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HOMFLY-PT polynomial and normal rulings
of Legendrian solid torus links

Dan Rutherford

Abstract. We show that for any Legendrian linkL in the 1-jet space of S1 the 2-graded ruling
polynomial, R2

L
.z/, is determined by the Thurston–Bennequin number and the HOMFLY-PT

polynomial. Specifically, we recoverR2
L

.z/ as a coefficient of a particular specialization of the
HOMFLY-PT polynomial. Furthermore, we show that this specialization may be interpreted
as the standard inner product on the algebra of symmetric functions that is often identified with
a certain subalgebra of the HOMFLY-PT skein module of the solid torus.

In contrast to the 2-graded case, we are able to use 0-graded ruling polynomials to distin-
guish many homotopically non-trivial Legendrian links with identical classical invariants.
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1. Introduction

The study of Legendrian knots in standard contactR3 up to the equivalence relation of
Legendrian isotopy provides an interesting variation on the classical theory of smooth
knots in 3-space. Each smooth knot type has Legendrian representatives. However,
Legendrian knots of the same underlying smooth knot type need not be equivalent as
Legendrian knots.
There are two “classical invariants” capable of distinguishing between Legendrian

knots with the same underlying smooth knot type. They are known as the Thurston–
Bennequin number, tb.L/, and rotation number, r.L/. Beginning in the late 1990’s,
several stronger invariants of Legendrian knots have been developed. Of particular
interest for this article are invariants arising from counts of certain decompositions
of front diagrams known as normal rulings. Normal rulings arose independently in
the work of Fuchs [4] in connection with augmentations of the Chekanov–Eliashberg
DGA and also in the work of Chekanov and Pushkar [2] who were motivated by
generating families. Chekanov and Pushkar defined for each divisor p of 2r.L/ an
invariant which can be neatly encoded as the p-graded ruling polynomial, Rp

L.z/.
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A particularly elegant aspect of Legendrian knot theory is the interplay between
Legendrian invariants and invariants of the underlying smooth knot type. For instance,
the values of the classical invariants are constrained by invariants which depend only
on the smooth knot type via “Bennequin type inequalities” (see for instance [10]).
As an example, Fuchs and Tabachnikov [5] proved that for any Legendrian link L in
standard contact R3

tb.L/C jr.L/j � �degaPL.a; z/; (1)

wherePL 2 ZŒa˙1; z˙1� is theHOMFLY-PTpolynomial.1 In turn, Legendrian knots
can shed light on topological knot invariants. It is shown in [12] that the coefficient
of a�tb.L/ in PL.a; z/ is precisely R2

L.z/, and hence may be viewed as counting
2-graded normal rulings.
The main purpose of the present article is to investigate the relationship between

2-graded normal rulings and the HOMFLY-PT polynomial of Legendrian links in the
1-jet space of the circle, J 1.S1/. J 1.S1/ is a contact manifold diffeomorphic to an
open solid torus, andLegendrian links inJ 1.S1/ can be represented diagrammatically
via their front projections to the annulus.
The solid torus case is more interesting thanR3 due to the nature of the HOMFLY-

PT polynomial. Unlike link diagrams in the plane, annular link diagrams can not
always be reduced to a multiple of the unknot via repeated applications of the skein
relations. Instead there are sequences of oriented diagrams A˙1; A˙2; : : : whose
products (defined by stacking, see Section 2) form the base cases for evaluating PL.
This gives rise to a HOMFLY-PT polynomial with many new variables,

PL 2 ZŒa˙1; z˙1; A˙1; A˙2; : : :�:

More systematically, one considers the skein module C obtained by imposing the
HOMFLY-PT relations on formal linear combinations of link diagrams. Turaev [17]
showed that C is a free module with linear basis consisting of products of the Ai .
For a given monomial Ai1 : : : AiN we collect the terms with positive and negative
indices to write Ai1 : : : AiN D A�A�� for partitions � and � (see Section 4). PL is
simply a normalization of the expansion of L in Turaev’s basis fA�A��g. Chmutov
and Goryunov [3] extended the estimate (1) to the J 1.S1/ setting (see Theorem 6.1).
One of our main results is the following

Theorem 6.3. For any Legendrian link L � J 1.S1/,

R2
L.z/ D coefficient of a�tb.L/ in yPL.a; z/:

Here, yPL.a; z/ is obtained from the HOMFLY-PT polynomial by replacing each
occurrence of A�A�� with R2

A�A��
.z/. We will view these particular ruling poly-

nomials as defining a bilinear form, h�; �i, on the subalgebra CC � C generated by
1For consistency with the main body of this article PL is normalized so that the unknot has the value

.a � a�1/=z. This differs from [5] and [12].
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Ai with i > 0 as follows

hA�; A�i D R2
A�A��

.z/ 2 ZŒa˙1; z˙1�:

Theorem 4.2 gives a computation of hA�; A�i in terms of the partitions � and � as a
sum over a particular class of matrices.
In the literature, there is a traditional way of identifying CC with the algebra ƒ

of symmetric functions (see [1], [7], [9] and the discussion in Section 5.1) where the
Schur functions s� correspond to skein elementsQ�. ƒ has a standard inner product
arising from taking the Schur functions as an orthonormal basis. In Section 5, we
show that the corresponding inner product .Q�; Q�/ D ı�;� agrees with the bilinear
form h�; �i used to define yPL.a; z/.

Theorem 5.6. For any partitions � and �,

.A�; A�/ D R2
A�A��

.z/ D hA�; A�i:
Thus, with respect to Turaev’s basis A� the inner product on ƒ has a skein theoretic
interpretation using Legendrian links.
Ourmethod for proving Theorem 6.3 is inductive as in [12], but several interesting

complications arise. For starters, a more subtle measure of the complexity of a front
diagram is required and an additional algorithm is necessary to reduce the complexity
of front diagrams lacking cusps. More notably, the base case for the induction needs
to be enlarged to include all products of Legendrian versions of theAi. An interesting
wrinkle occurs here. In contrast to the case of smooth link diagrams, the product of
Legendrian front diagrams in the annulus is not commutative. This phenomenon was
first observed by Traynor who showed that the two components of the Legendrian
link L D L0 t L1 cannot be interchanged via a Legendrian isotopy. Here, L0 and
L1 denote the 1-jets of the constant functions 0 and 1 on S1. In Theorem 4.3 we
provide many further examples by showing that for any i; j 2 Z n f0g the locations
of disjoint Ai and Aj in the z direction cannot be interchanged by a Legendrian
isotopy. Nevertheless, we are able to establish in Lemma 4.5 that the 2-graded ruling
polynomial of a product of the Ai does not depend on the ordering of the factors.
We have included a proof of Chmutov and Goryunov’s estimate (Theorem 6.1)

at the end of Section 6. The versions for the HOMFLY-PT polynomial and tb.L/

used here and in [3] differ in a significant way (see Section 6.2 and Remark 2.2
for details). While we believe that the estimate appearing in [3] should indeed be
equivalent to the one used here, it is straightforward to provide here a self-contained
proof of Theorem 6.1. Our proof is based on the inductivemethod used in the proof of
Theorem 6.3 and is similar in spirit to Ng’s approach to Bennequin type inequalities
in R3 [10].

1.1. Acknowledgments. I would like to thank Lenny Ng for many useful discus-
sions during the course of this project. Also, I am grateful to AIM for hosting a
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workshop on “Legendrian and transverse knots” as well as a follow-up SquaREs on
“Augmentations, rulings, and generating families”. I thank fellow SquaREs partici-
pants Dmitry Fuchs, Brad Henry, Paul Melvin, Josh Sabloff, and Lisa Traynor for
many discussions regarding normal rulings and related topics. In addition, I thank
Greg Kuperberg for a useful conversation about skein modules.

