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1. Introduction and preliminaries

1.1. Strictifying group actions. A group acting on a category is, roughly speak-

ing, an assignment of a functor for each element of the group. This can be thought

of as a categori�cation of the usual notion of a group representation. The recent

paradigm in categori�cation dictates that studying the (isomorphism classes of)

functors which appear is not su�cient; one should study the natural transforma-

tions between them. This philosophy can be found, for instance, in the seminal

paper of Chuang and Rouquier [7], which deduced strong structural results for

categori�ed sl2 representations given the existence of a certain algebra of natural

transformations.

The nuance in the work of Chuang and Rouquier was specifying an interest-

ing algebra of natural transformations between functors. For groups, the nuance

comes from the opposite goal: showing that the algebra of natural transforma-

tions between functors corresponding to the same element of the group can be

trivialized. The desired structure is a strict action of a group on a category, where

each element of the group is (compatibly) assigned a canonical functor (see Def-

inition 1.3). This is to be contrasted with a weak action, where each element of

the group is assigned an isomorphism class of functor. Given two words in the

group which multiply to the same element, a weak action guarantees that the cor-

responding compositions of functors are isomorphic, while a strict action �xes a

natural transformation which realizes this isomorphism.

Here we pause to distinguish between the two most common descriptions of

groups and their representations, which we call the holistic and the combinatorial.

In the holistic approach, the action of each element is given in a general way. An

example is the standard representation of GL.n/ (or its exterior and symmetric

powers), where each matrix g 2 GL.n/ acts via a general formula. Another exam-

ple is the action of an automorphism group of a variety acting on the cohomology

ring, by pullback. In the combinatorial approach, one describes a group combi-

natorially by generators and relations. A representation can be de�ned by giving

an endomorphism for each generator, and checking the relations. This can save

a great deal of labor, replacing the computation of the entire multiplication table

with a manageable amount of data. Representations of Coxeter groups and their

Artin braid groups are often de�ned in this fashion.

These two approaches are also common when de�ning actions of groups on

categories. The holistic approach lends itself easily to the notion of a strict

action. For example, the automorphism group of a variety acts on the derived

category of coherent sheaves by pullback, and the composition of pullbacks is

naturally isomorphic to the pullback of the composition. On the other hand,
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given a group presentation, one could de�ne a functor for each generator, and

check an isomorphism of functors for each relation, but this would only de�ne

a weak action. If one works directly from the de�nition of a strict group action,

the additional data required to make this action strict is not made any simpler

by the presentation: one needs a natural transformation for each entry of the

multiplication table, satisfying a host of compatibilities. This “stricti�cation” data

is prohibitive to provide in practice, and is not in keeping with the labor-saving

combinatorial nature of the presentation.

1.2. Braid groups and Coxeter groups. The primary goal of this paper is to

give an explicit and e�cient criterion for establishing a strict action of a Coxeter

group or its braid group on a category, extending the Coxeter presentation of said

group. For instance, to make an action of the type A braid group strict, one need

only check a single equality: the so-called Zamolodzhikov relation. This improves

slightly upon a similar result of Deligne [8] and Digne and Michel [10] for braid

groups. The literature does not seem to contain any previous results on strictifying

actions of Coxeter groups.

Many topics in category theory can be more intuitively phrased using the

language of topology, and strictifying a group action is a �ne example. The

equivalence between group presentations and 2-dimensional cell complexes (with

a single 0-cell) is well-known. Finding stricti�cation data for this presentation

is equivalent to �nding a collection of 3-cells which kill �2 of this complex.

Essentially, one is searching for a combinatorially-de�ned 3-skeletal approxima-

tion for the classifying space BG of the group. An equivalent question is to �nd

an appropriate 3-skeletal approximation for its universal cover EG. In this paper

we discuss two separate cell complexes attached to a Coxeter system, one for the

Coxeter group and the other for its associated braid group. Though the complexes

are di�erent, the corresponding stricti�cation criteria are closely related.

To a Coxeter group W one can associate a real hyperplane arrangement, and

can consider the complement of these hyperplanes in the complexi�cation YW .

The K.�; 1/-conjecture, originally due to Arnold, Brieskorn, Pham, and Thom

states that YW should be a classifying space for the pure braid group, and thus a

natural quotient1 YW =W D ZW should be a classifying space for the braid group.

This was proven for �nite Coxeter groups by Deligne [8]. The K.�; 1/-conjecture

has also been proven for a broad class of in�nite Coxeter groups. We give some

further introduction in §4.4; see [27] for a survey.

1 ZW is denoted XW in [8] and [30]. We have reserved XW for another purpose.
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In order to translate this topological result into a recipe for a categorical group

action, one should choose a combinatorial realization of ZW as a cell complex.

In his proof, Deligne introduces a realization involving reduced expressions for

elements in the Coxeter group. Correspondingly, in [9], Deligne provides an

analogous criterion for a strict action of the positive braid monoid of a �nite

Coxeter group. This criterion extends the positive lift presentation of the braid

group, where the generators are positive lifts of each element in the Coxeter

group. This result has been generalized to arbitrary Coxeter groups by Digne and

Michel [10], using the Garside structure on the braid group.

In [29], Salvetti proved that an arbitrary hyperplane complement has the same

homotopy type as a combinatorially-de�ned cell complex. In [30], Salvetti pro-

vided an analogous cell complex realization of the quotient ZW , which he used

to reprove the K.�; 1/-conjecture for �nite Coxeter groups. Both cell complexes

are called Salvetti complexes in the literature; in this paper, we reserve the term

for the realization of ZW . Independently, Paris [26] also used Salvetti’s com-

plexes for hyperplane complements to reprove this result, introducing along the

way a combinatorial construction for the (conjectural) universal cover of the Sal-

vetti complex.

The Salvetti complex di�ers from Deligne’s complex, in that the 2-skeleton

corresponds to the Artin presentation of the braid group rather than the positive

lift presentation. Regardless of the validity of the K.�; 1/-conjecture, the results

of Digne and Michel mentioned above imply that �2.ZW / D 0, and therefore the

Salvetti complex gives a valid 3-skeletal approximation of the classifying space.

Our stricti�cation data for the Artin presentation is the extrapolation of the 3-cells

in the Salvetti complex.

In similar fashion, assuming the K.�; 1/-conjecture, presumably one can use

the k-skeleton of the Salvetti complex to concoct a stricti�cation procedure for

actions of braid groups on .k � 2/-categories. One can see this as a higher

categorical generalization of the Coxeter presentation of a braid group; on the

k-th categorical level, there is but a single relation for each �nite rank k (standard)

parabolic subgroup, a “higher Zamolodzhikov relation.” We do not pursue this any

further in this paper.

We are certainly not the �rst to observe this type of phenomenon. Stric-

ti�cation data for braid group has been studied by several authors, and the

Zamolodzhikov relation goes back at least to Deligne [9]. One can �nd the

Zamolodzhikov relation in type A described using Igusa pictures in Loday [25,

Figure 19]. A similar approach for general braid groups using the language of

coherent presentations was taken in [15].
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In contrast to the situation for braid groups, there do not seem to be cell

complex realization of the classifying spaces of Coxeter groups in the literature.

However, stricti�cation data for Coxeter groups is essential in the authors’ work

on Soergel bimodules [13]. We construct a new and somewhat unfamiliar cell

complex as our 3-skeletal model for the universal cover EW . We study this model

by relating it to the dual Coxeter complex, in a way to be described in §1.6.

The secondary goal of this paper is to provide diagrammatic tools for the study

of Coxeter groups and braid groups. The bulk of this consists in publicizing a

wonderful diagrammatic interpretation of �2 of a cell complex that we found in

a book by Fenn [14] (see Remark 2.1). Applying these techniques to the Salvetti

complex and to our complex for EW , one obtains a depiction of elements of �2

as decorated planar graphs. This diagrammatic calculus is new for both braid

groups (outside of type A) and Coxeter groups, and could potentially lead to new,

diagrammatic proofs of our main result.

In the remainder of this introductory section, we spell out the connection with

topology in more detail, in order to describe our results and discuss some of the

techniques we use. Then we state our results in §1.7, using diagrammatic language,

without any reference to topology. In §1.9, we give some applications.

1.3. Strict actions and 3-presentations

De�nition 1.1. For a group G, let �G be the monoidal category de�ned as follows.

The objects consist of the set G, and the only morphisms are identity maps idg

for each g 2 G. The monoidal structure on objects is given by the group structure

on G, and the monoidal structure on morphisms is uniquely determined.

De�nition 1.2. Given a category C, let Aut.C/ denote the monoidal category

whose objects are autoequivalences of C, and whose morphisms are invertible

natural transformations. The monoidal structure is given by composition of func-

tors.

De�nition 1.3. A strict group action of G on a category C is a monoidal functor

�G ! Aut.C/.

Remark 1.4. The usual de�nition of a strict group action involves providing

a functor Fg for each g 2 G, isomorphisms ag;hW Fg ı Fh ! Fgh, and an

isomorphism �W Fe ! 1C for the identity element e 2 G, satisfying some natural

compatibilities, including an associativity compatibility. The isomorphisms ag;h

are the image of the unique morphism g ˝ h ! gh in �G, and the isomorphism

� is the �xed isomorphism between monoidal identities given as part of the data

of a monoidal functor.
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Suppose that G has a presentation P D .S;R/ with generators S and rela-

tions R. As discussed above, it is common in the literature to de�ne a weak group

action by giving an invertible functor Fs for each s 2 S, and checking an isomor-

phism for each r 2 R. Doing this is implicitly de�ning a monoidal functor from

the monoidal category �P de�ned below. The inverse functor F �1
s is not usually

given explicitly, but one can choose F �1
s to be any inverse to Fs .

De�nition 1.5. For a presentation P D .S;R/, let �P be the monoidal category

de�ned as follows. Its objects are words in the letters S [ S�1, with monoidal

structure given by concatenation (we let 1 denote the monoidal identity, the empty

word). Its morphisms are monoidally generated by the following maps.

