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Abstract. We study the existence problem and the enumeration problem for sections of Serre
fibrations over compact orientable surfaces. When the fundamental group of the fiber is finite,
a complete solution is given in terms of 2-dimensional cohomology classes associated with
certain irreducible representations of this group. The proofs are based on Topological Quantum
Field Theory.
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1. Introduction

A section of a fibration p W E ! W is a continuous mapping s W W ! E such
that ps D idW . The existence problem for sections is fundamental in the theory of
fibrations. If p has sections, then one may ask about the number of their homotopy
classes. We address these problems for Serre fibrations over compact orientable
surfaces and solve them under certain assumptions on the fiber.
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Assume that p W E ! W is a Serre fibration over a compact connected oriented
surfaceW of positive genus. If @W ¤ ;, then we fix a continuous section s@ W @W !
E of p over @W (so that ps@ D id@W ) and search for its extensions to W . By
definition, a section s W W ! E of p extends s@ if sj@W D s@. For closed W , this
condition is void. The reader wishing to avoid technicalities related to @W and s@
may pursue the case @W D ;.

One can approach the existence problem for sections via obstruction theory. To
this end, fix base points w 2 IntW D W � @W and e 2 p�1.w/ � E. Set
� 0 D �1.E; e/, � D �1.W;w/, and consider the homomorphism p# W � 0 ! �

induced by p. A section of p carrying w to e induces a right inverse � ! � 0 of
p#. A simple use of obstruction theory yields that any right inverse of p# can be
realized by a section s of p. The condition sj@W D s@ may also be translated into the
algebraic language. However, this reformulation in terms of the fundamental groups
is as difficult as the original problem and does not shed much light.

We give a necessary and sufficient condition for the existence of a section of p
extending s@ in the case where the fundamental group of the fiber F D p�1.w/ of p
is finite. Our condition involves 2-dimensional characteristic classes of p W E ! W

derived from certain linear representations of �1.F /. If, additionally, �2.F / D 0,
then we give a formula for the number of homotopy classes of such sections.

We now state our main theorems. Let C1, …, Cm be the components of @W
endowed with orientation induced by that of W . Here m � 0 is the number of
components of @W . For k D 1; : : : ; m, fix an embedded path ck W Œ0; 1� ! W

leading from w 2 IntW to a point of Ck . We assume that these m paths meet only
at w. For each k D 1; : : : ; m, fix a lift Qck W Œ0; 1� ! E of ck leading from e to
s@.ck.1//. Conjugating the loop s@jCk

by Qck , we obtain a loop in E based at e. It
represents a certain �k 2 � 0.

Fix an algebraically closed field of characteristic zero K. Set ˆ D �1.F; e/

and denote by Irr.ˆ/ the set of equivalence classes of irreducible finite-dimensional
linear representation of ˆ over K. Since �2.W / D 0, the inclusion F ,! E

induces an injection ˆ ,! � 0 so that we can view ˆ as a subgroup of � 0. Clearly,
ˆ D Ker.p# W � 0 ! �/ is normal in � 0. The action of � 0 on ˆ by conjugations
induces an action of � 0 on Irr.ˆ/. The restriction of the latter action to ˆ is trivial,
and we obtain an action of � D � 0=ˆ on Irr.ˆ/. Denote the fixed point set of this
action by I0. For any � 2 I0 and any a 2 � 0, there is a matrix Ma 2 GLdim �.K/

such that �.a�1ha/ D M�1
a �.h/Ma for all h 2 ˆ. Set t�.a/ D 0 if TrMa D 0 and

t�.a/ D 1 if TrMa ¤ 0, where Tr is the matrix trace. The number t�.a/ is well-
defined because Ma is unique up to multiplication by elements of K� D Knf0g. In
Section 2 we associate with � 2 I0 and the set � D f�kgm

kD1
� � 0 a cohomology

class ��;� 2 H 2.W; @W IK�/.

Theorem 1.1. Let the fiber F of p W E ! W be path-connected and the group
ˆ D �1.F; e/ be finite. The section s@ of p over @W extends to a section of p overW
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if and only if P
�2I0

˚
.dim �/�.W / ��;� .ŒW; @W �/

Qm
kD1 t�.�k/

� ¤ 0: (1)

Here �.W / is the Euler characteristic of W and ��;� .ŒW; @W �/ 2 K� is the eval-
uation of ��;� on the fundamental class ŒW; @W � 2 H2.W; @W I Z/. The evaluation
is induced by the bilinear form K� � Z ! K�, .k; n/ 7! kn.

For closedW , Theorem 1.1 says that p has a section if and only if (1) holds. Note
that for closed W , we have � D ;, m D 0, and the product

Qm
kD1 t�.�k/ D 1 may

be deleted from (1).
The sum in (1) is finite because the sets Irr.ˆ/ and I0 � Irr.ˆ/ are finite. This

sum is non-empty because the trivial 1-dimensional representation of ˆ belongs to
I0. The individual terms in (1) may depend on the paths c1, …, cm but, as we shall
see, their sum does not depend on these paths and is a non-negative rational number.
Theorem 1.1 shows that p has no sections extending s@ if and only if this number
takes its minimal possible value (equal to zero).

Theorem 1.1 follows from a Lefschetz-type formula for the number of extensions
of s@ toW considered up to an appropriate equivalence relation. Here it is convenient
to switch to pointed sections. Recall the base points e 2 E and w D p.e/ 2 IntW .
A section s W W ! E of p is pointed if s.w/ D e. Two pointed sections of p
are homotopic if they can be deformed into each other relative to @W in the class
of pointed sections of p. Two pointed sections of p are related by bubbling if they
are equal outside a small open 2-disk D � IntW � fwg. The restrictions of such
two sections on the closed 2-disk xD � W form a mapping S2 ! E, a “bubble”.
Two pointed sections of p are bubble equivalent if they can be obtained from each
other by a finite sequence of bubblings. The set of bubble equivalence classes of
pointed sections of p extending s@ is denoted �.p; s@/. Decomposing a deformation
of a section into local deformations, one observes that homotopic pointed sections
are bubble equivalent. If �2.F / D 0, then the converse is also true, and the bubble
equivalence is just the homotopy.

