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Categorification of level two representations of quantum sln

via generalized arc rings
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Abstract. In this paper we construct an extension of the arc ringHn introduced by Khovanov
[4], and use it to categorify level two representations of Uq.slN /. These rings also induce
invariants of tangle cobordisms.
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1. Introduction

Khovanov constructed in [4] a family of rings Hn, for n � 0, which is a cate-
gorification of Inv(n), the space of Uq.sl2/-invariants in V ˝2n: These rings lead to
an invariant of (even) tangles which to a tangle assigns a complex of .Hn;Hm/-
bimodules, up to chain homotopy equivalence. Khovanov and the author [1] built
subquotients of Hn and used them to categorify the action of tangles on V ˝n: The
same rings were also introduced by Stroppel [6].

In this paper, we extend the construction of these arc rings Ak;n�k and give a
categorification of level two representations of Uq.slN /. In Section 2 we review the
definition of the arc rings An�k;k and construct the rings Ak;ln with two platforms of
arbitrary sizes k and l . We show that they lead to a tangle invariant which is functorial
under tangle cobordisms. Then in Section 3 we compute the centers of Ak;ln and
relate them to the cohomology rings of Springer varieties. Finally, in Section 4.1, we
categorify level two representations of Uq.slN / using the rings Ak;0n .

Fix a level two representationW of Uq.slN / with the highest weight !s C!kCs .
There is a decomposition of W into weight spaces W D L

�W�. A weight � is
called admissible if it appears in the weight space decomposition of W . Denote by

1The author would like to thank Mikhail Khovanov for recommending this problem and too many
helpful conversations and suggestions. He is also very grateful to Robin Kirby for his kindness, guidance
and support.
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C the direct sum of categories of Ak;0
m.�/

-modules over admissible �, where m.�/
is a non-negative integer depending only on �. The Grothendieck group of the
category ofAk;0

m.�/
-modules is naturally isomorphic toW�. The exact functors Ei ; Fi

introduced by Khovanov and Huerfano [3] naturally extend to exact functors on C

which categorify the actions of Ei ; Fi 2 Uq.slN / on W .

2. Generalization of the arc ring An�k;k

2.1. Arc ring An�k;k. We first recall the definition ofHn from [4]. Let A be a free
abelian group of rank 2 spanned by 1 and X with 1 in degree �1 and X in degree 1.
Assign to A a 2-dimensional TQFT F which associates A˝k to a disjoint union of
k circles. To the pants cobordism corresponding to merging of two circles into one,
F associates the multiplication m W A˝A! A

12 D 1; 1X D X1 D X; X2 D 0: (1)

To the inverse pants cobordism corresponding to splitting of one circle into two, F

associates the comultiplication � W A! A˝A

�.1/ D 1˝X CX ˝ 1; �.X/ D X ˝X: (2)

To the cup and cap cobordisms corresponding to the birth and death of a circle, F

associates the unit map � W Z! A and trace map " W A! Z respectively

�.1/ D 1; ".1/ D 0; ".X/ D 1:
Let Bn be the set of crossingless matchings of 2n points. For a, b 2 Bn denote

by W.b/ the reflection of b about the horizontal axis, and by W.b/a the closed
1-manifold obtained by closing W.b/ and a along their boundaries.

F .W.b/a/ is a graded abelian group isomorphic to A˝I , where I is the set of
circles in W.b/a, see Figure 1.

b

a

W.b/

W.b/a

F

A˝2

Figure 1. Gluing in B3.
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For a, b 2 Bn let

b.H
n/a

defD F .W.b/a/fng:
and define Hn as the direct sum

Hn defD
M
a;b

b.H
n/a;

where fng denotes the action of raising the grading up by n. Multiplication maps in
Hn are defined as follows. We set xy D 0 if x 2 b.Hn/a, y 2 c.Hn/d and c ¤ a.
Multiplication maps

b.H
n/a ˝ a.H

n/c ! b.H
n/c

are given by homomorphisms of abelian groups

F .W.b/a/˝ F .W.a/c/! F .W.b/c/;

which are induced by the minimal cobordism from W.b/aW.a/c to W.b/c, see
Figure 2.

1 2 3 4

a

c
c

W.b/
W.b/

W.a/

FF

AA˝4
m B .id ˝m/ B .id2 ˝m/

minimal cobordism isotopy

Figure 2. Multiplication in Hn.

Now we recall the definition of the subquotients ofHn from [1]. For each n � 0
and 0 � k � n, define Bn�k;k to be the subset of Bn where there are no matchings
among the first n � k points and among the last k points. Figure 3 shows B1;2. We
put two platforms, one on the first n�k points and one on the last k points to indicate
that these endpoints are special. The n points lying in between the two platforms are
called free points.

Define zAn�k;k by

zAn�k;k defD
M

a;b2Bn�k;k

F .W.b/a/fng: (3)
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1 21 2 1 2 33 3 44 4 55 5 66 6

Figure 3. The 3 elements in B1;2.

zAn�k;k sits insideHn as a graded subring which inherits its multiplication fromHn.
For a; b 2 Bn�k;k , call a circle in W.b/a type I if it is disjoint from platforms,

type II if it intersects at least one platform and intersect each platform at most once,
and type III if it intersects one of the platforms at least twice (see Figure 4). An
intersection point between a circle and a platform is called a mark.

I
II

II

III

Figure 4. 3 types of circles.

The ring zAn�k;k has a two-sided graded ideal I n�k;k � zAn�k;k (the definition
of I n�k;k will be given in the following section). The ring An�k;k is defined as the
quotient of zAn�k;k by the ideal I n�k;k

An�k;k defD zAn�k;k=I n�k;k : (4)

An�k;k naturally decomposes into a direct sum of graded abelian groups

An�k;k D
M

a;b2Bn�k;k

a.A
n�k;k/b:

By taking the direct product over all 0 � k � n, we collect the rings An�k;k together
into a graded ring An

An
defD

Y
0�k�n

An�k;k:

As a graded abelian group, An is the direct sum of An�k;k , over 0 � k � n.
See [4] and [1] for more details on Hn and its subquotients.
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2.2. Generalization of An�k;k. We call the triple .n; k; l/ coherent if jk � l j � n
and n C k C l � 0 .mod 2/. For each coherent triple .n; k; l/ denote by Bk;ln
the subset of B.nCkCl/=2 where there are no matchings among the first k points and
among the last l points. Put one platform on the first k points and one on the last l
points. Note that B0;02n D Bn and Bn�k;k

n D Bn�k;k .

