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Abstract. In this Note, we consider 1D lattice Schrödinger operators with deterministic

strongly mixing potentials as studied in [3] and [2] with very small coupling. We describe

a scheme to establish positivity of the Lyapunov exponent from a statement at some �xed

scale. �e required input may then be derived from Furstenberg theory, if the underlying

dynamics are su�ciently mixing, or veri�ed directly by numerical means.
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1. Summary

Consider the two following model cases of Schrodinger operators on Z

Hx D �C Vx with Vx.j / D �f .Kjx/; x 2 T; K 2 ZC; K � 2 (1.1)

and

Hx D �C Vx with Vx.j / D �f .Ajx/; x 2 T
2; A 2 SL2.Z/ hyperbolic:

(1.2)

Here f is a non-constant function that we assume at least C 1.

For small coupling � 6D 0, positivity of the Lyapunov exponents was estab-

lished in [3] using the Figotin–Pastur perturbative method. �is analysis was pur-

sued in [2] where we proved furthermore that the Integrated Density of States

(IDS) is Hölder regular andHx satis�es Anderson localization for almost every x.

At the other end, if we assume for instance f a non-constant trigonometric

polynomial and j�j > �f , M. Herman subharmonicity technique applies to prove

positivity of the exponents (and hence Anderson localization using the arguments

from [2]).
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�ese seemed to be the only available strategies, which do not cover inter-

mediate ranges of � (note also that Herman’s method is quite restrictive for the

function f ).

�e purpose of this Note is to show how to prove the above properties (under

mild assumptions on f ) and arbitrary � 6D 0, provided the transformation is as-

sumed ‘su�ciently mixing’. More precisely, in (1.1) we assume K large enough

and in (1.2), that A is su�ciently expanding, depending on the oscillation of f

and kf kC 1 . Eventually, positivity of the Lyapunov exponents is then derived from

Furstenberg’s theorem on random matrix products.

Precise statements appear in �eorems 1 and 2 below.

Roughly speaking, our approach relies on a �nite scale statement. �is input

is derived from large deviation principles in Furstenberg’s theory, arguing that the

cocycles at some �xed �nite scale behave like in the random case (for an appro-

priate assumption on the model). Rather than invoking random matrix product

theory, the required �nite scale information may also be checked numerically, as

we will illustrate in some simple cases. We also believe that such “�nitary ap-

proach” to problems of positivity of Lyapunov exponents could be useful in other

situations.

2. Schrodinger cocycles

Let .�; �; T / be a dynamical system, � D T
k a torus, � Lebesque. �is setting

covers our examples.

Let f be a C 1 function on �.

De�ne

MN .x/

D
 

E � f .TN �1x/ �1
1 0

!  

E � f .T N �2x/ �1
1 0

!

� � �
 

E � f .x/ �1
1 0

!

:

(2.1)

Let N0 be a �xed large scale and write

MNN0
.x/ D MN0

.T .N �1/N0x/MN0
.T .N �2/N0x/ : : :MN0

.x/:

Next, we perform a translation of x by vectors y 2 �N0;N � � (where�N0;N may

be �nite or in�nite) and equipped with a normalized measure Av
y

. Using again the
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cocycle property

log kMNN0
.x C y/vk

D log




MN0
.T .N �1/N0.x C y//

� M.N �1/N0
.x/v

kM.N �1/N0
.x/vk

�




 (2.2)

C log kM.N �1/N0
.x/vk

C Œlog kMNN0
.x C y/vk

� log kMN0
.T .N �1/N0 .x C y//M.N �1/N0

.x/vk�:
(2.3)

Integrating, this gives

Z

log kMNN0
.x/vkdx �

Z

°

Av
y

log




MN0
.T .N �1/N0 .x C y//

� M.N �1/N0
.x/v

kM.N �1/N0
.x/vk

�





±

dx (2.4)

C
Z

log kM.N �1/N0
.x/vkdx

� .2:5/

with (2.5) an upperbound on j(2.3)j for x 2 � and y 2 �N0;N .