Theorem 1.2. Let the fiber F of p W E ! W be path-connected and the group
ˆ D �1.F; e/ be finite. Then

j�.p; s@/j D jˆj P
�2I0

˚
.jˆj= dim �/��.W / ��;� .ŒW; @W �/

Qm
kD1 t�.�k/

�
; (2)

where the vertical bars stand for the cardinality of a set.

Theorem 1.2 implies Theorem 1.1 (one should observe that when F is path-
connected, the bundle p has a section if and only if p has a pointed section). Theo-
rems 1.1 and 1.2 are satisfactory from a topologist’s viewpoint because they provide
a complete solution to natural geometric problems concerning the bundle p in terms
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of certain characteristic classes associated with p. Theorems 1.1 and 1.2 are new and
non-trivial already in the case @W D ;. They were announced in this case in [13].

The connectedness assumption in Theorems 1.1 and 1.2 is not a serious restriction.
For a section of p to exist, the homomorphism p# W � 0 ! � has to be surjective and
so we must have �0.F / D �0.E/. It would be very interesting to find a version of
these theorems for infinite ˆ.

The cohomology classes ��;� in (2) may be efficiently computed. This yields
a number of interesting applications in topology and group theory. I mention here
a few applications. In the case where @W D ; and ˆ is finite abelian, the bundle
p W E ! W has a section if and only if the induced homomorphismp� W H2.EI Z/ !
H2.W I Z/ is surjective. The same equivalence holds for any finiteˆ provided @W D
; and the genus of W is greater than or equal to .1=2/ log2 jˆj. For a deduction
of these claims from Theorem 1.2, see [13]. Similar claims hold for @W ¤ ;,
though the surjectivity of p� should be replaced with the condition that the 1-cycle
s@.@W / is homologically trivial inE. Another application [13] concerns non-abelian
cohomology of surfaces.

As a typical group-theoretic application of Theorem 1.2, I mention the following
result of M. Natapov and myself [10]. Let a, b be two commuting elements of
a group G. Suppose that G contains as a normal subgroup the quaternion group
Q D f˙1;˙i;˙j;˙kg. Question: for how many pairs ˛; ˇ 2 Q the elements
a˛; bˇ 2 G commute? Answer: the number of such pairs is equal to 8, 16, 24, or 40,
and all the numbers 8, 16, 24, 40 are realized by some G, a, b. Similar results may
be obtained for any finite group through a study of its representations.

Theorem 1.1 is uninteresting for trivial bundles (product fibrations) because they
certainly have sections. Theorem 1.2 for trivial bundles is equivalent to the classical
formula for the number of homomorphisms � D �1.W;w/ ! ˆ due to Frobenius
[6] and Mednykh [9]; see Section 11.

Theorem 1.2 can be extended to non-orientable surfaces. In another direction, the
sections of p W E ! W can be counted with weights determined by an element of
H 2.E; s@.@W /IK�/. This will be discussed elsewhere.

The proof of Theorem 1.2 is based on techniques of quantum topology and specif-
ically utilizes 2-dimensional Homotopy Quantum Field Theory (HQFT). Note that
HQFTs are versions of familiar Topological Quantum Field Theories (TQFTs) for
manifolds and cobordisms endowed with maps into a certain space. HQFTs were
introduced in my unpublished preprint [12]. Two-dimensional HQFTs with simply
connected target were independently introduced in [2]. The bulk of the paper is
devoted to a study of 2-dimensional HQFTs whose target is an Eilenberg–MacLane
space of typeK.G; 1/, whereG is a group. This study is strictly limited here to notions
and results needed for the proof of Theorem 1.2. Our exposition is self-contained
and does not require preliminary knowledge of TQFTs or HQFTs.

Here is an outline of the proof of Theorem 1.2. We rewrite the number j�.p; s@/j
in terms of a 2-dimensional HQFT associated with p# W � 0 ! � . Analyzing the
underlying algebra of this HQFT, we split it as a direct sum of HQFTs numerated by
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elements of Irr.ˆ/. Using the technique of transfer, we show that only the elements
of I0 � Irr.ˆ/ may contribute non-zero terms to j�.p; s@/j. These terms are the
summands in (2).

The Frobenius–Mednykh formula for the number of homomorphisms from the
group �1.W / to a finite group was rediscovered in the context of TQFTs by Dijkgraaf
and Witten [4] and by Freed and Quinn [5]. The present paper extends their work. It
is plausible that Theorem 1.2 admits a purely algebraic proof generalizing the original
methods of Frobenius and Mednykh. The author plans to study an algebraic approach
to Theorem 1.2 elsewhere.

Throughout the paper, the symbol K denotes an algebraically closed field of
characteristic zero. The symbols G and G0 denote (discrete) groups.

My work on this paper was partially supported by the NSF grants DMS-0707078
and DMS-0904262.

2. Representations and cohomology classes

We define here (in a general algebraic setting) the cohomology classes ��;� .
Throughout this section we fix a group epimorphism q W G0 ! G with kernel � .

2.1. Representations of � . By a representation of � , we mean a group homomor-
phism � W � ! GLn.K/ with n � 1. Two representations � W � ! GLn.K/ and
�0 W � ! GLn0.K/ of � are equivalent if n D n0 and there is M 2 GLn.K/ such
that �0.h/ D M�1�.h/M for all h 2 � . A representation � W � ! GLn.K/ is irre-
ducible if the induced action of � on Kn preserves no linear subspace of Kn except
0 and Kn. Let Irr.�/ be the set of equivalence classes of irreducible representations
of � . Given a 2 G0 and an irreducible representation � W � ! GLn.K/, the formula
h 7! �.a�1ha/ W � ! GLn.K/ defines an irreducible representation of � denoted
a�. This defines a left action ofG0 on Irr.�/. The action of � � G0 is trivial because
a� D �.a/�1��.a/ for any a 2 � . We obtain thus a left action of G D G0=�
on Irr.�/. The fixed point set of this action is denoted I0.q/.