Define zAk;ln by

zAk;ln defD
M

a;b2Bk;l
n

F .W.b/a/
nnC k C l

2

o
: (5)

Just like zAn�k;k , zAk;ln is a graded subring of Hn and inherits its multiplication from
Hn. The ideal I k;ln � zAk;ln is defined similar to that of zAn�k;k . For a; b 2 Bk;ln , if
W.b/a contains at least one type III circle, set b.I

k;l
n /a D F .W.b/a/fng. If W.b/a

contains only circles of type I and type II, we write F .W.b/a/ D A˝i ˝ A˝j in
which type II circles correspond to the first i tensor factors, and define b.I

k;l
n /a as

the span of

y1 ˝ � � � ˝ yt�1 ˝X ˝ ytC1 ˝ � � � ˝ yiCj 2 A˝i ˝A˝j Š F .W.b/a/;

where 1 � t � i and ys 2 f1; Xg. By taking the direct sum over all a; b 2 Bk;ln we
get a subgroup of zAk;ln

I k;ln
defD

M
a;b2Bk;l

n

b.I
k;l
n /a:

It is easy to show that I k;ln is a two-sided graded ideal of zAk;ln . Ring Ak;ln is defined
as the quotient of zAk;ln by the ideal I k;ln

Ak;ln
defD zAk;ln =I k;ln : (6)

If W.b/a contains a type III circle then a.A
k;l
n /b D 0. Otherwise, group a.A

k;l
n /b

is free abelian of rank 2# of type I circles. Assuming that W.a/b contains m circles in
which the first i of them are of type II, a.A

k;l
n /b has a basis of the form

1˝ � � � ˝ 1˝ aiC1 ˝ � � � ˝ am;
where as 2 f1; Xg for all i C 1 � s � m.

There is a natural decomposition ofAk;ln into a direct sum of graded abelian groups

Ak;ln D
M

a;b2Bk;l
n

a.A
k;l
n /b;

where

a.A
k;l
n /b D F .W.a/b/

nnC k C l
2

o
=a.I

k;l
n /b:
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Let P k;ln .a/, or simply P(a), for a 2 Bk;ln , be a left Ak;ln -module given by

P.a/ D
M
b2Bk;l

n

b.A
n�k;k/a:

A
k;l
n decomposes into a direct sum of left Ak;ln -modules

Ak;ln D
M
a2Bk;l

n

P.a/:

P.a/ is left projective since it is a direct summand of the free moduleAk;ln . Actually,
any indecomposable left projective Ak;ln -module is isomorphic to P.a/fsg for some
a 2 Bk;ln and s 2 Z.

Here are some basic facts about the ring Ak;ln .

� A
k;l
n Š A

l;k
n . Reflecting a diagram in Bk;ln about a vertical axis produces a

diagram in B l;kn . It leads to an isomorphism of sets Bk;ln Š B l;kn which induces
an isomorphism of rings zAk;ln Š zAl;kn and of the quotient rings Ak;ln Š Al;kn .

� The minimal idempotents in Ak;ln are 1a
defD 1˝.nCkCl/=2 2 a.A

k;l
n /a. The unit

element 1 of Ak;ln is the sum of 1a over all a 2 Bk;ln : 1
defDP

a2Bk;l
n
1a:

� A
k;l
n sits insideAkC1;lC1

n as a subring. This inclusion stabilizes when kC l > n.
In particular, we have Ak;n�k

n Š AkC1;n�kC1
n Š AkC2;n�kC2

n Š � � � .

Proposition 1. The rings A0;ln are symmetric and, therefore, Frobenius over Z.

Proof. The proof is similar to [4], Proposition 32.

2.3. Flat tangles and bimodules. Denote by yBmn the space of flat tangles with m
top endpoints and n bottom endpoints. For simplicity we assume that the top and
bottom endpoints lie on R�f1g and R�f0g, and have integer coefficients 1; 2; : : : ; m
and 1; 2; : : : ; n respectively. Figure 5 shows two elements in yB46 .

To a flat tangle T 2 yBmn we would like to assign a bimodule over algebras Ak;ln
and As;tm where both .n; k; l/ and .m; s; t/ are coherent triples and k � l D s � t .
Define a graded . zAs;tm ; zAk;ln /-bimodule zF .T / by

zF .T / D
M

b2Bk;l
n ;c2Bs;t

m

c
zF .T /b;

where

c
zF .T /b defD F .W.c/T b/

nnC k C l
2

o
:
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Figure 5. Two flat tangles in yB4
6

.

The plane diagram W.c/T b is not a union of circles if k ¤ s. In that case we close
it in the obvious way before applying the functor F (see Figure 6). The left action
zAs;tm � zF .T /! zF .T / comes from maps

F .W.a/c/ � c zF .T /b ! a
zF .T /b;

and the right action zF .T / � zAk;ln ! zF .T / comes from maps

c
zF .T /b � F .W.b/a/! c

zF .T /a:
Both maps are induced by the obvious minimal cobordism (see Figure 2).

c 2 B0;2
2

T 2 yB2
6 b 2 B1;3

6

W.c/T b Closure ofW.c/T bVertical lines added

Figure 6. Closing W.c/T b.