Obviously (2.4) is at least

min
N

min
x2�;jwjD1

Av
y

¹log kMN0
.T .N �1/N0.x C y//wkº: (2.6)

Our goal is then to ensure positivity of (2.6), more precisely,

(2.6) > .2:5/:

�is process may then be iterated, leading to positivity of the Lyapunov exponent

L.E/ D lim
N !1

1

N

Z

�

log kMN .E; x/kdx:

�e scale N0 is chosen su�ciently large, depending on the dynamics and f .

�e basic idea is to obtain an image measure on �N0 under the map

y 7�! .T .N �1/N0 .x C y/; T .N �1/N0C1.x C y/; : : : ; TNN0�1.x C y// (2.7)

which is close to the uniform measure on �N0 (in the weak sense, depending

on f ). �is will require su�ciently strong mixing properties for the transforma-

tion T . Eventually (assuming f non-constant of course), our goal is to exploit
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the theory of random matrix products, cf. [1]. �is theory indeed asserts that by

taking N0 large enough,

min
jwjD1

Z

�N0

log









N0�1
Y

j D0

 

E � f .xj / �1
1 0

!

w









dx0 � � �dxN0�1 > cN0 (2.8)

for c � L.E/ > 0 and (2.8) moreover valid for all E in a given bounded energy

interval (note that for large E, clearly L.E/ � log jEj/.
It remains then to bound (2.5), which is an issue of cocycle perturbation and

will typically depend on expansion properties of T . Some basic estimates will be

presented in the next section.

�ere is the following variant of the above construction. Taking v 2 R
2,

jvj D 1, one may write (denoting M�
N the adjoint of MN )

log kMNN0
.x C y/

� log kM�
NN0

.x C y/vk

� log











M�
N0
.x C y/

M�
.N �1/N0

.T N0x/v

kM�
.N �1/N0

.T N0x/vk











(2.9)

C log kM�
.N �1/N0

.TN0x/vk (2.10)

� max
jvjD1;y2�N0;N

j log kM�
NN0

.x C y/vk

� log kM�
N0
.x C y/M�

.N �1/N0
.TN0x/vkj:

(2.11)

Let then v D vx such that kM�
.N �1/N0

.T N0x/vxk D kM.N �1/N0
.T N0x/k. Hence

(2.9) C (2.10) D log kM�
N0
.x C y/wxk C log kM.N �1/N0

.TN0x/k

for some unit vector wx. Integration in x 2 �; y 2 �N0;N gives

Z

log kMNN0
.x/kdx > min

x2�;jwjD1

®

Av
y

log kM�
.N0/.x C y/wk

¯

(2.12)

C
Z

log kM.N �1/N0
.x/kdx

� (2.11)

and we may iterate, provided (2.12)–(2.11) > 0.

We will implement the above scheme in the following examples:

� D T; T x D Kx; with K � 2 an integer; (2.13)

� D T
2; T x D Ax; with A 2 SL2.Z/ hyperbolic: (2.14)
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3. Perturbation of cocycles

Let

A1; : : : ; AN 2 SL2.R/; kAj k; kA�1
j k < C1;

B1; : : : ; BN 2 SL2.R/; kAj � Bj k < "j < 1;

and

v 2 R
2; kvk D 1:

�e purpose of what follows is to establish inequality (3.11) below.

Estimate

kA1 : : : AN v � B1 : : : BN vk

� kA1 � B1k kA2 : : : AN vk C kB1A2 : : : AN v � B1 : : : BNvk

D .3:1/C .3:2/:

�en

.3:1/ � "1kA2 � � �ANvk

� "kA�1
1 k kA1 � � �ANvk

< "1C1kA1 : : : ANvk;

.3:2/ � kB1k kA2 � B2k kA3 : : : AN vk
C kB1B2A3 : : : AN v � B1 : : : BN vk

D .3:3/C .3:4/;

.3:3/ � .C1 C "1/"2kA3 : : : AN vk

� .C1 C 1/"2kA�1
2 k kA�1

1 k kA1A2 : : : ANvk

< "2.1C C1/C
2
1 kA1 : : : AN vk;

.3:4/ � kB1k kB2k kA3 � B3k kA4 � � �ANvk
C kB1B2B3A4 : : : ANv � B1 : : : BNvk

D .3:5/C .3:6/;
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.3:5/ < .1C C1/
2"3kA�1

3 k kA�1
2 k kA�1

1 k kA1A2 : : : AN vk

< "3.1C C1/
2C 3

1 kA1 : : : ANvk;

etc.