� Cups and caps. Inverse isomorphisms ss�1 � 1 for each s 2 S, as well

as inverse isomorphisms s�1s � 1.

� Relation symbols. Inverse isomorphisms r � 1 for each word r 2 R.

One imposes the following relations:

� the generating “inverse isomorphisms” are actually inverse isomorphisms;

� cups and caps form the units and counits of adjunction between the biadjoint

functors s ˝ .�/ and s�1 ˝ .�/;

� the relation symbols are cyclic with respect to these biadjunction structures.

Remark 1.6. This remark is for the reader unfamiliar with biadjunction and

cyclicity. For a broader introduction to biadjunction, cyclicity, and the associated

diagrammatic notation, see [23, 24].

Observe that any invertible functor F 2 Aut.C/ is both left and right adjoint

to its inverse functor F �1. Adjunction is a structure, not a property, and a

biadjunction is a choice of both a left and right adjunction between F and F �1.

Having chosen inverse isomorphisms FsF �1
s � 1, there is a unique choice for

the isomorphisms F �1
s Fs � 1 such that the isomorphisms also provide (the units

and counits of) a biadjunction. Biadjunctions occur more generally than between

inverse functors, but this will su�ce for our purposes.

Cyclicity is a property of a general morphism (i.e. natural transformation)

between compositions of functors equipped with biadjunctions, stating that this

morphism is somehow compatible with the right versus the left adjunction. An

explicit statement of this compatibility can be found (in diagrammatic language)

later in this paper. Identity morphisms are axiomatically cyclic, but general

morphisms need not be cyclic.
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In a monoidal category (like Aut.C/), the biadjoint of an object, if it exists,

is well-de�ned up to unique isomorphism, but nonetheless this assignment of a

biadjoint to each object need not be functorial. In a pivotal category, there exists a

duality functor D sending each object to a biadjoint, and equipped with a natural

isomorphism �W1 ! D
2. One can always adjust the functor D up to isomorphism

to guarantee that D2 and 1 agree on objects, but it need not be the case that � is the

identity map. If � is the identity map, the category is strictly pivotal. Equivalently,

every morphism is cyclic, so the category is also called cyclic biadjoint. This

happens frequently in geometric and algebraic examples of group actions. It also

happens in fundamental 2-groupoids, the topological framework of this paper.

Remark 1.7. Note that a functor �P ! Aut.C/ is not quite as general as a weak

group action de�ned by generators and relations, because there need not exist

relation symbols which are cyclic. Any weak action which can be extended to a

strict action will certainly satisfy cyclicity.

Remark 1.8. What is the di�erence between a categorical action of a monoid

where the generators happen to act by invertible functors, and a categorical ac-

tion of its associated group? From the de�nition of a weak categorical action,

there is no di�erence. Philosophically, however, one might desire some new con-

dition which connects the new inversion structure with the existing relation iso-

morphisms. Said another way, one now has a host of new relations obtained by

conjugating existing relations, and one might expect these to be somehow mutu-

ally compatible. We believe that cyclicity is precisely the correct structure one

should impose.

Every morphism in �P is an isomorphism. The isomorphism classes of ob-

jects in �P can be identi�ed with G, and there is a monoidal functor �P ! �G.

However, endomorphism spaces in �P can be quite large, so this functor is not

faithful. Because of biadjunction, every endomorphism space is a principal space

for the group End.1/.

De�nition 1.9. Let Z be a chosen subset of End.1/ within the category �.S;R/,

for some group presentation .S;R/ of G. We call P D .S;R;Z/ a 3-presentation
of G, and we simply write .S;R/ when Z is empty. We let �P denote the quotient

of �.S;R/ by the relations z D id1 for each z 2 Z.

For any 3-presentation P of G, there is still a monoidal functor �P ! �G.

When Z generates the group End.1/ � �.S;R/, then morphism spaces in �P are

trivial, consisting only of identity maps, and the functor to �G is an equivalence.
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We call such a 3-presentation acyclic. In the acyclic case, giving a monoidal

functor �P ! Aut.C/ is equivalent to giving a strict action of G, but it has a

di�erent recipe: provide a functor Fs and its biadjoint inverse for each s 2 S,

provide an isomorphism and its inverse for each r 2 R, and check a relation for

each z 2 Z.

This recipe need not be interesting or useful. We do not expect there to be a

general method to extend an arbitrary 2-presentation of a group into an acyclic

3-presentation in a useful way.

Example 1.10. Every group has a universal presentation where S D G and R

consists of relations stating that g � h D .gh/. The corresponding monoidal

category �.S;R/ has isomorphisms ag;h as in Remark 1.4, but no compatibility

requirements. LettingZ be the set of associativity requirements (one for each triple

g; h; k 2 G), one has that .S;R;Z/ is acyclic. This is the universal 3-presentation

of a group, and one could say that it is the only uninteresting 3-presentation of the

group, since it does not reduce the labor required to construct a strict action.

Example 1.11. Given any presentation .S;R/, the 3-presentation .S;R; End.1// is

its universal acyclic extension. This example is also not very interesting or useful,

because computing End.1/ and checking a relation for each element of End.1/

can be prohibitive.

In this paper we will give interesting examples of acyclic 3-presentations,

extending the usual presentations of Coxeter groups and their braid groups. Said

another way, we �nd an interesting presentation of the uninteresting monoidal

category �G for these groups.

1.4. Diagrammatics and Topology. To any topological space X one may asso-

ciate its fundamental 2-groupoid �.X/�2 (see e.g. [2, 8.2]).2 In this 2-category,

the objects are the points of X , the 1-morphisms from x to y are given by paths

from x to y, and the 2-morphisms are given by “paths of paths” up to homotopy.

Our notation is intended to suggest that �.X/�2 is a truncation of the fundamen-

tal 1-groupoid �.X/, which encodes the homotopy type of X . When X is a cell

complex, �.X/�2 only depends on the 3-skeleton X3 � X .

There is an explicit diagrammatic interpretation of �.X/�2 for a cell complex

X , known in the literature as Igusa’s pictures [19] (see Remark 2.1). After �xing

some additional data, one can encode the structure of the cell complex combina-

torially. A su�ciently nice map D2 ! X2 is depicted as a decorated oriented

2 Technically, this is called the “homotopy bigroupoid” in [2].
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planar graph; we call such a map pictorial. Any map D2 ! X is homotopic

to a pictorial map. Moreover, there is a list of relations which account for all

homotopies between pictorial maps, essentially arising from Morse theory. This

diagrammatic calculus can be viewed as a tool that takes a 3-skeleton of a cell

complex X and returns a combinatorially-de�ned 2-category ….X/�2, which is

equivalent to �.X/�2. The objects of ….X/�2 are the 0-cells of X ; the generating

1-morphisms are the 1-cells and their formal (biadjoint) inverses; the generating

2-morphisms are the 2-cells and their formal inverses, along with units and counits

of biadjunction; and the relations between 2-morphisms are given by the 3-cells,

along with some general relations (inverses are inverses, other 2-morphisms are

cyclic). A 2-morphism in ….X/�2 will be represented by a decorated planar graph,

whose regions are labelled by 0-cells, whose edges are labelled by 1-cells with an

orientation, and whose vertices are labelled by 2-cells with some additional data.

LetP D .S;R/ be a presentation of G. In a standard way, this is also a recipe for

a 2-complex XP with a single 0-cell, for which �1.XP/ Š G. The corresponding

monoidal category ….XP/�2 is the category �P de�ned above. Similarly, for

a 3-presentation P D .S;R;Z/ there is a 3-complex XP, and ….XP/�2 equals

�P. The 3-presentation is acyclic if and only if �2.XP/ is trivial, in which case

….XP/�2 Š �G, and XP is the 3-skeleton of some realization of the classifying

space BG D K.G; 1/.

The presentation of a Coxeter group has a number of symmetries (though

the presentation of its braid group does not). Exploiting these symmetries, we

can modify this construction of ….XW /�2 to produce a simpler diagrammatic

calculus. For example, when constructing a 2-morphism as a decorated planar

graph, one need not specify the orientation on the edges; think of this as using the

relation s2 D 1 to canonically identify s and s�1.

1.5. The K.�; 1/ conjecturette. Let .W; S/ be a Coxeter system and BW be the

corresponding Artin braid group.

In Section §5 we de�ne a 3-presentation PBW
of BW . The corresponding

3-complex XPBW
is the 3-skeleton of a cell complex we shall call XBW

, which

is the Salvetti complex. Further discussion of this complex can be found in §4.4.

As discussed earlier in the introduction, XBW
is the subject of a famous conjecture.

Conjecture 1.12. (The K.�; 1/-conjecture) XBW
is the classifying space of BW .

However, the fact thatPBW
is acyclic is equivalent to a much weaker condition,

which we call the K.�; 1/-conjecturette.

Proposition 1.13. (The K.�; 1/-conjecturette) �2.XBW
/ is trivial.
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Via the work of Salvetti [29], this becomes a question about hyperplane com-

plements, and Digne-Michel’s generalization [10, §6] of Deligne’s �nite-type ar-

guments gives a proof of the K.�; 1/-conjecturette for all Coxeter groups. We

will quote this result henceforth. However, we believe our diagrammatic tools

should allow for an elementary and direct proof, which unfortunately has not yet

materialized.

1.6. Modi�ed Coxeter complexes and half-skeletons. In §6 we de�ne a 3-pre-

sentation PW of W . The corresponding 3-complex XW , which we call (the

3-skeleton of) the modi�ed Coxeter complex, is not a familiar topological space.

However, a natural W -fold cover zXW of XW has an equivalent fundamental

2-groupoid to the 3-skeleton of the completed dual Coxeter complex eCoxW . The

completed dual Coxeter complex will be discussed further in §4. Thankfully,
eCoxW is known to be contractible, therefore giving the proof that �2. zXW / Š

�2.XW / is trivial.

The classifying space BW (for which XW is supposed to be a model) is a

quotient of its universal cover EW (for which zXW is supposed to be a model).

