ; I / are partial isometries

with inital space ImPac.H
.j /
g / and �nal space ImPac.H

.j /
g /.

Proof. This follows from Theorem 3.3, noting that one has

Hg D
mM

jD0
H .j /
g ; Hg D

mM

jD0
H .j /
g 

so that we get the corresponding orthogonal decompositions of the spectral mea-

sures

EHg D
mM

jD0
E
H
.j/
g
; EHg D

mM

jD0
E
H
.j/
g 

;

so that I D
Lm
jD0 I

.j / completes the proof. �
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4. Applications and examples

This section is devoted to some abstract applications of Theorem 3.3 which are

then applied to some explicit examples.

4.1. Applications. Firstly, we can handle the prototypical case of metric pertur-

bations, namely topological perturbations:

Corollary 4.1. Assume that g is complete with Qg � �K for some K > 0 and
that Qg is a complete metric onM which is conformally equivalent to g and which
coincides with g at in�nity. Then the assumptions of Theorem 3.3 (and thus of
Corollary 3.4) are satis�ed.

Proof. Let Qg D e2 g. By assumption,  is compactly supported, so that  and

jd jg are bounded, and in view of (9d), Qg is bounded from below. As the

harmonic radius depends continuously on x by Lemma 2.3, it follows that all

assumptions of Theorem 3.3 are satis�ed with

h.x/ WD min¹1; rg.x; p; q/; rg .x; p; q/º for all p > m, 1 < q <
p
2,

noting that

dh.g;  / � C 

Z

supp.d.g; //

h.x/�m�2�g.dx/ < 1;

where we have used again that  is compactly supported. �

Combining with Theorem 4.1 in [6] for the Gauss-Bonnet operator Dg D
d C ıg , we obtain the following variant of Theorem 3.3, which essentially states

that under slightly stronger curvature assumptions, we can drop the conformal

equivalence on compact subsets:

Corollary 4.2. Let .M; g/ and .M; Qg/ be conformal at in�nity, i.e. there are a
compact set K � M and a smooth function  WM ! R such that Qg D e2 g

on M n K. Assume further that  , jd jg are bounded, that Secg is bounded,
and that g; g 2 ML;h.M/ for some pair .L; h/, in a way such that  is a
h-scattering perturbation of g. Then the wave operatorsW˙.H Qg ; Hg ; I / exist and
are complete; moreover they are partial isometries with inital space Im Pac.Hg/

and �nal space Im Pac.H Qg/.

Proof. From Theorem 3.3 we know that W˙.Hg ; Hg ; Ig;g / exist and are com-

plete, and Theorem 4.1 of [6] shows that W˙.H Qg ; Hg ; Ig ; Qg/ exist and are com-

plete.
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The chain rule for wave operators

W˙.H Qg ; Hg ; Ig ; Qg ı Ig;g / D W˙.H Qg ; Hg ; Ig ; Qg/W˙.Hg ; Hg ; Ig;g /

implies that W˙.H Qg ; Hg ; I /, where by de�nition

I WD Ig; Qg D Ig ; Qg ı Ig;g 

exists. Using Proposition XI.5(c) from [22], we get that W˙.H Qg ; Hg ; I / is com-

plete from the existence of

W˙.Hg ; H Qg ; I
�1/ D W˙.Hg ; Hg ; I

�1
g;g 

/W˙.Hg ; H Qg ; I
�1
g ; Qg/:

As in the proof of (21) we conclude that .I�I � 1/EHg.S/ is compact for any

bounded interval S . Then using Proposition 5(d) and Lemma 2 from [22, Chap-

ter XI.3], we get the statement about the partial isometries. �

As a more sophisticated application, we show that the assumptions of our main

result are weaker (in the conformal case) than those of the main result of [21],

where only functions, that is 0-forms, are treated. To this end, we add the simple:

De�nition 4.3. We say that a continuous decreasing function ˇW Œ0;1/! .0;1/,

with ˇ < 1 in the complement of a compact set, is exponentially bounded from
below, if there are C1 > 0, C2 � 0 such that

ˇ.r/ � C1e
�C2r for all r � 0.

