Categorification of level two representations of quantum $s l_{n}$ via generalized arc rings

Yanfeng Chen ${ }^{1}$

Abstract

In this paper we construct an extension of the arc ring H^{n} introduced by Khovanov [4], and use it to categorify level two representations of $U_{q}\left(s l_{N}\right)$. These rings also induce invariants of tangle cobordisms.

Mathematics Subject Classification (2010). 57Q45; 81R50, 16S99.
Keywords. Categorification, invariant, tangle cobordism, quantum group, arc ring, bimodule, representation, exact functor.

1. Introduction

Khovanov constructed in [4] a family of rings H^{n}, for $n \geq 0$, which is a categorification of $\operatorname{Inv}(n)$, the space of $U_{q}\left(s l_{2}\right)$-invariants in $V^{\otimes 2 n}$. These rings lead to an invariant of (even) tangles which to a tangle assigns a complex of $\left(H^{n}, H^{m}\right)$ bimodules, up to chain homotopy equivalence. Khovanov and the author [1] built subquotients of H^{n} and used them to categorify the action of tangles on $V^{\otimes n}$. The same rings were also introduced by Stroppel [6].

In this paper, we extend the construction of these arc rings $A^{k, n-k}$ and give a categorification of level two representations of $U_{q}\left(s l_{N}\right)$. In Section 2 we review the definition of the arc rings $A^{n-k, k}$ and construct the rings $A_{n}^{k, l}$ with two platforms of arbitrary sizes k and l. We show that they lead to a tangle invariant which is functorial under tangle cobordisms. Then in Section 3 we compute the centers of $A_{n}^{k, l}$ and relate them to the cohomology rings of Springer varieties. Finally, in Section 4.1, we categorify level two representations of $U_{q}\left(s l_{N}\right)$ using the rings $A_{n}^{k, 0}$.

Fix a level two representation W of $U_{q}\left(s l_{N}\right)$ with the highest weight $\omega_{s}+\omega_{k+s}$. There is a decomposition of W into weight spaces $W=\bigoplus_{\mu} W_{\mu}$. A weight μ is called admissible if it appears in the weight space decomposition of W. Denote by

[^0]\lessdot the direct sum of categories of $A_{m(\mu)}^{k, 0}$-modules over admissible μ, where $m(\mu)$ is a non-negative integer depending only on μ. The Grothendieck group of the category of $A_{m(\mu)}^{k, 0}$-modules is naturally isomorphic to W_{μ}. The exact functors \mathcal{E}_{i}, \mathcal{F}_{i} introduced by Khovanov and Huerfano [3] naturally extend to exact functors on \mathscr{C} which categorify the actions of $E_{i}, F_{i} \in U_{q}\left(s l_{N}\right)$ on W.

2. Generalization of the arc ring $A^{n-k, k}$

2.1. Arc ring $\boldsymbol{A}^{\boldsymbol{n}-\boldsymbol{k}, \boldsymbol{k}}$. We first recall the definition of $H^{\boldsymbol{n}}$ from [4]. Let \mathcal{A} be a free abelian group of rank 2 spanned by $\mathbf{1}$ and X with $\mathbf{1}$ in degree -1 and X in degree 1 . Assign to \mathcal{A} a 2-dimensional TQFT \mathcal{F} which associates $\mathcal{A}^{\otimes k}$ to a disjoint union of k circles. To the pants cobordism corresponding to merging of two circles into one, \mathcal{F} associates the multiplication $m: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathcal{A}$

$$
\begin{equation*}
\mathbf{1}^{2}=\mathbf{1}, \quad \mathbf{1} X=X \mathbf{1}=X, \quad X^{2}=0 \tag{1}
\end{equation*}
$$

To the inverse pants cobordism corresponding to splitting of one circle into two, \mathcal{F} associates the comultiplication $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$

$$
\begin{equation*}
\Delta(\mathbf{1})=\mathbf{1} \otimes X+X \otimes \mathbf{1}, \quad \Delta(X)=X \otimes X \tag{2}
\end{equation*}
$$

To the cup and cap cobordisms corresponding to the birth and death of a circle, \mathcal{F} associates the unit map $\iota: \mathbb{Z} \rightarrow \mathcal{A}$ and trace map $\varepsilon: \mathcal{A} \rightarrow \mathbb{Z}$ respectively

$$
\iota(1)=\mathbf{1}, \quad \varepsilon(\mathbf{1})=0, \quad \varepsilon(X)=1
$$

Let B^{n} be the set of crossingless matchings of $2 n$ points. For $a, b \in B^{n}$ denote by $W(b)$ the reflection of b about the horizontal axis, and by $W(b) a$ the closed 1-manifold obtained by closing $W(b)$ and a along their boundaries.
$\mathcal{F}(W(b) a)$ is a graded abelian group isomorphic to $\mathcal{A}^{\otimes I}$, where I is the set of circles in $W(b) a$, see Figure 1.

Figure 1. Gluing in B^{3}.

For $a, b \in B^{n}$ let

$$
{ }_{b}\left(H^{n}\right)_{a} \stackrel{\text { def }}{=} \mathcal{F}(W(b) a)\{n\} .
$$

and define H^{n} as the direct sum

$$
H^{n} \stackrel{\text { def }}{=} \bigoplus_{a, b} b\left(H^{n}\right)_{a}
$$

where $\{n\}$ denotes the action of raising the grading up by n. Multiplication maps in H^{n} are defined as follows. We set $x y=0$ if $x \in{ }_{b}\left(H^{n}\right)_{a}, y \in{ }_{c}\left(H^{n}\right)_{d}$ and $c \neq a$. Multiplication maps

$$
{ }_{b}\left(H^{n}\right)_{a} \otimes_{a}\left(H^{n}\right)_{c} \rightarrow{ }_{b}\left(H^{n}\right)_{c}
$$

are given by homomorphisms of abelian groups

$$
\mathcal{F}(W(b) a) \otimes \mathscr{F}(W(a) c) \rightarrow \mathcal{F}(W(b) c)
$$

which are induced by the minimal cobordism from $W(b) a W(a) c$ to $W(b) c$, see Figure 2.

$$
\begin{array}{ll}
\mathcal{A}^{\otimes 4} \xrightarrow{m \circ(i d \otimes m) \circ\left(i d^{2} \otimes m\right)} & \mathcal{A} \\
\mathcal{F} \mid & \mathcal{F} \uparrow
\end{array}
$$

Figure 2. Multiplication in H^{n}.
Now we recall the definition of the subquotients of H^{n} from [1]. For each $n \geq 0$ and $0 \leq k \leq n$, define $B^{n-k, k}$ to be the subset of B^{n} where there are no matchings among the first $n-k$ points and among the last k points. Figure 3 shows $B^{1,2}$. We put two platforms, one on the first $n-k$ points and one on the last k points to indicate that these endpoints are special. The n points lying in between the two platforms are called free points.

Define $\widetilde{A}^{n-k, k}$ by

$$
\begin{equation*}
\tilde{A}^{n-k, k} \stackrel{\text { def }}{=} \bigoplus_{a, b \in B^{n-k, k}} \mathcal{F}(W(b) a)\{n\} . \tag{3}
\end{equation*}
$$

Figure 3. The 3 elements in $B^{1,2}$.
$\widetilde{A}^{n-k, k}$ sits inside H^{n} as a graded subring which inherits its multiplication from H^{n}.
For $a, b \in B^{n-k, k}$, call a circle in $W(b) a$ type I if it is disjoint from platforms, type II if it intersects at least one platform and intersect each platform at most once, and type III if it intersects one of the platforms at least twice (see Figure 4). An intersection point between a circle and a platform is called a mark.

Figure 4. 3 types of circles.

The ring $\widetilde{A}^{n-k, k}$ has a two-sided graded ideal $I^{n-k, k} \subset \widetilde{A}^{n-k, k}$ (the definition of $I^{n-k, k}$ will be given in the following section). The ring $A^{n-k, k}$ is defined as the quotient of $\widetilde{A}^{n-k, k}$ by the ideal $I^{n-k, k}$

$$
\begin{equation*}
A^{n-k, k} \stackrel{\operatorname{def}}{=} \widetilde{A}^{n-k, k} / I^{n-k, k} \tag{4}
\end{equation*}
$$

$A^{n-k, k}$ naturally decomposes into a direct sum of graded abelian groups

$$
A^{n-k, k}=\bigoplus_{a, b \in B^{n-k, k}} a\left(A^{n-k, k}\right)_{b}
$$

By taking the direct product over all $0 \leq k \leq n$, we collect the rings $A^{n-k, k}$ together into a graded ring A^{n}

$$
A^{n} \stackrel{\text { def }}{=} \prod_{0 \leq k \leq n} A^{n-k, k}
$$

As a graded abelian group, A^{n} is the direct sum of $A^{n-k, k}$, over $0 \leq k \leq n$.
See [4] and [1] for more details on H^{n} and its subquotients.
2.2. Generalization of $\boldsymbol{A}^{\boldsymbol{n - k}, \boldsymbol{k}}$. We call the triple (n, k, l) coherent if $|k-l| \leq n$ and $n+k+l \equiv 0(\bmod 2)$. For each coherent triple (n, k, l) denote by $\bar{B}_{n}^{k, l}$ the subset of $B^{(n+k+l) / 2}$ where there are no matchings among the first k points and among the last l points. Put one platform on the first k points and one on the last l points. Note that $B_{2 n}^{0,0}=B^{n}$ and $B_{n}^{n-k, k}=B^{n-k, k}$.