2. Legendrian links in J 1.S 1/

The 1-jet space of S1

J 1.S1/ D T �S1 � R D f.x; y; z/ j x 2 S1; y; z 2 Rg

is diffeomorphic to an open solid torus and is equipped with the contact structure
� D ker.dz � y dx/. A smooth (oriented) link L � J 1.S1/ is called Legendrian if
it is everywhere tangent to �. Two Legendrian links are Legendrian isotopic if they
are isotopic through other Legendrian links. A Legendrian link L is determined by
its front projection (also denoted L) to the annulus,

J 1.S1/! S1 � R; .x; y; z/ 7! .x; z/;

because the y-coordinate of L is recovered as the slope dz=dx. Viewing S1 as
Œ0; 1�=f0; 1g, we visualize the front projection ofL as a collection of arcs in Œ0; 1��R
with identifications at the boundary.
A front projection of a Legendrian link is called generic if it is immersed away

from semi-cubical cusp points and the only self intersections are transverse double
points. L is called �-generic if in addition the double points and cusps all have
distinct x-coordinates. Any collection of closed curves in the annuluswithout vertical
tangencies and satisfying the conditions of a generic front projection may be lifted
to a unique Legendrian link in J 1.S1/. It is not necessary to indicate the over/under
relationship between two strands at a crossing of a front projection. The y-axis is
oriented away from the observer, so the strand with lesser slope always appears on
top. See Figure 4 below for an example of a front projection.
The equivalence relation of Legendrian isotopy may be formulated in a somewhat

combinatorial fashion using front projections [14]. Any Legendrian isotopy class
has representatives with generic front projections. Furthermore, if two generic front
projections represent Legendrian isotopic links then one may be transformed into the
other via a combination of the Legendrian Reidemeister moves indicated in Figure 1
and isotopies of the planewhich do not introduce vertical tangencies. Note thatmoves
corresponding to reflections of I and II across horizontal or vertical axes are allowed
as well.
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I.

II.

III.  !

 !

 !

Figure 1. Legendrian Reidemeister moves.

2.1. Product of fronts. Given front projections K and L we define their product
K � L by stacking K vertically above L in S1 � R,

K � L D
K

L

:

This product is well defined on Legendrian isotopy classes.

Remark 2.1. The correspondingproduct on smooth knot types is commutative. How-
ever, it follows from work of Traynor [16] that this is not always the case for Legen-
drian knot types. See Subsection 4.1.

2.2. Classical invariants. The simplest invariants capable of distinguishing be-
tween Legendrian links with the same underlying smooth link type are the Thurston–
Bennequin number tb and the rotation number r . For a Legendrian link L � J 1.S1/

the Thurston–Bennequin number is computed from a front projection of L as

tb.L/ D writhe.L/ � 1

2
.# of cusps/;

and the rotation number is given by

r.L/ D 1

2
..# of downward oriented cusps/ � .# of upward oriented cusps//:
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Remark 2.2. If L is homologically trivial then tb.L/ is the linking number of L

with a link LC obtained by a small shift in the oriented normal direction to the
contact planes. There exist differing conventions for extending the definition of
tb to homologically non-trivial links in J 1.S1/. We follow the definition used in
[11] which is natural when working with front projections. Geometrically, tb.L/

is the index of intersection of LC with an oriented surface bounded by L and an
appropriate number of copies of A1 or A�1 (see Section 4) located far away from L

in the z-direction. Alternatively, Tabachnikov defined in [15] a “Bennequin affine
invariant” for Legendrian links in ST �R2 using instead an oriented surface bounded
by L and some number of distant fibers of the projection ST �R2 ! R2. Under
the standard contactomorphism ST �R2 Š J 1.S1/ the front diagrams of these fibers
appear as phase shifted cosine functions with large amplitudes. [3] follows the latter
convention.

3. Normal rulings in J 1.S 1/

In this section we review Legendrian isotopy invariants introduced by Chekanov and
Pushkar in [2]. The invariants depend on a choice of divisor pj2r.L/ and are com-
puted as counts of additional combinatorial structures associated to a front diagram
whichwewill callp-graded normal rulings. This terminology follows Fuchs [4] who,
in connection with augmentations of the Chekanov–Eliashberg DGA, independently
introduced similar combinatorial structures for front diagrams of Legendrian knots
in standard contact R3.

3.1. Maslov potentials. After removing cusp points a front diagram is divided into
a union of immersed curves which we will call strands. Note that along each strand
the orientation of L either entirely agrees or entirely disagrees with the orientation
of S1 D Œ0; 1�=f0; 1g. In this regard we may view the orientation of L as a function
from the strands of L to Z=2Z where we make the convention that the value 0 (1)
indicates a strand oriented to the right (left).

Definition 3.1. AMaslov potential for a generic front diagram of a Legendrian knot
L is a function � from the strands of L to Z=.2r.L/Z/ so that at cusps the value
increases by 1 when moving from the lower half of the cusp to the upper half. See
Figure 2. For convenience, we require that reducing �mod 2 gives the orientation of
L. A Maslov potential for a multi-component link is a choice of Maslov potential for
each component.

During any of the three Legendrian Reidemeister moves there is a unique way
to extend a Maslov potential so that � is unchanged outside of the region where the
move occurs. The case of a Type I move is most interesting as it is the only one which
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ii

iC1iC1

Figure 2. A Maslov potential near cusps.

can create new strands. In this manner, Maslov potentials are extended in a unique
way along any generic Legendrian isotopy.

3.2. p-graded normal rulings. Suppose that L is a �-generic front projection.
Under this assumption the subset † � S1 of x-values where L has double points or
cusps is finite and for each x0 2 † the subset fx D x0g � S1 �R intersects a single
crossing or cusp of L.
Let � W S1 � R ! S1 denote the projection and, for each x 2 S1, Lx D L \

��1.x/.

Definition 3.2. Acontinuous functionf from a subsetN � S1 to the front projection
L � S1 � R is called a section if � B f D idN .

Definition 3.3. A normal ruling of a front projection L is a continuous function
� W L n ��1.†/! L n ��1.†/ satisfying the following conditions.

(1) � B� D �jLn��1.†/, so for each x 2 S1 n† there is a restriction �x W Lx ! Lx .

(2) Each �x is a fixed point free involution.

This condition together with the continuity of � implies that on any interval of
S1 n† the strands of L are divided into pairs. The remaining requirements give
restrictions on this pairing near crossings and cusps.

(3) Strands meeting at a cusp are paired by the involutions �x in a neighborhood
of the cusp point. The pairing of the remaining non-cusp strands should agree
before and after the cusp.

(4) Near a crossing the two strands that meet should not be paired together by �x .

(5) The pairing of strands arising from �x can be continuously extended along a
crossing in the following sense. Let x0 2 † such that Lx0

contains a crossing
of L. In a neighborhood N � S1 of x0 one should be able to find a number of
sections f1; : : : ; fn W N ! L so that every point of L\��1.N / is in the image
of exactly one of the fi with the exception of the double point which is in the
image of two of the fi. Furthermore, these sections should be preserved by the
involutions �x , so that onN n† for each fi , �Bfi D fj for some fj ; 1 � j � n.
For the two sections meeting at the crossing there are two possibilities. Either
they follow the diagram and cross transversally at the crossing, or they switch
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strands at the crossing in a non-smooth manner. In the latter case, the crossing
is called a switch of �.

Finally, we have a restriction at switches known as the normality condition.

(6) Near switches of � the two intervals on the z-axis arising from connecting cross-
ing strands to their companion strands are either disjoint or one is contained in
the other.

Remark 3.4. (i) Three of the six possible arrangements of the switching strands and
their companions along the vertical axis are prohibited by the normality condition.
See Figure 3.
(ii) For Legendrian links in R3 it is usual to describe a normal ruling as a decom-

position of the front diagram into pairs of paths with monotonic x-coordinates and
each pair beginning and ending at shared left and right cusps (see for instance [4]).
The continuity condition on �, together with (3) and (6), amount to requiring that at
least locally we may still view a normal ruling as such a decomposition. This is the
way the rulings are presented in Figure 5 below. However, note that the pairs of paths
do not need to line up as one winds all the way around the annulus.

Figure 3. The three configurations for switching strands and companion strands allowed by
the normality condition.