Now we can prove:

Proposition 4.4. Assume that  WM ! R is a smooth bounded function, that g
is complete such that its sectional curvatures are bounded jSecg j; jSecg j � L

for some L > 0, and furthermore that there is a function ˇ which is exponentially
bounded from below, and a point x0 2 M such that with ˇ.x/ WD ˇ.1Cdg.x; x0//

the following conditions are satis�ed:

(i) for some constant C > 0 one has

1jg � g j WD jg � g jg C jrg � rg jg � C � ˇI (23)

(ii) there are constants b 2 .0; 1/ with ˇb 2 L
1.M; g/, and C1 > 0 such that for

all x 2 M ,

finjg.x/ WD min
®

�

12
p
L
; injg.x/

¯
� C1 � ˇ.x/ 1�b

mC2 : (24)
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Then the assumptions of Theorem 3.3 are satis�ed, i.e. one has jd jg 2 L
1.M/,

and g; g 2 MK;h.M/ for some pair .K; h/, in a way such that is a h-scattering
perturbation of g.

Proof. Let us �rst check that g; g 2 MK;h for some K > 0 and an appropriate

hWM ! .0;1/.

Clearly, by the curvature assumption, both curvature endomorphisms are

bounded from below by a constant. To construct h, choose 0 < � � 1 with

�g � g � ��1g;

then Proposition D.1 from [15] together with (24) implies that one has

injg .x/ � min
®
�2�

12
p
L
; C1

�

2
ˇ.x/

1�b
mC2

¯
DW Qh.x/:

Thus we can use Proposition 2.5 to conclude that for all p; q one has

min¹1; rg.x; p; q/; rg .x; p; q/º � h.x/ WD min
®
c1e

�c2 1�b
mC2

d.x;x0/; c3
¯

(25)

with c1; c3 depending on �; L; p; q. Finally it remains to show that dh.g;  / < 1.

To that end we will �rst show

dh.g;  /.x/ � C3 � 1jg � g j.x/ � zCˇ.x/: (26)

Clearly jg � g jg D je2 � 1j, so that

sinh.2j .x/j/ � C4jg � g j.x/:
Furthermore recall from (9d) that for any smooth vector �eld Y on M one has

.rg � rg/.Y / D d .�/˝ Y C d .Y /.�/ � g.�; Y /gradg. /

Let ¹Xiº be a smooth local orthonormal frame of vector �elds with respect to g.

Then

jd j2g D
X

`

jX`. /j2;

jrg � rg j2g D
mX

j;kD1
j.rg � rg/.Xj ; Xk/j2

D
mX

j;k

jXj . /Xk CXk. /Xj � ıjk
X

`

X`. /X`j2

D
X

j<k

2jXj . /Xk CXk. /Xj j2 C
X

`

jX`. /j2;

i.e. jd jg � jrg �rg jg . Together with (25) this shows (26) (and also that jd jg
is bounded).
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Now the proof of dh.g;  / < 1 is almost the same as in Remark 3.9 from [15];

for the convenience of the reader we repeat the short argument.

We decompose M D M1 t M2, where M1 D ¹x 2 M j h.x/ D c3º with c3

from (25), and M2 D M nM1. On M2 we know

h�.mC2/.x/ D c5e
c2
1�b
mC2

dg.x;q/ � c6ˇ.x/
� 1�b
mC2 ; x 2 M2

and from (26), (23)

dh.g;  / D
Z

M

d.g;  /.x/h.x/�.mC2/ �g.dx/

� C

Z

M2

ˇ.x/b �g.dx/C yC
Z

M1

ˇ.x/ �g.dx/

< 1

where we have used (ii) and that ˇ < 1 outside a compact set. �

Remark 4.5. Note that although it deals with di�erential forms, the assumptions

of Proposition 4.4 are still weaker than the ones from the main result Theorem 0.1

from [21] which only deals with functions (which however treats not necessarily

conformal perturbations!) Firstly, and this is the main point of our results, we only

have to assume a �rst order condition on the deviations of the metrics, whereas

their assumption g �2
ˇ
g (cf. De�nition 1.9 from [21]) is a second order one of

the form

2jg � g j.x/ WD jg � g jg .x/C
1X

iD0
jr i
g.rg � rg /jg.x/ � C � ˇ.x/:

Secondly, we can allow a larger class of “control functions” ˇ. Indeed, Theo-

rem 0.1 from [21] requires the function ˇ to be of “a moderate decay” (cf. De�ni-

tion 1.4 in [21]), which is a stronger assumption than ours on ˇ.