Define $\tilde{A}_{n}^{k, l}$ by

$$
\begin{equation*}
\tilde{A}_{n}^{k, l} \stackrel{\text { def }}{=} \bigoplus_{a, b \in B_{n}^{k, l}} \mathcal{F}(W(b) a)\left\{\frac{n+k+l}{2}\right\} . \tag{5}
\end{equation*}
$$

Just like $\widetilde{A}^{n-k, k}, \widetilde{A}_{n}^{k, l}$ is a graded subring of H^{n} and inherits its multiplication from H^{n}. The ideal $I_{n}^{k, l} \subset \widetilde{A}_{n}^{k, l}$ is defined similar to that of $\widetilde{A}^{n-k, k}$. For $a, b \in B_{n}^{k, l}$, if $W(b) a$ contains at least one type III circle, set ${ }_{b}\left(I_{n}^{k, l}\right)_{a}=\mathcal{F}(W(b) a)\{n\}$. If $W(b) a$ contains only circles of type I and type II, we write $\mathcal{F}(W(b) a)=\mathcal{A}^{\otimes i} \otimes \mathcal{A}^{\otimes j}$ in which type II circles correspond to the first i tensor factors, and define ${ }_{b}\left(I_{n}^{k, l}\right)_{a}$ as the span of

$$
y_{1} \otimes \cdots \otimes y_{t-1} \otimes X \otimes y_{t+1} \otimes \cdots \otimes y_{i+j} \in \mathcal{A}^{\otimes i} \otimes \mathcal{A}^{\otimes j} \cong \mathscr{F}(W(b) a)
$$

where $1 \leq t \leq i$ and $y_{s} \in\{\mathbf{1}, X\}$. By taking the direct sum over all $a, b \in B_{n}^{k, l}$ we get a subgroup of $\tilde{A}_{n}^{k, l}$

$$
I_{n}^{k, l} \stackrel{\text { def }}{=} \bigoplus_{a, b \in B_{n}^{k, l}}\left(I_{n}^{k, l}\right)_{a} .
$$

It is easy to show that $I_{n}^{k, l}$ is a two-sided graded ideal of $\tilde{A}_{n}^{k, l}$. Ring $A_{n}^{k, l}$ is defined as the quotient of $\tilde{A}_{n}^{k, l}$ by the ideal $I_{n}^{k, l}$

$$
\begin{equation*}
A_{n}^{k, l} \stackrel{\text { def }}{=} \widetilde{A}_{n}^{k, l} / I_{n}^{k, l} \tag{6}
\end{equation*}
$$

If $W(b) a$ contains a type III circle then ${ }_{a}\left(A_{n}^{k, l}\right)_{b}=0$. Otherwise, group ${ }_{a}\left(A_{n}^{k, l}\right)_{b}$ is free abelian of rank $2^{\#}$ of type I circles. Assuming that $W(a) b$ contains m circles in which the first i of them are of type II, ${ }_{a}\left(A_{n}^{k, l}\right)_{b}$ has a basis of the form

$$
\mathbf{1} \otimes \cdots \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_{m}
$$

where $a_{s} \in\{\mathbf{1}, X\}$ for all $i+1 \leq s \leq m$.
There is a natural decomposition of $A_{n}^{k, l}$ into a direct sum of graded abelian groups

$$
A_{n}^{k, l}=\bigoplus_{a, b \in B_{n}^{k, l}}\left(A_{n}^{k, l}\right)_{b},
$$

where

$$
{ }_{a}\left(A_{n}^{k, l}\right)_{b}=\mathcal{F}(W(a) b)\left\{\frac{n+k+l}{2}\right\} / a\left(I_{n}^{k, l}\right)_{b}
$$

Let $P_{n}^{k, l}(a)$, or simply $\mathrm{P}(\mathrm{a})$, for $a \in B_{n}^{k, l}$, be a left $A_{n}^{k, l}$-module given by

$$
P(a)=\bigoplus_{b \in B_{n}^{k, l}}\left(A^{n-k, k}\right)_{a}
$$

$A_{n}^{k, l}$ decomposes into a direct sum of left $A_{n}^{k, l}$-modules

$$
A_{n}^{k, l}=\bigoplus_{a \in B_{n}^{k, l}} P(a)
$$

$P(a)$ is left projective since it is a direct summand of the free module $A_{n}^{k, l}$. Actually, any indecomposable left projective $A_{n}^{k, l}$-module is isomorphic to $P(a)\{s\}$ for some $a \in B_{n}^{k, l}$ and $s \in \mathbb{Z}$.

Here are some basic facts about the ring $A_{n}^{k, l}$.

- $A_{n}^{k, l} \cong A_{n}^{l, k}$. Reflecting a diagram in $B_{n}^{k, l}$ about a vertical axis produces a diagram in $B_{n}^{l, k}$. It leads to an isomorphism of sets $B_{n}^{k, l} \cong B_{n}^{l, k}$ which induces an isomorphism of rings $\widetilde{A}_{n}^{k, l} \cong \tilde{A}_{n}^{l, k}$ and of the quotient rings $A_{n}^{k, l} \cong A_{n}^{l, k}$.
- The minimal idempotents in $A_{n}^{k, l}$ are $1_{a} \stackrel{\text { def }}{=} \mathbf{1}^{\otimes(n+k+l) / 2} \in{ }_{a}\left(A_{n}^{k, l}\right)_{a}$. The unit element 1 of $A_{n}^{k, l}$ is the sum of 1_{a} over all $a \in B_{n}^{k, l}: 1 \stackrel{\text { def }}{=} \sum_{a \in B_{n}^{k, l}} 1_{a}$.
- $A_{n}^{k, l}$ sits inside $A_{n}^{k+1, l+1}$ as a subring. This inclusion stabilizes when $k+l>n$. In particular, we have $A_{n}^{k, n-k} \cong A_{n}^{k+1, n-k+1} \cong A_{n}^{k+2, n-k+2} \cong \cdots$.

Proposition 1. The rings $A_{n}^{0, l}$ are symmetric and, therefore, Frobenius over \mathbb{Z}.

Proof. The proof is similar to [4], Proposition 32.
2.3. Flat tangles and bimodules. Denote by \widehat{B}_{n}^{m} the space of flat tangles with m top endpoints and n bottom endpoints. For simplicity we assume that the top and bottom endpoints lie on $\mathbb{R} \times\{1\}$ and $\mathbb{R} \times\{0\}$, and have integer coefficients $1,2, \ldots, m$ and $1,2, \ldots, n$ respectively. Figure 5 shows two elements in \widehat{B}_{6}^{4}.

To a flat tangle $T \in \widehat{B}_{n}^{m}$ we would like to assign a bimodule over algebras $A_{n}^{k, l}$ and $A_{m}^{s, t}$ where both (n, k, l) and (m, s, t) are coherent triples and $k-l=s-t$. Define a graded $\left(\widetilde{A}_{m}^{s, t}, \widetilde{A}_{n}^{k, l}\right)$-bimodule $\widetilde{\mathcal{F}}(T)$ by

$$
\widetilde{\mathscr{F}}(T)=\bigoplus_{b \in B_{n}^{k, l}, c \in B_{m}^{s, t}} c \widetilde{\mathcal{F}}(T)_{b},
$$

where

$$
{ }_{c} \widetilde{\mathcal{F}}(T)_{b} \stackrel{\text { def }}{=} \mathcal{F}(W(c) T b)\left\{\frac{n+k+l}{2}\right\} .
$$

Figure 5. Two flat tangles in \widehat{B}_{6}^{4}.

The plane diagram $W(c) T b$ is not a union of circles if $k \neq s$. In that case we close it in the obvious way before applying the functor \mathscr{F} (see Figure 6). The left action $\widetilde{A}_{m}^{s, t} \times \widetilde{\mathscr{F}}(T) \rightarrow \widetilde{\mathscr{F}}(T)$ comes from maps

$$
\mathscr{F}(W(a) c) \times{ }_{c} \widetilde{\mathcal{F}}(T)_{b} \rightarrow_{a} \widetilde{\mathcal{F}}(T)_{b}
$$

and the right action $\widetilde{\mathscr{F}}(T) \times \tilde{A}_{n}^{k, l} \rightarrow \widetilde{\mathscr{F}}(T)$ comes from maps

$$
{ }_{c} \widetilde{\mathcal{F}}(T)_{b} \times \mathscr{F}(W(b) a) \rightarrow{ }_{c} \widetilde{\mathcal{F}}(T)_{a}
$$

Both maps are induced by the obvious minimal cobordism (see Figure 2).