Hence

kA1 : : : AN v � B1 : : : BN vk <
h

X

j �1

"j .1C C1/
2j �1

i

kA1 : : : AN vk .3:7/

and also








A1 : : : ANv

kA1 : : : ANvk � B1 : : : BN v

kB1 : : : BN vk









< 2
X

j �1

"j .1C C1/
2j �1: (3.8)

Write a telescopic sum

log kA1 : : : ANvk

D log









A1

� A2 : : : AN v

kA2 : : : AN vk
�











C log









A2

� A3 : : : ANv

kA3 : : : ANvk
�









C � � � C log









Aj

� Aj C1 : : : ANv

kAj C1 : : : ANvk
�









C : : : :

By (3.8),








Aj

� Aj C1 : : : AN v

kAj C1 : : : AN vk
�

� Bj

� Bj C1 : : : Bnv

kBj C1 : : : BNvk
�









< "j C 2C1

X

j 0�j C1

"j 0.1C C1/
2j 0�1;

and therefore, since kBjwk � kB�1
j k�1 > 1

C1
for jwj D 1,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ









Aj

� Aj C1 : : : ANv

kAj C1 � � �ANvk
�

















Bj

� Bj C1 : : : BN v

kBj C1 : : : BN vk
�









� 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

< C1"j C 2C 2
1

X

j 0�j C1

"j 0.1C C1/
2j 0�1:

Hence, using the inequality j log.1C x/j < 2jxj for jxj < 1
2
, it follows that

ˇ

ˇ

ˇ

ˇ

log









Aj

� Aj C1 : : : AN v

kAj C1 : : : AN vk
�









� log









Bj

� Bj C1 : : : BNv

kBj C1 : : : BNvk
�









ˇ

ˇ

ˇ

ˇ

< 2C1"j C 4C 2
1

X

j 0�j C1

"j 0.1C C1/
2j 0�1;

(3.9)
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provided

C 2
1

X

j �1

"j .1C C1/
2j �1 <

1

5
: (3.10)

Assuming (3.10), it follows that

j log kA1 : : : AN vk � log kB1 : : : BN vkj < 6C 2
1

X

j �1

j"j .1C C1/
2j �1: (3.11)

4. Map x 7! Kx on T

Let � D T; K 2 ZC; K � 2 and f 2 C 1.T/. We apply the second procedure

discussed in Section 2.

Fix N0 and de�ne

�N0;N D �N0
D
° j

KN0
I j D 0; 1; : : : ; KN0 � 1

±

;

noting that

T N0.x C y/ � T N0.x mod 1/ for all x 2 T; y 2 �N0
:

Hence (2.11) D 0 and (2.12) equals

min
x;jwjD1

²

K�N0

KN0 �1
X

˛D0

log









�

E � f .x CK�N0˛/ 1

�1 0

�

�

E � f .Kx CK�N0C1˛/ 1

�1 0

�

: : :

�

E � f .KN0�1x C ˛
K
/ 1

1 0

��

w1

w2

�








³

:

(4.1)

It remains to analyze the map

' D 'x W Z=KN0Z �! T
N0

de�ned by

'.˛/ D
�

x C ˛

KN0
; Kx C ˛

KN0�1
; : : : ; KN0�1x C ˛

K

�

: (4.2)

If we �xN0 and takeK large enough, the image measure becomes weakly equidis-

tributed (uniformly in x). One has indeed that for � 2 Z
N0 , 0 < j�j < K,

K�N0

ˇ

ˇ

ˇ

ˇ

KN0 �1
X

˛D0

e2�i�:'.˛/

ˇ

ˇ

ˇ

ˇ

D K�N0

ˇ

ˇ

ˇ

ˇ

KN0 �1
X

˛D0

e
2�i˛

�

�0

KN0
C

�1

KN0�1
C���C

�N0�1

K

�ˇ

ˇ

ˇ

ˇ

D 0

implying the required equidistribution statement.
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In view of the discussion in Section 2, we proved the following result.