The space EW must satisfy two conditions: it must be contractible, and it must

admit a free W -action. When trying to build EW as a cell complex, one is torn

between these two goals. Perhaps the neatest approach is to alternate between

them, �rst constructing a contractible space, then extending it until it admits a

free W -action, then extending it to make it contractible again, and so forth. This

leads to the concept of half-skeletons, which we use to prove the result about zXW

and eCoxW . Half-skeletons are not intended to be a complete theory, just a heuristic

organizational tool.

Let us illustrate the approach using the simplest example of a Coxeter group,

W D Z=2Z, an example which is treated in more detail within the body of the

paper. The classifying space of W is RP
1, with universal cover S1. The standard

cell complex construction of S1 has two k-cells for each k � 0, such that the

k-skeleton is Sk. Note that Sk admits a free W -action compatible with the cell

decomposition, but is not contractible.

Now take the k-skeleton Sk and attach just one of the two .k C 1/-cells; one

obtains the disk DkC1, which is contractible, but does not admit a free W -action.

This is the .k C 0:5/-skeleton of EW . To get from the .k C 0:5/-skeleton to the

.kC1/-skeleton, one attaches an additional .kC1/-cell, but along an attaching map

which is nulhomotopic in the .k C 0:5/-skeleton (unsurprisingly). Topologically,

this operation is just wedging with SkC1, and hence does not change �l of the

space for any l � k.



Diagrammatics for Coxeter groups and their braid groups 423

Let Xk or XkC0:5 denote such a skeleton, for k 2 N. To reiterate, this setup is

designed so that:

� Xk admits a free cellular W -action;

� XkC0:5 is contractible (or at least has trivial fundamental k-groupoid);

� to get from XkC0:5 to XkC1, one attaches a set of .k C 1/-cells (along

attaching maps which are necessarily nulhomotopic).

In particular, this guarantees that XkC0:5 and XkC1 have equivalent fundamental

k-groupoids, so that �l .X
kC1/ D 0 for l � k.

In §6, for a general Coxeter group W , we construct a 2:5-skeleton and a

3-skeleton for EW . The 2:5-skeleton will naturally deformation retract to the

completed dual Coxeter complex eCoxW , and is therefore contractible. The

3-skeleton is exactly zXPW
for our chosen 3-presentation. This explains why zXPW

and eCoxW have equivalent fundamental 2-groupoids ��2.

We do not propose a combinatorial method to construct higher skeletons

and half-skeletons for EW , largely because the “diagrammatic” technology for

understanding higher fundamental groupoids is undeveloped.

1.7. Results. Let .W; S/ be a Coxeter system and let BW be the corresponding

Artin braid group. We now describe our presentations of �BW and �W without

any reference to topology.

De�nition 1.14. Let Bdiag be the monoidal category with

(1) objects – words in S [ S�1, or equivalently, sequences of oriented dots on a

line colored by S .

(2) morphisms – planar strip diagrams, generated by oriented cups, caps and

two-colored 2m-valent vertices. (In the example below, mst D 3 and

msu D 2. We will continue to use these to exemplify the general case. There

is no generator when mst D 1.)



424 B. Elias and G. Williamson

Morphisms are taken modulo the relations below. Each relation holds for any valid

“coloring,” i.e. any valid labeling of the edges by elements of S .

(3) The standard relations:

(1.1a)

(1.1b)

(1.1c)

(4) The isotopy relations:

(1.2a)

(1.2b)

(This picture illustrates the case m D 3. We require a similar relation for any

2m-valent vertex.)

(5) The generalized Zamolodzhikov relations, one for each �nite (standard) par-

abolic subgroup of rank 3:

Type A1 � I2.m/W (1.3a)

Type A3W (1.3b)
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Type B3W (1.3c)

Type H3W

(1.3d)

This ends the de�nition.

Remark 1.15. The isotopy relations are equivalent to the statement that one can

consider these embedded planar graphs up to isotopy.

Remark 1.16. In type A3, the relation (1.3b) is related to the Zamolodzhikov

relation. For this reason, we call the relations in (1.3) generalized Zamolodzhikov

relations.

Theorem 1.17. The obvious monoidal functor Bdiag ! �BW is an equivalence
of categories.

Corollary 1.18. To de�ne a strict action of BW on a category C is equivalent to
giving the following data:

(1) functors Fs and F �1
s for each s 2 S ;

(2) natural transformations FsF �1
s � 1 and F �1

s Fs � 1 for each s 2 S ;

(3) for each s; t 2 S with mst �nite, natural transformations

FsFt Fs : : : � Ft FsFt : : :

(here each expression has length mst ).
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This data is subject to the following conditions:

(4) the pairs of natural transformations above are inverse isomorphisms;

(5) the natural transformations identifying F �1
s as the inverse of Fs form a

biadjoint structure;

(6) the natural transformations FsFt Fs : : : � Ft FsFt : : : are cyclic with respect
to this biadjoint structure;

(7) the generalized Zamolodzhikov relations hold.

These conditions correspond to (1.1), (1.2a), (1.2b), and (1.3) respectively.

Note that the generalized Zamolodzhikov relations do not involve the functors

F �1
s at all, and can be checked without needing to �x these inverse functors and

the cups and caps. Given a collection of invertible functors Fs acting on a suitably

nice category (i.e. one with functorial biadjoints) and satisfying the generalized

Zamolodzhikov relations, one can cook up the rest of the data.

De�nition 1.19. Let Wdiag be the category de�ned as in De�nition 1.14, except

without any orientations. In other words, objects are words in S , or equivalently,

sequences of (unoriented) colored dots on a line. Morphisms are diagrams up to

isotopy, generated by (unoriented) cups, caps, and 2m-valent vertices, modulo the

unoriented versions of all the relations above.

Theorem 1.20. The obvious monoidal functor Wdiag ! �W is an equivalence
of categories.

There is a monoidal functor Bdiag ! Wdiag, which on objects sends both sC

and s� to s, and on morphisms sends an oriented diagram to its unoriented version.

This categori�es the quotient map BW ! W .

1.8. Organization of the paper. We have divided the paper into two parts: the

purely topological, and the Coxeter-theoretic.

The �rst half of this paper will give an exposition of the diagrammatic ap-

proach to ��2 (§2), and of the modi�cations one can perform in the presence of

symmetries in a group presentation (§3). It is independent of the rest of the paper,

although some of the key examples are motivated by the Coxeter complex (see §4).

The modi�ed construction uses in some sense the concept of half-skeletons, as in-

troduced above.

The second half of the paper begins (§4) by providing background on Coxeter

groups, Coxeter complexes, and Salvetti complexes. In §5 we de�ne a 3-presen-

tation of the braid group, whose diagrams agree with Bdiag above, and whose
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3-complex agrees with the 3-skeleton of a quotient of the Salvetti complex. The

K.�; 1/-conjecturette states that �2 of the Salvetti complex is trivial, which im-

plies Theorem 1.17. This section only requires §2, not needing the modi�ed di-

agrams from §3. In §6 we de�ne a 3-presentation of the Coxeter group, whose

diagrams agree with Wdiag above. We show that its 3-complex has a 2.5-skeleton

which deformation retracts to the dual Coxeter complex, as discussed in §1.6. This

proves Theorem 1.20. This section will require the modi�ed diagrams from §3.

The reader interested only in the braid group can safely skip §3 and §6, and can

ignore any mention of half-skeletons. The reader interested only in the Coxeter

group can safely skip §5.

1.9. Applications and further directions. The authors came to this topic in

their study of Soergel bimodules [32], which provide a categorical action of

the Hecke algebra of W . Certain complexes of Soergel bimodules (known as

Rouquier complexes, see [28]) give braid group actions that, after localization,

become Coxeter group actions. The description of strict Coxeter group actions

given in this paper also gives a presentation of the monoidal category of localized

Soergel bimodules, which is essential to our description of the category of Soergel

bimodules [13].

Braid group actions on categories appear to be ubiquitous in modern geomet-

ric representation theory. These braid group actions are de�ned using the Coxeter

presentation, and so the authors have typically (understandably) neglected to make

these actions strict. However, many of these examples have since been proven to

be strict. Examples of such braid group actions include: Bondal-Kapranov’s con-

struction of mutations on triangulated categories [4]; Broué-Michel’s construc-

tion in Deligne–Lusztig theory [5]; Khovanov’s homology of tangles [21]; Seidel-

Thomas twists around (-2)-curves on derived categories of coherent sheaves [31]

and generalizations [3]; and braid group actions via shu�ing functors in high-

est weight representation theory. Deligne had the Bondal-Kapranov and Broué-

Michel constructions in mind as applications when he gave his criterion for a braid

group action [9]. Indeed, Deligne’s criterion does seem to be su�cient for many

constructions.

Other categorical actions of the braid group, such as those arising in categor-

ical actions of Kac-Moody algebras, have not yet been proven to be strict.

Occasionally one can show that a certain space of natural transformations is

only one-dimensional, and can conclude that stricti�cation data exists without be-

ing forced to provide it explicitly. This is the approach taken by Rouquier [28] and

Khovanov-Thomas [22]. In these cases, it is now trivial to make the stricti�cation

data explicit. For Rouquier complexes in type A, an explicit approach was taken

in [12].
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Many categorical actions of the braid group descend to actions of the Hecke

algebra on the Grothendieck group, such as those arising in highest weight repre-

sentation theory. One expects these to arise from a categorical action of the Hecke

algebra, which would then imply the strictness of these actions. Spherical twists

such as those in [31] can be investigated using technology developed by Joseph

Grant [17, 16]. In upcoming work of the �rst author and Grant, we will demon-

strate the connection between certain actions by spherical twist and categorical

Hecke algebra actions.

In type A, words in the braid group are themselves topological objects, and

one has the notion of braid cobordisms between such words. Braid cobordisms

also have a description by generators and relations due to Carter-Saito [6]: the

morphisms are called movies, and the relations movie moves. Not all movies are

invertible, however.

Corollary 1.21. To give a strict braid group action in type A is the same data as
an action of the invertible braid cobordism category.