$\underbrace{}_{c \in B_{2}^{0,2}}$

Figure 6. Closing $W(c) T b$.
Now define a subgroup ${ }_{b} I(T)_{a}$ of ${ }_{b} \widetilde{\mathcal{F}}(T)_{a}$ as follows. Set ${ }_{b} I(T)_{a}={ }_{b} \widetilde{\mathcal{F}}(T)_{a}$ if $W(b) T a$ contains a type III arc. Otherwise, assuming that $\mathcal{F}(W(b) T a) \cong \mathcal{A}{ }^{\otimes r}$ in which type II circles correspond to the first i tensor factors, set ${ }_{b} I(T)_{a}$ to be the span of

$$
u_{1} \otimes \cdots \otimes a_{j-1} \otimes X \otimes u_{j+1} \otimes \cdots \otimes u_{r} \in \mathcal{F}(W(b) T a) \cong \mathcal{A}^{\otimes r}
$$

where $1 \leq j \leq i$ and $u_{e} \in\{\mathbf{1}, X\}$ for each $1 \leq e \leq r, e \neq j$. By taking the direct
sum we get a subgroup

$$
I(T) \stackrel{\text { def }}{=} \bigoplus_{a \in B_{n}^{s, t}, b \in B_{n}^{k, l}}{ }_{a} I(T)_{b}
$$

$I(T)$ is in fact a subbimodule of $\widetilde{\mathscr{F}}(T)$ and we can define $\mathcal{F}(T)$ to be the quotient bimodule

$$
\mathcal{F}(T) \stackrel{\operatorname{def}}{=} \widetilde{\mathscr{F}}(T) / I(T)
$$

It is easy to show that the action of $I_{n}^{k, l}$ on $\mathcal{F}(T)$ is trivial (see [1]), thus the $\left(\widetilde{A}_{m}^{s, t}, \widetilde{A}_{n}^{k, l}\right)$-bimodule structure on $\mathcal{F}(T)$ descends to an $\left(A_{m}^{s, t}, A_{n}^{k, l}\right)$-bimodule structure.

Proposition 2. An isotopy between $T_{1}, T_{2} \in \widehat{B}_{n}^{m}$ induces an isomorphism of bimodules $\mathcal{F}\left(T_{1}\right) \cong \mathcal{F}\left(T_{2}\right)$. Two isotopies between T_{1} and T_{2} induce equal isomorphisms iff the bijections from circle components of T_{1} to circle components of T_{2} induced by the two isotopies coincide.

Proof. The proof is similar to that in [4].
Cobordisms between flat tangles induce bimodule maps (see Figure 7).
Proposition 3. Let $T_{1}, T_{2} \in \widehat{B}_{n}^{m}$ and S a cobordism between T_{1} and T_{2}. Then S induces a degree $\frac{n+m}{2}-\chi(S)$ homomorphism of $\left(A_{m}^{s, t}, A_{n}^{k, l}\right)$-bimodules

$$
\mathscr{F}(S): \mathcal{F}\left(T_{1}\right) \rightarrow \mathcal{F}\left(T_{2}\right)
$$

where $\chi(S)$ is the Euler characteristic of S.
Proof. It follows from the definition that $\widetilde{\mathcal{F}}\left(T_{1}\right)=\bigoplus_{a, b} \mathcal{F}\left(W(b) T_{1} a\right)\left\{\frac{n+k+l}{2}\right\}$ and $\widetilde{\mathcal{F}}\left(T_{2}\right)=\bigoplus_{a, b} \mathcal{F}\left(W(b) T_{2} a\right)\left\{\frac{n+k+l}{2}\right\}$, where the sum is over all $a \in B_{n}^{k, l}$ and $b \in B_{m}^{s, t}$. The surface S induces a homogeneous map of graded abelian groups $\mathscr{F}\left(W(b) T_{1} a\right) \rightarrow \mathscr{F}\left(W(b) T_{2} a\right)$. Summing over all a and b we get a homomorphism of $\left(\widetilde{A}_{n}^{k, l}, \widetilde{A}_{m}^{s, t}\right)$-bimodules $\widetilde{\mathcal{F}}(S): \widetilde{\mathcal{F}}\left(T_{1}\right) \rightarrow \widetilde{\mathcal{F}}\left(T_{2}\right)$. The grading assertion follows from the fact that $\chi\left(S^{\prime}\right)=\chi(S)-\frac{n+m}{2}$. It is easy to show that $\widetilde{\mathscr{F}}(S)$ takes $I\left(T_{1}\right)$ into $I\left(T_{2}\right)$. See [1] for details.

Proposition 4. Isotopic (rel boundary) surfaces induce equal bimodule maps.
Proposition 5. Let $T_{1}, T_{2}, T_{3} \in \widehat{B}_{n}^{m}$ and S_{1}, S_{2} be cobordisms from T_{1} to T_{2} and from T_{2} to T_{3} respectively. Then $\mathcal{F}\left(S_{2}\right) \mathcal{F}\left(S_{1}\right)=\mathscr{F}\left(S_{2} \circ S_{1}\right)$.

Proof. Proofs of the above two propositions are similar to those in [4].

Figure 7. Cobordism induces bimodule map.

Two coherent triples (n, k, l) and (m, s, t) are called T-compatible if $k+l=n$, $s+t=m$, and $t=l+\frac{m-n}{2}$. On the other hand, they are called F-compatible if $k=s$ and $l=t$. A $\left(A_{m}^{s, t}, A_{n}^{k, l}\right)$-bimodule is called T-compatible (F-compatible) if (n, k, l) and (m, s, t) are T-compatible (F-compatible).

Proposition 6. Let $T \in \widehat{B}_{n}^{m}$, bimodule $\mathcal{F}(T)$ is projective as a left $A_{m}^{s, t}$-module and as a right $A_{n}^{k, l}$-module if (n, k, l) and (m, s, t) are compatible.

Proof. Ignore all the grading shifts. The bimodule $\mathscr{F}(T)$ is isomorphic, as a left
$A_{m}^{s, t}$-module, to the direct sum $\bigoplus_{a \in B_{n}^{k, l}} \mathcal{F}(T a)$. To prove $\mathcal{F}(T)$ is left projective it suffices to prove that $\mathscr{F}(T a)$ is left projective for all $a \in B_{n}^{k, l}$. Fix any $a \in B_{n}^{k, l}$. In general, $T a$ is a union of circles and arcs. With all circles removed, Ta is isotopic to some $a^{\prime} \in B_{m}^{k, l}$ (see Figure 8).

$T \in \widehat{B}_{6}^{4}$

$a \in B_{6}^{3,1}$

Figure 8. Deformation of $T a$.

Case 1: $k=s$ and $l=t$. In this case, assuming there are c circles in $T a$,

$$
\mathscr{F}(T a)=\left(\bigoplus_{b \in A_{m}^{s, t}} \mathscr{F}(W(b) T a)\right) \otimes \mathcal{A}^{\otimes c} \cong\left(\bigoplus_{b \in A_{m}^{s, t}} \mathcal{F}\left(W(b) a^{\prime}\right)\right) \otimes \mathcal{A}^{\otimes c} .
$$

By definition $\bigoplus_{b \in A_{m}^{s, t}} \mathcal{F}\left(W(b) a^{\prime}\right)=P_{m}^{s, t}\left(a^{\prime}\right)$, therefore $\mathcal{F}(T a)$ is left projective.
Case $2: k+l=n, s+t=m, t=l+\frac{m-n}{2}$. Without loss of generality we assume that $m \leq n$. Let $\Theta=\frac{n-m}{2}$. The case $\Theta=0$ is proved in case 1 . Suppose the statement is true when $\Theta \leq d$. Consider any $T \in \widehat{B}_{n}^{m}$ and $a \in B_{n}^{k, l}$ such that $\frac{n-m}{2}=d+1$. There exists at least one cap in T which connects two bottom endpoints since $n>m$. Pick a cap c which has no other bottom endpoints of T between its two feet. After gluing a to T, either there is an arc in a connecting the two platforms, or both feet of c is connected to the platforms since $k+l=n$. Therefore there is always an arc connecting the two platforms in Ta. By definition of the arc ring, the two far ends of the two platforms are then connected by an arc e. When closing the graph $W(b) T a$ for some $b \in B_{m}^{s, t}$ we need to add $d+1$ arcs since $t<l$ (see Figure 6). Denote the topmost added arc by f. The arcs e and f form a type II circle g which encloses the rest of $W(b) T a$. We can remove g from $W(b) T a$ for any $b \in B_{m}^{s, t}$ since it contributes nothing to $\mathcal{F}(W(b) T a)$, and then reduce to the case $\Theta=d$. The proposition follows by induction.

Proposition 7. Let $T_{1} \in \widehat{B}_{n}^{p}, T_{2} \in \widehat{B}_{p}^{m}, \mathcal{F}\left(T_{1}\right)$ be a compatible $\left(A_{p}^{q, r}, A_{n}^{k, l}\right)$ bimodule, and $\mathcal{F}\left(T_{2}\right)$ be a compatible $\left(A_{m}^{s, t}, A_{p}^{q, r}\right)$-bimodule. Then there is a canon-
ical isomorphism of $\left(A_{m}^{s, t}, A_{n}^{k, l}\right)$-bimodules

$$
\mathscr{F}\left(T_{2} T_{1}\right) \cong \mathscr{F}\left(T_{2}\right) \otimes_{A_{p}^{q, r}} \mathscr{F}\left(T_{1}\right) .
$$

Proof. It follows from Proposition 6 that $W(a) T_{2}$ is a projective right $A_{p}^{q, r}$-module and $T_{1} b$ is a projective left $A_{p}^{q, r}$-module for $a \in B_{m}^{s, t}$ and $b \in B_{n}^{k, l}$. The proof in [4], Theorem 1, therefore works in our case without any changes.

Remark. If two flat tangles T_{1} and T_{2} belong to the same type, $T_{2} T_{1}$ is then compatible and also belongs to that type. Therefore we can compose as many flat tangles as we want within the same type. However, if T_{1} and T_{2} belong to different types their composition $T_{2} T_{1}$ may not be compatible.