2.2. The cohomology class ��. For � 2 I0.q/, we define a cohomology class
�� 2 H 2.GIK�/. Set n D dim � � 1. For each ˛ 2 G, choose Q̨ 2 q�1.˛/ so that
Q1 D 1. Since � 2 I0.q/, there is a matrixM˛ 2 GLn.K/ such that Q̨� D M�1

˛ �M˛ .
By the Schur lemma, M˛ is unique up to multiplication by elements of K�. We call
M˛ the conjugating matrix (corresponding to Q̨ ) and fix it for all ˛ ¤ 1. For ˛ D 1,
set M˛ D En. For ˛; ˇ 2 G, set L˛;ˇ D . �̨̌ /�1 Q̨ Q̌ 2 � .

Lemma 2.1. For any ˛; ˇ 2 G, there is a unique �˛;ˇ 2 K� such that

�˛;ˇ M˛Mˇ D M˛ˇ�.L˛;ˇ /: (3)
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The family f�˛;ˇ g˛;ˇ is a normalized 2-cocycle on G. Its cohomology class �� 2
H 2.GIK�/ depends only on the equivalence class of � and does not depend on the
choice of the matrices fM˛g˛ and the lifts f Q̨ g˛ .

Proof. For ˛; ˇ 2 G and h 2 � ,

M�1
˛ˇ �.h/M˛ˇ D . �̨̌ �/.h/ D �. �̨̌ �1

h �̨̌ /

D �.L˛;ˇ
Q̌�1 Q̨ �1h Q̨ Q̌L�1

˛;ˇ /

D �.L˛;ˇ /M
�1
ˇ M�1

˛ �.h/M˛Mˇ�.L˛;ˇ /
�1:

Since � is irreducible, there is a unique �˛;ˇ 2 K� satisfying (3).
Any element of G0 expands uniquely as Q̨g with ˛ 2 G and g 2 � . The formula

N�. Q̨g/ D M˛�.g/ defines a mapping N� W G0 ! GLn.K/. Clearly, N�j� D � and
N�. Q̨ / D M˛ for all ˛ 2 G. Also, for all a 2 G0 and h 2 � ,

N�.a/�.h/ D N�.ah/: (4)

To see this, expand a D Q̨g with ˛ 2 G and g 2 � . We have

N�. Q̨g/�.h/ D M˛�.g/�.h/ D M˛�.gh/ D N�. Q̨gh/:
Formula (4) implies that for any ˛; ˇ 2 G,

N�. Q̨ Q̌/ D N�. �̨̌ /�.L˛;ˇ / D M˛ˇ�.L˛;ˇ / D �˛;ˇM˛Mˇ D �˛;ˇ N�. Q̨ / N�. Q̌/: (5)

We claim that more generally, for all a; b 2 G0,

N�.ab/ D �q.a/;q.b/ N�.a/ N�.b/: (6)

To see this, expand a D Q̨g, b D Q̌h with ˛ D q.a/, ˇ D q.b/ 2 G and g; h 2 � .
Using (4) and (5), we obtain

N�.ab/ D N�. Q̨ Q̌ Q̌�1g Q̌h/
D N�. Q̨ Q̌/�. Q̌�1g Q̌/�.h/
D �˛;ˇM˛Mˇ . Q̌�/.g/�.h/
D �˛;ˇM˛�.g/Mˇ�.h/

D �˛;ˇ N�.a/ N�.b/:
Formula (6) implies that f�˛;ˇ g˛;ˇ is a 2-cocycle on G. It is normalized in the

sense that �1;1 D 1. That the cohomology class �� of this cocyle does not depend on
the choice of fM˛g˛ follows directly from (3). To prove the independence of �� of
the lifts f Q̨ g˛ , suppose that each Q̨ is traded for Q̨ 0 D Q̨ g˛ with g˛ 2 � . Then M˛ is
traded for M 0̨ D M˛ �.g˛/. For ˛; ˇ 2 G,

L0
˛;ˇ D . �̨̌ 0

/�1 Q̨ 0 Q̌0 D g�1
˛ˇ

�̨̌ �1 Q̨g˛
Q̌gˇ D g�1

˛ˇL˛;ˇ . Q̌�1g˛
Q̌/gˇ :
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Substituting these new values of M , L in (3) and using the equality �. Q̌�1g˛
Q̌/ D

M�1
ˇ
�.g˛/Mˇ , we obtain that the lifts Q̨ 0 lead to the same cocycle f�˛;ˇ g. When �

is conjugated by M 2 GLn.K/, the matrices fM˛g˛ are replaced by fM�1M˛M g˛

and the cocycle f�˛;ˇ g˛;ˇ is also preserved.

2.3. The function t� and the cohomology class ��;� . A representation � 2 I0.q/

determines a function t� W G0 ! f0; 1g as follows. For any a 2 G0, we have
a� D M�1�M with M 2 GLn.K/, where n D dim �. Since M is unique up
to multiplication by elements ofK�, so is TrM 2 K. We say that a is �-adequate if
TrM ¤ 0. Let t� W G0 ! f0; 1g be the function sending all �-adequate elements of
G0 to 1 and all other elements ofG0 to 0. The set of �-adequate elements ofG0 and the
function t� depend only on the equivalence class of �. A subset of G0 is �-adequate
if all its elements are �-adequate.

We say that a set � � G0 is q-free if � freely generates a (free) subgroup h�i of
G0 and the restriction of q to h�i is injective. We derive from a q-free set � and any
� 2 I0.q/ a cohomology class ��;� 2 H 2.G;H IK�/, where H D q.h�i/ D
hq.�/i � G. If � is not �-adequate, set ��;� D 0. Suppose that � is �-adequate.
Then for any a 2 � , there is a unique matrix 	.a/ 2 GLn.K/ such that a� D
	.a/�1�	.a/ and Tr 	.a/ D 1. The mapping � ! GLn.K/, a 7! 	.a/ induces a
group homomorphism h�i ! GLn.K/ denoted 	. We define a normalized 2-cocycle
f�˛;ˇ g˛;ˇ on G as in Section 2.2 using the following choices: for all ˛ 2 H , let Q̨ be
the only element of q�1.˛/ \ h�i and M˛ D 	. Q̨ / (the lifts of elements of G �H

toG0 and the associated matricesM are chosen in an arbitrary way). It follows from
the definitions that �˛;ˇ D 1 for all ˛; ˇ 2 H . The proof of Lemma 2.1 shows
that the cocycle f�˛;ˇ g˛;ˇ is well defined up to coboundaries of 1-cochainsG ! K�
sendingH to 1. The cohomology class ��;� 2 H 2.G;H IK�/ of this cocycle depends
only on the equivalence class of �. The natural homomorphism H 2.G;H IK�/ !
H 2.GIK�/ carries ��;� to �� if � is �-adequate and to 0 otherwise. For example, the
empty subset of G0 is q-free and ��;; D �� 2 H 2.G; f1gIK�/ D H 2.GIK�/.