4.2. Examples. Finally, let us come to some explicit examples which satisfy

the assumptions of the above results. Firstly, general manifolds with bounded

geometry can be treated as follows:

Corollary 4.6. Let g be such that jSecg j is bounded and that g has a positive
injecitivity radius (in particular, g is complete). Assume that WM ! R is smooth
with max¹ ; jd jg ; jHessg. /jgº bounded, and

Z

M

max¹sinh.2j .x/j/; jd .x/jgº�g.dx/ < 1:

Then the wave operatorsW˙.Hg ; Hg ; I / exist and are complete.
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Proof. In view of Theorem 3.3, it is su�cient to prove that g; g 2 MK;h for

some constants K > 0; h > 0. Clearly this is the case for g. On the other

hand, g is complete, and as jHessg. /jg and jd jg are bounded it follows from

the perturbation formula (9g) that jSecg j is bounded. Now as both metrics are

complete and quasi-isometric and both with bounded curvature, injg.M/ > 0

automatically implies injg .M/ > 0 (see e.g. Proposition D.1 from [15]), which

completes the proof of g; g 2 MK;h for some constants K > 0; h > 0. �

More speci�cally, Corollary 4.6 can be brought into the following convenient

form in the particularly important case where the “known” Riemannian manifold

.M; g/ has a warped product structure.
To this end let M be a smooth connected manifold (without boundary)

dim.M/ D n C 1, let U � M be a smooth compact submanifold with

boundary and dim.N / D n. Let us label by N WD @U the boundary of U

and by U 0 the interior of U . Assume that there exists a smooth di�eomor-

phism: F WM n U 0 ! Œ1;1/ � N . Finally consider a smooth metric g on M

such that .F �1/�.gjMnU 0/ D h2dr2 C f 2gN where f W Œ1;1/ ! Œ0;1/ and

hW Œ1;1/ ! Œ0;1/ are smooth and gN is a smooth metric on N .

Proposition 4.7. LetM , N , U , U 0, g and F WM nU 0 ! Œ1;1/�N be as above.
Then the following assertions hold:

� if inf h > 0, then g is complete;

� if inf min¹h; f º > 0, then there exists � > 0 such that

inf
x2M

�g.Bg.x; �// > 0I

� assume that h D 1 and that .log.f //00, .log.f /0/2 and 1=f 2 are bounded
functions on Œ1;1/. Then .M; g/ is complete with bounded sectional curva-
tures and positive injectivity radius.

Proof. Let QxWM ! .0;1/ be a smooth function such that QxjMnU 0 D xıF . Then Qx
is a proper function with bounded gradient and the completeness statement follows

using Gordon’s completeness criterion [10, 11] (which states that completeness is

equivalent to the existence of a smooth proper function with bounded gradient).

The second statement follows immediately observing that U is compact and that

on Œ1;1/� N (which through F is isometric to M n U 0) we have

�g0.dp; dr/ D h.r/f n.r/dr�gN .dp/; where g0 WD .F�1/�.gjMnU 0/:
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Finally we deal with the third statement. According to the formulas for the

curvature of warped product metrics proved in [17] p. 393, the assumptions on f

guarantee that the sectional curvatures of g are bounded. This property, together

with the second property, implies that injg.M/ > 0which follows from a classical

result of Cheeger, Gromov, and Taylor [7], p. 47. The proof is thus completed. �

We point out that f .r/ WD rb, with b � 0, satis�es all the assumptions of the

last statement of Proposition 4.7.

Here the case b D 0 (with h D 1) corresponds to Riemannian manifolds with
cylindrical ends (these kind of metrics belong to the family of Melrose’s b-metrics

which are intensively studied in [19]).

The case b D 1 (with h D 1) corresponds to so called Riemannian manifolds

with conical ends. This kind of metric is a particular case of a more general class

of metrics called scattering metrics which are intensively studied in [20].