Now define a subgroup bI.T /a of b zF .T /a as follows. Set bI.T /a D b
zF .T /a

if W.b/Ta contains a type III arc. Otherwise, assuming that F .W.b/Ta/ Š A˝r
in which type II circles correspond to the first i tensor factors, set bI.T /a to be the
span of

u1 ˝ � � � ˝ aj�1 ˝X ˝ ujC1 ˝ � � � ˝ ur 2 F .W.b/Ta/ Š A˝r ;

where 1 � j � i and ue 2 f1; Xg for each 1 � e � r , e ¤ j . By taking the direct
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sum we get a subgroup

I.T /
defD

M
a2Bs;t

m ; b2Bk;l
n

aI.T /b:

I.T / is in fact a subbimodule of zF .T / and we can define F .T / to be the quotient
bimodule

F .T /
defD zF .T /=I.T /:

It is easy to show that the action of I k;ln on F .T / is trivial (see [1]), thus the
. zAs;tm ; zAk;ln /-bimodule structure on F .T / descends to an .As;tm ; A

k;l
n /-bimodule struc-

ture.

Proposition 2. An isotopy between T1; T2 2 yBmn induces an isomorphism of bimod-
ules F .T1/ Š F .T2/: Two isotopies between T1 and T2 induce equal isomorphisms
iff the bijections from circle components of T1 to circle components of T2 induced by
the two isotopies coincide.

Proof. The proof is similar to that in [4].

Cobordisms between flat tangles induce bimodule maps (see Figure 7).

Proposition 3. Let T1; T2 2 yBmn and S a cobordism between T1 and T2. Then S

induces a degree nCm
2
� �.S/ homomorphism of .As;tm ; A

k;l
n /-bimodules

F .S/ W F .T1/! F .T2/;

where �.S/ is the Euler characteristic of S .

Proof. It follows from the definition that zF .T1/ DL
a;bF .W.b/T1a/fnCkCl

2
g and

zF .T2/ D L
a;bF .W.b/T2a/fnCkCl

2
g, where the sum is over all a 2 B

k;l
n and

b 2 Bs;tm . The surface S induces a homogeneous map of graded abelian groups
F .W.b/T1a/! F .W.b/T2a/. Summing over all a and b we get a homomorphism
of . zAk;ln ; zAs;tm /-bimodules zF .S/ W zF .T1/ ! zF .T2/. The grading assertion follows
from the fact that �.S 0/ D �.S/ � nCm

2
. It is easy to show that zF .S/ takes I.T1/

into I.T2/. See [1] for details.

Proposition 4. Isotopic (rel boundary) surfaces induce equal bimodule maps.

Proposition 5. Let T1; T2; T3 2 yBmn and S1, S2 be cobordisms from T1 to T2 and
from T2 to T3 respectively. Then F .S2/F .S1/ D F .S2 B S1/.

Proof. Proofs of the above two propositions are similar to those in [4].
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cobordism

a
b1 b2 b3

T1 T2

1˝ 1˝ 1 7! 1˝ 1

1˝ 1˝X 7! 0

1˝ 1 7! X ˝ 1˝ 1

0 7! 0

W.a/T1b1

W.a/T1b2

W.a/T1b3

W.a/T2b1

W.a/T2b2

W.a/T2b3

F

F

F

F

F

F

Af1g

Af1g

Zf1g

Zf1g

Zf1g

0

Figure 7. Cobordism induces bimodule map.

Two coherent triples .n; k; l/ and .m; s; t/ are called T-compatible if k C l D n,
s C t D m, and t D l C m�n

2
. On the other hand, they are called F-compatible if

k D s and l D t . A .A
s;t
m ; A

k;l
n /-bimodule is called T-compatible (F-compatible) if

.n; k; l/ and .m; s; t/ are T-compatible (F-compatible).

Proposition 6. Let T 2 yBmn , bimodule F .T / is projective as a left As;tm -module and

as a right Ak;ln -module if .n; k; l/ and .m; s; t/ are compatible.

Proof. Ignore all the grading shifts. The bimodule F .T / is isomorphic, as a left
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A
s;t
m -module, to the direct sum

L
a2Bk;l

n
F .Ta/. To prove F .T / is left projective it

suffices to prove that F .Ta/ is left projective for all a 2 Bk;ln . Fix any a 2 Bk;ln . In
general, Ta is a union of circles and arcs. With all circles removed, Ta is isotopic to
some a0 2 Bk;lm (see Figure 8).

a 2 B3;1
6

T 2 yB4
6

Ta a0 2 B3;1
4

Isotopy Š

Figure 8. Deformation of Ta.

Case 1: k D s and l D t . In this case, assuming there are c circles in Ta,

F .Ta/ D
� M
b2As;t

m

F .W.b/Ta/
�
˝A˝c Š

� M
b2As;t

m

F .W.b/a0/
�
˝A˝c :

By definition
L
b2As;t

m
F .W.b/a0/ D P s;tm .a0/, therefore F .Ta/ is left projective.

Case 2: k C l D n, s C t D m, t D l C m�n
2

. Without loss of generality
we assume that m � n. Let ‚ D n�m

2
. The case ‚ D 0 is proved in case 1.

Suppose the statement is true when ‚ � d . Consider any T 2 yBmn and a 2 Bk;ln
such that n�m

2
D d C 1. There exists at least one cap in T which connects two

bottom endpoints since n > m. Pick a cap c which has no other bottom endpoints
of T between its two feet. After gluing a to T , either there is an arc in a connecting
the two platforms, or both feet of c is connected to the platforms since k C l D n.
Therefore there is always an arc connecting the two platforms in Ta. By definition
of the arc ring, the two far ends of the two platforms are then connected by an arc e.
When closing the graphW.b/Ta for some b 2 Bs;tm we need to add d C 1 arcs since
t < l (see Figure 6). Denote the topmost added arc by f . The arcs e and f form a
type II circle g which encloses the rest ofW.b/Ta. We can remove g fromW.b/Ta

for any b 2 Bs;tm since it contributes nothing to F .W.b/Ta/, and then reduce to the
case ‚ D d . The proposition follows by induction.

Proposition 7. Let T1 2 yBpn , T2 2 yBmp , F .T1/ be a compatible .Aq;rp ; A
k;l
n /-

bimodule, and F .T2/ be a compatible .As;tm ; A
q;r
p /-bimodule. Then there is a canon-
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ical isomorphism of .As;tm ; A
k;l
n /-bimodules

F .T2T1/ Š F .T2/˝Aq;r
p

F .T1/:

Proof. It follows from Proposition 6 that W.a/T2 is a projective right Aq;rp -module

and T1b is a projective left Aq;rp -module for a 2 Bs;tm and b 2 Bk;ln . The proof in [4],
Theorem 1, therefore works in our case without any changes.