Now consider only F-compatible triples and bimodules for the rest of the section. For each n such that (n, k, l) is coherent, denote by $A_{n}^{k, l}$-mod the category of finitelygenerated graded left $A_{n}^{k, l}$-modules and module maps. For each $T \in \widehat{B}_{n}^{m}$, tensoring with the $\left(A_{m}^{k, l}, A_{n}^{k, l}\right)$-bimodule $\mathcal{F}(T)$ is an exact functor from $A_{n}^{k, l}$-mod to $A_{m}^{k, l}$-mod. A cobordism S between two flat tangles $T_{1}, T_{2} \in \widehat{B}_{n}^{m}$ induces a homomorphism $\mathscr{F}(S)$ of $\left(A_{m}^{k, l}, A_{n}^{k, l}\right)$-bimodules. The following proposition is a summary of this section.

Proposition 8. For each pair (k, l), bimodules $\mathcal{F}(T)$ and homomorphisms $\mathcal{F}(S)$ assemble into a 2-functor from the 2-category offlat tangle cobordisms to the 2-category of natural transformations between exact functors between $A_{n}^{k, l}$-mod.
2.4. Tangles and complexes of bimodules. A (m, n)-tangle L is a proper embedding of $\frac{n+m}{2}$ oriented arcs and a finite number of oriented circles into $\mathbb{R}^{2} \times[0,1]$ such that the boundary points of arcs map to

$$
\{1,2, \ldots, n\} \times\{0\} \times\{0\},\{1,2, \ldots, m\} \times\{0\} \times\{1\}
$$

A plane diagram of a tangle is a generic projection of the tangle onto $\mathbb{R} \times[0,1]$.
Fix k and l throughout the rest of this section. We would like to define a tangle invariant using the rings $A_{n}^{k, l}$. The construction follows the same line as in [1]. The sizes of the platforms do not matter. We will state the results here for completeness and refer readers to [1] and [4] for details.

Fix a diagram D of an oriented (m, n)-tangle L. We define the complex of $\left(A_{m}^{k, l}, A_{n}^{k, l}\right)$-bimodules $\mathscr{F}(D)$ associated to D inductively as follows.

- If D has no crossings (therefore a flat tangle), $\overline{\mathcal{F}}(D)$ is just the complex

$$
0 \rightarrow \mathcal{F}(D) \rightarrow 0,
$$

where $\mathcal{F}(D)$, sitting in cohomological degree zero, is the bimodule associated to the flat tangle D.

- If D has one crossing, consider the complex $\overline{\mathcal{F}}(D)$ of $\left(A_{m}^{k, l}, A_{n}^{k, l}\right)$-bimodules

$$
0 \rightarrow \mathcal{F}(D(0)) \xrightarrow{\partial} \mathcal{F}(D(1))\{-1\} \rightarrow 0
$$

where $D(i), i=0,1$ denotes the i-smoothing of the crossing, ∂ is induced by the saddle cobordism (see Figure 9), and $\mathcal{F}(D(0))$ sits in the cohomological degree zero.

- To a diagram with $t+1$ crossings we associate the total complex $\overline{\mathscr{F}}(D)$ of the bicomplex

$$
0 \rightarrow \mathcal{F}\left(D\left(c_{0}\right)\right) \stackrel{\partial}{\rightarrow} \mathcal{F}\left(D\left(c_{1}\right)\right)\{-1\} \rightarrow 0
$$

where $D\left(c_{i}\right), i=0,1$ denotes the i-smoothing of a crossing c of D.

- Finally, define $\mathcal{F}(D)$ to be $\overline{\mathscr{F}}(D)$ shifted by $[x(D)]\{2 x(D)-y(D)\}$, where $x(D)$ counts the number of negative crossings and $y(D)$ counts the number of positive crossings (see Figure 9).

Figure 9. Two smoothings of a crossing.

Figure 10 shows a complex of bimodules associated to a (2, 2)-tangle. Each arrow is induced by the saddle cobordism and the sign on each arrow indicates the sign of each map in the total complex.

Theorem 1. If D_{1} and D_{2} are two diagrams of an oriented (m, n)-tangle L, then the complexes $\mathcal{F}\left(D_{1}\right)$ and $\mathcal{F}\left(D_{2}\right)$ of graded $\left(A_{m}^{k, l}, A_{n}^{k, l}\right)$-bimodules are chain homotopy equivalent.

The following proposition is a special case of the more general Theorem 3 in Section 3.

Proposition 9. The only invertible degree zero central elements in $A_{n}^{k, l}$ are ± 1

$$
Z_{0}^{*}\left(A_{n}^{k, l}\right) \cong\{ \pm 1\}
$$

Figure 10. A total complex associated to a (2, 2)-tangle.

We now extend our invariant to oriented tangle cobordisms. Let S be a movie presentation of a cobordism between two (m, n)-tangles. S is thus a sequence of Reidemeister moves and handle moves. Each consequent pair of frames corresponds to a homomorphism which is an isomorphism for each Reidemeister move, and is induced by ι, ε, m, or Δ for each handle move. The composition of these homomorphisms gives us a homomorphism

$$
\mathscr{F}(S): \mathscr{F}(D) \longrightarrow \mathcal{F}\left(D^{\prime}\right)
$$

where D and D^{\prime} are the first and the last frame in the movie S. It follows from Proposition 9 that $\mathscr{F}(S)= \pm \mathscr{F}\left(S^{\prime}\right)$ if S and S^{\prime} are two different presentations of the same cobordism.

Denote by $\bigodot_{\text {cob }}$ the 2-category of oriented tangle cobordisms and by $\bigodot_{A_{n}^{k, l}}$ the 2-category of natural transformations of exact functors between homotopy categories of complexes of graded $A_{n}^{k, l}$-modules. We have the following theorem.

Theorem 2. Complexes $\mathcal{F}(T)$ of bimodules and homomorphisms $\pm \mathcal{F}(S)$ assigned to diagrams of tangle cobordisms assemble into a projective 2-functor from ζ_{cob} to $\bigodot_{A_{n}^{k, l}}$.

Remark. The projective Grothendieck group $K_{p}\left(A_{n}^{k, l}-\right.$ gmod $)$ of the category of finitely-generated graded projective $A_{n}^{k, l}$-modules is a free $\mathbb{Z}\left[q, q^{-1}\right]$-module with a basis $\left[P_{n}^{k, l}(a)\right], a \in B_{n}^{k, l}$. There is a natural way to identify $K_{p}\left(A_{n}^{k, l}-\operatorname{gmod}\right)$ with a $\mathbb{Z}\left[q, q^{-1}\right]$-lattice of $\operatorname{Hom}\left(V_{k} \otimes V_{l}, V^{\otimes n}\right)$

$$
\begin{equation*}
K_{p}\left(A_{n}^{k, l}-\operatorname{gmod}\right) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} \mathbb{C} \cong \operatorname{Hom}\left(V_{k} \otimes V_{l}, V^{\otimes n}\right) \tag{7}
\end{equation*}
$$

where V is the fundamental 2-dimensional representation of $U_{q}\left(s l_{2}\right)$ and V_{i} is the irreducible $(i+1)$-dimensional representation of $U_{q}\left(s l_{2}\right)$. Under this isomorphism the basis $\left[P_{n}^{k, l}(a)\right]$ goes to dual canonical basis of

$$
\operatorname{Hom}\left(V_{k} \otimes V_{l}, V^{\otimes n}\right) \cong \operatorname{Inv}\left(V_{k}^{*} \otimes V_{l}^{*} \otimes V^{\otimes n}\right) \cong \operatorname{Inv}\left(V_{k} \otimes V_{l} \otimes V^{\otimes n}\right)
$$

Denote by $\mathcal{K}(\mathcal{W})$ the category of bounded complexes of objects of an abelian category \mathcal{W} up to chain homotopies. For each (m, n)-tangle T, it follows from Proposition 6 that the complex of bimodules $\mathcal{F}(T)$ consists of right projective bimodules. Therefore the tensor product with $\mathcal{F}(T)$ is an exact functor from $\mathcal{K}\left(A_{n}^{k, l}\right.$-gmod) to $\mathcal{K}\left(A_{m}^{k, l}\right.$-gmod) which induces a homomorphism $[\mathcal{F}(T)]$ of $\mathbb{Z}\left[q, q^{-1}\right]$-modules

$$
K_{p}\left(A_{n}^{k, l} \text {-gmod }\right) \longrightarrow K_{p}\left(A_{m}^{k, l} \text {-gmod }\right)
$$

Direct computation shows that under the isomorphism (7) they give the standard action of tangles on $\operatorname{Inv}\left(V_{k} \otimes V_{l} \otimes V^{\otimes n}\right)$.

3. The center of $A_{n}^{k, l}$

Let $\mathscr{B}_{\sigma_{1}, \sigma_{2}}$ be the Springer variety of complete flags in \mathbb{C}^{n} stabilized by a fixed nilpotent operator with two Jordan blocks of sizes σ_{1} and σ_{2} respectively. We prove in this section that the center of the ring $A_{n}^{k, l}$ is isomorphic to the cohomology ring of $\mathscr{B}_{\sigma_{1}, \sigma_{2}}$. Following from Khovanov's construction in [5], we introduce the space \widetilde{S} and use it as a bridge to link the center of $A_{n}^{k, l}$ and the cohomology rings of Springer varieties. Without loss of generality, we assume throughout this section that $n \geq m$, $n+m \equiv 0 \bmod 2$, and $0 \leq l-k \leq n\left(\right.$ note that $A_{n}^{k, l}$ is trivial if $\left.l-k>n\right)$. The proofs in this section rely heavily on [5].