Proof. In fact, our description ofBdiag by generators and relations agrees with that

of Carter-Saito for the invertible part of their braid cobordism category. Movie

moves 3, 5, 6, and 7 correspond to the standard relations (1.1); movie moves 1,

2, and 8 correspond to the isotopy relations (1.2); and movie moves 4, 9, and 10

correspond to the Zamolodzhikov relations (1.3). �

In [12], the �rst author and Daniel Krasner proved that the entire braid cobor-

dism category acts on Rouquier complexes, not just the invertible part. Which

other actions admit such an extension, and what corresponds to the non-invertible

braid cobordisms in other types, are both interesting questions.

Finally, one should note that Theorems 1.17 and 1.20, which are stated in purely

diagrammatic language, could admit purely diagrammatic proofs. This can be

accomplished in a variety of special cases (e.g. Coxeter groups in type A, by an

argument similar to the one used in [11]). However, no general diagrammatic proof

currently exists.

A�ne Weyl groups are Coxeter groups, but also admit another presentation,

the loop presentation. Often, weak categorical actions of a�ne Weyl groups are

given using the loop presentation rather than the Coxeter presentation, and thus

di�erent stricti�cation data are required. We do not consider this (interesting)

question in this paper.

Acknowledgements. We would like to thank Ruth Charney and Jean Michel for

useful correspondence.
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Part I

Topology and diagrammatics

2. Igusa diagrams

The goal of this section will be to take a cell complex X and construct, by

generators and relations, a cyclic biadjoint 2-category ….X/�2 which is equivalent

to the fundamental 2-groupoid �.X/�2 of X . We assume the reader is familiar

with diagrammatic interpretations of cyclic biadjoint 2-categories, for which an

excellent introduction can be found in [23, 24].

The 2-morphisms in ….X/�2 should be combinatorial encodings of maps

D2 ! X . Note that ….X/�2 only depends on the 3-skeleton of X , so we may

assume that X is a 3-complex. We follow the procedure described by Roger Fenn

in his book [14]. First, enrich the notion of a 3-complex to make it more combi-

natorial, by adding a small amount of data for each cell and placing minor restric-

tions on attaching maps, none of which is signi�cant up to homotopy equivalence.

Given an enriched 2-complex, certain planar diagrams, Igusa diagrams, can be

used to encode (nice) maps D2 ! X2, such as the attaching maps of the 3-cells.

Finally, one lists the relations between diagrams which correspond to homotopy

in an enriched 3-complex.

To any 3-presentation P D .S;R;Z/ of a group G, one can associate a

3-complex XP for which �1.XP/ D G. One can also construct the universal

cover zXP ! XP in such a way that the action of G is inherent from the cell

complex structure on zXP. We discuss the diagrammatics for the corresponding

fundamental 2-groupoids below.

Fenn’s exposition is highly recommended. We give a quick summary, follow-

ing sections 1.2, 2.3 and 2.4 of [14]. Fenn’s discussion requires that X have a

unique 0-cell, but it is straightforward to generalize to a cell complex with mul-

tiple 0-cells, as we do below. It is also straightforward to reorganize everything

into a 2-category, with one object for each 0-cell.

Remark 2.1. This diagrammatic interpretation of �.X/�2 for a cell complex

X is credited to Whitehead by Igusa [19, Remark following Proposition 7.4].

Subsequent papers (e.g. [25, 33, 20]) call these diagrams “Igusa pictures.”

It seems likely that Fenn independently discovered this diagrammatic descrip-

tion [14].
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2.1. Cell complexes and pictorial maps

De�nition 2.2. An (enriched) 3-complex will be the following data.

� A set of 0-cells O.

� A set of 1-cells S, viewed as oriented edges D1 between 0-cells. For each

s 2 S, we �x a point Os 2 Int.s/, and let OS D ¹Osºs2S.

� A set of 2-cells R, viewed as oriented disks D2 attached along their boundary

to the above oriented graph. We assume each attaching map is pictorial, in a

sense to be de�ned shortly. For each r 2 R, we �x a point Or 2 Int.r/ and a

point ptr 2 @.r/, and let OR D ¹Orºr2R.

� A set of 3-cells Z, viewed as oriented balls D3 attached along their boundary

to the above 2-skeleton. We assume each attaching map is pictorial, in a

sense to be de�ned shortly. For each z 2 Z we �x a point ptz 2 @.z/.

We now de�ne diagrammatic, combinatorial ways to encode maps from

D1 ! X1 and D2 ! X2.

De�nition 2.3. A line diagram is an interval D1 decorated as follows. A �nite

number of points in Int.D1/ are labeled with an element of S and an orientation

˙, i.e. with an element of S[S�1. In this paper we associate a color to each s 2 S,

and we refer to this labeling as a “coloring.” The regions between those points are

labeled with elements of O. The region to the left of a point labelled sC (resp. s�)

must be the source (resp. target) of the oriented edge s, and the region to the right

must be the target (resp. source).

To a line diagram f we have a word w.f / in the letters S [ S�1, which

determines the line diagram uniquely. We also have a word o.f / in the letters O.

Clearly w.f / determines o.f /, while o.f / determines w.f / so long as X1 has

no loops or double edges.

Example 2.4. This is an example where the 0-cells are labelled ¹a; b; cº and the

1-cells are labelled ¹r; g; bº for red, green and blue. We will continue this example

below. We have drawn a line diagram whose word w is brg�1brr�1.
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Suppose that f W D1 ! X1 is a map. It is represented by a given line diagram if

� for each s 2 S, f �1.Os/ is the collection of points colored s;

� each point colored s in D1 has a neighborhood which maps homeomorphi-

cally to a neighborhood of Os. The sign on that point is C if the homeomor-

phism preserves orientation, and � if it reverses it.

Note that each connected component of X1 n OS is star-shaped and deformation

retracts to a single 0-cell o 2 O. The conditions above imply that the entire region

labelled o in D1 will map to the corresponding connected component. Also note

that the endpoints @.D1/ can not map to OS.

De�nition 2.5. A map D1 ! X1 is pictorial if it is represented by some line

diagram. A map .S1; pt/ ! X1 is pictorial if the corresponding map D1 ! X1

is pictorial, given by identifying @.D1/ with pt 2 S1.

It is easy to modify the notion of a line diagram to obtain that of a circle
diagram, representing a map .S1; pt/ ! X1. We keep track of the marked

point with a tag. One can �ip a line or circle diagram, which will invert all the

orientations, and will correspond to the obvious precomposition with the �ip map

D1 ! D1 or S1 ! S1.

Example 2.6. This is a loop with word g�1brr�1r based at c, and its �ip

r�1rr�1b�1g.

Any line diagram is clearly realized by some map D1 ! X1. Any two

pictorial maps D1 ! X1 with isotopic line diagrams are clearly homotopic (via a

homotopy sending @.D1/ ! X1 n OS). In the de�nition of an enriched 3-complex,

the attaching map of a 2-cell r is assumed to be pictorial, and thus has a circle

diagram; the marked point ptr 2 @.r/ corresponds to the tag.
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De�nition 2.7. A disk diagram is a particular kind of oriented planar graph in the

disk D2. Each edge of the graph is colored with some s 2 S, and each region is

labeled with some o 2 O, compatible with the orientations on edges via a “left-

handed rule.” Edges may run to the boundary @.D2/, yielding a circle diagram

on the boundary (see example for orientation rules). Edges need not meet any

vertices, forming circles, or arcs at the boundary. Each vertex is labelled with an

element of R and an orientation ˙, i.e. with an element of R[R�1. A small circle

around a vertex labelled rC (resp. r�) must yield the circle diagram of r (resp.

the �ip of the circle diagram of r). A disk diagram with marked points on the

boundary is exactly that, with the additional assumption that the marked points do

not meet the edges.

Example 2.8. To the 1-skeleton of the previous examples we have glued a 2-cell

w along b�1brr�1 (based at the 0-cell b) and another v along gr�1b�1 (based

at a). Now we have constructed a map from the disk which uses w and v�1.

Suppose that one takes a disk diagram and excises a neighborhood of each

vertex. What remains is a colored, oriented 1-manifold embedded in the punctured

disk.

Suppose that f W D2 ! X2 is a map. It is represented by a given disk diagram

if the following conditions are satis�ed.

� For each r 2 R, f �1. Or/ is the collection of vertices labeled r .

� Each vertex labeled r has a neighborhood which maps homeomorphically to

the 2-cell r . The sign on the vertex is C if the homeomorphism preserves

orientation, and � if it reverses it.

� Let Y denote the disk with those neighborhoods excised. Then Y maps to

X1. The remainder of these criteria address the restricted map fY W Y ! X1.

� For each s 2 S, f �1
Y .Os/ is the 1-manifold colored s.

� Each connected 1-manifold colored s in Y has a tubular neighborhood map-

ping by projection to a neighborhood of Os. The orientation of the manifold

obeys the obvious rule.
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Once again, these conditions imply that the remainder of the disk (i.e. Y minus

these tubular neighborhoods) is sent to X1 n OS, and maps to the connected com-

ponent corresponding to the label on each region.

De�nition 2.9. A map D2 ! X2 is pictorial if it is represented by some

disk diagram. A map .S2; pt/ ! X2 is pictorial if the corresponding map

D2 ! X2 is pictorial, given by collapsing the boundary to pt. This implies that

the corresponding disk diagram is closed, i.e. its boundary has the empty word.

Any disk diagram is clearly realized by some map D2 ! X2. Any two

pictorial maps D2 ! X2 which agree on the boundary and have isotopic disk

diagrams are clearly homotopic relative to the boundary. In the de�nition of an

enriched 3-complex, the attaching map of a 3-cell z is assumed to be pictorial,

and thus has a closed disk diagram. One can also de�ne the �ip operation on disk

diagrams, which inverts all the orientations.