Remark. If two flat tangles T1 and T2 belong to the same type, T2T1 is then
compatible and also belongs to that type. Therefore we can compose as many flat
tangles as we want within the same type. However, if T1 and T2 belong to different
types their composition T2T1 may not be compatible.

Now consider only F-compatible triples and bimodules for the rest of the section.
For each n such that .n; k; l/ is coherent, denote byAk;ln -mod the category of finitely-
generated graded left Ak;ln -modules and module maps. For each T 2 yBmn , tensoring
with the .Ak;lm ; A

k;l
n /-bimodule F .T / is an exact functor fromA

k;l
n -mod toAk;lm -mod.

A cobordismS between two flat tanglesT1; T2 2 yBmn induces a homomorphism F .S/

of .Ak;lm ; A
k;l
n /-bimodules. The following proposition is a summary of this section.

Proposition 8. For each pair .k; l/, bimodules F .T / and homomorphisms F .S/ as-
semble into a 2-functor from the 2-category of flat tangle cobordisms to the 2-category
of natural transformations between exact functors between Ak;ln -mod.

2.4. Tangles and complexes of bimodules. A .m; n/-tangle L is a proper embed-
ding of nCm

2
oriented arcs and a finite number of oriented circles into R2� Œ0; 1� such

that the boundary points of arcs map to

f1; 2; : : : ; ng � f0g � f0g; f1; 2; : : : ; mg � f0g � f1g:
A plane diagram of a tangle is a generic projection of the tangle onto R � Œ0; 1�.

Fix k and l throughout the rest of this section. We would like to define a tangle
invariant using the rings Ak;ln . The construction follows the same line as in [1]. The
sizes of the platforms do not matter. We will state the results here for completeness
and refer readers to [1] and [4] for details.

Fix a diagram D of an oriented .m; n/-tangle L. We define the complex of
.A
k;l
m ; A

k;l
n /-bimodules F .D/ associated to D inductively as follows.

� If D has no crossings (therefore a flat tangle), F .D/ is just the complex

0! F .D/! 0;

where F .D/, sitting in cohomological degree zero, is the bimodule associated
to the flat tangle D.
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� If D has one crossing, consider the complex F .D/ of .Ak;lm ; A
k;l
n /-bimodules

0! F .D.0//
@! F .D.1//f�1g ! 0

where D.i/; i D 0; 1 denotes the i-smoothing of the crossing, @ is induced by
the saddle cobordism (see Figure 9), and F .D.0// sits in the cohomological
degree zero.

� To a diagram with t C 1 crossings we associate the total complex F .D/ of the
bicomplex

0! F .D.c0//
@! F .D.c1//f�1g ! 0

where D.ci /; i D 0; 1 denotes the i-smoothing of a crossing c of D:
� Finally, define F .D/ to be F .D/ shifted by Œx.D/�f2x.D/ � y.D/g, where
x.D/ counts the number of negative crossings and y.D/ counts the number of
positive crossings (see Figure 9).

Negative Positive

0-smoothing 1-smoothing

Saddle cobordism

Figure 9. Two smoothings of a crossing.

Figure 10 shows a complex of bimodules associated to a .2; 2/-tangle. Each arrow
is induced by the saddle cobordism and the sign on each arrow indicates the sign of
each map in the total complex.

Theorem 1. IfD1 andD2 are two diagrams of an oriented .m; n/-tangleL, then the
complexes F .D1/ and F .D2/ of graded .Ak;lm ; A

k;l
n /-bimodules are chain homotopy

equivalent.

The following proposition is a special case of the more general Theorem 3 in
Section 3.

Proposition 9. The only invertible degree zero central elements in Ak;ln are˙1
Z�
0 .A

k;l
n / Š f˙1g:
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C

C

C

C

C

C

C

C

�

�

�

�

f1g

f1g

f1g

f2g

f2g

f2g

f3g

F

F

F

F

F

F

F

FF

W

Homological grading: �3 �2 �1 0

Figure 10. A total complex associated to a .2; 2/-tangle.

We now extend our invariant to oriented tangle cobordisms. Let S be a movie
presentation of a cobordism between two .m; n/-tangles. S is thus a sequence of
Reidemeister moves and handle moves. Each consequent pair of frames corresponds
to a homomorphism which is an isomorphism for each Reidemeister move, and is
induced by �, ", m, or � for each handle move. The composition of these homomor-
phisms gives us a homomorphism

F .S/ W F .D/ �! F .D0/;

where D and D0 are the first and the last frame in the movie S: It follows from
Proposition 9 that F .S/ D ˙F .S 0/ if S and S 0 are two different presentations of
the same cobordism.

Denote by Ccob the 2-category of oriented tangle cobordisms and by C
A

k;l
n

the
2-category of natural transformations of exact functors between homotopy categories
of complexes of graded Ak;ln -modules. We have the following theorem.

Theorem 2. Complexes F .T / of bimodules and homomorphisms˙F .S/ assigned
to diagrams of tangle cobordisms assemble into a projective 2-functor from Ccob to
C
A

k;l
n

.