Theorem 3. The center of $A_{n}^{k, l}$ is isomorphic to the cohomology ring of $\mathcal{B}_{\sigma_{1}, \sigma_{2}}$

$$
Z\left(A_{n}^{k, l}\right) \cong H^{*}\left(\mathcal{B}_{\sigma_{1}, \sigma_{2}}\right)
$$

where $\sigma_{1}=\frac{n+l-k}{2}$ and $\sigma_{2}=\frac{n-l+k}{2}$.
Denote by S the 2 -sphere S^{2} and let p be the north pole of S. Let $S^{\times n}$ be the direct product of n spheres

$$
S^{\times n} \stackrel{\text { def }}{=} \underbrace{S \times S \times \cdots \times S}_{n} .
$$

Label the n free points of $B_{n}^{k, l}$ by $1,2, \ldots, n$ from left to right. For each $a \in B_{n}^{k, l}$ define a submanifold $S_{a} \in S^{\times n}$ consisting of sequences $\left(x_{1}, \ldots x_{n}\right)$, $x_{i} \in S$, such
that $x_{i}=x_{j}$ whenever (i, j) is a type I arc in a, and $x_{s}=p$ if s is connected to a platform. Let $\widetilde{S}_{n}^{k, l}$ be the subspace of $S^{\times n}$ which is the union of all S_{a}

$$
\widetilde{S}_{n}^{k, l} \stackrel{\text { def }}{=} \bigcup_{a \in B_{n}^{k, l}} S_{a}
$$

When there is no confusion we write \widetilde{S} instead of $\tilde{S}_{n}^{k, l}$.
Note that the cohomology ring of S_{a} is isomorphic to the ring ${ }_{a}\left(A_{n}^{k, l}\right)_{a}$, and the cohomology ring of $S_{a} \cap S_{b}$, viewed as abelian group, is isomorphic to ${ }_{a}\left(A_{n}^{k, l}\right)_{b}$. These observations lead to the following theorem.

Theorem 4. The center of $A_{n}^{k, l}$ is isomorphic to the cohomology ring of \widetilde{S}

$$
Z\left(A_{n}^{k, l}\right) \cong H^{*}(\tilde{S}, \mathbb{Z})
$$

Proof. Denote by $H(Y)$ the cohomology ring of the space Y with integer coefficients. As noted above, we have $H\left(S_{a}\right) \cong{ }_{a}\left(A_{n}^{k, l}\right)_{a}$ and $H\left(S_{a} \cap S_{b}\right) \cong{ }_{a}\left(A_{n}^{k, l}\right)_{b}$. The second isomorphism allows us to make ${ }_{a}\left(A_{n}^{k, l}\right)_{b}$ into a ring with unit $1 \stackrel{\text { def }}{=} 1^{s} \in \mathcal{F}(W(b) a) \cong$ $\mathcal{A}^{\otimes s}$.

We have natural ring homomorphisms induced by inclusions

$$
\psi_{a ; a, b}: H\left(S_{a}\right) \rightarrow H\left(S_{a} \cap S_{b}\right), \quad \psi_{b ; a, b}: H\left(S_{b}\right) \rightarrow H\left(S_{a} \cap S_{b}\right)
$$

and also

$$
\gamma_{a ; a, b}:{ }_{a}\left(A_{n}^{k, l}\right)_{a} \rightarrow_{a}\left(A_{n}^{k, l}\right)_{b}, \quad \gamma_{b ; a, b}:{ }_{b}\left(A_{n}^{k, l}\right)_{b} \rightarrow_{a}\left(A_{n}^{k, l}\right)_{b},
$$

which are given by $x \mapsto x_{a} 1_{b}$ and $x \mapsto{ }_{a} 1_{b} x$. Assemble all these together we get a commutative diagram of ring homomorphisms

$$
\begin{aligned}
& H(\tilde{S}) \xrightarrow{\tau} \mathrm{Eq}(\psi) \longrightarrow \prod_{a} H\left(S_{a}\right) \xrightarrow{\psi} \prod_{a \neq b} H\left(S_{a} \cap S_{b}\right) \\
& \downarrow \cong \quad \downarrow \cong \quad \downarrow \\
& Z\left(A_{n}^{k, l}\right) \xrightarrow{\cong} \mathrm{Eq}(\gamma) \longrightarrow \prod_{a} a\left(A_{n}^{k, l}\right)_{a} \xrightarrow{\gamma} \prod_{a \neq b} a\left(A_{n}^{k, l}\right)_{b}
\end{aligned}
$$

where

$$
\psi=\sum_{a \neq b}\left(\psi_{a ; a, b}+\psi_{b ; a, b}\right) \text { and } \gamma=\sum_{a \neq b}\left(\gamma_{a ; a, b}+\gamma_{b ; a, b}\right) .
$$

$\operatorname{Eq}(\alpha)$ is the equalizer of the map α (see [5]). For example, $\operatorname{Eq}(\psi)$ is a subring of $\prod_{a} H\left(S_{a}\right)$ consisting of $\times_{a} h_{a}$ such that if $h_{a} \in H\left(S_{a}\right)$ and $h_{b} \in H\left(S_{b}\right)$ then their images in $H\left(S_{a} \cap S_{b}\right)$ under ψ are equal.

For all $x \in A_{n}^{k, l}$ write x as $\sum_{a, b \in B_{n}^{k, l}} x_{b}$. Assuming x is central we have $x 1_{b} 1_{a}=1_{b} x 1_{a}={ }_{a} x_{b}$. Therefore ${ }_{a} x_{b}=0$ if $a \neq b$. So $x=\sum_{a} x_{a}$ is central if and only if $\left({ }_{a} x_{a}\right)\left({ }_{a} 1_{b}\right)=\left({ }_{a} 1_{b}\right)\left({ }_{b} x_{b}\right)$, which means $Z\left(A_{n}^{k, l}\right) \cong \operatorname{Eq}(\gamma)$. The ring homomorphism $H(\tilde{S}) \rightarrow \prod_{a} H\left(S_{a}\right)$ factors through $\mathrm{Eq}(\psi)$. To prove Theorem 2 it suffices to show that τ is an isomorphism.

For $a, b \in B_{n}^{k, l}$ write $a \rightarrow b$ if there exists a horizontal merging of two arcs (see Figure 11).

Horizontal merging

Figure 11. Horizontal and vertical mergings of two arcs.

Introduce a partial order on $B_{n}^{k, l}$ by setting $a \prec b$ if there is a chain of arrows $a \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{m} \rightarrow b$. Extend this partial order arbitrarily to a total order $<$ on $B_{n}^{k, l}$. See Figure 12 for arrow relations and ordering of $B_{5}^{0,1}\left(a_{i}<a_{j}\right.$ if and only if $i<j$).

Figure 12. Arrow relations and ordering of $B_{5}^{0,1}$.

We would like to construct a cell decomposition of S_{a}. Associate a decorated graph Γ to $a \in B_{n}^{0, m} \subset B^{\frac{n+m}{2}}$ as follows (see Figure 13 for an example).

- Each type I arc x_{i} in a corresponds to a hollow vertex i in $\widetilde{\Gamma}$.
- Each type II arc x_{j} in a corresponds to a solid vertex j in $\widetilde{\Gamma}$.
- Two vertices i, j in $\widetilde{\Gamma}$ are connected by an edge iff the result of merging x_{i} and x_{j} vertically still lies in $B^{\frac{n+m}{2}}$.
- Γ is obtained from $\widetilde{\Gamma}$ by contracting all edges with two solid ends.
- Mark a vertex in each connected component of Γ without solid vertices.

Figure 13. An element $a \in \widetilde{B}_{10}^{0,2}$ and its associated graph Γ.

Let E be the set of edges, M be the set of marked points, and I be the set of vertices in Γ. For each $J \subset(E \sqcup M)$ let $c(J)$ be the subset of $S^{\times I}$ consisting of points $\left\{y_{i}\right\}_{i \in I}, y_{i} \in S$ such that

$$
\begin{aligned}
y_{i}=y_{j} & \text { if }(i, j) \in J \\
y_{i} \neq y_{j} & \text { if }(i, j) \notin J \\
y_{i}=p & \text { if } i \in M \cap J \\
y_{i}=p & \text { if } i \text { is solid } \\
y_{i} \neq p & \text { if } i \in M, i \notin J
\end{aligned}
$$

where (i, j) denotes the edge connecting i and j. Ignore the first two conditions if (i, j) does not exist. Clearly, $S^{\times I}=\bigsqcup_{J} c(J)$ and $c(J)$ is an open cell of dimension $2\left(|I|-|J|-\right.$ \# of solid vertices). We thus obtain a decomposition of S_{a} into even dimensional cells.

Lemma 1. $S_{<a} \cap S_{a}=\left(\cup_{b \rightarrow a} S_{b}\right) \cap S_{a}$, where $S_{<a}=\bigcup_{b<a} S_{b}$.
The next lemma follows from Lemma 1 and the above construction.
Lemma 2. The cell decomposition constructed above restricts to a cell decomposition of $S_{a} \backslash S_{<a}$, which is a union of cells $c(J)$ such that $J \cap E=\emptyset$.

We thus obtain a cell partition of \widetilde{S} by adding cells in $S_{a} \backslash S_{<a}$ following the total order. Since there are only even-dimensional cells in the partition, the rank of $H(\widetilde{S})$ is equal to the number of cells.

By induction on a with respect to the total order $<$ we get the following result, see [5].