2.4. Theorems 1.1 and 1.2 re-examined. We can now explain all notation in The-
orems 1.1 and 1.2. Applying Section 2.1 to

G0 D � 0; G D �; q D p# W � 0 ! �; � D ˆ; (7)

we obtain an action of � on Irr.ˆ/. Every � in the fixed point set of this action I0 D
I0.p#/ yields a function t� W � 0 ! f0; 1g by Section 2.3. The set � D f�kgm

kD1
� � 0

defined before the statement of Theorem 1.1 is q-free because p#.�/ generates a free
subgroup of � of rank m D j� j. Here it is essential that the genus of W is positive.
Therefore each � 2 I0 determines ��;� 2 H 2.�; hq.�/iIK�/ D H 2.W; @W IK�/.
This completes the statement of Theorems 1.1 and 1.2.
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3. Homotopy Quantum Field Theory

Throughout this section we fix an integer d � 0 and a connected CW-space X with
base point x.

3.1. Preliminaries. By a manifold, we mean an oriented topological manifold. A
manifold M is pointed if every component of M is provided with a base point. The
set of base points of M is denoted M�.

A d -dimensional X -manifold is a pair (a pointed closed d -dimensional manifold
M , a map g W M ! X such that g.M�/ D x). A disjoint union of X -manifolds is an
X -manifold in the obvious way. An X -homeomorphism of X -manifolds .M; g/ !
.M 0; g0/ is an orientation-preserving homeomorphism f W M ! M 0 such that g D
g0f and g.M�/ D M 0

� . An empty set is viewed as a pointed manifold and an X -
manifold of any given dimension.

By a .d C 1/-dimensional cobordism, we mean a triple .W;M0;M1/ where W
is a compact .d C 1/-dimensional manifold and M0;M1 are disjoint pointed closed
d -dimensional submanifolds of @W such that @W D .�M0/ q M1. The manifold
W is not supposed to be pointed. As usual, �M is M with reversed orientation.

An X -cobordism is a cobordism .W;M0;M1/ endowed with a map g W W ! X

carrying the base points ofM0,M1 to x. Both basesM0 andM1 ofW are considered
as X -manifolds with maps to X obtained by restricting g. An X -homeomorphism of
X -cobordisms

F W .W;M0;M1; g/ ! .W 0;M 0
0;M

0
1; g

0/ (8)

is an orientation-preserving and base point preserving homeomorphism of triples
.W;M0;M1/ ! .W 0;M 0

0;M
0
1/ such that g D g0F . The standard operations

on cobordisms (disjoint union, gluing along bases, etc.) apply in this setting in
the obvious way. For brevity, we shall often omit the maps from the notation for
X -manifolds and X -cobordisms.

3.2. Axioms of HQFTs. We adapt Atiyah’s axioms of a TQFT to the present setting.
A .d C 1/-dimensional Homotopy Quantum Field Theory with target X or, shorter,
a .d C 1/-dimensional X -HQFT assigns a finite-dimensional vector space AM

over K to any d -dimensional X -manifold M , an isomorphism f# W AM ! AM 0

to any X -homeomorphism of d -dimensional X -manifolds f W M ! M 0, and a
homomorphism 
.W / W AM0

! AM1
to any .d C 1/-dimensional X -cobordism

.W;M0;M1/. The following seven axioms should be met.

(1) For any X -homeomorphisms of d -dimensional X -manifolds f W M ! M 0,
f 0 W M 0 ! M 00, we have .f 0f /# D f 0

#f#.
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(2) For any X -homeomorphism (8), the following diagram is commutative:

A.M0;gjM0
/

�.W;g/

��

.F jM0
/# �� A.M 0

0
;g0j

M 0
0

/

�.W 0;g0/

��
A.M1;gjM1

/

.F jM1
/# �� A.M 0

1
;g0j

M 0
1

/.

(3) If an X -cobordism .W;M0;M1/ is obtained from two .d C 1/-dimensional
X -cobordisms .W0;M0; N / and .W1; N

0;M1/ by gluing along an X -homeo-
morphism f W N ! N 0, then


.W / D 
.W1/ B f# B 
.W0/ W AM0
! AM1

:

(4) A; D K, and for any disjoint d -dimensional X -manifoldsM;N , there is a nat-
ural isomorphismAMqN D AM ˝AN (for a detailed formulation of naturality,
see [11], p. 121). Here and below ˝ D ˝K .

(5) If a .d C 1/-dimensional X -cobordism W is a disjoint union of X -cobordisms
W1; W2, then 
.W / D 
.W1/˝ 
.W2/.

(6) For any d -dimensional X -manifold .M; g W M ! X/,


.M � Œ0; 1�;M � f0g;M � f1g; g B pr W M � Œ0; 1� ! X/ D id W AM ! AM ;

where pr W M � Œ0; 1� ! M is the projection. Here we identify AM�ftg D AM

for t D 0; 1 via the canonical homeomorphism M � ftg � M .
(7) For any .d C 1/-dimensional X -cobordism .W; g W W ! X/, the homomor-

phism 
.W / is preserved under homotopies of g constant on @W .

IfX D fxg, then all references to maps toX are redundant, andX -HQFTs are the
familiar TQFTs. Note a few properties of HQFTs generalizing the standard properties
of TQFTs, see [11]. Given a .dC1/-dimensionalX -HQFT .A; 
/, we associate with
any d -dimensional X -manifold M the bilinear form

�M D 
.M � Œ0; 1�;M � f0g [ .�M/ � f1g;;/ W AM ˝ A�M ! K:

This form is non-degenerate, natural with respect toX -homeomorphisms, multiplica-
tive with respect to disjoint union, and symmetric in the sense that ��M D �M B �
where � is the standard flipA�M ˝AM ! AM ˝A�M . By definition, �; D ; and
�; W K ˝K ! K is the multiplication in K.