Suppose that a Legendrian link L has components L1; : : : ; LN , and let p be a
common divisor of 2r.Li /; i D 1; : : : ; N.

Definition 3.5. A normal ruling � of L is called p-graded with respect to a partic-
ular Maslov potential � for L if, after reducing � modulo p, whenever two strands
are paired by the involutions �x the strand with the larger z-coordinate has Maslov
potential 1 larger than the strand with smaller z-coordinate. That is,

�.x; z/ D .x; z0/ and z0 > z) �.x; z0/ D �.x; z/C 1 modp:

Remark 3.6. (i) Every normal ruling is 1-graded.
(ii)We aremost interested in the casep D 2. Note that, a normal ruling is2-graded

exactly when � reverses orientation. Choosing a Maslov potential is unnecessary.
(iii) If a normal ruling is p-graded, then at each of the switches the Maslov

potentials of the crossing strands must agree modulo p. However, in contrast to
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Legendrian links in R3 this condition is no longer sufficient for a normal ruling to be
p-graded.
(iv) For a single component link the p-graded condition is independent of the

choice of Maslov potential since any two Maslov potentials will differ by a constant.
(v) If p is even, then the involutions �x reverse the orientation of L. It follows

that only null-homologous links can have p-graded normal rulings when p is even.

Given a Legendrian link L with �-generic front projection and chosen Maslov
potential�, we let	p.L; �/ denote the set of normal rulings ofLwhich arep-graded
with respect to �. To each � 2 	p.L; �/ we associate the integer2

j.�/ D #.switches/ � #.right cusps/:
Finally, we define the p-graded ruling polynomial R

p
L;�.z/ as

R
p
L;�.z/ D

X
�2�p.L;�/

zj.�/:

As remarked above, if p D 1; 2 or L has a single component, then the choice of
� is not relevant and will be suppressed from the notation.
Given a sufficiently generic Legendrian isotopy between linksL1 andL2 with �-

generic front projections, Chekanov and Pushkar provide a bijection between	1.L1/

and 	1.L2/which preserves the integers j.�/. Assuming the isotopy takes a Maslov
potential �1 for L1 to the corresponding Maslov potential �2 for L2 their bijection
takes 	p.L1; �1/ to 	p.L2; �2/.

Theorem 3.7 ([2]). If there is a Legendrian isotopy between L1 and L2 which is
compatible with corresponding Maslov potentials �1 and �2 then

R
p
L1;�1

.z/ D R
p
L2;�2

.z/:

In particular, R1
L.z/ and R2

L.z/ are Legendrian isotopy invariants.

Example 3.8. In Figure 4 a Legendrian link K � J 1.S1/ is presented via its front
projection to S1 � R. Two normal rulings of K are pictured in Figure 5. Both of
the rulings are 0-graded with respect to the indicated Maslov potential �. In case
the value of � on the lower component were altered to 3 the pictured rulings would
remain 2-graded but would fail to be 0-graded. K has several other normal rulings,
and its 2-graded and 0-graded ruling polynomials are given by

R2
K.z/ D 2C 3z2 C z4; R0

K;�.z/ D 2C z2:

2This differs by 1 from the convention for j.�/ used in [12].
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Figure 4. An annular front projection for a Legendrian link K � J 1.S1/.

1
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Figure 5. Two normal rulings of the front projection K.

4. Computation of R2 for products of basic fronts

For each positive integer m � 1, we consider the front diagram Am which consists
of a single component wrapping m times around the annulus with m � 1 crossings.
Am is everywhere oriented to the right in S1 �R and can be viewed as the closure of
the m-braid, �1�2 : : : �m�1. Here, we compose braids from left to right and number
strands from top to bottom. See Figure 6. We letA�m denoteAm with its orientation
reversed.
We will sometimes refer to the front diagrams Am as basic fronts. The basic

fronts will play a crucial role as their products form a basis for the HOMFLY-PT
skein module of the annulus (See Section 5).
Recall that a finite non-increasing sequence of positive integers� D .�1; : : : ; �`/;

�i � �iC1; 1 � i � ` � 1 is called a partition. If
P

�i D n we say that � is
a partition of n and write � ` n. The integers �i ; 1 � i � ` are called the parts
of �, and we write � D 1m12m2 : : : rmr to indicate that � is the partition with mk

parts equal to k, 1 � k � r , and no part larger than r . The total number of parts,
` D `.�/ D m1 C � � � Cmr , is called the length of �.
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Figure 6. The front diagram A4.

Lemma 4.1. For any m � 1,

R2
AmA�m

.z/ D
X
�`m

�
`.�/Š

m1Šm2Š : : : mr Š

�
.1m12m2 : : : rmr /z2.`.�/�1/:

Proof. First, note that there are preciselym normal rulings ofAmA�m which have no
switches. The continuity conditions required in the definition of normal ruling show
that such a ruling is uniquely determined by the value of the involution on a single
strand of Am near x D 0. Furthermore, an arbitrary choice of this value among the
strands of A�m may always be extended to a ruling without switches.
Now, given a ruling � of AmA�m consider the front diagram, F�, arising from

resolving the switches of � into pairs of horizontal arcs as

! :

� gives rise to a normal ruling ofF� without switches, and the continuity and normality
conditions force that

F� D .Ai1 : : : Ai`/.A�i` : : : A�i1/; i1 C � � � C i` D m

with the induced ruling on F� pairing the factors on the left with those on the right
in opposite order. Conversely, any such choice of decomposition m D i1 C � � � C
i`; i1; : : : ; i` > 0 and switchless rulings for Aij A�ij , 1 � j � `, arises in this way
from a unique ruling of AmA�m. The terms in the decompositionm D i1 C � � � C i`
may be reordered to give a partition � ` m. In the statement of the lemma, the first
term in the sum is the number ofways to rearrange the parts of� to produce .i1; : : : ; i`/

and the second term .1m12m2 : : : rmr / accounts for the choices of switchless rulings.
Finally, the number of switches in a ruling described by this data is 2.`.�/�1/which
explains the power of z.

For m � 1 we introduce the notation

hmi D R2
AmA�m

.z/;
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and in accordance with Lemma 4.1 we set

h0iD z�2:

Next we extend our computations of R2 to products of the Am. Given partitions
� D .�1; : : : ; �`/ and � D .�1; : : : ; �k/ we let A� and A�� denote the products

A� D A�1
: : : A�`

and A�� D A��1
: : : A��k

:

Notice that Remark 3.6(v) implies that R2
A�A��

.z/ D 0 unless
P

�i DP�i .

Theorem 4.2. Let �; � ` n with � D .�1; : : : ; �`/ and � D .�1; : : : ; �k/. Denote
by M�;� the set of ` � k matrices with non-negative integer entries such that the
entries in the i-th row sum to �i and the entries of the j -th column sum to �j. Then,

R2
A�A��

.z/ D z2`k�`�k
X

.bij /2M�;�

Y
i;j

hbij i:

Proof. Let � be a normal ruling of A�A��. Divide each term A�i
into “blocks”

Bij where the block Bij denotes the closure of the portion of A�i
paired with A��j

by �. Distinct blocks can meet only at switches. The normality condition forces
that if two blocks Bij and Bik meet at a switch with Bik containing the upper half
of the switching strands and Bij the lower half then j < k. It follows that, after
resolving the switches between distinct blocks into horizontal lines, A�i

becomes a
product Abik

: : : Abi2
Abi1

with the factor Abij
corresponding to the block Bij . (If

the block Bi;j is empty then we put bij D 0 and treat A0 as an identity.) Clearly,
bi1 C bi2 C � � � C bik D �i . Since the term A��j

is the union of the closures of the
images under � of blocksBij , we have also that b1jCb2jC� � �Cb j̀ D �j . Therefore,
.bij / 2 M�;�. Notice that the ordering of �.Bij / along the z-axis is likewise forced
by the normality condition. Also, for each bij , � gives rise to a normal ruling of the
front diagram comprised of the Abij

factor of A�i
and the corresponding portion of

A��j
which may be viewed as A�bij

.
Conversely, a decomposition of each A�i

into Abik
: : : Abi2

Abi1
and each A��j

into A�b j̀
: : : A�b2j

A�b1j
with .bij / 2M�;� together with for each bij a choice of

normal ruling forAbij
A�bij

gives a unique ruling ofA�A��. This justifies the terms
in the summation. Notice that in each A�i

there are k � 1� #fj j bij D 0g switches
between distinct blocks. Similarly, in each A��j

there are ` � 1 � #fi j bij D 0g
switches between the images of distinct blocks. Combined, these switches account
for the z2`k�`�k term in front of the sum and the power of z arising from the product
of hbij iwith bij D 0. Remaining switches are accounted for in the hbij iwith bij ¤ 0

which correspond to the choices of rulings for each Abij
A�bij

.