Every map D1 ! X1 or D2 ! X2 is homotopic to a pictorial map (and if the

boundary is already nice enough, this homotopy can be performed relative to the

boundary). Any 3-complex is homotopy equivalent to a 3-complex with pictorial

attaching maps. The choice of additional data needed to enrich a 3-complex is

unique up to homotopy. Therefore, when studying arbitrary maps from D2 to

arbitrary 3-complexes up to homotopy, it is su�cient to study pictorial maps from

D2 to enriched 3-complexes. For more details, see Fenn [14].

Henceforth, we will use the term Igusa diagram to refer to any diagram

(on the line, circle, or disk) constructed above. We only consider Igusa diagrams

up to isotopy. We also use the word symbol to refer to a vertex in a disk diagram.

2.2. Homotopy relations on diagrams. Consider a disk diagram with a sub-

disk-diagram containing no symbols. This subdiagram represents a map

D2 ! X1. There are two local transformations of diagrams which result in ho-

motopic maps .D2; @D2/ ! X1. These are called bridging and removing circles,
and they can be applied to any s 2 S (we have omitted the labeling of regions).

We write the moves by placing an equal sign between the two diagrams. The

transformation (2.2) can also be applied with the other orientation.

D (2.1)

D (2.2)
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Claim 2.10. Any two symbol-less disk diagrams which yield homotopic maps
.D2; @D2/ ! X1 are related by a sequence of (2.1) and (2.2).

If we allow symbols, there is a new local transformation of diagrams which

results in homotopic maps .D2; @D2/ ! X2. It is called canceling pairs, and can

be applied to any r 2 R. In this relation, the orientations must be opposite and the

tags must lie in the same region.

(2.3)

Together, (2.3), (2.2), and (2.1) are called the standard relations.

Exercise 2.11. Use (2.2) and (2.1) to prove that (2.3) is equivalent to the local

move

(2.4)

Claim 2.12. Two diagrams with the same boundary represent relatively homo-
topic maps .D2; @D2/ ! X2 if and only if they are related by the standard rela-
tions.

The above claims are proven in [14, §2.4].

To construct a 3-complex from a 2-complex, one glues in a set Z of oriented

balls D3 along maps @D3 Š S2 ! X2. The e�ect of adding a 3-cell z 2 Z

to X2 is that it makes the corresponding closed diagram .@z; ptz/ nulhomotopic.

The corresponding local move on disk diagrams would be to replace the diagram

.@z; ptz/ with the empty diagram, or vice versa. Note that a disk diagram always

represents a map whose image lies in X2, but this local move corresponds to a

homotopy which passes through X3. We typically do not bother to draw the tag

corresponding to ptz on such a disk diagram, because its location on the empty

boundary is irrelevant.
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Alternatively, one can also consider @z Š S2 as a union of two copies of

D2 along a common boundary S1 (containing the marked point ptz). The two

hemispheres would represent two (possibly non-closed) diagrams with the same

boundary, and the corresponding local move would be to replace one diagram

with the other. Given a closed diagram, one can obtain the two hemispheres by

slicing the disk in half to form two disks, and taking the �ip of one. The relation

which replaces @z with an empty diagram and the relation which replaces one

hemisphere with another are equivalent modulo the standard relations.

Example 2.13. The following two relations, which could arise from the gluing

of a 3-cell, are equivalent. The attaching maps w and v come from the previous

examples.

Theorem 2.14. Two diagrams with the same boundary represent relatively ho-
motopic maps .D2; @D2/ ! X3 if and only if they are related by the standard
relations and the new relations imposed by Z.

Remark 2.15. If one glues in a new 3-cell along an attaching map .@z; ptz/ which

is already nulhomotopic, then the new relation is clearly redundant. In other

words, any homotopy of maps D2 ! X3 which passes through z could have

instead avoided z (though there may be no homotopy of homotopies). If two

diagrams are homotopic, it is easy to deduce from the standard relations that their

�ips are also homotopic. Therefore, after gluing in z, gluing in a 3-cell Nz along

the �ipped attaching map will not a�ect the diagrammatic calculus.

2.3. 2-categorical language. We can also draw Igusa diagrams in the planar

strip R � Œ0; 1� rather than the planar disk, and they will be called strip diagrams.
They represent (pictorial) maps .D2; pt; pt/ ! X3 with two marked points on the

boundary. The same local moves as above will describe homotopy classes of such

diagrams.
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De�nition 2.16. Let X3 be an (enriched) 3-complex, with 0-cells O, 1-cells S,

2-cells R, and 3-cells Z. We de�ne a 2-category ….X3/�2 as follows. The objects

will be O. The 1-morphisms will be generated by sW o1 ! o2 and s�1W o2 ! o1,

where o1 (resp. o2) is the 0-cell at the source (resp. target) of the oriented edge s.

Thus an arbitrary 1-morphism is a compatible word in S[S�1. The 2-morphisms

w1 ! w2 between compatible words will be the set of strip diagrams constructed

with the symbols r; r�1 for r 2 R, modulo isotopy, the standard relations, and

a relation for each z 2 Z. Composition of 2-morphisms is given by vertical

concatenation.

Remark 2.17. One can also phrase this de�nition in terms of generators and

relations. The 2-morphisms are generated by oriented cups and caps for each

s 2 S, and by symbols r and r�1 for each r 2 R. In addition to the standard

relations and Z, one imposes certain “isotopy relations.” See Lauda [23] for more

details.

Note that oriented cups and caps give 2-morphisms ss�1 ! 1, etc. Rela-

tions (2.1) and (2.2) prove that cups and caps form inverse isomorphisms. Simi-

larly, the symbol r gives a map from w.r/ ! 1, and r�1 gives a map 1 ! w.r/.

Relations (2.4) and (2.3) prove that these are inverse isomorphisms.

This combinatorially-de�ned 2-category encodes everything one needs to

know about ��2.X3/. In particular, the previous results immediately imply this

corollary.

Corollary 2.18. There is an obvious 2-functor

….X3/�2 �! �.X3/�2;

sending each object o 2 O to the corresponding point in X3. This is a 2-categor-
ical equivalence.

2.4. Group presentations. LetP D .S;R/ be a 2-presentation of a group G. The

corresponding 2-complex is the Cayley complex XP, and is constructed in the fa-

miliar way. It has a single 0-cell, a 1-cell for each s 2 S, and a 2-cell for each r 2R,

glued in the obvious fashion along its corresponding word (see also [14, §1.2]).

Note that G Š �1.XP/, although the higher homotopy groups depend on the pre-

sentation chosen. Recall that a 3-presentation P D .S;R;Z/ is a 2-presentation

of G with a collection Z of 3-cells; we also denote the corresponding 3-complex

XP. We call the elements of Z 2-relations.
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Example 2.19. Suppose G D ¹eº and P D .;;R/, where each element of R is the

empty word. Then XG will be a rosette of 2-spheres, one for each element of R.

When R is a singleton so that XG Š S2, the commutative group �2 is isomorphic

to Z, based on a signed count of appearances of the relation symbol.

Exercise 2.20. Suppose G D ¹eº and P D .¹aº; ¹aº/. Then XG Š D2. Show

explicitly that any two disk diagrams with the same boundary are equivalent.

We can also construct a G-fold (universal) cover of XP, which we will denote
zXP. The 0-cells will be zO D G, the 1-cells will be zS D S � G, the 2-cells will be
zR D R � G, and so forth. Each 1-cell .s; g/ will go from g to gs; by convention,

edges correspond to right multiplication. Each 2-cell .r; g/ will be attached along

the edges corresponding to the word of r , beginning at the base point g 2 zO. The

3-cell .z; g/ is glued into the closed diagram corresponding to z, with the outer

region labelled g, and the other regions labeled in the only consistent way. Clearly
zXP comes equipped with a free action of G by left multiplication on cell names,

and zXP=G Š XP.

Claim 2.21. �1. zXG/ Š 1. Moreover, �n. zXG/ Š �n.XG/ for all n � 2.

Proof. This is immediate from the long exact sequence associated to the covering

map. �

Remark 2.22. It is somewhat presumptuous to assume that, given P, one knows

what G is, or even how big G is. While XP can be constructed explicitly without

the set of elements of G, zXP can not be. When G is in�nite so is zXP, but it is

locally �nite so that usual topological intuition applies.

We use the following conventions for Igusa diagrams of group presentations.

We do not bother to label the regions of a diagram for XP with the unique element

of O. Given a disk diagram for zXP, the label g 2 G D zO of a single region will

determine the label of every other region. Moreover, having �xed a label on a

single region, the color .s; g/ 2 zS of any edge is determined only by the color

s 2 S, and similarly for symbols .r; g/ 2 zR. We omit the redundant data, coloring

edges only by s 2 S and naming symbols by r 2 R. Thus a disk diagram for zXP is
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the same data as a disk diagram for XP with an arbitrary choice of label g 2 G for

a single chosen region. Postcomposing a map D2 ! zXP with the quotient map
zXP ! XP corresponds to forgetting the label on that region.

The following example will be crucial in Section 3.

Example 2.23. Let P D .¹sº; ¹s2º; ¹zº/ be a presentation for the group G D

Z=2Z. The 3-cell z is glued in along the following picture.

Then the 2-skeleton of XP will beRP
2, and XP will beRP

3. In particular, �2.XP/

is trivial.

To construct zXP, we take two points, add two edges to get S1, add two disks

to get S2, and add two 3-cells to get S3. This is the 3-skeleton of S1 Š EG in

its usual construction.

Let Y denote the 2-skeleton of zXP with only a single 3-cell added, so that

Y Š D3. We think of Y as the “2:5-skeleton” of EG. To obtain zXP from Y , one

attaches a 3-cell which is redundant in the sense of Remark 2.15. Therefore, Y

and zXP have the same category …�2. Of course, Y does not admit a free action

of G, but it has other advantages. For instance, Y deformation retracts to a pole

between the two 0-cells, which is the (completed) dual Coxeter complex of G.

3. Modi�ed Fenn diagrams

The Coxeter presentation has a number of natural symmetries, and we wish to

exploit them in order to simplify our diagrammatic description of �W . In this

section we develop some general machinery which yields simpler diagrammatics

for special kinds of 3-presentations.