�eorem 1. Given � > 0 and 0 < C < 1, there is K0 such that if K 2 ZC,

K > K0, and f 2 C 1.T/ is a real function satisfying

kf kC 1 < C and osc.f / > �; (4.3)

then the Schrodinger operator on ZC

Hx D �C Vx ; with Vx.j / D f .Kjx/; (4.4)

has positive Lyapunov exponents for all energies.

Once the positivity of the Lyapunov exponents established, we may proceed

further, following [2], and prove a large deviation inequality for the pointwise

Lyapunov exponents

LN .EI x/ D 1

N
log kMN .EI x/k:

�is enables then to establish Hölder regularity of L.E/ and the IDS N.E/ (by

�ouless formula) and also Anderson localization (see [2] for details).

Recall that the large deviation estimate required in this analysis is of the form

mes Œx 2 TI jLN .E; x/ � LN .E/j > o.1/LN .E/� < e
�cN (4.5)

where LN .E/ D
R

T
LN .E; x/dx.

We indicate a proof of (4.5) by elaborating upon the above considerations.

Denote
Q

the product space
Q

ZC
¹0; 1 : : : ; KN0 �1º equipped with normalized

product measure. Given ˛ D .˛1; ˛2; : : :/ 2
Q

, perform a shift

x 7�! x C
X

j �1

j̨

KjN0
:

Clearly

M�
NN0

�

x C
X

j �1

j̨

KjN0

�

D M�
N0

�

x C
X

j �1

j̨

KjN0

�

M�
N0

�

KN0x C
X

j �2

j̨

K.j �1/N0

�

: : :

M�
N0

�

K.N �1/N0x C
X

j �N

j̨

K.j �N C1/N0

�

;
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and, �xing x 2 T, w 2 R
2; jwj D 1,

log









M�
NN0

�

x C
X

j �1

j̨

KjN0

�

w









D log









M�
N0

�

x C
X

j �1

j̨

KjN0

�

w1. j̨ I j � 2/









C log









M�
N0

�

x C
X

J �2

j̨

K.j �1/N0

�

w2. j̨ I j � 3/









C � � � C log









M�
N0

�

x C
X

j �N

j̨

K.j �N C1/N0

�

wN . j̨ I j � N C 1/









;

(4.6)

where w1; w2; : : : are unit vectors in R
2.

Rewrite the sum '1 C '2 C � � � C 'N in (4.6) as

d1 C d2 C : : :C dN

C
EŒ'1j˛1�C � � � C EŒ'N j˛N �;

where ¹dj D 'j � EŒ'j j j̨ �º is a martingale di�erence sequence wrt the �ltration
Q

introduced above. Also

max
x2T;jwjD1

Av
Z=KN0Z

log









M�
N0

�

x C ˛

KN0

�

w









� EŒ'j j j̨ �

� min
x2T;jwjD1

Av
Z=KN0Z

log









M�
N0

�

x C ˛

KN0

�

w









:

If we �x N0 and take K large enough, then, uniformly in x and w and with f

as in �eorem 1,

Av
Z=KN0Z

log









M�
N0

�

x C ˛

KN0

�

w









�
Z

T
N0

log









�

E � f .x0/ 1

�1 0

�

: : :

�

E � f .xN0�1/ 1

�1 0

�

w









dx0 � � �dxN0�1;

(4.7)

as pointed out above, while, provided N0 is chosen large enough, random matrix

product theory implies that

1

N0

(4.7) � L.E/ > 0 .D Lyapunov exponent of the random cocycle):
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Hence, we get

ˇ

ˇ

ˇ

ˇ

LNN0

�

EI x C
X

j �1

j̨

KjN0

�

� L.E/
ˇ

ˇ

ˇ

ˇ

< o.1/C 1

NN0

ˇ

ˇ

ˇ

ˇ

N
X

j D1

dj

ˇ

ˇ

ˇ

ˇ

: (4.8)