4.1. Distinguishing AmAn and AnAm using 0-graded rulings. The product on
smooth knot types arising from stacking knot diagrams is commutative. However, the
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corresponding statement in the Legendrian setting fails to be true. For instance, using
generating family methods Traynor [16] showed that it is not possible to interchange
the two components of the Legendrian link A1A1 via a Legendrian isotopy. Using
0-graded ruling polynomials we are able to provide a generalization of Traynor’s
result.

Theorem 4.3. Given non-zero integers m and n it is impossible to interchange the
positions of the components of AmAn via a Legendrian isotopy. In particular, if
m ¤ n then AmAn is not Legendrian isotopic to AnAm.

In the following we may assume all Legendrian isotopies to be generic. This is
done so that an initially chosen Maslov potential has a unique extension throughout
the isotopy (see the remark after Definition 3.1).

Lemma 4.4. Suppose Lt , 0 � t � 1 is a Legendrian isotopy, so that L0 D Am and
L1 is a translation of Am along the z-axis. If �0 is a Maslov potential for L0 taking
the value �0 D k 2 Z and �0 is extended during the isotopy to �t , 0 � t � 1, then
�1 D k.

Proof. Consider the Legendrian isotopy zLt arising from taking the productsLtA�m.
HereA�m is placed sufficiently far along the negative z-axis to not intersect the fronts
Lt at any point during the isotopy. We equip zLt with the Maslov potentials z�t where

z�t jLt
D �t and z�t jA�m

D k � 1:

Now using Theorem 3.7 and Lemma 4.1,

R0
zL1;z�1

.z/ D R0
zL0;z�0

.z/ D R2
AmA�m

.z/ ¤ 0:

However, if �1 ¤ k then R0
zL1;z�1

.z/ D 0 follows directly from Definition 3.5.

Proof of Theorem 4.3. Assume that Lt ; 0 � t � 1, is a Legendrian isotopy with
L0 D AmAn and L1 D AnAm so that during the course of the isotopy the two
components are interchanged. Without loss of generality we can assume jmj � jnj
(if not reverse the isotopy) and that m > 0 and n < 0 (if not reverse orientations
appropriately ).
Now, consider the isotopy zLt arising from including an extra component A�m�n

far below the other two. Equip zLt with a Maslov potential �0 so that �0jAm
D 1

and �0jAn
D �0jA�m�n

D 0. �0 may be uniquely extended along the isotopy as
�t ; 0 � t � 1. According to Lemma 4.4, �1 will take these same values on the
respective components. .zL0; �0/ has 0-graded rulings (they can be described as in
Theorem 4.2), but .zL1; �1/ does not. Thus, Theorem 3.7 gives the contradiction

0 D R0
zL1;�1

.z/ D R0
zL0;�0

.z/ ¤ 0:
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However, 2-graded rulings cannot be used to distinguish products of the basic
fronts Am, and this will play a crucial role in the proof of Theorem 6.3.

Lemma 4.5. If L1 and L2 are products of the basic fronts Am which differ only in
the ordering of factors then R2

L1
.z/ D R2

L2
.z/.

Proof. For such a linkL suppose that the components ofL are preciselyA˛1
; : : : ; A˛`

and A�ˇ1
; : : : ; A�ˇk

where ˛1 � � � � � ˛` � 1 and ˇ1 � � � � � ˇk � 1. A slight
variation of the proof of Theorem 4.2 shows that regardless of the order in which
these factors appear we may compute

RL D z2`k�`�k
X

.bij /2M˛;ˇ

Y
i;j

hbij i:

Once again, a ruling � ofL divides each componentA˛i
into “blocks”Bij , 1 � j � k

where �.Bij / � A�bj
. The key observation is that the normality condition still

forces the ordering along the z-axis of both the blocksBij withinA˛i
as well as their

images �.Bij / within A� ǰ
. Specifically, the ordering of the Bij within A˛i

must be
as follows. Cut the z-axis just above A˛i

and glue the end atC1 to the end at �1.
The factors A� ǰ

appear in some order along this now unbroken interval, and the
ordering of the Bij within A˛i

should be reverse to this. From here the calculation
proceeds as in Theorem 4.2.

5. HOMFLY-PT skein module of the annulus

LetR D ZŒa˙1; z˙1� be the ring of Laurent polynomials in variables a and z. Denote
by L the set of equivalence classes of oriented link diagrams in the annulus up to
regular isotopy. (That is, two diagrams are considered equivalent if they are related via
Reidemeister moves of type II or III.) In addition, let RL denote the free R-module
generated by L.
The HOMFLY-PT skein module of the annulus, denoted C, is the quotient of RL

obtained by imposing the skein relations

(i) � D z ,

(ii) D a and D a�1 ;

(iii) D t D a � a�1

z
D:
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Remark 5.1. (i) The third relation follows from the first two except in the case when
D is the diagram of an empty link.
(ii) Here we consider usual diagrams of smooth knots and links rather than Legen-

drian front diagrams. However, a front diagram may be considered as a usual smooth
knot diagram by rounding cusps and hence determines an element of C.
(iii) C inherits a multiplication from the stacking of diagrams as in Section 2.

In contrast to the Legendrian case, the multiplication is commutative at the level of
diagrams.
(iv) The diagrams appearing in the skein relations share the same homology class,

so C inherits a grading,
C D

M
x2H1.S1/

Cx :

Turaev introduced the skein moduleC in [17] and proved thatC is free with linear
basis, fA�A�� j � ` n1; � ` n2I n1; n2 � 0g consisting of monomials in the basic
fronts A˙m. C has subalgebras

CC D
M
n�0

CC
n ; CC

n D spanfA� j � ` ng;

C� D
M
n�0

C��n; C��n D spanfA�� j � ` ng:

satisfying
C D CC ˝ C�: (2)

Using Turaev’s basis, 2-graded ruling polynomials provide a linear map

C ! R; A�A�� 7! R2
A�A��

.z/

which in view of eq. (2) may be considered as a bilinear form on CC,

h�; �i W CC � CC ! R; hA�; A�i D R2
A�A��

.z/:

Remark 5.2. h�; �i is symmetric as reversing the orientation of all components of a
Legendrian link will not change the 2-graded ruling polynomial. We will see in the
next section that h�; �i is actually a positive definite inner product.
5.1. Identification of CC with the algebra of symmetric functions. CC is a free
algebrawith unit possessing onegeneratorAm in eachgradingdegreem � 1. Another
well known graded algebra with this property is the algebra of symmetric functions
ƒ, and in this section we shall fix an isomorphism between them following existing
conventions in the literature [1], [7], [9]. Turaev’s geometric basis A� will be iden-
tified with a deformation of the power sum symmetric functions. As the power sums
form a rational basis for ƒ it will be necessary to begin by enlarging our coefficient
ring.
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Let R0 denote the smallest subring of rational functions in two variables a and
s containing ZŒa˙1; s˙1� as well as the denominators sr � s�r , r � 1. We set
z D s � s�1 so that R � R0. In this section, we consider the HOMFLY-PT skein
module CR0 D R0 ˝R C over the coefficient ring R0 although we will not continue
to indicate this with our notation.
Let ƒ D ƒR0 denote the algebra of symmetric functions in a countably infinite

set of variables X D fx1; x2; x3; : : :g. Here we take coefficients in R0. ƒ consists
of formal polynomials in the xi ’s which are unchanged by permuting the variables.
See for instance [8] or [13]. A grading, ƒ DLn�0 ƒn arises where ƒn consists of
those symmetric functions which are homogeneous of degree n in the xi ’s.