Proposition 10. $S_{\leq a}$ has cohomology in even degrees only and the following sequence is exact

$$
\begin{equation*}
0 \rightarrow H\left(S_{\leq a}\right) \xrightarrow{\varphi} \bigoplus_{b \leq a} H\left(S_{b}\right) \xrightarrow{\psi^{-}} \bigoplus_{b<c \leq a} H\left(S_{b} \cap S_{c}\right), \tag{8}
\end{equation*}
$$

where φ is induced by inclusions $S_{b} \subset S_{\leq a}$, while

$$
\psi^{-} \stackrel{\text { def }}{=} \sum_{b<c \leq a}\left(\psi_{b, c}-\psi_{c, b}\right)
$$

where

$$
\psi_{b, c}: H\left(S_{b}\right) \rightarrow H\left(S_{b} \cap S_{c}\right)
$$

is induced by the inclusion $\left(S_{b} \cap S_{c}\right) \subset S_{b}$.
When a is maximal with respect to the total order $<$, the exact sequence (8) becomes

$$
0 \rightarrow H(\tilde{S}) \xrightarrow{\varphi} \bigoplus_{b} H\left(S_{b}\right) \xrightarrow{\psi^{-}} \bigoplus_{b<c} H\left(S_{b} \cap S_{c}\right),
$$

which means that $H(\tilde{S})$ is isomorphic to the equalizer of ψ.
Lemma 3. The center of $A_{n}^{k, l}$ is isomorphic to the center of $A_{n}^{0, l-k}$,

$$
Z\left(A_{n}^{k, l}\right) \cong Z\left(A_{n}^{0, l-k}\right)
$$

Proof. It follows from the definition of \widetilde{S} that

$$
\widetilde{S} \cong \bigcup_{a \in \widetilde{B}_{n}^{k, l}} S_{a}
$$

where $\widetilde{B}_{n}^{k, l} \subset B_{n}^{k, l}$ is the set of crossingless matchings with all points on the left platform connected to the right platform. On the other hand, since the bottommost type II arcs contribute nothing, we have (see Figure 14)

$$
\bigcup_{a \in \widetilde{B}_{n}^{k, l}} S_{a} \cong \bigcup_{a \in B_{n}^{0, l-k}} S_{a}
$$

Theorem 2 and the above observations imply that

$$
Z\left(A_{n}^{k, l}\right) \cong H\left(\widetilde{S}_{n}^{k, l}\right) \cong H\left(\widetilde{S}_{n}^{0, l-k}\right) \cong Z\left(A_{n}^{0, l-k}\right)
$$

Figure 14. Removing bottommost type II arcs.

Proposition 11. $\tilde{S}_{n}^{0, m}$ has $\binom{n-m}{\frac{n}{2}}$ cells in the partition constructed above.
Proof. The proposition is equivalent to the statement that $\widetilde{S}_{2 s-k}^{0, k}$ has $\binom{2 s-k}{s-k}$ cells. Fix the total number of points $2 s$ (including marked and free). Induction on the size of the right platform k.

Induction base $k=0$ is proved in [5], Lemma 4.1. Assuming the statement is true up to k, it suffices to prove that extending the size of the platform by 1 eliminates $\binom{2 s-k}{s-k}-\binom{2 s-k-1}{s-k-1}$ cells in $\widetilde{S}_{2 s-k}^{0, k}$. If we label the $2 s$ points by $1,2,3, \ldots, 2 s$ from right to left, the vanished cells are exactly those in S_{a} where a has a type II arc connecting k and $k+1$ (see Figure 15). Denote the set of those a by $a(k, k+1)$.

Figure 15. A generic element in $a(k, k+1)$.

We thus get the formula

$$
\vartheta\left(\bigcup_{a(k, k+1) \in B_{2 s-k}^{0, k}} S_{a(k, k+1)}\right)=\sum_{i=0}^{s-k}(i+1) C_{i}\left[\left(\frac{1-\sqrt{1-4 x}}{2 x}\right)^{k-1}\right]_{i},
$$

where $\vartheta(X)$ denotes the number of cells in X, C_{i} denotes the n-th Catalan number, and $[f(x)]_{i}$ is the coefficient of x^{i} in the Maclaurin expansion of $f(x)$. Recall that $\frac{1-\sqrt{1-4 x}}{2 x}$ is the generating function of $\left\{C_{i}\right\}$. The factor $(i+1) C_{i}$ corresponds to the number of cells outside the bottommost type II arc and $\left[\left(\frac{1-\sqrt{1-4 x}}{2 x}\right)^{k-1}\right]_{i}$ is equal to the total number of crossingless matchings inside the bottommost type II arc. Note that the arcs inside the bottommost type II arc contribute nothing to the cell structure,
see Figure 13. After simplifying the above formula we get

$$
\vartheta\left(\bigcup_{a(k, k+1) \in B_{2 s-k}^{0, k}} S_{a(k, k+1)}\right)=\left[\frac{1}{\sqrt{1-4 x}}\left(\frac{1-\sqrt{1-4 x}}{2 x}\right)^{k-1}\right]_{s-k}
$$

By induction on s and k it is easy to prove that

$$
\left[\frac{1}{\sqrt{1-4 x}}\left(\frac{1-\sqrt{1-4 x}}{2 x}\right)^{k-1}\right]_{s-k}=\binom{2 s-k}{s-k}-\binom{2 s-k-1}{s-k-1}
$$

and the proposition follows.
Proposition 12. [2] The cohomology ring of $\mathcal{B}_{\frac{n+m}{2}, \frac{n-m}{2}}$ has dimension $\binom{n-m}{\frac{n}{2}}$ and is isomorphic to the quotient ring of $R=\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ by the ideal R_{1} generated by $e_{k}(I)$ for all $k+|I|=n+1, X_{I}$ for all $|I|=\frac{n-m}{2}+1$, and X_{i}^{2} for $i \in[1, n]$, where

$$
I \subset\{1,2, \ldots, n\}, \quad X_{I}=\prod_{i \in I} X_{i}, \quad e_{k}(I)=\sum_{|J|=k, J \subset I} X_{J}
$$

We now prove the main theorem of this section.
Proof of Theorem 3. It follows from Theorem 4 and Lemma 3 that to prove Theorem 3 it suffices to show that $H\left(\widetilde{S}_{n}^{0, m}\right) \cong H\left(\mathscr{B}_{\frac{n+m}{2}, \frac{n-m}{2}}\right)$. Denote by X a generator of $H^{2}(S)$. We have the following maps

$$
\tilde{S}_{n}^{0, m} \xrightarrow{\iota} S^{\times n} \xrightarrow{\psi_{i}} S^{\prime},
$$

where ι is the inclusion and ψ_{i} is the projection onto the i-th component. Define $X_{i} \in \widetilde{S}_{n}^{0, m}$ to be the pull back of X under the map $\psi_{i} \circ \iota$

$$
X_{i} \stackrel{\text { def }}{=}(-1)^{i} \iota^{*} \circ \psi_{i}^{*}(X)
$$

It is obvious that those $\left\{X_{i}\right\}$ generate $H\left(\widetilde{S}_{n}^{0, m}\right)$. It follows from Proposition 12 and Proposition 11 that to prove the theorem we only need to verify the following relations:

$$
\begin{align*}
X_{i}^{2} & =0, \quad i \in[1, n] \tag{9}\\
X_{I} & =0, \quad|I|=\frac{n-m}{2}+1 \tag{10}\\
e_{k}(I) & =0, \tag{11}\\
& k+|I|=n+1
\end{align*}
$$

The first two relations are obvious. Consider the map $i_{a}^{*}: H\left(\tilde{S}_{n}^{0, m}\right) \rightarrow H\left(S_{a}\right)$ induced by the inclusion $i_{a}: S_{a} \hookrightarrow \widetilde{S}_{n}^{0, m}$. Since $\sum_{a} i_{a}^{*}\left(H\left(\widetilde{S}_{n}^{0, m}\right)\right) \rightarrow \oplus_{a} H\left(S_{a}\right)$ is an inclusion, (11) will follow once we verify that

$$
\begin{equation*}
\sum_{|J|=k, J \subset I} i_{a}^{*}\left(X_{J}\right)=0, \quad k+|I|=n+1 \tag{12}
\end{equation*}
$$

for all $a \in B_{n}^{0, m}$.
Fix any $a \in B_{n}^{0, m}$ and $I \subset\{1,2, \ldots, n\}$. Since $n-|I|=k-1$ there exists at most $k-1$ type I arcs where I intersects with each one at only one point. Therefore, for each $J \subset I$ such that $|J|=k, J$ must either contain an end point of a type II arc or contain an end point of a type $\mathrm{I} \operatorname{arc}\left(p_{1}, p_{2}\right)$ such that $\left\{p_{1}, p_{2}\right\} \in I$. If J contains an end point of a type II arc, then $i_{a}^{*}\left(X_{J}\right)=0$. For a type I arc $\left(p_{1}, p_{2}\right)$, because of the term $(-1)^{i}$ in the definition of X_{i} and the fact that $p_{1}+p_{2}$ is odd, we have $i_{a}^{*}\left(X_{p_{1}} X_{p_{2}}\right)=0$ and $i_{a}^{*}\left(X_{p_{1}}+X_{p_{2}}\right)=0$. Therefore

$$
\sum_{J \subset I,|J|=k,\left\{p_{1}, p_{2}\right\} \cap J \neq \emptyset} i_{a}^{*}\left(X_{J}\right)=0 .
$$

For the remaining terms in the summation in (12), pick another type I arc and repeat the above process. After finitely many reductions we can get the relation (12).