Another function that satis�es all the assumptions of the last statement of

Proposition 4.7 is given by f .r/ D er . This kind of metric (with h D 1) is

isometric to a conformally compact metric de�ned on the interior of U and the

latter kind of metrics are studied for instance in [18].

Corollary 4.8. Assume in the above warped product situation that jSecg j is
bounded, that g has a positive injectivity radius and that ˇW Œ1;1/ ! .0;1/ is a
bounded Borel function with ˇ 2 L

1.Œ1;1/; h.r/f n.r/dr/. Then for any bounded
smooth function  WM ! R with bounded g-Hessian and

max¹sinh.j2 j/; jd jgºjF�1.r;q/ � ˇ.r/ for all .r; q/ 2 Œ1;1/� N ,

the wave operatorsW˙.Hg ; Hg ; I / exist and are complete.

Proof. We are going to use Corollary 4.6. Note �rst that jd jg is bounded, as ˇ

is so. By Corollary 4.6 and the compactness of U we only have to check that
Z

MnU 0

max¹sinh.2j .x/j/; jd .x/jgº�g.dx/ < 1;

but clearly Z

MnU 0

max¹sinh.2j .x/j/; jd .x/jgº�g.dx/

�
Z

N

Z 1

1

ˇ.r/h.r/f n.r/drd�gN .q/

� �gN .N /

Z 1

1

ˇ.r/h.r/f n.r/dr

< 1;

so that all assumptions of Corollary 4.6 are satis�ed by .g;  /. �
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Let us specify the condition on the “control function” ˇ from Corollary 4.8 for

the above mentioned three special cases of warped products:

� if g has a cylindrical end, then we simply have to require thatˇ2L1.Œ1;1/;dr/;

� if g has a conical end, then our condition on ˇ becomesˇ 2 L
1.Œ1;1/; rndr/;

� �nally, in case h D 1 and f .r/ D er , our condition on ˇ becomes ˇ 2
L
1.Œ1;1/; enrdr/.

We can now formulate a more sophisticated application of our main result,

which is motivated by observing that any two su�ciently well-behaved warped

product metrics are “essentially conformally equivalent” (see the proof of Propo-

sition 4.9 below for precise statements).

Proposition 4.9. Let M , N , U , U 0 and F WM n U 0 ! Œ1;1/ � N be as in
Proposition 4.7. Let g and Qg be two warped product metrics such that

� one has

.F�1/�.gjMnU 0/ D dr2 C r2bgN for some b with 0 � b � 1;

� one has

.F�1/�. QgjMnU 0/ D dr2 C f 2gN with f W Œ1;1/ ! Œ1;1/ smooth;

� the function max¹f �2; .log.f //00; .log.f /0/2º is bounded;

� with � D �f;bW Œ1;1/ ! Œ0;1/ de�ned by

�.r/ WD

8
ˆ̂̂
<
ˆ̂̂
:

.1 � b/ 1
1�b

� Z r

1

1

f .s/
ds

� 1
1�b

if 0 � b < 1,

e
R r
1

1
f.s/

ds if b D C1,

assume that ˇ̌
ˇ̌�

000�0 � .�00/2

.�0/2

ˇ̌
ˇ̌ is bounded (27)

and that

max
°

sinh.j log..�0/2/j/;
ˇ̌
ˇ�00

�0

ˇ̌
ˇ
±

� ˇ (28)

for some bounded ˇ 2 L
1.Œ1;1/; f ndr/.

Then the wave operatorsW˙.Hg ; H Qg ; I / exist and are complete.
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Proof. First of all we observe that, by Proposition 4.7, Qg and g are complete,

with bounded sectional curvature and with positive injectivity radius. Let � be a

smooth and positive function on M such that e2�jMnU 0 coincides with .�0/2 ı F .