Theorem 5.3 ([1], [7], [9]). There is an isomorphism of graded algebras

CC Š ƒR0 ,

Q� $ s�

where s� denotes the Schur function and the Q� satisfy

Am D
X

aCbDm�1
a;b�0

.�1/bsa�bQ.ajb/ (3)

for m � 1. Here, .a j b/ denotes the hook partition .a j b/ D .aC 1; 1; : : : ; 1„ ƒ‚ …
b

/.

Remark 5.4. The skein elements Q� are described in [1]. They arise as closures
(identify the boundaries) of linear combinationsE� of link diagrams in the rectangle
Œ0; 1��Rwith n boundary points on each of f0g�R and f1g�R oriented as inputs and
outputs respectively. The E� are explicitly described in terms of the Young diagram
of �. The skein module generated by diagrams of this type in Œ0; 1��R is one version
of the Hecke algebraHn (the product here is defined composing diagrams side to side
rather than vertically) which specializes to the group algebra of the symmetric group
Sn when s D 1. The E� are idempotents which specialize to appropriate multiples
of the Young symmetrizers when s D 1.
Alternatively, in [7] theQ� are characterized up to scalars as the eigenvectors of

the endomorphism ' W CC ! CC defined by adding an extra loop around a diagram

'.X/ D X :

[7] provides as well a skein theoretic proof that the identification of theQ� with the
Schur symmetric functions gives an algebra isomorphism between CC and ƒ. This
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is remarked in [1] as a consequence of the fact that the SU.N /q quantum invariants
of links in R3 with components decorated by irreducible representations V� may be
computed from the HOMFLY-PT polynomial by satelliting each component with the
corresponding Q� and then specializing the variables.
The relationship of Turaev’s basic frontsAm with theQ� given in eq. (3) is found

in [9]. Under this identification the basic fronts Am specialize to the power sum
functions when s D 1. [9] also contains formulas relating the Am with other well
known bases for ƒ.

Remark 5.5. During the final preparation of this article the author noticed that a
seemingly related deformation of the power sum symmetric functions has appeared
in the literature on representation theory of Hecke algebras. The interested reader
may wish to make a comparison of the A� described in the present paper with the
symmetric functions q�.xI q/ appearing in [6] keeping in mind that the versions
of the Hecke algebra used there and in [9] differ a bit. We note that [6] contains
a computation of the inner product

�
q�.xI q/; q�.xI q/

�
involving a sum of similar

nature to the one appearing in our Theorem 4.2, and this result may be related to
Theorem 5.6 below. However, no analog of the variable z is considered in [6], and
the proofs seem to be quite different.

The algebra ƒ has a standard inner product with respect to which the Schur
functions form an orthonormal basis. Hence, it is natural to define an inner product
on CC so that theQ� form an orthonormal basis,

.�; �/ W CC � CC ! R0; .Q�; Q�/ D ı�;�: (4)

Note that the graded components CC
n � CC are orthogonal to one another since

Q� 2 CC
n when � ` n.

It turns out that .�; �/ may be interpreted on Turaev’s basis A� in terms of ruling
polynomials, and in fact agrees with the bilinear form h�; �i defined earlier in this
section.

Theorem 5.6. For any partitions � and �,

.A�; A�/ D R2
A�A��

.z/ D hA�; A�i:

After providing some lemmas we complete this section with the proof of Theo-
rem 5.6.

Lemma 5.7. For m � 1,.Am; Am/ D hmi:

By definition, we have hmi D hAm; Ami which was computed in Lemma 4.1.
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Proof. Consider the generating function F.t/ D z2
P

m�0hmitm (we maintain here
the convention that h0i D z�2). Standard calculations with formal power series show
that

F.t/ D
�
1 �

X
m�1

mz2tm
��1

:

Now, introduce the notation

fmg D .Am; Am/ D
m�1X
aD0

s2.2a�.m�1// D s2m � s�2m

s2 � s�2

(second equality follows from eq. 3) and generating function

G.t/ D 1C
X
m�1

z2 fmg tm:

To see that F.t/ D G.t/ we show that in the product

G.t/
�
1 �

X
m�1

mz2tm
�
D 1C

X
m�1

�hm�1X
kD1

z2fkg.�.m � k/z2/
i

�mz2 C z2fmg
�

tm

the coefficients of tm vanish for m � 1. After removing a factor of
z2

s2 � s�2
the

m-th coefficient becomes�m�1X
kD1

.s2k � s�2k/.k �m/z2

	
C s2m � s�2m �m.s2 � s�2/

D
�m�1X

kD1

.k �m/.s2k � s�2k/.s2 � 2C s�2/

	
C s2m � s�2m �m.s2 � s�2/:

Expand the product in the summation. After collecting terms into pairs and reindexing
the summations we have� mX

kD2

.k �m � 1/.s2k � s�2k/

	
C .s2m � s�2m/

C .�m/.s2 � s�2/C
�m�2X

kD0

.k �mC 1/.s2k � s�2k/

	

C ..m � 1/ �mC 1/.s2.m�1/ � s�2.m�1//

C
m�1X
kD1

.�2/.k �m/.s2k � s�2k/
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D
m�1X
kD1

Œ.k �m � 1/C .k �mC 1/ � 2.k �m/�.s2k � s�2k/ D 0:

To deduce the more general calculation of .A�; A�/ from that of .Am; Am/ we
make use of a coproduct on ƒ. As described, for instance in [8], p. 91, one can
consider ƒ˝ƒ as consisting of functions of two countably infinite sets of variables
X and Y which are symmetric with respect to permutations of bothX and Y. Due to
the countable number of variables, given f 2 ƒ one may define 
.f / 2 ƒ˝ƒ by
using a bijectionN �N Š N to substitute


.f /.X ; Y / D f .X ; Y /:

Properties of 
 which will be important for us include

� 
 is an algebra homomorphism. (In factƒmay be given the structure of a Hopf
algebra.)

� With respect to .�; �/ and the induced inner product3 on ƒ˝ ƒ, 
 is adjoint to
multiplication. That is, for any f; g; h 2 ƒ

.f; g � h/ D .
.f /; g ˝ h/:

� The coproduct of a generic Schur functionQ� may be computed as


.Q�/ D
X
�;�

c�
��Q� ˝Q� ;

where c�
�� are the Littlewood–Richardson coefficients.

Recall that c�
�� is 0 unless the Young diagram of � is contained in that of �. In

the latter case c�
�� is the number of Littlewood–Richardson tableaux of shape � n �

consisting of �1 1’s, �2 2’s, etc. In turn, such a tableau T is given by removing those
boxes in the Young diagram of � which are contained in � and then labeling the
remaining boxes with positive integers so that

� rows are weakly increasing from left to right and columns are strictly increasing
from top to bottom, and

� if a word w1w2 : : : wn is formed from the entries of T by reading each row
from right to left and working top to bottom, then for k; l � 1 the number of
occurrences of k in the truncation w1w2 : : : wl is greater than or equal to the
number of occurrences of k C 1.

To simplify the next formula we make the convention thatQ.ajb/ D 0 if one of a

or b is negative and the other is positive.

3The induced inner product is characterized by bilinearity and .f1 ˝ f2; g1 ˝ g2/ D .f1; g1/ �
.f2; g2/.
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Lemma 5.8. For the hook partition .a j b/ ` m we have


.Q.ajb// D
m�2X
kD0

� X
a0Cb0Dk

Q.a0jb0/ ˝Q.a�a0�1jb�b0/

CQ.a0jb0/ ˝Q.a�a0jb�b0�1/

�
CQ; ˝Q.ajb/ CQ.ajb/ ˝Q;:

Proof. The convention guarantees that in the summation only .a0 j b0/ with a0 � a

and b0 � b appear. When both inequalities are strict there are two Littlewood–
Richardson tableaux. The top row of such a tableau must consist entirely of 1’s
and the left hand column will consist of consecutive integers beginning with either
1 or 2. The first of these accounts for the Q.a�a0jb�b0�1/ term and the second for
Q.a�a0�1jb�b0/. If a0 D a or b0 D b, then there is only one Littlewood–Richardson
tableau of shape .a j b/ n .a0 j b0/ and according to the convention one of the terms
in the sum will correspondingly vanish. The only remaining possibilities for � are ;
or .a j b/ and these account for the other two terms.