Suppose that .S;R/ is a group presentation, where s2 2 R for some s 2 S.

There is a particular 3-cell one can glue in, which will cause s and s�1 to be

canonically isomorphic, and this allows us to ignore the orientations on the strands

colored s in diagrams for zXP. Heuristically, these s-unoriented diagrams depict

…�2 for some deformation retract of a “2:5-skeleton” of zXP, as in Example 2.23.

In similar fashion, we describe a modi�cation adapted to rotational and �ip sym-

metries in relations, such as in the braid relation.
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3.1. Modi�ed diagrammatics for involutions. First let us consider diagrams

for P D .¹sº; ¹s2º/, so that XP Š RP
2 and zXP Š S2. The relation s2 allows us to

draw bivalent vertices which look like this.

The sign on the symbol is determined by the orientations of the strands, but the

location of the tag is not. Therefore, the bivalent vertex gives two natural maps

s ! s�1, depending on the placement of the tag, and two natural maps the other

direction.

Using (2.3) and (2.4) we have

(3.1)

(3.2)

We now add a 3-cell zs to obtain the higher presentation P D .¹sº; ¹s2º; ¹zsº/,

and temporarily write zX D zXP and X D XP. The new 3-cell is meant to kill

�2.RP
2/, and in zX to kill �2.S2/. If we attach two bivalent vertices together so

that the tags do not cancel, this represents the map that zs is glued into. Thus we

have a new relation:

(3.3)

Splitting a new 3-cell into hemispheres, we obtain the equivalent relations:

(3.4)

We may introduce a new symbol: a bivalent vertex without a tag. This symbol

is set equal to the bivalent vertex with either placement of the tag. Now (3.2)

becomes
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(3.5)

Thus the bivalent vertex gives a (canonical) isomorphism between s and s�1.

Exercise 3.1. Any closed diagram for XP is equal to the empty diagram. In other

words, �2.XP/ D 1. The topological statement is obvious: �nd a diagrammatic

proof.

Now let P D .S;R;Z/ be any 3-presentation, and let s 2 S be such that s2 2 R

and zs 2 Z for zs as above. The same arguments as above show that we may ignore

the tag on the bivalent vertex associated to s. Moreover, the bivalent vertices of

either sign form inverse isomorphisms between s and s�1, and we wish to use

them to canonically identify the two objects. Given any Fenn diagram we may

forget the orientation data associated to s to get an s-unoriented Fenn diagram.

In particular, each relation has an s-unoriented symbol. Let Ns denote a point s

without an orientation.

De�nition 3.2. Suppose that P D .S;R;Z/ is a 3-presentation containing

.s; s2; z/. Let ….XP; s/�2 be the 2-category with a single object, de�ned as fol-

lows. The 1-morphisms are generated by S0 [ .S0/�1 [ ¹Nsº, where S0 D S n ¹sº.

The 2-morphisms are generated by the s-unoriented symbols of R0 [ .R0/�1, for

R0 D R n ¹s2º, and thus correspond to s-unoriented disk diagrams. The relations

are generated by Z n ¹zsº, as well as the usual Fenn relations for oriented parts of

the diagram and the unoriented Fenn relations for s:

D (3.6)

D (3.7)

D (3.8)
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There is a natural 2-functor ….XP/�2 ! ….XP; s/�2. It sends both s and

s�1 to Ns. It sends the bivalent vertex corresponding to s2 to the identity map of

Ns. To every disk diagram without bivalent vertices, it forgets the orientation data

associated to s. It is easy to show that this 2-functor is an equivalence. Given any

s-unoriented disk diagram, and any choice of orientations of s on the boundary,

one may choose a disk diagram by placing orientations on Ns-strands willy-nilly,

and adding bivalent vertices whenever necessary for consistency. While there are

multiple such diagrams, they are all equal in ….XP/�2.

IfP contains .s; s2; zs/ for multiple distinct involutions in S, there is no obstruc-

tion to forgetting the orientations on multiple colors at once. We write ….XP/un-or
�2

for the 2-category where every such orientation is ignored.

The case of zXP can be treated in the same way. One must glue in a copy of zs for

every possible region labeling. As before, diagrams for zXP will be s-unoriented

disk diagrams with a label in a single region.

Remark 3.3. Here is a heuristic topological understanding of unoriented dia-

grams, at least for zXP. As in Example 2.23, let Y Š D3 be the 2.5-skeleton of

S1, which has two 0-cells 1 and s, two 1-cells .s; 1/ and .s; s/, two 2-cells .s2; 1/

and .s2; s/, and a single 3-cell .zs; 1/. One can construct a new “unoriented” cell

complex Y un-or, consisting of two 0-cells 1 and s, and a single unoriented 1-cell Ns

between them. We think of Ns as a pole inside Y Š D3. Clearly Y un-or � Y is a

deformation retract, under a retract sending both edges .s; 1/ and .s; s/ to Ns.

Similarly, suppose that .s; s2; zs/ � P for a general 3-presentation. After

constructing zX1
P

, one can repeat the above construction for each coset ¹x; xsº 2

G to obtain a 3-complex Y1 which deformation retracts to a 1-complex Y un-or
1 .

In Y un-or
1 , x and xs are connected by a single edge .Ns; x/. The attaching maps of

other 2-cells in R can be deformed to lie on Y un-or
1 , and similarly for the other

3-cells in Z, yielding a deformation retract Y un-or of a 2.5-skeleton Y of zXP. We

think of unoriented diagrams as describing maps to Y un-or (even though Fenn

diagrams for Y un-or are actually quite di�erent). There is no reasonable Z=2Z

action on Y or Y un-or whose quotient has �1 D G, so we do not use this heuristic

when thinking about XP, only zXP.

3.2. Rotational invariance and �ip invariance. When a relation does not have

rotational invariance, there is no need to keep track of the tag on the corresponding

symbol in a Fenn diagram. The location of the tag can be deduced from the edge

coloring. When a relation does have rotational invariance, the tag is not redundant.

However, if an appropriate 3-cell is glued in, all possible locations of the tag will be

set equal, and the tag will become redundant. An exactly analogous procedure will
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work to make the sign on a symbol redundant when a relation has �ip invariance.

We will use speci�c examples to illustrate general principles, because it is hard to

draw a general example.

First consider P D .¹r; g; bº; ¹w D rgbrgbrgbº/. The symbol for w can

be rotated by 120 degrees and 240 degrees to give a morphism with the same

boundary. This is a di�erent morphism because the tag is in the wrong place.

If we set two of these to be equal by gluing in a 3-cell, then the third will be

equal as well. In general, if w is invariant under rotation by � then setting w equal

to �.w/ will also set it equal to n�.w/ for any n 2 Z. The 3-cell zw would be

glued in along the following closed diagram, which is a “mismatched pair.”

Once this 3-cell is glued in, one need not draw the tag on this symbol any

longer. There are only three valid locations for the tag (it must be before r and

after b), and they all give equal 2-morphisms.

In the previous section, we had to construct a new 2-category which equated

two canonically isomorphic objects. In this section, we are not changing the

category, but are merely using a notational convenience, using one symbol to

represent several distinct symbols which happen to be equal.

The case of zXP can be treated in the same way. One must glue in a 3-cell as

above for every possible region labeling.

Remark 3.4. As in Remark 3.3, there is a topological heuristic for the new

diagrammatic calculus. Suppose thatP contains .¹r; g; bº; ¹w D rgbrgbrgbº; zw/

as above. For any x 2 G there are three di�erent 2-cells being glued to the same

S1 � zXP: .w; x/, .w; xrgb/ and .w; xrgbrgb/. Fixing the same base point in S1
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for all three, they are .w; x/, .�.w/; x/ and .�2.w/; x/. One can visualize this part

of the 2-skeleton as a stack of pancakes, glued together along their rim. The 3-cell

.zw ; x/ �lls in the gap between the �rst two pancakes, while the 3-cell .zw ; xrgb/

�lls in the gap between the second and third pancakes. With these two 3-cells

glued in, the result is a copy of D3. Therefore the last 3-cell .zw ; xrgbrgb/ would

be redundant, and we need not glue it in. Ignoring this 3-cell (for each x) one

obtains the “2:66--skeleton” of zXP (we continue to call it the 2.5-skeleton), and

it deformation retracts to a central D2 pancake-shaped slice. This central slice is

what the tagless symbol is meant to represent.

The reader can deduce the rest of the analogy. Unlike Remark 3.3, replacing
zXP with the deformation retract of its 2.5-skeleton does not change the 1-skeleton,

which is why one need not change the objects in the category.

Now consider G D .¹r; gº; ¹w D rgg�1r�1º/. It lacks any rotational symme-

try, but it does have a �ip symmetry: the symbol for w and some rotation of the

opposite orientation of w have the same boundary. We can glue in a 3-cell zw

along a “mismatched pair.”

Once this 3-cell is glued in, one need not keep track of the sign on the symbol

any longer.

Of course, the relation w 2 �1.XP/ is already nulhomotopic even in X1
P

, as

any relation with �ip symmetry will be! This restricts the notion of �ip symmetry

to unusual presentations.

Flip symmetry becomes more interesting for unoriented Fenn diagrams. Sup-

pose that P D .¹r; g; bº; ¹r2; g2; b2; rgbrbg D wº;Z/ and that Z contains the

3-cells which allow for unoriented diagrams as in the previous section. The un-

oriented symbol for w has no rotational symmetry, but it does have �ip symmetry.
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Without this 3-cell added as a relation, a diagram with boundary rgbrbg could

be either wC or a rotated w�. This 3-cell would set them equal. For this example

it is not terribly meaningful to say that we can remove the ˙ decoration on w,

because one must keep the tag, and the sign can be deduced from the tag. The

following example combines all three modi�cations, and gives a situation where

removing the sign does have a noticeable e�ect.

Example 3.5. Consider the Coxeter presentation .¹s; tº; ¹s2; t2; stst�1s�1t�1º/.