Remark. The projective Grothendieck group Kp.A
k;l
n � gmod/ of the category

of finitely-generated graded projectiveAk;ln -modules is a free ZŒq; q�1�-module with
a basis ŒP k;ln .a/�; a 2 Bk;ln : There is a natural way to identifyKp.A

k;l
n � gmod/ with

a ZŒq; q�1�-lattice of Hom.Vk ˝ Vl ; V ˝n/

Kp.A
k;l
n � gmod/˝ZŒq;q�1� C Š Hom.Vk ˝ Vl ; V ˝n/; (7)
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where V is the fundamental 2-dimensional representation of Uq.sl2/ and Vi is the
irreducible .i C 1/-dimensional representation of Uq.sl2/. Under this isomorphism
the basis ŒP k;ln .a/� goes to dual canonical basis of

Hom.Vk ˝ Vl ; V ˝n/ Š Inv.V �
k ˝ V �

l ˝ V ˝n/ Š Inv.Vk ˝ Vl ˝ V ˝n/:

Denote by K.W/ the category of bounded complexes of objects of an abelian cate-
gory W up to chain homotopies. For each .m; n/-tangle T , it follows from Proposi-
tion 6 that the complex of bimodules F .T / consists of right projective bimodules.
Therefore the tensor product with F .T / is an exact functor from K.A

k;l
n -gmod) to

K.A
k;l
m -gmod) which induces a homomorphism ŒF .T /� of ZŒq; q�1�-modules

Kp.A
k;l
n -gmod/ �! Kp.A

k;l
m -gmod/:

Direct computation shows that under the isomorphism (7) they give the standard
action of tangles on Inv.Vk ˝ Vl ˝ V ˝n/.

3. The center of A
k;l
n

Let B�1;�2
be the Springer variety of complete flags in Cn stabilized by a fixed

nilpotent operator with two Jordan blocks of sizes �1 and �2 respectively. We prove
in this section that the center of the ring Ak;ln is isomorphic to the cohomology ring
of B�1;�2

. Following from Khovanov’s construction in [5], we introduce the space zS
and use it as a bridge to link the center of Ak;ln and the cohomology rings of Springer
varieties. Without loss of generality, we assume throughout this section that n � m,
nCm � 0 mod 2, and 0 � l � k � n (note that Ak;ln is trivial if l � k > n ). The
proofs in this section rely heavily on [5].

Theorem 3. The center of Ak;ln is isomorphic to the cohomology ring of B�1;�2

Z.Ak;ln / Š H�.B�1;�2
/;

where �1 D nCl�k
2

and �2 D n�lCk
2

.

Denote by S the 2-sphere S2 and let p be the north pole of S . Let S�n be the
direct product of n spheres

S�n defD S � S � � � � � S„ ƒ‚ …
n

:

Label the n free points of Bk;ln by 1; 2; : : : ; n from left to right. For each a 2 Bk;ln
define a submanifold Sa 2 S�n consisting of sequences .x1; : : : xn/, xi 2 S , such
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that xi D xj whenever .i; j / is a type I arc in a, and xs D p if s is connected to a
platform. Let zSk;ln be the subspace of S�n which is the union of all Sa

zSk;ln defD
[

a2Bk;l
n

Sa:

When there is no confusion we write zS instead of zSk;ln .
Note that the cohomology ring of Sa is isomorphic to the ring a.A

k;l
n /a, and the

cohomology ring of Sa \ Sb , viewed as abelian group, is isomorphic to a.A
k;l
n /b .

These observations lead to the following theorem.

Theorem 4. The center of Ak;ln is isomorphic to the cohomology ring of zS
Z.Ak;ln / Š H�. zS;Z/:

Proof. Denote byH.Y / the cohomology ring of the spaceY with integer coefficients.
As noted above, we haveH.Sa/ Š a.A

k;l
n /a andH.Sa\Sb/ Š a.A

k;l
n /b . The second

isomorphism allows us to make a.A
k;l
n /b into a ring with unit 1

defD 1s 2 F .W.b/a/ Š
A˝s .

We have natural ring homomorphisms induced by inclusions

 aIa;b W H.Sa/! H.Sa \ Sb/;  bIa;b W H.Sb/! H.Sa \ Sb/;
and also

�aIa;b W a.Ak;ln /a ! a.A
k;l
n /b; �bIa;b W b.Ak;ln /b ! a.A

k;l
n /b;

which are given by x 7! xa1b and x 7! a1bx. Assemble all these together we get a
commutative diagram of ring homomorphisms

H. zS/ �����! Eq. / ����! Q
a

H.Sa/
 ����! Q

a 6Db
H.Sa \ Sb/

??yŠ
??yŠ

??yŠ

Z.A
k;l
n /

Š����! Eq.�/ ����! Q
a
a.A

k;l
n /a

�����! Q
a 6Db

a.A
k;l
n /b

where
 D

X
a 6Db

. aIa;b C  bIa;b/ and � D
X
a 6Db

.�aIa;b C �bIa;b/:

Eq.˛/ is the equalizer of the map ˛ (see [5]). For example, Eq. / is a subring ofQ
a

H.Sa/ consisting of �aha such that if ha 2 H.Sa/ and hb 2 H.Sb/ then their

images in H.Sa \ Sb/ under  are equal.
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For all x 2 A
k;l
n write x as

P
a;b2Bk;l

n
axb . Assuming x is central we have

x1b1a D 1bx1a D axb . Therefore axb D 0 if a ¤ b. So x D P
a axa is central

if and only if .axa/.a1b/ D .a1b/.bxb/, which means Z.Ak;ln / Š Eq.�/. The ring
homomorphism H. zS/! Q

aH.Sa/ factors through Eq. /. To prove Theorem 2 it
suffices to show that 	 is an isomorphism.

For a; b 2 Bk;ln write a! b if there exists a horizontal merging of two arcs (see
Figure 11).

Horizontal merging

Vertical merging

Figure 11. Horizontal and vertical mergings of two arcs.

Introduce a partial order on Bk;ln by setting a 	 b if there is a chain of arrows
a! a1 ! � � � ! am ! b. Extend this partial order arbitrarily to a total order < on
B
k;l
n . See Figure 12 for arrow relations and ordering of B0;15 (ai < aj if and only if

i < j ).

a1

a2

a3

a4 a5

Figure 12. Arrow relations and ordering of B0;1
5

.

We would like to construct a cell decomposition of Sa. Associate a decorated

graph 
 to a 2 B0;mn � B nCm
2 as follows (see Figure 13 for an example).

� Each type I arc xi in a corresponds to a hollow vertex i in z
 .

� Each type II arc xj in a corresponds to a solid vertex j in z
 .

� Two vertices i; j in z
 are connected by an edge iff the result of merging xi and

xj vertically still lies in B
nCm

2 .