Proposition 5.9. Letting A0 D z�1 we have for m � 1


.Am/ D z

mX
iD0

Ai ˝ Am�i :

Proof. Starting from eq. 3, we compute


.Am/ D
X

aCbDm�1

.�1/bsa�b
.Q.ajb// (by Lemma 5.8)

D
X

aCbDm�1

.�1/bsa�b
�m�2X

kD0

X
a0Cb0Dk

Q.a0jb0/ ˝Q.a�a0�1jb�b0/

CQ.a0jb0/ ˝Q.a�a0jb�b0�1/

�
C
X

aCbDm�1

Q; ˝ ..�1/bsa�bQ.ajb//

C ..�1/bsa�bQ.ajb//˝Q;:

The final two terms are just 1˝ Am C Am ˝ 1 D z.A0 ˝ Am C Am ˝ A0/. After
putting c D a � a0 and d D b � b0 the first term becomes

m�2X
kD0

X
a0Cb0Dk

X
cCdDm�1�k

.�1/b0Cd sa0Cc�b0�d .Q.a0jb0/ ˝Q.c�1jd/

CQ.a0jb0/ ˝Q.cjd�1//

D
m�2X
kD0

� X
a0Cb0Dk

.�1/b0

sa0�b0

Q.a0jb0/

�
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˝ s

� X
.c�1/CdD.m�1�k/�1

.�1/d s.c�1/�d Q.c�1jd/

�

C
m�2X
kD0

� X
a0Cb0Dk

.�1/b0

sa0�b0

Q.a0jb0/

�

˝ .�s�1/

� X
cC.d�1/D.m�1�k/�1

.�1/d�1sc�.d�1/Q.cjd�1/

�

D
m�2X
kD0

AkC1 ˝ .sAm�k�1 � s�1Am�k�1/ D z

m�1X
kD1

Ak ˝ Am�k:

Proof of Theorem 5.6. Let � D .�1; : : : ; �`/, � D .�1; : : : ; �k/.
Inductively define operators

Dk W CC ! .CC/˝k; D1 D id; DkC1 D .
˝ .id/˝k�1/ BDk:

From the properties of 
 and Proposition 5.9 we have that
� theDk are algebra homomorphisms;
� .f; g1g2 : : : gk/ D .Dk.f /; g1 ˝ g2 ˝ � � � ˝ gk/;
� again, letting A0 D z�1,Dk.Am/ D zk�1

P
i1C:::ikDm Ai1 ˝ � � � ˝Aik , where

the indices ir are non-negative integers.

Now,

.A�; A�/ D .Dk.A�1
: : : A�`

/; A�1
˝ � � � ˝ A�k

/

D .Dk.A�1
/ : : : Dk.A�`

/; A�1
˝ � � � ˝ A�k

/

D
��

zk�1
X

b11C���Cb1kD�1

Ab11
˝ � � � ˝ Ab1k

�
(5)

: : :

�
zk�1

X
b`1C���Cb`kD�`

Ab`1
˝ � � � ˝ Ab`k

�
; A�1

˝ � � � ˝ A�k

�

D z`k�`
X

.bij /2M�;�

kY
j D1

.Ab1j
: : : Ab j̀

; A�j
/:

We are able to restrict the sum to .bij / 2 M�;� because, as noted after eq. (4), the
graded components of CC are orthogonal with respect to .�; �/. To conclude, (5)
becomes

z`k�`
X

.bij /2M�;�

kY
j D1

.Ab1j
˝ � � � ˝ Ab j̀

; D`.A�j
//

D z`k�`zk`�k
X

.bij /2M�;�

Y
i;j

.Abij
; Abij

/;
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C �

Figure 7. A positive crossing and a negative crossing.

where the final equality again uses orthogonality of graded components of CC. Ac-
cording to Lemma 5.7 and Theorem 4.2 this is equal to R2

A�A��
.

6. 2-graded rulings and the Bennequin estimate

We define the HOMFLY-PT polynomial of a solid torus link L in two steps. First,
using an annular diagram of L and Turaev’s basis we have

C Š ZŒa˙1; z˙1; A˙1; A˙2; : : :�.

ŒL�$ HL.a; z; Ai/

HL is a regular isotopy invariant, and provides an invariant of L as a framed link
(assume the framing is blackboard with respect to the projection of L used). The
HOMFLY-PT polynomial of L is then defined using the normalization

PL.a; z; Ai/ D a�w.L/HL.a; z; Ai/;

where w.L/ denotes the writhe of the diagram L. The writhe is a signed sum of
crossings (see Figure 7) in the diagram used to computeHL.
Chmutov and Goryunov established the following upper bound in J 1.S1/.

Theorem 6.1 ([3]). For any Legendrian link L � J 1.S1/,

tb.L/C jr.L/j � �degaPL:

Remark 6.2. A proof of Theorem 6.1 is given in Subsection 6.2.

In R3 there is a strong connection between an analogous bound and the 2-graded
ruling polynomial [12]. Namely, R2.z/ is equal to the coefficient of a�tb.L/ in PL.
(Here we use the convention that the unknot is normalized to .a � a�1/=z.) As a
consequence, L has a 2-graded ruling if and only if tb.L/ D �degaPL.
Analogous results inJ 1.S1/ canbeobtainedprovidedwe specialize theHOMFLY-

PT polynomial using the inner product from Section 5. Specifically, for any L �
J 1.S1/ we let yPL.a; z/ be the image of PL.a; z; Ai/ under the ZŒa˙1; z˙1�-module
morphism C ! ZŒa˙1; z˙1� defined on Turaev’s basis according to

A�A�� 7! .A�; A�/:
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Explicitly,

PL.a; z; Ai/ D
X
�;�

c�;�.a; z/A�A�� 7! yPL.a; z/ D
X
�;�

c�;�.a; z/.A�; A�/

D
X
�;�

c�;�.a; z/R2
A�A��

.z/:

Theorem 6.3. For any Legendrian link L � J 1.S1/

R2
L.z/ D coefficient of a�tb.L/ in yPL.a; z/:

Example 6.4. For the LegendrianK with front diagram pictured in Figure 4 we have

tb.K/ D 4;

PK.a; z; Ai/ D a�4Œ.1C z2/A2A�2�C a�6ŒzA2
1A�2 C z2A2A�2�;

yPK.a; z/ D a�4.z4 C 3z2 C 2/C a�6.z4 C 3z2/; and

R2
K.z/ D z4 C 3z2 C 2:

Corollary 6.5. If a Legendrian link L � J 1.S1/ has a 2-graded ruling, then tb.L/

is maximal among knots of the same smooth knot type as L.

Proof. According to Theorem 6.3, if L admits a 2-graded ruling then the estimate
from Theorem 6.1 is sharp.

Corollary 6.6. The 2-graded ruling polynomialR2.z/ cannot distinguish Legendrian
links in J 1.S1/ with the same smooth knot type and Thurston–Bennequin number.

Proof. Theorem 6.3 shows thatR2
L.z/ is a coefficient of yPL depending only on tb.L/,

and yPL depends only on the underlying smooth knot type.

6.1. Proof of Theorem 6.3. Let us introduce the notation BL.z/ for the coefficient
of a�tb.L/ in yPL.a; z/. Note that BL.z/ is a Legendrian isotopy invariant. Using
a corresponding specialization of HL, BL.z/ is given as the coefficient of ac.L/ in
yHL.a; z/ where c.L/ is the number of right cusps of L.
The proof of Theorem 6.3 is based on several lemmas.