For a compact .dC1/-dimensional manifoldW with pointed boundary and a map
.W; .@W /�/ ! .X; x/, the HQFT .A; 
/ yields the vector spaceA@W and two homo-
morphisms 
.W;;; @W / W K D A; ! A@W and 
.�W; @W;;/ W A@W ! A; D K.
Let 
.W / 2 A@W be the image of the unity 1K under the first homomorphism. The
second homomorphism is nothing but the image of 
.�W / under the isomorphism
A�@W � HomK.A@W ; K/ induced by �@W . The vector 
.W / is invariant under
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homotopy of the given map W ! X , natural with respect to X -homeomorphisms,
and multiplicative under disjoint union.

Two .d C1/-dimensionalX -HQFTs .A; 
/ and .A0; 
 0/ are isomorphic if there is
a family of K-isomorphisms f�M W AM ! A0

M gM , where M runs over all
d -dimensional X -manifolds, such that: �; D idK and �MqN D �M ˝ �N for any
disjoint X -manifolds M;N ; the natural square diagrams associated with
X -homeomorphisms and X -cobordisms are commutative.

3.3. Example. Each .dC1/-dimensionalK�-valued singular cocycle  onX gives
rise to a .d C 1/-dimensional X -HQFT .A; 
/. Let M D .M; g W M ! X/ be a
d -dimensional X -manifold. Then AM is a one-dimensional K-vector space defined
as follows. A d -dimensional singular cycle a 2 Cd .M I Z/ is a fundamental cycle
ofM if it represents the sum of the fundamental homology classes of the components
of M . Every such a determines a generating vector hai 2 AM D Khai. If a, b are
two fundamental cycles of M , then a � b D @c for c 2 CdC1.M I Z/. We impose
the equality hbi D g�./.c/hai, where g�./ is the singular cocycle on M obtained
by pushing back  along g. It is easy to check that g�./.c/ does not depend on the
choice of c and that AM is a well-defined one-dimensional vector space. If M D ;,
thena D 0 and by definitionAM D K and hai D 1K 2 K. AnX -homeomorphism of
X -manifolds f W M ! M 0 induces an isomorphism f# W AM ! AM 0 by f#.hai/ D
hf�.a/i for any fundamental cycle a of M .

Given a .d C 1/-dimensional X -cobordism .W;M0;M1; g W W ! X/, pick
a singular chain B 2 CdC1.W I Z/ such that @B D b1 � b0, where b0, b1 are
fundamental cycles ofM0;M1, respectively. We also require B to be fundamental in
the sense that its image in CdC1.W; @W I Z/ is a fundamental cycle ofW . We define

.W / W AM0

! AM1
by 
.W /.hb0i/ D g�./.B/hb1i. It is an exercise in singular

homology to show that 
.W / is well defined and the axioms of an HQFT are met,
cf. [12]. This HQFT is denoted .A� ; 
� /. Its isomorphism class depends only on the
cohomology class of  .

For @W D ;, we have 
.W; g/ D g�./.ŒW �/ D .g�.ŒW �//. We can view
.A� ; 
� / as a device extending to cobordisms the evaluation of  on cycles in X .
Another such device (in the smooth category) is provided by the Cheeger–Simons
differential characters. For a comparison, see [14].

3.4. Operations on HQFTs. We need three operations on HQFTs: direct sum,
rescaling, and transfer. The direct sum of .d C 1/-dimensional X -HQFTs .A1; 
1/,
.A2; 
2/ is defined as follows. Set .A1 ˚ A2/M D A1

M ˚ A2
M for any connected

d -dimensional X -manifold M and extend this to non-connected M via Axiom (4)
above. The action of X -homeomorphisms is defined by applying ˚ and ˝ to the
actions provided by .A1; 
1/, .A2; 
2/. For a d -dimensional X -manifold M and
k D 1; 2, we have a natural embedding ikM W Ak

M ! .A1 ˚ A2/M and a natural
projection pk

M W .A1 ˚ A2/M ! Ak
M such that pk

M i
k
M D id. For a connected
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.d C 1/-dimensional X -cobordism .W;M;N /, set

.
1 ˚ 
2/.W / D i1N 

1.W /p1

M C i2N 

2.W /p2

M W .A1 ˚ A2/M ! .A1 ˚ A2/N :

This extends to non-connected X -cobordisms via Axiom (5) and gives a .d C 1/-
dimensional X -HQFT .A1 ˚ A2; 
1 ˚ 
2/.

One way to rescale a .d C 1/-dimensional X -HQFT consists in multiplying the
homomorphism associated with each X -cobordism .W;M;N / by k�.W /��.M/ with
fixedk 2 K�. Ford D 1, we shall use a slightly subtler version of this transformation.
Given k 2 K�, the k-rescaling transforms a 2-dimensional X -HQFT into the same
HQFT except that the homomorphism associated with eachX -cobordism .W;M;N /

is multiplied by k.�.W /Cb0.M/�b0.N //=2. Here b0.M/ D dimH0.M I R/ and we use
the inclusion �.W /C b0.M/ � b0.N / 2 2Z.

The transfer of HQFTs is defined in the following setting. Let p W zX ! X be
a finite-sheeted (unramified) covering. Consider the path-connected pointed space
Y D zX=p�1.x/ and let q W zX ! Y be the projection. The transfer derives from
a .d C 1/-dimensional HQFT .A; 
/ with target Y a .d C 1/-dimensional HQFT
. QA; Q
/ with targetX as follows. For a d -dimensionalX -manifold .M; g W M ! X/,
consider all lifts of g to zX , i.e., all maps Qg W M ! zX such that p Qg D g. The set of
such Qg is finite (possibly, empty). Each pair .M; q Qg/ is an Y -manifold. Set

QAM D L
Qg;p QgDg

A.M;q Qg/:

Given anX -homeomorphism ofX -manifolds f W .M; g/ ! .M 0; g0/, a lift Qg W M !
zX of g induces a lift Qgf �1 W M 0 ! zX of g0. The HQFT .A; 
/ provides an isomor-

phism f# W A.M;q Qg/ ! A.M 0;q Qgf �1/. The direct sum of the latter over all Qg is the

isomorphism f# W QA.M;g/ ! QA.M 0;g0/ determined by . QA; Q
/.
Given a .d C 1/-dimensional X -cobordism .W;M0;M1; g W W ! X/, there

is a finite set of maps Qg W W ! zX such that p Qg D g. Each such Qg restricted
to M0, M1 yields certain lifts, Qg0, Qg1, of the maps g0 D gjM0

W M0 ! X and
g1 D gjM1

W M1 ! X , respectively. We define Q
.W; g/ W QAM0
! QAM1

to be the
sum over all Qg of the homomorphisms 
.W; q Qg/ W A.M0;q Qg0/ ! A.M1;q Qg1/. Then
. QA; Q
/ is a .d C 1/-dimensional X -HQFT.