Then, by (27) and (28), we have that also g� is complete with bounded sectional

curvatures and positive injectivity radius and by Corollary 4.8 we can conclude

that the wave operators W˙.Hg� ; Hg ; I / exist and are complete. Now consider

the metric g and g�. They are isometric on M n U 0 through an isometry that on

Œ1;1/ � N is given by .s; p/ D .�.r/; p/. Therefore we can use Theorem 4.1

of [6] to conclude thatW˙.Hg ; Hg� ; Ig;g�/ exist and are complete. Finally, using

the same argument used at the end of the proof of Corollary 4.2, we can �nally

conclude that the wave operators W˙.Hg ; H Qg ; I / exist and are complete. �

Finally, we show how the latter results can be used to actually control the

absolutely continuous spectrum of a certain metric from the knowledge of the

absolutely continuous spectrum of another metric, by showing that the wave

operators exist and are complete. Let �ac.T /, resp. �ess.T /, denote the absolutely

continuous, resp. the essential spectrum of a self-adjoint operator T . We recall

that H
.j /
g denotes the Friedrichs realization of the Hodge–Laplacian given by the

metric, acting on j -forms.

Corollary 4.10. Let g and Qg be as in Proposition 4.9.

a) If b D 0 then for every j D 0; : : : ; nC 1 we have

�ac.H
.j /

Qg / �
[

k2N
.Œ�

.j /

k
;1/ [ Œ�.j�1/

k
;1// (29)

with .�.j /
k
/k2N (resp. .�.j�1/

k
/k2N) the eigenvalues of the Hodge–Laplacian

H
.j /
gN (resp. H .j�1/

gN ) acting on N .

b) Assume now that U 0 is di�eomorphic to the open Euclidean ball B.0; 1/ �
RnC1.

If b D 0 then for every j D 0; : : : ; nC 1 we have

�ac.H
.j /

Qg / D Œ�.j /;1/; (30)

where �.j / WD min¹�.j /0 ; �
.j�1/
0 º is the minimum of the lowest eigenvalue �.j /0

of H .j /
gSn and the lowest eigenvalue �.j�1/

0 of H .j�1/
gSn , with gSn the standard

metric on the unit sphere Sn.

Finally, if 0 < b � 1 then for every j D 0; : : : ; nC 1 we have

�ess

�
H
.j /

Qg
�

D �ac.H
.j /

Qg / D Œ0;1/: (31)
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Proof. By Proposition 4.9 we know that �ac.H
.j /

Qg / D �ac.H
.j /
g /. Consider a

di�eomorphism of M that, on Œ1;1/ � N , is given by .t; p/ D .er ; p/. Through

this di�eomorphism we get a metric g0, isometric to g, such that on Œ1;1/ � N

the metric g0 takes the form e2tdt2 C e2tbgN . Now the assertions follow directly

from the results stated on page 251 in [2] and on page 1750–1751 on [3], where

the author explicitely calculates the essential spectrum of g0 in the general case,

and the absolutely continuous spectrum of g0 in case U 0 is the Euclidean ball. For

part a) we additionally use that the essential spectrum of a self-adjoint operator

always contains its absolutely continuous spectrum. �

A. Belopol0skii–Birman theorem

For the convenience of the reader we cite a variant of the Belopol0skii–Birman

theorem, which is precisely Theorem XI.13 in [22]:

Theorem A.1 (Belopol0skii–Birman). For k D 1; 2, let Hk be a self-adjoint
operator in a Hilbert space Hk, where EHk denotes the operator valued spectral
measure,Qk the sesquilinear form, andPac.Hk/ the projection onto the absolutely
continuous subspace of Hk corresponding to Hk. Assume that I W H1 ! H2 is
bounded operator which satis�es:

� I has a two-sided bounded inverse;

� for any bounded interval S � R one has

EH2.S/.H2I � IH1/EH1.S/ 2 J1.H1;H2/;

.I�I � 1/EH1.S/ 2 J1.H1/I

� either I Dom.Q1/ D Dom.Q2/, or I Dom.H1/ D Dom.H2/.

Then the wave operators

W˙.H2; H1; I / D s lim
t!˙1

eitH2Ie�itH1Pac.H1/

exist and are complete, where completeness means that

.KerW˙.H2; H1; I //
? D Im Pac.H1/; ImW˙.H2; H1; I / D Im Pac.H2/:

Moreover,W˙
�
H2; H1; I

�
are partial isometries with inital space ImPac.H1/ and

�nal space Im Pac.H2/.
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