Lemma 6.7. R2
L.z/ D BL.z/ whenever L is a product of the basic fronts Am; m D

˙1;˙2 : : : .

Proof. From Lemma 4.5 we know that R2
L is independent of the ordering of the

factors. This is immediate for BL, so we may assume that L D A�A��. Then,
HL D A�A�� and so by the definition of the specialization we have

yHL D .A�; A�/ D R2
A�A��

.z/:

Since L has no cusps the result follows.
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Lemma 6.8. Both R2.z/ and B.z/ satisfy skein relations

(i) � D z

 
ı1 � ı2

!
,

(ii) D D 0,

(iii) K
F D z�1K.

In (i), ı1 (resp. ı2) is 1 when the crossing in the first (resp. second) term on the LHS
is positive and 0 if it is negative.

Remark 6.9. Although the orientations are not pictured they are assumed to agree
(outside of the pictured portion) in the terms on the LHS of (i). Whichever term on
the RHS has coefficient ıi ¤ 0 is assumed to be oriented in agreement with the terms
on the LHS.

Proof. The proof is the same as in [12] and will only be sketched here.
To see thatR2 satisfies (i), observe that for the two diagrams appearing on the LHS

there is a bijection between those rulings where the visible crossing is not switched.
Terms corresponding to these rulings cancel. Due to the 2-graded condition only one
of the fronts on the LHS can have rulingswith the crossing switched. These remaining
rulings are in bijection with the rulings of the term on the RHS with ıi ¤ 0.
For BL, (i) and (iii) follow from the HOMFLY skein relations. For (ii), observe

that replacing A�A�� with R2
A�A��

.z/ can only decrease the degree in a of PL.
Combining this with Theorem 6.1 gives

tb.L/ � �degaPL � �dega
yPL; (6)

and if BL is non-zero we must have equality throughout (6). This shows that if
BL ¤ 0 then the estimate of Theorem 6.1 is sharp. For the front diagrams in (ii) this
can never be the case because we can increase tb by removing the zig-zag.

The proof of Theorem 6.3 is then completed by

Lemma 6.10. A Legendrian isotopy invariant function

F W fAnnular front diagrams g ! ZŒa˙1; z˙1�

satisfying the relations of Lemma 6.8 is uniquely determined by its values on products
of the basic fronts, Ai ; i D ˙1;˙2; : : : .

The proof of Lemma 6.10 is by induction on the value of a certain complexity
function on front diagrams described in the following subsection. First we record
some additional relations which follow from Lemma 6.8.
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Lemma 6.11. A Legendrian isotopy invariant satisfying the relations of Lemma 6.8
also satisfies

D C z

�
ı1 � ı2

�
:

where ı1 (resp. ı2) is 1 (resp. 0) when the crossings in the term on the LHS are
positive and 0 (resp. 1) if they are negative.

Proof.

D D

D C z

�
ı1 � ı2

�

D C z

�
ı1 � ı2

�
:

The third equality is Lemma 6.8, and the rest are Legendrian isotopies.

Remark 6.12. Actually the skein relations given in Lemma 6.11 and Lemma 6.8(i)
are equivalent.

6.1.1. Setup for induction. For non-negative integersN andM we let Front.N; M/

denote the collection of front diagrams in a rectangle Œ0; 1� � R with N bound-
ary points on f0g � R and M boundary points on f1g � R. Given front diagrams
f1 2 Front.N0; N1/ and f2 2 Front.N1; N2/ we may form their product f1f2 2
Front.N0; N2/ by rescaling the first coordinate and then identifying the right bound-
ary of f1 with the left boundary of f2. (This may involve modifying f1 and f2 a bit
near their boundaries so that the boundary points fit together appropriately, but the
result is well defined up to Legendrian isotopy.)

Definition 6.13. A front diagram in Front.N; M/ is called an elementary tangle if it
contains a single crossing or cusp.

Weadopt the conventionof labeling theboundarypoints of a tangle inFront.N; M/

as 1; : : : ; N and 1; : : : ; M from top to bottom. We introduce notations for elementary
tangles. A crossing between the strands with boundary points labeled m and mC 1

will be denoted as �m 2 Front.N; N /, while a left (resp. right) cusp where the strands
meeting at the cusp are labeled m and m C 1 at their boundary will be denoted as
lm 2 Front.N; N C 2/ (resp. rm 2 Front.N C 2; N /), see Figure 8.
After cutting along vertical lines any �-generic annular front diagram F may be

decomposed into a product of elementary tangles,

F D f1f2 : : : fn; fi 2 Front.Ni�1; Ni /; N0 D Nn:



208 D. Rutherford

mC1mC1 mC1mC1

m�1

m�1

m�1

m�1

mC2mC2

m

m

m m

m

m

N
N

N
N N C2N C2

1

1
1 1

1
1

:::

:::

:::

:::

:::

:::

�N
m `N;N C2

m rN C2;N
m

Figure 8. Elementary tangles.

Figure 9. An annular front diagram F with Area.F / D 4C 4C 4C 2 D 14.

Here each fi is some �m; lm; or rm. The factors that appear in such a decomposition
of F are unique up to cyclic reordering. n is called the word length of F. For our
induction we need a slightly more refined measure of the complexity of a front.

Definition 6.14. Given a �-generic annular front diagramF as above define theword
area of F

Area.F / D
nX

iD1

Ni :

Example 6.15. The basic front Am has word area m.m � 1/. The front pictured in
Figure 9 hasword area 14. For eachN there are frontswithword area 0 corresponding
to the empty product in Front.N; N /. These are simply products of the basic fronts
A1 and A�1.

Proof of Lemma 6.10. By induction on Area.F /. The base case follows from Lem-
ma 6.7 since Area.F / D 0 implies F is a product of A1 and A�1.
For the inductive step, given an annular front F we need to show that F .F /may

be evaluated in terms of the values of F on basic fronts and fronts of lesser word
area.
Case 1. F has no cusps.
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We show that either F is a product of theAi , or we can find a front F 0 Legendrian
isotopic to F so that Area.F / D Area.F 0/ and part of F 0 has the form .

In the latter case the result follows from Lemma 6.11 as all the front diagrams on the
RHS have lesser area than F 0.
Write F as a word in the �m. We describe an algorithm to transform F into the

desired form using a combination of cyclic permutations and the braid relations

�k�l D �l�k; jk � l j � 2; and �i�iC1�i D �iC1�i �iC1;

both of which correspond to word area preserving Legendrian isotopies.
Assume that we have successfully modified F to a front of the form

Ai1 : : : Air
xF ; r � 0 (7)

(product of diagrams in the solid torus). If xF is empty then we have a product of
basic fronts and the work is complete.
Else, write xF D �1�2 : : : �sW; s � 0. We may always assume thatW contains at

least one �i with i � sC1. If this is not the case than we could write xF D A˙.sC1/G

which allows us to absorb the first factor into the product in eq. (7) and replace xF
with G.
Now, W has the form �iW

0 and we proceed as follows.
� If i > s C 1, commute �i with �1�2 : : : �s and cyclically permute it to get

�1�2 : : : �s�iW
0 ! �1�2 : : : �sW 0�i :

Replace W withW 0�i and repeat.

� If i D s C 1, increase s to s C 1 and repeat the argument with W replaced by
W 0.

� If i D s, then xF contains �s�s D and the algorithm is complete.

� If i < s, then

�1�2 : : : �s�iW
0

! �1 : : : �i�iC1�i : : : �sW 0

! �1 : : : �iC1�i �iC1 : : : �sW 0

! �iC1�1 : : : �i �iC1 : : : �sW 0

! �1�2 : : : �sW 0�iC1:

Now, replace W with W 0�iC1 and repeat.