For example, for d � 1, any  2 HdC1. zX IK�/ D HdC1.Y IK�/ determines
a Y -HQFT .A� ; 
� /. Its transfer . QA� ; Q
� / is an X -HQFT. For a d -dimensional
X -manifold .M; g W M ! X/, the dimension of QA�

M is equal to the number of lifts
of g to zX . For a closed .d C 1/-dimensionalX -manifold .W; g W W ! X/, we have
Q
� .W; g/ D P

Qg Qg�./.ŒW �/, where Qg runs over all lifts of g to zX .

3.5. Aspherical targets. A .dC1/-dimensional HQFT .A; 
/with aspherical target
X may be reformulated in terms of homotopy classes of maps to X rather than
maps themselves. By homotopy we mean homotopy in the class of maps sending
the base points to x 2 X . Here is the key observation: for any pointed closed
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d -dimensional manifoldM and for any maps g0, g1 W M ! X related by a homotopy
H W .M � Œ0; 1�;M� � Œ0; 1�/ ! .X; x/, the pair .M � Œ0; 1�;H/ is an X -cobordism,
and the associated homomorphism 
.M � Œ0; 1�;H/ W AM;g0

! AM;g1
does not

depend on the choice ofH . This follows from Axiom (7) of an HQFT since any two
such H are homotopic, which is a consequence of the asphericity of X . Composing
H with the inverse homotopy and using Axiom (6), we obtain that 
.M � Œ0; 1�;H/ is
an isomorphism. We identify the vector spaces AM;g (with g W M ! X in the given
homotopy class) along these isomorphisms. The resulting vector space depends
only on the homotopy class and has the same dimension as AM;g . The action of
X -homeomorphisms and of X -cobordisms is compatible with these identifications.
As a consequence, dealing with HQFTs with aspherical targetX , we can safely replace
maps of manifolds and cobordisms to X by pointed homotopy classes of maps.

From now on, we will consider onlyX -HQFTs with asphericalX and will modify
the notions of X -manifolds and X -cobordisms accordingly (i.e., view the maps to
X up to pointed homotopy). By X -homeomorphisms we will mean orientation-
preserving and base point-preserving homeomorphisms commuting with the given
homotopy classes of maps to X .

Lemma 3.1. Iff W M ! N is anX -homeomorphism ofd -dimensionalX -manifolds
and if a homeomorphism f 0 W .M;M�/ ! .N;N�/ is isotopic to f in the class
of homeomorphisms .M;M�/ ! .N;N�/, then f 0 is an X -homeomorphism and
f 0

# D f# W AM ! AN for any .d C 1/-dimensional X -HQFT .A; 
/.

The first claim of this lemma follows from the definitions. The second claim
follows from Axioms (2) and (6) of an HQFT.

An aspherical space X with base point x is an Eilenberg–MacLane space of
type K.G; 1/ for G D �1.X; x/. By Section 3.3, every  2 HdC1.GIK�/ D
HdC1.X IK�/ gives rise to a .d C 1/-dimensional X -HQFT .A� ; 
� /. More gen-
erally, consider a subgroup H � G of finite index and the associated covering
p W zX ! X . Pick Qx 2 p�1.x/ and identify �1. zX; Qx/ D H via p#. Any  2
HdC1.H IK�/ D HdC1. zX IK�/with d � 1 yields a .dC1/-dimensionalX -HQFT
through transfer. For d D 1 and k 2 K�, we can k-rescale this HQFT. The resulting
X -HQFT is denoted .AG;H;� ; 
G;H;�;k/. It can also be obtained by first k-rescaling
the HQFT .A� ; 
� / and then transferring to X .

4. Biangular G -algebras and 2-dimensional HQFTs

For a groupG, we introduce a class ofG-graded algebras giving rise to 2-dimensional
HQFTs with targetX D K.G; 1/. This generalizes the construction of 2-dimensional
TQFTs (G D 1) from associative algebras in [1] and [7].
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4.1. Biangular G -algebras. A G-graded algebra or, briefly, a G-algebra is an
associative algebra B over K endowed with a splitting B D L

˛2G B˛ such that
all B˛ are finite-dimensional, B˛Bˇ � B˛ˇ for any ˛; ˇ 2 G, and B has a (right
and left) unit 1B 2 B1 where 1 is the neutral element of G. An inner product on a
G-algebra B is a symmetric K-bilinear form � W B ˝ B ! K such that

(1) for all ˛ 2 G, the restriction of � on B˛ ˝ B˛�1 is non-degenerate,
(2) �.B˛ ˝ Bˇ / D 0 if ˛ˇ ¤ 1,
(3) �.a; b/ D �.ab; 1B/ for any a; b 2 B .

For c 2 B , the symbol �c denotes the homomorphism B ! B , x 7! cx. A
G-algebra B D L

˛2G B˛ is biangular if it has an inner product � W B ˝ B ! K

such that for any ˛; ˇ 2 G and a 2 B˛; b 2 B˛�1 ,

�.a; b/ D Tr.�abjBˇ
W Bˇ ! Bˇ /: (9)

The form � (if it exists) is unique and denoted �B . The conditions above imply that
for any c 2 B1, the trace of �c W Bˇ ! Bˇ does not depend on ˇ and is equal to
�B.c; 1B/ D �B.1B ; c/. In particular, dim.Bˇ / D dim.B1/ D �B.1B ; 1B/ for all
ˇ 2 G. Note that conditions (2) and (3) for �B and the symmetry of �B may be
deduced from (9).