� 
 is obtained from z
 by contracting all edges with two solid ends.

� Mark a vertex in each connected component of 
 without solid vertices.
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Figure 13. An element a 2 zB0;2
10

and its associated graph 
 .

Let E be the set of edges, M be the set of marked points, and I be the set of
vertices in 
 . For each J � .E tM/ let c.J / be the subset of S�I consisting of
points fyigi2I ; yi 2 S such that

yi D yj if .i; j / 2 J ;
yi 6D yj if .i; j / … J ;
yi D p if i 2M \ J ;
yi D p if i is solid,

yi 6D p if i 2M; i … J ;
where .i; j / denotes the edge connecting i and j . Ignore the first two conditions if
.i; j / does not exist. Clearly, S�I DF

J c.J / and c.J / is an open cell of dimension
2.jI j � jJ j � # of solid vertices/. We thus obtain a decomposition of Sa into even
dimensional cells.

Lemma 1. S<a \ Sa D .[b!aSb/ \ Sa, where S<a DS
b<a Sb .

The next lemma follows from Lemma 1 and the above construction.

Lemma 2. The cell decomposition constructed above restricts to a cell decomposition
of SanS<a, which is a union of cells c.J / such that J \E D ;.

We thus obtain a cell partition of zS by adding cells in SanS<a following the total
order. Since there are only even-dimensional cells in the partition, the rank of H. zS/
is equal to the number of cells.
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By induction on a with respect to the total order < we get the following result,
see [5].

Proposition 10. S�a has cohomology in even degrees only and the following se-
quence is exact

0! H.S�a/
'�!

M
b�a

H.Sb/
 �

�!
M
b<c�a

H.Sb \ Sc/; (8)

where ' is induced by inclusions Sb � S�a; while

 � defD
X
b<c�a

. b;c �  c;b/;

where
 b;c W H.Sb/! H.Sb \ Sc/

is induced by the inclusion .Sb \ Sc/ � Sb:
When a is maximal with respect to the total order <, the exact sequence (8)

becomes

0! H. zS/ '�!
M
b

H.Sb/
 �

�!
M
b<c

H.Sb \ Sc/;

which means that H. zS/ is isomorphic to the equalizer of  .

Lemma 3. The center of Ak;ln is isomorphic to the center of A0;l�kn ,

Z.Ak;ln / Š Z.A0;l�kn /:

Proof. It follows from the definition of zS that

zS Š
[
a2 zBk;l

n

Sa;

where zBk;ln � B
k;l
n is the set of crossingless matchings with all points on the left

platform connected to the right platform. On the other hand, since the bottommost
type II arcs contribute nothing, we have (see Figure 14)[

a2 zBk;l
n

Sa Š
[

a2B0;l�k
n

Sa:

Theorem 2 and the above observations imply that

Z.Ak;ln / Š H. zSk;ln / Š H. zS0;l�kn / Š Z.A0;l�kn /:
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zB2;33 :

B
0;1
3 :

Figure 14. Removing bottommost type II arcs.

Proposition 11. zS0;mn has
�
n

n�m
2

�
cells in the partition constructed above.

Proof. The proposition is equivalent to the statement that zS0;k
2s�k has

�
2s�k
s�k

�
cells. Fix

the total number of points 2s (including marked and free). Induction on the size of
the right platform k.

Induction base k D 0 is proved in [5], Lemma 4.1. Assuming the statement is
true up to k, it suffices to prove that extending the size of the platform by 1 eliminates�
2s�k
s�k

�
-
�
2s�k�1
s�k�1

�
cells in zS0;k

2s�k . If we label the 2s points by 1; 2; 3; : : : ; 2s from right
to left, the vanished cells are exactly those in Sa where a has a type II arc connecting
k and k C 1 (see Figure 15). Denote the set of those a by a.k; k C 1/.

1k � 1kk C 1ik�1i1i1 C 12s : : :

: : : : : :

: : :

: : :

: : : : : :

: : :

B0;0
2s�i1

2

Figure 15. A generic element in a.k; k C 1/.

We thus get the formula

#
� [
a.k;kC1/2B0;k

2s�k

Sa.k;kC1/
�
D

s�kX
iD0
.i C 1/Ci

��1 �p1 � 4x
2x

�k�1�
i
;

where #.X/ denotes the number of cells in X , Ci denotes the n-th Catalan number,
and Œf .x/�i is the coefficient of xi in the Maclaurin expansion of f .x/. Recall that
1�p

1�4x
2x

is the generating function of fCig. The factor .i C 1/Ci corresponds to the

number of cells outside the bottommost type II arc and Œ.1�p
1�4x
2x

/k�1�i is equal to
the total number of crossingless matchings inside the bottommost type II arc. Note
that the arcs inside the bottommost type II arc contribute nothing to the cell structure,
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see Figure 13. After simplifying the above formula we get

#
� [
a.k;kC1/2B0;k

2s�k

Sa.k;kC1/
�
D

h 1p
1 � 4x

�
1 �p1 � 4x

2x

�k�1�
s�k

:

By induction on s and k it is easy to prove that
�

1p
1 � 4x

�1 �p1 � 4x
2x

�k�1�
s�k
D

�2s � k
s � k

�
�

�2s � k � 1
s � k � 1

�

and the proposition follows.