4. Categorification of level two representations of quantum $s l_{\boldsymbol{N}}$

4.1. Level two representations of quantum $s l_{N}$. Let $V, \wedge^{2} V, \ldots, \wedge^{N-1} V$ be the irreducible representations of $U_{q}\left(s l_{N}\right)$ with highest weights $\omega_{1}, \omega_{2}, \ldots, \omega_{N-1}$ respectively, where $\omega_{i}=L_{1}+\cdots+L_{i}$ and the L_{j} 's are the fundamental weights. A level two representation W of $U_{q}\left(s l_{N}\right)$ is an irreducible representation with the highest weight $\lambda=\omega_{s}+\omega_{s+k}$ for some $k \geq 0$. Fix W for the rest of this paper. W decomposes into weight spaces $W=\bigoplus_{\mu} W_{\mu}$. Following [3], we call μ admissible if μ appears in the weight space decomposition of W. A weight μ is admissible if and only if it can be written as the sum $\mu_{1} L_{1}+\mu_{2} L_{2}+\cdots+\mu_{N} L_{N}$ such that

- $0 \leq \mu_{i} \leq 2$, for all $1 \leq i \leq N$,
- $\sum_{i=1}^{N} \mu_{i}=2 s+k$, and
- $\mu_{1}+\cdots+\mu_{i} \leq \lambda_{1}+\cdots+\lambda_{i}$, for all $1 \leq i \leq N$,
where λ_{i} is the coefficient of L_{i} in the decomposition

$$
\lambda=\omega_{s}+\omega_{s+k}=\left(L_{1}+\cdots+L_{s}\right)+\left(L_{1}+\cdots+L_{s+k}\right)
$$

For each admissible weight μ let $m(\mu)$ be the number of 1 's in the sequence $\left(\mu_{1}, \ldots, \mu_{N}\right)$. The dimension of W_{μ} is then determined by $m(\mu)$.

Recall that $U_{q}\left(s l_{N}\right)$ is defined to be the algebra generated by E_{i}, F_{i}, K_{i}, and K_{i}^{-1} for $1 \leq i \leq N-1$ with relations

$$
\begin{align*}
& K_{i} K_{i}^{-1}=1=K_{i}^{-1} K_{i} \\
& K_{i} K_{j}=K_{j} K_{i} \\
& K_{i} E_{j}=q^{c_{i, j}} E_{j} K_{i} \\
& K_{i} F_{j}=q^{-c_{i, j}} F_{j} K_{i} \\
& E_{i} F_{j}-F_{j} E_{i}=\delta_{i, j} \frac{K_{i}-K_{i}^{-1}}{q-q^{-1}} \tag{13}\\
& E_{i} E_{j}=E_{j} E_{i} \quad \text { if }|i-j|>1 \\
& F_{i} F_{j}=F_{j} F_{i} \quad \text { if }|i-j|>1 \\
& E_{i}^{2} E_{i \pm 1}-\left(q+q^{-1}\right) E_{i} E_{i \pm 1} E_{i}+E_{i \pm 1} E_{i}^{2}=0 \\
& F_{i}^{2} F_{i \pm 1}-\left(q+q^{-1}\right) F_{i} F_{i \pm 1} F_{i}+F_{i \pm 1} F_{i}^{2}=0
\end{align*}
$$

E_{i} acts on W by sending weight space W_{μ} to $W_{\mu+\varepsilon_{i}}$ and F_{i} maps W_{μ} to $W_{\mu-\varepsilon_{i}}$, where $\varepsilon_{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1,-1,0, \ldots, 0)$.
4.2. Semi-standard tableaux and arc rings. We give in this section an explicit bijection between semi-standard tableaux and crossingless matchings with one platform. First recall the definition of semi-standard tableaux. For any $\lambda=\left(\lambda_{1}, \ldots\right.$, $\left.\lambda_{N-1}, 0\right)$ in the weight lattice of $U_{q}\left(s l_{N}\right)$, there exists an irreducible representation W_{λ} with the highest weight λ. Weight $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right)$ appears in the weight space decomposition of W if and only if μ is admissible. The dimension of the weight space $W_{\lambda}(\mu)$ equals to the number of ways one can fill the Young diagram corresponding to λ with $\mu_{1} 1$'s, $\mu_{2} 2$'s, \ldots, and $\mu_{N} N$'s in such a way that each column is strictly increasing and each row is non-decreasing. Each such filling is called a semi-standard tableau (see Figure 16).

$$
\lambda=(2,2,1,0)
$$

$$
\mu=(1,1,2,1)
$$

Figure 16. Semi-standard tableaux.

The Young diagram Y_{λ} corresponding to the level two representation W with the highest weight $\lambda=\omega_{s}+\omega_{s+k}$ has two columns of length $s+k$ and s respectively.

Fix an admissible weight μ. Let M_{μ} be the set of i 's such that $\mu_{i}=1$

$$
M_{\mu} \stackrel{\text { def }}{=}\left\{1 \leq i \leq N \mid \mu_{i}=1\right\}
$$

and N_{μ} be the set of i 's such that $\mu_{i}=2$

$$
N_{\mu} \stackrel{\text { def }}{=}\left\{1 \leq i \leq N \mid \mu_{i}=2\right\}
$$

Note that $\left|M_{\mu}\right|=m(\mu)$. Let T_{μ} be the set of semi-standard tableaux of Y_{λ} corresponding to μ. For each semi-standard tableau $T_{\mu}^{i} \in T_{\mu}$, let $T_{\mu}^{i}(r)$ and $T_{\mu}^{i}(l)$ be the set of numbers on the right and left column of T_{μ}^{i} respectively. Write M_{μ} as an ordered sequence $\left\{a_{1}, a_{2}, \ldots, a_{m(\mu)}\right\}$. Assume that $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}\right\}=M_{\mu} \cap T_{\mu}^{i}(r)$. Consider all integer points $\{1,2,3, \ldots\}$ lying on the x -axis. Put a platform on the x-axis to the left of all points (see Figure 17). First draw an arc in the lower half plane connecting $a_{i_{1}}$ with the first point in M_{μ} to its left which is not connected to any point. That point always exists and lies in $T_{\mu}^{i}(l)$ since T_{μ}^{i} is semi-standard. Repeat the above step for a_{2}, a_{3}, \ldots in order until each point in $M_{\mu} \bigcap T_{\mu}^{i}(r)$ is connected to some point. Finally, connect the remaining free points in $M_{\mu} \bigcap T_{\mu}^{i}(l)$ to the platform by arcs in the unique way that no two arcs intersect.

Figure 17. An element in $B_{8}^{2,0}\left(M_{\mu}\right)$.

The resulting graph is a crossingless matching among the points in M_{μ} with one platform. Denote by $B_{m(\mu)}^{k, 0}\left(M_{\mu}\right)$ the set of all such elements. Note that $B_{m(\mu)}^{k, 0}\left(M_{\mu}\right) \cong$ $B_{m(\mu)}^{k, 0}$. The map from T_{μ} to $B_{m(\mu)}^{k, 0}\left(M_{\mu}\right)$ is denoted by φ_{μ}.

Conversely, for any $a \in B_{m(\mu)}^{k, 0}\left(M_{\mu}\right)$ with t type $\mathrm{I} \operatorname{arcs} c_{1}, c_{2}, \ldots, c_{t}$, let R_{a} be the set of right end points of all c_{i}. A semi-standard tableau of Y_{λ} is constructed by putting $R_{a} \bigcup N_{\mu}$ into the right column and $\left(M_{\mu} \backslash R_{a}\right) \bigcup N_{\mu}$ into the left column (both in increasing order). The map from $B_{m(\mu)}^{k, 0}$ to T_{μ} is denoted by ψ_{μ}. It is easy to verify that ψ_{μ} is indeed the inverse of φ_{μ}. Thus we have a bijection between T_{μ} and $B_{m(\mu)}^{k, 0}$

$$
\begin{equation*}
T_{\mu} \underset{\psi_{\mu}}{\rightleftarrows} B_{m(\mu)}^{k, 0} \tag{14}
\end{equation*}
$$

See Figure 18 for an example of this bijection where W is a level two representation of $U_{q}\left(s l_{5}\right)$.
4.3. Category \mathcal{C} and exact functors. Starting with $B_{m(\mu)}^{k, 0}\left(M_{\mu}\right)$, we repeat the definition of $A_{n}^{k, l}$ and get $A_{m(\mu)}^{k, 0}\left(M_{\mu}\right)$, or simply A_{μ}. Note that $A_{\mu} \cong \mathbb{Z}$ when $m(\mu)=0$. For an admissible weight μ define ζ_{μ} to be the category of finitely generated graded left A_{μ}-modules. By taking direct sum over all admissible μ we collect those \mathscr{C}_{μ} into a single category \mathscr{C}

$$
\left\ulcorner\stackrel{\text { def }}{=} \bigoplus_{\mu} e_{\mu}\right.
$$

Note that when $k=0$ our category \mathscr{C}_{μ} is the same as $\mathscr{C}(\mu)$ in [3].
The functors $\varepsilon_{i}, \mathcal{F}_{i}$, and \mathcal{K}_{i} defined by Khovanov and Huerfano naturally extend to our category \mathscr{C}. Recall that $\varepsilon_{i}: \leftharpoonup \rightarrow \zeta$ is defined to be the sum over all admissible μ of the functors $\varepsilon_{i}^{\mu}: \mathscr{\zeta}_{\mu} \rightarrow \bigodot_{\mu+\varepsilon_{i}}$. If $\mu+\varepsilon_{i}$ is not admissible ε_{i}^{μ} is the zero functor. Otherwise, define ε_{i}^{μ} to be tensoring with the $\left(A_{\mu+\varepsilon_{i}}, A_{\mu}\right)$-bimodule $\mathcal{F}\left(T_{i}^{\mu}\right)$ where T_{i}^{μ} is the simplest flat tangle with bottom end points corresponding to μ and top end points corresponding to $\mu+\varepsilon_{i}$. Figure 19 shows an example of the functor ε_{i}^{μ}. The definition of \mathscr{F}_{i} is similar. See [3] for details. Define \mathcal{K}_{i} to be the functor which shifts the grading of $M \in \mathscr{\zeta}_{\mu}$ up by $\mu_{i}-\mu_{i+1}$

$$
\mathcal{K}_{i}(M) \stackrel{\text { def }}{=} M\left\{\mu_{i}-\mu_{i+1}\right\}
$$