Given a biangular G-algebra B and ˛ 2 G, we can view the vector spaces B˛

and B˛�1 as dual to each other via �B . Pick a basis fp˛
i gi of B˛ , consider the dual

basis fq˛
i gi of B˛�1 , and set b˛ D P

i p
˛
i ˝ q˛

i 2 B˛ ˝ B˛�1 . The vector b˛ does
not depend on the choice of fp˛

i gi . The system of vectors fb˛g˛ is symmetric in
the sense that b˛�1 is obtained from b˛ by permutation of the tensor factors for all
˛ 2 G. Note that for all ˛ 2 G, P

i

p˛
i q

˛
i D 1B : (10)

This follows from the non-degeneracy of �B and the fact that for any c 2 B1,

�.c;
P

i p
˛
i q

˛
i / D P

i

�.cp˛
i ; q

˛
i / D Tr.�cjB˛

W B˛ ! B˛/ D �B.c; 1B/:

Also, for any a 2 B˛�1 and b 2 B˛ ,P
i

�.a; p˛
i /�.b; q

˛
i / D �.a;

P
i �.b; q

˛
i /p

˛
i / D �.a; b/: (11)

For example, if q W G0 ! G is a group epimorphism with finite kernel � , then the
group algebraB D KŒG0� is a biangularG-algebra, whereB˛ D KŒq�1.˛/� � B for
all ˛ 2 G. Observe that �B.a; b/ D j�j if a; b 2 G0 satisfy ab D 1 and �B.a; b/ D 0

for all other a; b 2 G0. For ˛ 2 G, we have b˛ D j�j�1
P

a2q�1.˛/ a ˝ a�1. More
general examples of biangular G-algebras may be derived from the twisted group
algebras of G0 associated with K�-valued 2-cocycles on G0.
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4.2. G -systems. Recall the standard combinatorial description of maps from a CW-
complex T to X D K.G; 1/. By vertices, edges, and faces of T , we mean 0-cells,
1-cells, and 2-cells of T , respectively. Denote the set of vertices of T by Vert.T / and
the set of oriented edges of T by Edg.T /. Each e 2 Edg.T / leads from an initial
vertex ie to a terminal vertex te (they may coincide). The orientation reversal defines
a free involution e 7! e�1 on Edg.T /.

A face � of T is adjoined to the 1-skeleton T .1/ of T along a (continuous) map
f� W S1 ! T .1/. We callT regular if for any face�ofT , the setf �1

� .Vert.T // � S1

is a finite non-empty set which splits S1 into arcs mapped by f� homeomorphically
onto edges of T . These arcs in S1 are called the sides of �. The image f�.e/ of a
side e of � is an edge of T called the underlying edge of e. We shall often make no
difference between sides and their underlying edges. An orientation of� induces an
orientation and a cyclic order e1, e2, …, en on the set of sides of �. Here n � 1 is
the number of sides and ter

D ierC1
for all r .mod n/. The corresponding cyclically

ordered oriented edges of T form the boundary of �.
A G-system on a regular CW-complex T is a mapping Edg.T / ! G, e 7! ge

such that

(1) ge�1 D .ge/
�1 for any e 2 Edg.T /,

(2) if ordered oriented edges e1, e2, …, en of T with n � 1 form the boundary of a
face of T , then ge1

ge2
: : : gen

D 1.

For any set V � Vert.T /, we define an equivalence relation, called V -homotopy,
on the set of G-systems on T . Two G-systems g; g0 on T are V -homotopic if there
is a map v W Vert.T / ! G such that v.V / D 1 and g0

e D v.ie/ge.v.te//
�1 for all

e 2 Edg.T /. For V D ;, we use the term homotopy for V -homotopy.
AG-system g on T gives rise to a map jgj W jT j ! X , where jT j is the underlying

topological space of T . This map carries Vert.T / to the base point x 2 X and carries
each e 2 Edg.T / into a loop in X representing ge 2 G D �1.X; x/. The map
g 7! jgj induces a bijection between the V -homotopy classes of G-systems on T
and the homotopy classes of maps .jT j; V / ! .X; x/.

4.3. State sums on closed surfaces. Fix a biangular G-algebra B D L
˛2G B˛ .

Let W be a closed X -surface, i.e., a closed oriented surface endowed with a map
W ! X D K.G; 1/. We define 
B.W / 2 K as follows.

Pick a regular CW-decomposition T of W (for example, a triangulation). By a
flag of T , we mean a pair (a face � of T , a side e of �). The flag .�; e/ induces an
orientation on e such that � lies on the right of e. This means that the pair (a vector
looking from a point of e into�, the oriented edge of T underlying e) is positive with
respect to the given orientation of W .

Let g be a G-system on T representing the homotopy class of the given map
jT j D W ! X (here V D ;). With each flag .�; e/ of T we associate the
K-module B.�; e; g/ D Bge

where e is oriented so that � lies on its right.
Every edge e of T appears in two flags, .�1; e/, .�2; e/, and inherits from them
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opposite orientations. Since the corresponding values of g are mutually inverse,
Section 4.1 yields a vector bge

2 B.�1; e; g/˝ B.�2; e; g/. Set

bg D N
e

bge
2 N

.�;e/

B.�; e; g/;

where on the left-hand side e runs over all unoriented edges ofT and on the right-hand
side .�; e/ runs over all flags of T .

Let � be a face of T with n sides. We orient and cyclically order the sides
e1, e2, …, en of � so that � lies on their right. Then ge1

ge2
: : : gen

D 1. The form

B.�; e1; g/˝ B.�; e2; g/˝ � � � ˝ B.�; en; g/ ! K; (12)

defined by
a1 ˝ a2 ˝ � � � ˝ an 7! �B.a1a2 : : : an; 1B/

is invariant under cyclic permutations. The tensor product of these forms over all faces
of T is a homomorphism dg W N

.�;e/B.�; e; g/ ! K. Set hgi D dg.bg/ 2 K.
The following lemma is the key result underlying the state sum construction of a

2-dimensional HQFT from a biangular G-algebra.