Now, glue in the 3-cells for each generating involution, so we may work with

unoriented diagrams. Then glue in a 3-cell for rotational invariance. At this point,

the following two diagrams do not represent the same 2-morphism (tags included

for clarity).

Gluing in one more 3-cell for �ip symmetry, we can ignore the sign on the

symbol, and draw the 2-morphism unambiguously as a 6-valent vertex.

Example 3.6. Let P be the 3-presentation of the previous example. What is zXP?

It is more complicated than it looks, because each cell appears 6 times, once for

each element of W .

We begin with six 0-cells. Instead of labeling them by elements of W , let us

mentally arrange them as a hexagon and label them by numbers modulo 6, as on a

6-hour clock. We then glue in twelve 1-cells (six for s and six for t ). These connect

each neighboring pair of 0-cells with two edges, yielding six copies of S1 welded

into a hexagonal loop. Next, the relations in Q attach twelve 2-cells (six of each),

two glued into each copy of S1. This yields six copies of S2 welded into a loop.

Then we glue in the “orientation 3-cells,” twelve of them, two glued into each

copy of S2. This yields six copies of S3 welded into a loop. However, six of the

twelve 3-cells are redundant: after a 3-cell has turned S2 into D3, the other 3-cell
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will have a nulhomotopic attaching map. Ignoring these six redundant 3-cells,

we have six copies of D3 welded into a loop. This space deformation retracts to

the 1-skeleton of eCox (to be de�ned in §4.3), which is just (the boundary of) a

hexagon.

Now we glue in six 2-cells, for the braid relation. It may help the reader to

think that three of these are glued in clockwise, and three counter-clockwise, but

the underlying topological space does not care about such intricacies. The result is

a stack of 6 hexagonal pancakes (labeled by the numbers modulo 6), glued along

their boundary.

Next we glue in the six 3-cells for rotational invariance. One such 3-cell forms

a cobordism between pancake 0 and pancake 2, another between 2 and 4, and

another between 4 and 0; the three remaining 3-cells go between pancakes 5 and

3, pancakes 3 and 1, and pancakes 1 and 5. Clearly one of the even 3-cells and one

of the odd 3-cells is redundant.

Finally, we glue in six 3-cells for �ip invariance. One such 3-cell forms a

cobordism between pancake 0 and pancake 3, another between 1 and 4, another

between 2 and 5, another again between 3 and 0, and so forth. At this point, after

gluing in one �ip 3-cell, the remaining ones are redundant.

Ignoring the redundant 3-cells, we glue in �ve 3-cells to �ll the gaps between

the six pancakes. The result is a big blob of pancake batter, which clearly �attens

into a single solid hexagon. In other words, this space (minus the redundant

3-cells) deformation retracts to the 2-skeleton of eCox, a solid hexagon.

Part II

Coxeter groups and braid groups

4. Coxeter groups and topology

In this section we give some background information on Coxeter groups, their

Artin braid groups, and some associated topological spaces.

4.1. Coxeter groups. Fix a set S, and for each pair s ¤ t 2 S �x an element

mst 2 Z�2 [ ¹1º. The Coxeter group W is de�ned by its Coxeter presentation
.S;Q [ B/, where the quadratic relations are

Q D ¹s2ºs2S



446 B. Elias and G. Williamson

and the braid relations are

B D ¹bs;tºs¤t2S for bs;t D sts : : :
„ƒ‚…

mst

: : : t�1s�1t�1

„ ƒ‚ …

mst

:

There is no braid relation when mst D 1. There is only one braid relation for each

pair s; t 2 S; we will not redundantly use both bs;t and bt;s . The corresponding

Artin braid group BW has presentation .S;B/. We let BC
W � BW denote the

monoid of positive braids, which is the monoid with the same presentation .S;B/.

We assume that S is �nite, though this is not strictly necessary for our argu-

ments. We let r D jSj be the rank of W . Let ` denote the length function.

For a subset I � S, there is a parabolic subgroup WI � W generated by

s 2 I . It is also a Coxeter group, with presentation .I;QI [ BI /. When there

exists a partition S D I1

`
I2 such that mst D 2 for all s 2 I1 and t 2 I2, then

W Š WI1
� WI2

, and we say that W is reducible. When WI is �nite, we say that

I is �nitary, and we let wI denote the longest element of WI .

A Coxeter group of rank 2 is determined by m D mst , and is said to be of type

I2.m/. It is �nite unless m D 1. The group I2.2/ is the reducible group A1 � A1.

There is a classi�cation of all �nite Coxeter groups. The �nite Coxeter groups of

rank 3 are types A3, B3, H3 and the reducible types A1 � I2.m/ for m < 1.

For an element w 2 W , we will use an underline w D s1s2 : : : sd to indicate an

expression for w in terms of S. If we need to di�erentiate between two expressions

for w we will write w1 and w2. We say that w is reduced if d D `.w/. Given

w 2 W , a choice of reduced expression w will also yield an element Qw of BC
W ,

independent of the reduced expression chosen. We call this the positive lift of w

to BW . See Humphreys [18] for more details.

4.2. The Coxeter complex. To a Coxeter system .W; S/ one may associate a

simplicial complex, the Coxeter complex j.W; S/j, as follows.

(1) Choose an arbitrary total order on S;

(2) color the r faces of the .r �1/-simplex by S, matching the lexicographic order

on faces to the total order on S; call the resulting simplex �.

(3) Take one copy �w of � for each w 2 W .

(4) Glue �w to �ws along the face colored by s, for all w 2 W and s 2 S. There

is only one possible gluing which preserves the orientation.

The result is a connected .r � 1/-dimensional simplicial complex with simplices

of maximal dimension labelled by W and codimension one simplices (or walls)
colored by S. Moreover, W acts on j.W; S/j by automorphisms preserving the

coloring of walls.
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If one chooses a di�erent total order on S, one obtains the same complex with

di�erent orientations. We do not care about the simplicial orientations in the

Coxeter complex (or in any of the other complexes we construct in this section; the

avid reader may �ll in the details). In the examples below we will draw orientations

on the walls; these orientations have nothing to do with the simplicial orientations,

but instead record the Bruhat order on W .

Example 4.1. Let W be a �nite subgroup of the orthogonal group O.V / of

a Euclidean vector space V of dimension r , and assume W is generated by

re�ections and acts irreducibly. Let T denote the subset of W of elements which

act as re�ections on W . Consider the space

U WD V �
[

t2T

V t

obtained from V by deleting all re�ecting hyperplanes. Then W acts simply tran-

sitively on the connected components of U . If one �xes a connected component C

of U , then xC is a simplicial cone, and .W; S/ is a Coxeter system of rank r , where

S denotes the set of re�ections in the walls of xC . If one intersects xC with the

unit sphere in V then one obtains a closed subset � homeomorphic to an .r � 1/-

simplex, whose faces are colored by S. The W -translates of ¹w� j w 2 W º give

a triangulation of the unit sphere, giving a realization of the Coxeter complex. In

fact, all Coxeter complexes associated to �nite Coxeter systems can be realized in

this way.

Example 4.2. As for any �nite rank 3 Coxeter system, the Coxeter complex for

A1 �A1 �A1 is a triangulation of the sphere. The triangles are labeled by w 2 W .

The triangle closest to the reader is labeled with the identity, and the triangle

furthest is the longest element. We place orientations on edges such that going

from the left side of an edge to the right side will increase the length of w 2 W

by 1.

>

<

<

>

<

>

>

>

>

>

<

<
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Given x; y 2 W , a gallery from x to y in the Coxeter complex j.W; S/j is a

path between the simplices corresponding to x and y, which does not meet any

simplex of codimension � 2. We regard two galleries as equivalent if they visit

the same simplices in the same order. A gallery from x to y is minimal if it crosses

the least number of walls amongst all galleries from x to y. Giving a gallery from

x to y is the same thing as giving an expression for x�1y. Indeed, a gallery is

determined uniquely by the ordered list of walls crossed in the path from x to y.

A gallery from x to y corresponding to an expression st : : : u for x�1y is minimal

if and only if st : : : u is reduced.

4.3. The Dual Coxeter complex. For our purposes it will be more convenient to

use the dual Coxeter complex, which is the CW-complex j.W; S/j_ dual to j.W; S/j.

It has a 0-cell for each w 2 W , and a gallery in the Coxeter complex corresponds

to a path in the 1-skeleton of the dual Coxeter complex.

Let C be any face of codimension k < r in j.W; S/j. One can label C by the

rank k subset I � S, consisting of the colors on the walls which contain that face.

Then there is a face labeled by I if and only if I is �nitary. Moreover, the .r � 1/-

simplices containing such a face C are labeled by elements of W forming a coset

in W=WI .

Hence one can construct j.W; S/j_ as follows.

(1) Take a 0-cell for each w 2 W .

(2) Attach a 1-cell from x to xs, when xs > x.

(3) Attach a 2-cell between the two minimal galleries from x to xws;t , when ms;t

is �nite and x is a minimal length coset representative.

(4) : : :

Let us elaborate upon the inductive step. Fix any coset C in W=WI for I �nitary

of rank k. Consider the cells whose closure only contains 0-cells corresponding

to elements in C . After the k � 1-st step, the union of these cells will be

homeomorphic Sk�1. The k-th step is to glue in a k-cell and obtain Dk instead.

As j.W; S/j is .r � 1/-dimensional, this process ends after .r � 1/ steps.

One can also form the completed dual Coxeter complex, which includes the

r-th step above. We denote it by eCox. It di�ers from j.W; S/j_ in a single r-cell

when W is �nite, and does not di�er otherwise. In the �nite case, eCox gives a

CW-complex structure for the unit ball in Euclidean space, rather than the unit

sphere.

Example 4.3. When W is a �nite dihedral group of size 2m, eCox is the solid

2m-gon.
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Exercise 4.4. Suppose that W D W1 � W2 is a product of two other Coxeter

groups. Show that eCoxW Š eCoxW1
� eCoxW2

, compatibly with the CW structure.

Proposition 4.5. The completed dual Coxeter complex eCox is contractible.