Proposition 13. There are functor isomorphisms

$$
\begin{align*}
& \mathcal{K}_{i} \mathcal{K}_{i}^{-1} \cong \mathrm{Id} \cong \mathcal{K}_{i}^{-1} \mathcal{K}_{i}, \\
& \mathcal{K}_{i} \mathcal{K}_{j} \cong \mathcal{K}_{j} \mathcal{K}_{i}, \\
& \mathcal{K}_{i} \varepsilon_{j} \cong \mathcal{E}_{j} \mathcal{K}_{i}\left\{c_{i, j}\right\}, \\
& \mathcal{K}_{i} \mathcal{F}_{j} \cong \mathcal{F}_{j} \mathcal{K}_{i}\left\{-c_{i, j}\right\}, \\
& \mathcal{E}_{i} \mathcal{F}_{j} \cong \mathcal{F}_{j} \mathcal{E}_{i} \quad \text { if } i \neq j, \tag{15}\\
& \mathcal{E}_{i} \mathcal{E}_{j} \cong \mathcal{E}_{j} \mathcal{E}_{i} \quad \text { if }|i-j|>1, \\
& \mathcal{F}_{i} \mathcal{F}_{j} \cong \mathcal{F}_{j} \mathcal{F}_{i} \quad \text { if }|i-j|>1, \\
& \mathcal{E}_{i}^{2} \mathcal{E}_{j} \oplus \mathcal{E}_{j} \mathcal{E}_{i}^{2} \cong \mathcal{E}_{i} \mathcal{E}_{j} \mathcal{E}_{i}\{1\} \oplus \mathcal{E}_{i} \mathcal{E}_{j} \mathcal{E}_{i}\{-1\} \quad \text { if } j=i \pm 1, \\
& \mathcal{F}_{i}^{2} \mathcal{F}_{j} \oplus \mathcal{F}_{j} \mathcal{F}_{i}^{2} \cong \mathcal{F}_{i} \mathcal{F}_{j} \mathcal{F}_{i}\{1\} \oplus \mathcal{F}_{i} \mathcal{F}_{j} \mathcal{F}_{i}\{-1\} \quad \text { if } j=i \pm 1,
\end{align*}
$$

where

$$
c_{i, j}= \begin{cases}2 & \text { if } j=i \\ -1 & \text { if } j=i \pm 1 \\ 0 & \text { if }|j-i|>1\end{cases}
$$

$$
\lambda=(2,2,1,0,0)
$$

Young diagram

$$
\mu=(1,1,1,1,1) \quad M_{\mu}=\{1,2,3,4,5\}
$$

1	2
3	4
5	

1	3
2	4
5	

1	4
2	5
3	

$$
\mu=(2,1,1,1,0) \quad M_{\mu}=\{2,3,4\}
$$

1	1
2	3
4	

Figure 18. Bijection between semi-standard tableaux and crossingless matchings with one platform.
$\varepsilon_{3}=(0,0,1,-1,0,0)$
$\mu_{1}=(1,1,0,1,2,1)$
$\mu_{1}+\varepsilon_{3}=(1,1,1,0,2,1)$
$\varepsilon_{3}^{\mu_{1}}=\mathcal{F}($
$\mu_{2}=(1,2,1,1,1,1)$
$\mu_{2}+\varepsilon_{3}=(1,2,2,0,1,1) \quad \varepsilon_{3}^{\mu_{2}}=\mathcal{F}($

Figure 19. Examples of the functor ε_{i}^{μ}.

Proposition 14. For any admissible μ there is an isomorphism of functors in the category \bigodot_{μ}

$$
\begin{align*}
& \mathcal{E}_{i} \mathscr{F}_{i} \cong \mathcal{F}_{i} \mathcal{E}_{i} \oplus \operatorname{Id}\{1\} \oplus \operatorname{Id}\{-1\} \quad \text { if }\left(\mu_{i}, \mu_{i+1}\right)=(2,0), \\
& \mathcal{E}_{i} \mathcal{F}_{i} \cong \mathcal{F}_{i} \mathcal{E}_{i} \oplus \mathrm{Id} \text { if } \mu_{i}-\mu_{i+1}=1 \text {, } \\
& \mathcal{E}_{i} \mathcal{F}_{i} \cong \mathcal{F}_{i} \mathcal{E}_{i} \quad \text { if } \mu_{i}=\mu_{i+1}, \tag{16}\\
& \mathcal{E}_{i} \mathcal{F}_{i} \oplus \mathrm{Id} \cong \mathcal{F}_{i} \mathcal{E}_{i} \quad \text { if } \mu_{i}-\mu_{i+1}=-1 \text {, } \\
& \mathcal{E}_{i} \mathcal{F}_{i} \oplus \operatorname{Id}\{1\} \oplus \operatorname{Id}\{-1\} \cong \mathscr{F}_{i} \mathcal{E}_{i} \quad \text { if }\left(\mu_{i}, \mu_{i+1}\right)=(0,2) \text {. }
\end{align*}
$$

Proposition 15. The functor \mathcal{E}_{i} is left adjoint to $\mathcal{F}_{i} \mathcal{K}_{i}^{-1}\{1\}$, the functor \mathcal{F}_{i} is left adjoint to $\varepsilon_{i} \mathcal{K}_{i}\{1\}$, and \mathcal{K}_{i} is left adjoint to \mathcal{K}_{i}^{-1}.

The above three propositions are from [3]. They work in our case without any modifications since the actions happen away from the platform.

The Grothendieck group of \mathscr{C} is a $\mathbb{Z}\left[q, q^{-1}\right]$-module where grading shifts correspond to multiplication by q. The functors $\mathcal{E}_{i}, \mathcal{F}_{i}$, and \mathcal{K}_{i} are exact and commute with grading shift action $\{1\}$. Exactness follows from left and right projectivity of bimodule $\mathcal{F}(T)$ for flat tangle T in Section 2. On the Grothendieck group level \mathcal{E}_{i}, \mathscr{F}_{i}, and \mathcal{K}_{i} descend to $\mathbb{Z}\left[q, q^{-1}\right]$-linear endomorphisms $\left[\mathcal{E}_{i}\right],\left[\mathcal{F}_{i}\right]$, and $\left[\mathcal{K}_{i}\right]$ respectively. Functor isomorphisms in Proposition 13 and Proposition 14 correspond to the quantum group relation (13) in $K(C)$. So we can view $K(\leftharpoonup)$ as an $U_{q}\left(s l_{N}\right) \bmod -$ ule. It follows from the bijection (14) that $K(\leftharpoonup)$ is isomorphic to W as an $U_{q}\left(s l_{N}\right)$ module.

Proposition 16. The Grothendieck group of \mathcal{C} is isomorphic to the irreducible representation of $U_{q}\left(s l_{N}\right)$ with the highest weight $\omega_{k}+\omega_{k+s}$

$$
K(\subset) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} \mathbb{C} \cong W
$$

References

[1] Y. Chen and M. Khovanov, An invariant of tangle cobordisms via subquotients of arc rings. Preprint 2006. arXiv:math.QA/0610054
[2] C. de Concini and C. Procesi, Symmetric functions, conjugacy classes and the flag variety. Invent. Math. 64 (1981) 203-219. MR 0629470 Zbl 0475.14041
[3] R. Huerfano and M. Khovanov, Categorification of some level two representations of $s l_{n}$. Knot Theory Ramifications 15 (2006), 695-713. MR 2253831 Zbl 1165.17006
[4] M. Khovanov, A functor-valued invariant of tangles. Algebr. Geom. Topol. 2 (2002), 665-741. MR 1928174 Zbl 1002.57006
[5] M. Khovanov, Crossingless matchings and the cohomology of (n, n) Springer varieties. Commun. Contemp. Math. 6 (2004), 561-577. MR 2078414 Zbl 1079.57009
[6] C. Stroppel, Parabolic category \mathcal{O}, perverse sheaves on Grassmannians, Springer fibers and Khovanov homology. Compos. Math 142 (2009), 954-992. MR 2521250 Zbl 1187.17004

Received July 10, 2010
Yanfeng Chen, 1 Shore Ln., Apt 618, Jersey City, NJ, U.S.A.
E-mail: mathchen@gmail.com

[^0]: ${ }^{1}$ The author would like to thank Mikhail Khovanov for recommending this problem and too many helpful conversations and suggestions. He is also very grateful to Robin Kirby for his kindness, guidance and support.