Applying the large deviation estimate for martingale di�erence sequences in the

variable . j̨ / 2
Q

, it follows that

mes

�

˛I
ˇ

ˇ

ˇ

ˇ

N
X

j D1

dj

ˇ

ˇ

ˇ

ˇ

> ıNN0

�

< e�ı0NN0 (4.9)

for some ı0 D ı0.ı/ > 0. �erefore also

mes Œx 2 TI jLNN0
.EI x/ � L.E/j > ı� < e�ı0N0N ; (4.10)

proving (4.5).

Remark 1. Take f D �f0 with f0 satisfying (4.3) and let � vary. �eorem 1 then

applies in any �xed range 0 < �1 � j�j � �2 (with a same K). For large j�j
one easily derives positivity of (4.1) already for N0 D 2. On the other hand, the

small � case is captured by the Figolin-Pastur perturbative method (see [3], [2] )

provided F is restricted to Œ�2C ı;�ı�[ Œı; 2� ı� for some ı > 0.

Remark 2. For given f , rather than deriving positivity of (4.1) for appropriately

chosen large N0; K by invoking Furstenberg’s theorem, one may of course pro-

ceed by a direct numerical veri�cation at some scale N0 and any given K. Hence

positivity of the Lyapunov exponent for the model x 7! Kx with given f may in

principle be established numerically. We will illustrate this with some examples

at the end of the paper.

5. Toral automorphisms

Let� D T
2 andA D

�

a b
c d

�

2 SL2.Z/ acting on T
2 (the approach works similarly

in the higher dimensional case).

We assume A strongly expanding with a large expanding eigenvalue

K D �C � t D a C d

and expanding eigenvector

v D vC � .a; c/

V a2 C c2
:

Assume also kAk � K.
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Returning to the discussion in Section 2, we apply the �rst scheme taking for

�N0;N D ¹K�.N �1/N0C 1
2 tvI 0 � t � 1º:

�us (2.2) becomes

log kMN0
.A.N �1/N0x C tK

1
2 v/.wx/k (5.1)

with

wx D M.N �1/N .x/v

kM.N �1/N0
.x/vk : (5.2)

In the present situation, the error terms (2.5) do not vanish and will be evaluated

using the estimates from Section 3.

Clearly

kMN0
k; kM�1

N0
k � .kf k1 CE C 2/N0 D C

N0

2 D C1 (5.3)

and

kMN0
.x C A`y/ �MN0

.x/k � 2C1kf 0k1K
N0C`�1jyj

< 2C1kf 0k1K
�.N �2/N0C`� 1

2 :
(5.4)

For j D 1; : : : ; N , de�ne

Aj D MN0

�

T .N �j /N0 .x C y/
�

D MN0
.A.N �j /N0x C A.N �j /N0y/

and

Bj D MN0
.T .N �j /N0x/ D MN0

.AN �j /N0x/:

Applying (5.4) with ` D .N � j /N0 implies

kAj � Bj k < 2C1kf 0k1 K�.j �2/N0� 1
2 D "j :

Condition (3.10) becomes

2C 3
1 kf 0k1

X

j �2

K�.j �2/N0� 1
2 .1C C1/

2j �1 <
1

5
;

which by (5.3) will be satis�ed if

K > 103C 6
1 .1C C1/

6.1C kf 0k1/
2: (5.5)

An application of (3.11) gives then

j(2.3)j; j.2:5/j < 6C 2
1

X

j �2

j"j .1C C1/
2j �1 < 20C 3

1 .1C C1/
3kf 0k1K

� 1
2 ;

which can be made arbitrarily small by choosing K large.
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It remains to consider the image measure under the map (2.7)

' W Œ0; 1� �! .T2/N0 ;

t 7�! .A.N �1/N0x CK
1
2 tv;

A.N �1/N0C1x CK
3
2 tv;

: : : ;

ANN0�1x CKN0� 1
2 tv/;