Proof. By the exercise above, we may assume that W is irreducible. When W is

in�nite, the result follows from the contractibility of the Coxeter complex (see e.g.

[1, Theorem 4.127]). When W is �nite, the completed dual Coxeter complex is a

unit ball. �

The (completed) dual Coxeter complex eCox does have an action of W , which

acts by left multiplication on 0-cells. However, this action is not free, and the

quotient does not inherit a nice CW-complex structure. The dihedral group acting

on the regular 2m-gon provides a familiar example. Thus eCox does not provide

a good CW-complex model for EG. Instead, the (3-dimensional) model we

construct in Section 6 will contain (the 3-skeleton of) eCox as a deformation retract.

4.4. The Salvetti complex. The completed dual Coxeter complex has one k-cell

for each pair .I; C /, where I is �nitary of rank k, and C is a coset of W=WI .

Suppose we place an equivalence relation on eCox, identifying any two k-cells

.I; C / and .I; C 0/. The quotient is still a CW-complex, having a single k-cell for

each �nitary I � S. For instance, there is a single 0-cell, a 1-cell for each s 2 S,

and a 2-cell for each pair s ¤ t 2 S with ms;t < 1. We call this CW-complex

jBW j.

Similarly, one can construct a W -fold cover of this CW-complex, called the

Salvetti complex Sal. It has one k-cell for each pair .I; w/, with w 2 W and I � S

�nitary of rank k. The k-cell .I; w/ is glued in such a way that it contains 0-cells

labeled by wu for u 2 WI .

Note that the Salvetti complex is di�erent from eCox, despite having the same 0-

cells, and jBW j is di�erent from the quotient of eCox by the action of W described

above.

Example 4.6. Consider type A1. Then eCox Š D1 is an interval connecting two 0-

cells 1 and s. The complex Sal Š S1 has two 1-cells connecting the 0-cells 1 and

s. The quotient eCox=W is also an interval, folded in half. Meanwhile jBW j Š S1

identi�es the endpoints of the interval, or wraps the Salvetti complex in half.

We have already discussed the K.�; 1/-conjecture in some detail in the in-

troduction §1.5. It is clear that �1.jBW j/ Š BW . The K.�; 1/-conjecture states

that all higher homotopy groups vanish; the K.�; 1/-conjecturette states that
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�2.BW / D 0. The K.�; 1/-conjecturette is known for all Coxeter groups W ,

thanks to work of Digne-Michel [10].

For more information on the K.�; 1/-conjecture and a list of cases where it is

known, see the survey paper [27].

5. Diagrammatics for braid groups

In §4.4 we have already described the CW-complex jBW j. We now seek to

describe �.jBW j/�2 diagrammatically.

De�nition 5.1. Let Bdiag denote ….XP/ for the 3-presentation P D .S;B;Z/

below. The presentation .S;B/ agrees with the presentation of the braid group

given in §1.6. Therefore, an object in ….XP/ is a word in the letters S [ S�1.

The morphisms are generated by oriented cups and caps, as well as 2mst -valent

vertices as pictured below, whenever mst < 1 for the two colors present.

These morphisms satisfy the Fenn relations:

(5.1)

(5.2)

(5.3)

Remark 5.2. There is only one 2-cell for each pair s ¤ t 2 S with ms;t < 1.

The two di�erent kinds of 2m-valent vertices are the two orientations of the

corresponding symbol. Both the tag and the orientation on the symbol can be

determined from the coloring and orientation on the strands, so we do not draw

them in our diagrams henceforth.
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In addition, for any three colors forming a �nite parabolic subgroup, there is a

single 3-cell in Z. The corresponding relation is the generalized Zamolodzhikov

equation, given in (1.3).

By now, it is clear that Theorem 1.17 is equivalent to the K.�; 1/-conjecturette,

and is thus proven.

6. Diagrammatics for Coxeter groups

Let .W; S/ be a Coxeter group, with the usual presentation .S;Q[B/. Let eCox be

its completed dual Coxeter complex.

De�nition 6.1. A standard diagram for W , will be a diagram with unlabeled

regions, unoriented edges colored by s 2 S, and (untagged, unoriented) 2m-valent

vertices which alternate between edges colored s and t for which mst D m < 1.

A labeled standard diagram is a standard diagram with a single region labeled by

an element of W .

As noted previously, it is equivalent to give a label in W for a single region,

and to consistently label each region by an element of W , such that two regions

separated by an edge s di�er by that element in W .

De�nition 6.2. Let Wdiag denote the monoidal category whose objects are gen-

erated by s 2 S, and whose morphisms are given by standard diagrams modulo

isotopy and the following relations (the Fenn relations and the Zamolodzhikov

relations).

D

D

D
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D

D

D

D

Let zWdiag denote the 2-category whose objects are elements of W , and whose

2-morphisms are labeled standard diagrams, modulo the relations above.

In §3 it is explained how to add 3-cells to a presentation in order to simplify

diagrammatics in the presence of involutions and symmetries.

De�nition 6.3. Let P D .S;Q [ B;Z [ M/ be the following 3-presentation,

extending the usual presentation of W , which we call the Coxeter 3-presentation.

The Zamolodzhikov 3-cells Z are the same as in the previous section. The

“diagram-simplifying” 3-cells M consist of:

� one 3-cell zs for each generating involution s 2 S, as in (3.3);

� one 3-cell for each braid relation .st/m D 1 accounting for rotational sym-

metry;

� one 3-cell for each braid relation .st/m D .ts/m D 1, accounting for �ip

symmetry.

The 3-cells accounting for rotational and �ip symmetry were described in §3.2.
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Remark 6.4. As discussed in §3.2, the braid relation does not admit rotational or

�ip symmetry until one accounts for the fact that the generators are involutions.

The following proposition is obvious from the de�nitions.

Proposition 6.5. zWdiag is isomorphic (not just equivalent) to …. zXP/un-or
�2 as

2-categories.

Now we restate and prove one of our main theorems from the introduction.

Theorem 6.6. The obvious functorWdiag ! �W is an equivalence of categories.

Proof. It is enough to prove that �2. zXP/ D 0. This follows from the lemma

below. �

Lemma 6.7. By removing redundant 3-cells from zXP, one obtains a space which
will deformation retract to the 3-skeleton of eCox. In other words, zXP is homotopy

equivalent to eCox
3

_ S3 _ � � � _ S3.

Example 3.6 illustrates the basic idea of this proof.

Proof. We prove this lemma in steps. At the k-th step, we construct a sub-complex
zX .k/ of zXP by choosing certain cells to include. The sub-complex zX .k/ is not the

k-skeleton, though it will contain all k-cells of zXP when k < 3. We show that zX .k/

deformation retracts to eCox
k
. In particular, up to homotopy equivalence, we can

construct zX .kC1/ by gluing higher cells to eCox
k

instead of zX .k/. For k D 3, the

di�erence between zX .3/ and zX3
P

will consist entirely of redundant 3-cells. Both

eCox and zXP have the same 0-skeleton, so we begin with zX .0/ D zX0
P

.

Now consider a single s 2 S, and its parabolic subgroup Ws � W . By gluing

in the 1-cells, 2-cells, and 3-cells corresponding to the sub-presentation .s; s2; zs/,

one obtains a copy of S3 for each coset of Ws in W (see §3.1). One of the 3-cells is

redundant, and excising it one obtains a copy of D3 for each coset. Each D3 will

deformation retract to a single edge between the two 0-cells, which can be thought

of as an s-colored edge in eCox
1
. Thus if we take zX .0/ and add both 1-cells, both

2-cells, and one 3-cell of .s; s2; zs/ for each s 2 S, we obtain a space zX .1/ which

deformation retracts to eCox
1
.
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Now consider a single pair s; t 2 S with m D ms;t < 1, and its parabolic

subgroup Ws;t � W . Let bs;t denote the braid relation inside B, rs;t denote the

rotation 3-cell insideM, and fs;t denote the �ip 3-cell insideM. Each coset of Ws;t

in W corresponds to a hollow 2m-gon in eCox
1

(or something which deformation

retracts to a hollow 2m-gon in zX .1/). Gluing in the 2-cells corresponding to bs;t ,

each coset will look like 2m disks, each glued along their boundary to a common

S1. One can visualize this as an amalgamation of 2m � 1 copies of S2, where the

southern hemisphere of the i-th copy is identi�ed with the northern hemisphere

of the i C 1-st copy. There are a total of 4m 3-cells corresponding to rs;t and fs;t

(2m of each), each of which gives a cobordism between two di�erent disks. One

can choose 2m � 1 such 3-cells to �ll in the 2m � 1 copies of S2, yielding a cell

complex structure on D3. The remaining .2m C 1/ 3-cells are all redundant, and

we do not include them in zX .2/. This copy of D3 for each coset will deformation

retract to a single solid 2m-gon, which is a 2-cell in eCox
2

corresponding to Ws;t .

Thus if we take zX .1/ and add all 2m 2-cells and 2m � 1 3-cells of .bs;t ; ¹rs;t ; fs;tº/

for each s; t 2 Swith ms;t < 1, we obtain a space zX .2/ which deformation retracts

to eCox
2
.

Now consider a single triple s; t; u 2 S whose parabolic subgroup Ws;t;u has

�nite size n. Let Zs;t;u denote the Zamolodzhikov 3-cell in Z. Each coset of Ws;t;u

gives a subspace of eCox
2

which is a particular cell structure for S2. In zXP, Zs;t;u

corresponds to n 3-cells (for each coset), each of which turns S2 into D3. Clearly

only one such 3-cell is necessary, after which the remaining ones are redundant.

This single 3-cell corresponds precisely to the 3-cell in eCox
3

for that coset. Thus

if we take zX .2/ and add a single 3-cell of the form Zs;t;u for each coset of Ws;t;u,

we obtain the desired space zX .3/ which deformation retracts to eCox
3
. �

Remark 6.8. It is not unreasonable to expect a purely diagrammatic proof of

Theorem 6.6, and certainly this can be achieved in special cases. However, the

di�culty in �nding this proof was what led the authors to this topological detour.
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