Proposition 12. [2] The cohomology ring of B nCm
2 ;n�m

2
has dimension

�
n

n�m
2

�
and

is isomorphic to the quotient ring of R D ZŒX1; : : : ; Xn� by the ideal R1 generated
by ek.I / for all k C jI j D nC 1, XI for all jI j D n�m

2
C 1, and X2i for i 2 Œ1; n�,

where
I � f1; 2; : : : ; ng; XI D

Y
i2I

Xi ; ek.I / D
X

jJ jDk;J�I
XJ :

We now prove the main theorem of this section.
Proof of Theorem 3. It follows from Theorem 4 and Lemma 3 that to prove

Theorem 3 it suffices to show that H. zS0;mn / Š H.B nCm
2
;n�m

2
/. Denote by X a

generator of H 2.S/. We have the following maps

zS0;mn �����! S�n  i����! S 0;
where � is the inclusion and  i is the projection onto the i-th component. Define
Xi 2 zS0;mn to be the pull back of X under the map  i B �

Xi
defD .�1/i �� B  �

i .X/:

It is obvious that those fXig generate H. zS0;mn /. It follows from Proposition 12 and
Proposition 11 that to prove the theorem we only need to verify the following relations:

X2i D 0; i 2 Œ1; n�I (9)

XI D 0; jI j D n �m
2
C 1I (10)

ek.I / D 0; k C jI j D nC 1: (11)

The first two relations are obvious. Consider the map i�a W H. zS0;mn / ! H.Sa/

induced by the inclusion ia W Sa ,! zS0;mn . Since
P
a i

�
a .H.

zS0;mn // ! ˚aH.Sa/ is
an inclusion, (11) will follow once we verify thatX

jJ jDk;J�I
i�a .XJ / D 0; k C jI j D nC 1 (12)
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for all a 2 B0;mn .

Fix any a 2 B0;mn and I � f1; 2; : : : ; ng. Since n � jI j D k � 1 there exists at
most k � 1 type I arcs where I intersects with each one at only one point. Therefore,
for each J � I such that jJ j D k, J must either contain an end point of a type II arc
or contain an end point of a type I arc .p1; p2/ such that fp1; p2g 2 I . If J contains
an end point of a type II arc, then i�a .XJ / D 0. For a type I arc .p1; p2/, because
of the term .�1/i in the definition of Xi and the fact that p1 C p2 is odd, we have
i�a .Xp1

Xp2
/ D 0 and i�a .Xp1

CXp2
/ D 0. Therefore

X
J�I;jJ jDk;fp1;p2g\J¤;

i�a .XJ / D 0:

For the remaining terms in the summation in (12), pick another type I arc and repeat
the above process. After finitely many reductions we can get the relation (12). �

4. Categorification of level two representations of quantum slN

4.1. Level two representations of quantum slN . Let V , ^2V; : : : , ^N�1V be the
irreducible representations of Uq.slN / with highest weights !1; !2; : : : ; !N�1
respectively, where !i D L1 C � � � C Li and the Lj ’s are the fundamental weights.
A level two representation W of Uq.slN / is an irreducible representation with the
highest weight � D !s C !sCk for some k � 0. Fix W for the rest of this paper. W
decomposes into weight spaces W DL

�W�. Following [3], we call � admissible
if � appears in the weight space decomposition of W . A weight � is admissible if
and only if it can be written as the sum �1L1 C �2L2 C � � � C �NLN such that

� 0 � �i � 2; for all 1 � i � N ,

� PN
iD1 �i D 2s C k, and

� �1 C � � � C �i � �1 C � � � C �i , for all 1 � i � N ,

where �i is the coefficient of Li in the decomposition

� D !s C !sCk D .L1 C � � � C Ls/C .L1 C � � � C LsCk/:

For each admissible weight� letm.�/be the number of1’s in the sequence .�1; : : : ; �N /.
The dimension of W� is then determined by m.�/.
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Recall thatUq.slN / is defined to be the algebra generated byEi , Fi ,Ki , andK�1
i

for 1 � i � N � 1 with relations

KiK
�1
i D 1 D K�1

i Ki ;

KiKj D KjKi ;
KiEj D qci;jEjKi ;

KiFj D q�ci;jFjKi ;

EiFj � FjEi D ıi;j Ki �K�1
i

q�q�1 ;

EiEj D EjEi if ji � j j > 1;
FiFj D FjFi if ji � j j > 1;
E2i Ei˙1 � .q C q�1/EiEi˙1Ei CEi˙1E2i D 0;
F 2i Fi˙1 � .q C q�1/FiFi˙1Fi C Fi˙1F 2i D 0:

(13)

Ei acts on W by sending weight space W� to W�C"i
and Fi maps W� to W��"i

,
where "i D .0; : : : ; 0„ ƒ‚ …

i�1
; 1;�1; 0; : : : ; 0/.

4.2. Semi-standard tableaux and arc rings. We give in this section an explicit
bijection between semi-standard tableaux and crossingless matchings with one plat-
form. First recall the definition of semi-standard tableaux. For any � D .�1; : : : ;

�N�1; 0/ in the weight lattice of Uq.slN /, there exists an irreducible representation
W� with the highest weight �. Weight � D .�1; : : : ; �N / appears in the weight
space decomposition of W if and only if � is admissible. The dimension of the
weight space W�.�/ equals to the number of ways one can fill the Young diagram
corresponding to � with �1 1’s, �2 2’s, : : : , and �N N ’s in such a way that each
column is strictly increasing and each row is non-decreasing. Each such filling is
called a semi-standard tableau (see Figure 16).

� D .2; 2; 1; 0/

� D .1; 1; 2; 1/ 1 1

2

2

3

3

334

4

Figure 16. Semi-standard tableaux.

The Young diagram Y� corresponding to the level two representation W with the
highest weight � D !s C !sCk has two columns of length s C k and s respectively.
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Fix an admissible weight �. Let M� be the set of i’s such that �i D 1
M�

defD f1 � i � N j �i D 1g;
and N� be the set of i’s such that �i D 2

N�
defD f1 � i � N j �i D 2g:

Note that jM�j D m.�/. Let T� be the set of semi-standard tableaux of Y� corre-
sponding to �. For each semi-standard tableau T i� 2 T�, let T i�.r/ and T i�.l/ be the
set of numbers on the right and left column of T i� respectively. Write M� as an or-
dered sequence fa1; a2; : : : ; am.�/g. Assume that fai1 ; ai2 ; : : : ; ait g DM�

T
T i�.r/.

Consider all integer points f1; 2; 3; : : : g lying on the x-axis. Put a platform on the
x-axis to the left of all points (see Figure 17). First draw an arc in the lower half plane
connecting ai1 with the first point in M� to its left which is not connected to any
point. That point always exists and lies in T i�.l/ since T i� is semi-standard. Repeat
the above step for a2; a3; : : : in order until each point inM�

T
T i�.r/ is connected to

some point. Finally, connect the remaining free points inM�

T
T i�.l/ to the platform

by arcs in the unique way that no two arcs intersect.