(5.6)

or, equivalently

 W Œ0; 1� �! .T2/N0 ;

t 7�! .K
1
2 tv; K

3
2 tv; : : : ; KN0� 1

2 tv/:
(5.7)

Estimating the Fourier transform of the image measure � of  on .T2/N0 , we get

for .�0; : : : ; �N0�1/ 2 .Z2/N0

j O�.�0; : : : ; �N0�1
/j D

ˇ

ˇ

ˇ

ˇ

Z 1

0

e.K
1
2 .v:�0 CKv:�1 C � � � CKN0�1v:�N0�1/t /dt

ˇ

ˇ

ˇ

ˇ

< 4Œ1CK
1
2 jv:�0 CKv:�1 C � � � CKN0�1v:�N0�1j��1:

(5.8)

We restrict ourselves to frequencies .�0; : : : ; �N0�1/ 2 .Z2/N0 with

j�j j < B D Bf :

We assume A su�ciently mixing, in the sense that the expanding vector v

satis�es a Diophantine property

jhv; �ij > 1

B1

; for all � 2 Z
2n¹0º; j�j < B: (5.9)

Also assume K D �C > 2BB1. It follows then from (5.9) that

(5.8) <
4B1

K
1
2

if .�0; : : : ; �N0�1/ 2 .Z2/N0n¹0º, j�j j < B . We obtain the following result.

�eorem 2. Consider the Schrodinger operator on Z

Hx D �C �Vx; with Vx.j / D f .Ajx/; (5.10)

with f a non-constant function in C 1.T2/, A 2 SL2.Z/. Assuming A su�ciently

mixing (depending on osc.f jT2/ and kf kC 1 ), we obtain positive Lyapunov expo-

nents for all energies, Hölder regularity of the IDS and Anderson localization.
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6. Further comments and numerical aspects

As pointed out already, the required positivity of (2.6) at some scale N0 may be

veri�able numerically, short of a theoretical reason, and in this way extensions of

�eorems 1 and 2 could be obtained in situations where a former transference to a

random setting is not possible. Observe also that in our problem, one may replace

MN .x/ by SM.x/S�1 for any chosen similarity S 2 SL2.R/ such that kSk < C

independently from N . �erefore, instead of establishing positivity of (2.6), we

can as well consider

min
N

min
x2�;jwjD1

Av
y

¹log kSMN0

�

T .N �1/N0 .x C y/
�

S�1wkº (6.1)

for a �xed S 2 GL2.R/. In particular, using the Figolin–Pastur formalism, one

may represent the Schrödinger matrices in polar coordinates (which is especially

useful in the small � regime).

Fix ı > 0 and assume

jEj < 2 � ı: (6.2)

Denoting vn D f .T nx/, de�ne � 2 .0; �/ and Vn by

E D 2 cos �; (6.3)

Vn D � vn

sin �
; (6.4)

and let

S D
�

1 � cos �

0 sin �

�

: (6.5)

�en

MN D
0
Y

nDN �1

�

E � �vn �1
1 0

�

is converted to

M 0
N D

0
Y

nDN �1

��

cos � � sin �

sin � cos �

�

C �Vn

�

sin � cos �

0 0

��

: (6.6)

One should also expect that for small �, the representation (6.6) is more suited

for numerics as the factors are perturbations of a rotation.
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As an example related to §4 of such numerics, we considered the map

x 7�! 2x .K D 2/;

and evaluated (4.1) in the energy range Œ�
p
2;

p
2 � for di�erent couplings � and

using the transformation (6.6). It turns out that N0 D 6 already su�ces to obtain

the positivity for j�j � 2
5
.

In the displays below, we dropped the irrelevant factor K�N0 in (4.1).

Further numerical work on the positivity of the Lyapunov exponent using our

method will appear in the arXiv version of the paper.
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Figure 1. Positivity of Lyapunov Exponents for � D 0:4 and � D 0:5.
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Figure 2. Positivity of Lyapunov Exponents for � D 0:6 and � D 1.
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Figure 3. Positivity of Lyapunov Exponents for � D 1:5 and � D 2.
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