It is clear that this procedure cannot loop indefinitely. s is bounded above, and
every time the case i < s occurs the sum of the indices of the �i occurring in xF is
increased.
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Case 2. F has cusps.
The following is a slight modification of an argument from [12].
Note that if the result is known for fronts of lesser area then it is true for a diagram

of the form : : : lm�mC1 � � � D if and only if it is true for : : : lmC1�m D

. This follows from Lemma 6.8 since the diagrams appearing on the RHS

have smaller area than the two on the LHS. We will refer to the interchanging of
lm�mC1 with : : : lmC1�m as a skein move. Note that performing a skein move does
not change the word area of a front.
This case is dealt with by describing an algorithm which uses a combination of

skein moves and Legendrian isotopies to reduce the word area of F or arrange the

front diagram to contain a stabilization or a disjoint unknot component

. Whenever skein moves are applied during the algorithm the word

area will be such that the inductive hypothesis applies to the corresponding diagrams

and on the RHS of Lemma 6.8 so that they may be safely ignored.

In the case that the resulting diagram is stabilized the value of F is 0 according to
Lemma 6.8(ii), and in the case we arrive at an unknot component the value of F is
uniquely determined by Lemma 6.8(iii) together with the inductive hypothesis.
The algorithm is nearly identical to Statement A of [12], but for the reader’s

convenience we include the argument here. The reader is also referred to Figure 1 of
[10] for an excellent pictorial description of the algorithm.
Begin by writing F as a product of elementary tangles. It must be the case that

there exists a portion of this product which has the form lmW rn where W is a word
consisting entirely of crossings. (F has cusps. Therefore, it must contain both left
cusps and right cusps, and one of these left cusps must appear adjacently to a right
cusp.) A cyclic permutation then transforms F into a word of the form lmW rnX.
Now suppose we are given a word of the form lmW rnX where W is a word in

the �i which is written in the form

W D �mC1�mC2 : : : �mCsW 0 for some s � 0:

Subcase 1. W 0 is non-empty.
Then W 0 D �iW

00 and we proceed as follows.

(1) If i < m�1, then a Legendrian isotopy commutes�i past lm�mC1�mC2 : : : �mCs

and when it passes the cusp the word area decreases by 2.
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(2) If i D m � 1, we apply a Legendrian isotopy then a skein move

lm�mC1 : : : �mCs�m�1W 00 : : :

! lm�m�1�mC1 : : : �mCsW 00 : : :

! lm�1�m�mC1 : : : �mCsW 00;

then repeat the argument withW 0 replaced by W 00.
(3) If i D m, then when s D 0 the front is Legendrian isotopic to a stabilized front,

! ! :

When s > 0 we can apply a Type II Legendrian Reidemeister move to decrease
the word area

lm�mC1 : : : �mCsrn : : :

! lm�mC1 : : : �n�nC1rn : : : �mCs : : :

! lm�mC1 : : : rnC1 : : : �mCs : : : :

(4) Ifm < i < mCs then we apply a Type III Reidemeister move and subsequently
pass a crossing by the left cusp which decreases word area

lm�mC1 : : : �mCs�iW
00 : : :

! lm�mC1 : : : �i�iC1�i : : : �mCsW 00 : : :

! lm�mC1 : : : �iC1�i�iC1 : : : �mCsW 00 : : :

! �iC1lm�mC1 : : : �mCsW 00:

(5) If i D mC s; s > 0 then we can apply s successive skein moves followed by a
Type II Reidemeister move to decrease word area,

lm�mC1�mC2 : : : �mCs�mCs : : :

! lmC1�m�mC2 : : : �mCs�mCs : : :

! lmC1�mC2 : : : �mCs�mCs�m : : :

! : : :

! lmCs�mCs�1�mCs�mCs�2 : : : �mC1�m : : :

! lmCs�1�mCs�2 : : : �mC1�m:

(6) If i D mC s C 1 replace W 0 with W 00 and repeat the algorithm.
(7) If i > mCsC1, a Legendrian isotopy commutes �i past lm�mC1�mC2 : : : �mCs

and when it passes the cusp the word area decreases by 2.
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Subcase 2. W 0 is empty.
We are given a word of the form lm�mC1�mC2 : : : �mCsrn : : :, for some s � 0.

� Ifn < m�1orn > mCsC1 thenwecan commute rn past lm�mC1�mC2 : : : �mCs

and reduce the word area.
� If n D m � 1, then

lm�mC1�mC2 : : : �mCsrm�1 : : :! lmrm�1�mC1�mC2 : : : �mCs : : :

which is stabilized.
� If n D m then when s D 0 we have lmrm : : : which has an unknot component.
When s > 0we can apply a Type I Legendrian Reidemeister move and decrease
word area.

� If m < n < mC s then we can apply a type II Reidemeister to decrease word
area,

lm�mC1 : : : �mCsrn : : :

! lm�mC1 : : : �n�nC1rn : : : �mCs : : :

! lm�mC1 : : : rnC1 : : : �mCs : : : :

� If n D m C s; s > 0 then because of the presence of �mCsrmCs the front is
Legendrian isotopic to a stabilization.

� If n D mC s C 1 we can apply the skein move s times to obtain

lm�mC1�mC2 : : : �mCsrmCsC1 : : :

! lmC1�m�mC2 : : : �mCsrmCsC1 : : :

! lmC1�mC2 : : : �mCsrmCsC1�m : : :

! : : :

! lmCsrmCsC1�mCs�1�mCs�2 : : : �m : : : ;

which is stabilized.

6.2. Proof of Theorem 6.1. In [3] a contactomorphism J 1.S1/ Š ST �.R2/ is used
to treat Legendrian links as co-oriented plane curves, and their proof of Theorem 6.1
is carried out in this context. However, the version of PL used in [3] differs from
ours in a non-trivial manner as the annulus within J 1.S1/ which is used there for
link projections differs from ours by a full twist. We conclude by giving a proof of
Theorem 6.1 matching our conventions. Our proof uses the front projection perspec-
tive and is based on the inductive method used in the proof of Lemma 6.10. This is
similar to the approach to Bennequin type inequalities in R3 appearing in [10].
First, observe that for a Legendrian link L � J 1.S1/ the inequality

tb.L/C jr.L/j � �degaPL (8)
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is equivalent to
degaHL � c.L/ � jr.L/j: (9)

Here, HL is computed using the front projection of L, and c.L/ denotes the number
of right cusps appearing in the front projection.
Observe that this inequality trivially holds for products of the Ai as both sides

equal 0. We now establish (9) for a general front diagramF by induction onArea.F /.
The base case is covered by the previous remark.
Case 1. F has no cusps.
As in the proof of Lemma 6.10, after a Legendrian isotopy either F becomes

a product of basic fronts, or we can modify F to a front diagram F 0 containing
. In the latter case, use the HOMFLY-PT relations (i) and (iii) to compute

HF 0 as

D C z
�
ı1 C a�1ı2

�
; (10)

where exactly one of ı1 and ı2 is non-zero depending on the orientation ofF 0. Denote
the 3 front diagrams appearing on the RHS as F1, F2, and F3. In general, c.F / D
c.F1/ D c.F2/ D c.F3/ � 1 and r.F / D r.F1/. Also, if ı1 ¤ 0 (resp. ı2 ¤ 0)
then r.F / D r.F2/ (resp. r.F / D r.F3/). Thus, the inductive hypothesis applies
to deduce that both non-zero terms on the RHS of (10) have degree in a less than or
equal to c.F / � jr.F /j.
Case 2. F has cusps.
Provided the inductive hypothesis applies to fronts of lesser word area (9) holds

for a front containing if and only if it holds for the front obtained

from a skein move. The proof of Lemma 6.10 contains an algorithm which makes
use of a combination of word area preserving Legendrian isotopies and skein moves
to reduce the word area of F or arrange the front diagram to contain a stabilization

or a disjoint unknot component . In the latter two

cases, proceed as follows.
1. If F contains a stabilization the inductive hypothesis will apply to the front

diagramF0 obtained from removing the pair of cusps. We have jr.F0/j D jr.F /j˙1,
where the sign depends on the orientation of F. Then, HF D HF0

and

degaHF0
� c.F0/ � jr.F0/j D .c.F / � 1/ � .jr.F /j ˙ 1/ � c.F / � jr.F /j:

2. If F contains a disjoint unknot component then deduce (9)

from the inductive hypothesis and HOMFLY-PT relation (iii).
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