1 2 3 4 5 6 7 8 9 : : :

M�

T
T i

�.l/ D f1; 2; 3; 6; 7gM�

T
T i

�.r/ D f4; 5; 8g

Figure 17. An element in B2;0
8
.M�/.

The resulting graph is a crossingless matching among the points in M� with one
platform. Denote byBk;0

m.�/
.M�/ the set of all such elements. Note thatBk;0

m.�/
.M�/ Š

B
k;0
m.�/

. The map from T� to Bk;0
m.�/

.M�/ is denoted by '�.

Conversely, for any a 2 Bk;0
m.�/

.M�/ with t type I arcs c1; c2; : : : ; ct , let Ra be
the set of right end points of all ci . A semi-standard tableau of Y� is constructed
by putting Ra

S
N� into the right column and .M�nRa/S

N� into the left column
(both in increasing order). The map from B

k;0
m.�/

to T� is denoted by  �. It is easy
to verify that  � is indeed the inverse of '�. Thus we have a bijection between T�
and Bk;0

m.�/

T�

'���������! ��������
 �

B
k;0
m.�/

: (14)
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See Figure 18 for an example of this bijection where W is a level two representation
of Uq.sl5/.

4.3. Category C and exact functors. Starting with Bk;0
m.�/

.M�/, we repeat the
definition of Ak;ln and get Ak;0

m.�/
.M�/, or simply A�. Note that A� Š Z when

m.�/ D 0. For an admissible weight � define C� to be the category of finitely
generated graded left A�-modules. By taking direct sum over all admissible � we
collect those C� into a single category C

C
defD

M
�

C�:

Note that when k D 0 our category C� is the same as C.�/ in [3].
The functors Ei , Fi , and Ki defined by Khovanov and Huerfano naturally extend

to our category C . Recall that Ei W C ! C is defined to be the sum over all admissible
� of the functors E

�
i W C� ! C�C"i

. If�C"i is not admissible E
�
i is the zero functor.

Otherwise, define E
�
i to be tensoring with the .A�C"i

; A�/-bimodule F .T
�
i / where

T
�
i is the simplest flat tangle with bottom end points corresponding to � and top end

points corresponding to �C "i . Figure 19 shows an example of the functor E
�
i . The

definition of Fi is similar. See [3] for details. Define Ki to be the functor which
shifts the grading of M 2 C� up by �i � �iC1

Ki .M/
defDM f�i � �iC1g:

Proposition 13. There are functor isomorphisms

KiK
�1
i Š Id ŠK�1

i Ki ;

KiKj ŠKjKi ;

KiEj Š EjKifci;j g;
KiFj Š FjKif�ci;j g;
EiFj Š FjEi if i 6D j ,

EiEj Š EjEi if ji � j j > 1,

FiFj Š FjFi if ji � j j > 1,

E2i Ej ˚ EjE2i Š EiEjEif1g ˚ EiEjEif�1g if j D i ˙ 1,

F 2
i Fj ˚ FjF 2

i Š FiFjFif1g ˚ FiFjFif�1g if j D i ˙ 1,

(15)

where

ci;j D

8̂<
:̂
2 if j D i ,
�1 if j D i ˙ 1,

0 if jj � i j > 1.
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� D .2; 2; 1; 0; 0/ Young diagram

� D .1; 1; 1; 1; 1/

� D .2; 1; 1; 1; 0/
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3
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4

4
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4

4

4

5

5

5

5

5

M� D f1; 2; 3; 4; 5g

M� D f2; 3; 4g

Figure 18. Bijection between semi-standard tableaux and crossingless matchings with one
platform.
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11111

1111

111

1111

2

2

22

2

0

0

0

�1 D .1; 1; 0; 1; 2; 1/
�1 C "3 D .1; 1; 1; 0; 2; 1/

�2 D .1; 2; 1; 1; 1; 1/
�2 C "3 D .1; 2; 2; 0; 1; 1/

"3 D .0; 0; 1;�1; 0; 0/

E
�1

3
D F

E
�2

3
D F /

/

.

.

Figure 19. Examples of the functor E�

i
.

Proposition 14. For any admissible � there is an isomorphism of functors in the
category C�

EiFi Š FiEi ˚ Idf1g ˚ Idf�1g if .�i ; �iC1/ D .2; 0/,
EiFi Š FiEi ˚ Id if �i � �iC1 D 1,

EiFi Š FiEi if �i D �iC1,

EiFi ˚ Id Š FiEi if �i � �iC1 D �1,

EiFi ˚ Idf1g ˚ Idf�1g Š FiEi if .�i ; �iC1/ D .0; 2/.

(16)

Proposition 15. The functor Ei is left adjoint to FiK
�1
i f1g, the functor Fi is left

adjoint to EiKif1g, and Ki is left adjoint to K�1
i .

The above three propositions are from [3]. They work in our case without any
modifications since the actions happen away from the platform.

The Grothendieck group of C is a ZŒq; q�1�-module where grading shifts corre-
spond to multiplication by q. The functors Ei , Fi , and Ki are exact and commute
with grading shift action f1g. Exactness follows from left and right projectivity of
bimodule F .T / for flat tangle T in Section 2. On the Grothendieck group level Ei ,
Fi , and Ki descend to ZŒq; q�1�-linear endomorphisms ŒEi �, ŒFi �, and ŒKi � respec-
tively. Functor isomorphisms in Proposition 13 and Proposition 14 correspond to the
quantum group relation (13) in K.C/. So we can view K.C/ as an Uq.slN / mod-
ule. It follows from the bijection (14) that K.C/ is isomorphic to W as an Uq.slN /
module.
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Proposition 16. The Grothendieck group of C is isomorphic to the irreducible rep-
resentation of Uq.slN / with the highest weight !k C !kCs

K.C/˝ZŒq;q�1� C Š W:
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