Lemma 4.1. 
B.W / D hgi 2 K depends only on the homotopy class of the given
map W ! X .

Proof. We need to prove that hgi does not depend on the choice of g in its homotopy
class and does not depend on the choice of T . It is convenient to switch to the
dual language of skeletons of W . A skeleton of W is a finite graph on W whose
complementary regions are open 2-disks. A skeleton may have loop edges (i.e.,
edges with coinciding endpoints) and multiple edges (i.e., different edges with the
same endpoints). A regular CW-decomposition T of W determines a skeleton ST

of W . It is obtained by placing a “central” point in each face of T and connecting
the centers of any two faces adjacent to the same 1-cell e of T by an edge meeting e
transversely in one point and disjoint from the rest of T .1/. This establishes an
equivalence between regular CW-decompositions and skeletons. The definitions of
a G-system g on T and of hgi can be easily rewritten in terms of labelings of the
oriented edges of skeletons.

We define two local moves on a skeleton S of W . The contraction move con-
tracts an edge of S with distinct endpoints. The corresponding move on CW-
decompositions erases an open edge adjacent to two distinct faces. The loop move
on S removes a loop edge bounding a disk in W � S . The corresponding move on
CW-decompositions erases a vertex of valency 1 and the incident open edge. The
contraction moves, the loop moves, and their inverses are called basic moves. Using
the theory of spines of surfaces, one shows that any two skeletons of W can be re-
lated by a finite sequence of basic moves and ambient isotopy in W . The invariance
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of hgi under the loop move and the contraction move follows from (10) and (11),
respectively.

It remains to prove the invariance of hgi under an arbitrary homotopy move
g 7! g0. In terms of the dual skeleton S of W , the move is determined by a certain
map v W �0.W � S/ ! G. The transformation g 7! g0 is given by the formula
g0.f / D v.U /g.f /.v.V //�1, where f is any oriented edge of S and U , V are the
components ofW � S lying on the right and on the left of f , respectively (possibly,
U D V ). An easy induction reduces the desired equality hgi D hg0i to the case where
v takes value 1 2 G on all components ofW �S except a single componentU , where
this value is v0 2 G. We say in this case that g0 is obtained from g by a v0-move
at U . We now expand the v0-move g 7! g0 as a composition of several basic moves.
By the invariance of hgi under the basic moves, this will imply that hgi D hg0i.

Pick a small embedded loop e in U based at a vertex x of S adjacent to U . The
loop e splits U into a small disk bounded by e and a complementary open 2-disk D.
Then S1 D S [e is a skeleton ofW obtained from S by an inverse loop move, andD
a component of W � S1. Let g1 be the G-system on S1 extending the G-system g

on S by g1.e/ D 1 2 G. Let g0
1 be the G-system on S1 obtained from g1 by the

v0-move at D. Clearly, g0
1jS D g0. Now we modify the skeleton S1 D S [ e

keeping S and keeping one endpoint of e at x and sliding the second endpoint of e
along the consecutive sides of U . We do this until the second endpoint traverses
the entire boundary of U and comes back to x from the other side. During this
deformation, e becomes an embedded arc except at the beginning and the end when
e is an embedded loop based at x. Note that when the moving endpoint of e traverses
a vertex of S adjacent to U , the skeleton S [ e is transformed via a composition
of a contraction move with an inverse contraction move. Under these moves, the
G-systems g1, g0

1 on S [ e are transformed in a canonical way keeping the values
on all edges except the contracted ones. Throughout the deformation, theG-systems
g1, g0

1 remain related by the v0-move at the image of D under the deformation. At
the end of the deformation, S1 is transformed into a skeleton S2 of W isotopic to S1

and g1, g0
1 are transformed into G-systems g2, g0

2 on S2 related by the v0-move at
the component of W � S2 obtained as the image of D under the deformation. This
component is a small 2-disk bounded by e. Applying the loop move, we transform
g2, g0

2 into one and the same G-system g3 on S . This gives six sequences of basic
moves g 7! g1 7! g2 7! g3 7! g0

2 7! g0
1 7! g0 whose composition is the move

g 7! g0.

4.4. A pseudo-HQFT. The invariant 
B of closed X -surfaces derived above from
a biangular G-algebra B is extended here to a 2-dimensional “pseudo-HQFT” .A D
AB , 
 D 
B/ with target X D K.G; 1/. The prefix “pseudo” appears here for two
reasons. First of all, the pseudo-HQFT .A; 
/ applies to 1-dimensional X -manifolds
with a certain additional structure called framing. Secondly, .A; 
/ fails to satisfy
Axiom (6) of Section 3.2. This pseudo-HQFT will be transformed into a genuine
HQFT in the next subsection.
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By X -curves, we shall mean 1-dimensional X -manifolds. A framed X -curve
is a triple .M; T; g/, where M is a pointed closed 1-dimensional manifold, T is a
CW-decomposition of M such that M� � Vert.T / and g is a G-system on T . This
G-system gives rise to a homotopy class of maps jgj W .M;M�/ ! .X; x/, where x
is the base point of X . This makes M into an X -curve and allows us to consider the
framing .T; g/ as an additional structure on this X -curve.

We associate with a framedX -curveM D .M; T; g/ the finite-dimensional vector
spaceAM D N

e Bge
, where e runs over the edges of T endowed with the orientation

induced by that of M . By definition, M D ; is framed and A; D K. Note that
AM qN D AM ˝ AN for all M;N .

An X -homeomorphism of framed X -curves is a homeomorphism of the under-
lying manifolds preserving the base points, the orientation, the framing, and the
G-system. Such homeomorphisms act on the associated vector spaces in the obvious
tautological way.

Consider a2-dimensionalX -cobordism .W;M0;M1/ such that bothX -curvesM0

andM1 are framed. We define aK-homomorphism 
.W / W AM0
! AM1

as follows.
Pick a regular CW-decompositionT ofW extending the given CW-decompositions of
M0 andM1. A cellular approximation for the given mapW ! X yields aG-system
g on T such that g extends theG-systems onM0 andM1 provided by the framing and
the induced map jgj W .W; .@W /�/ ! .X; x/ is in the given homotopy class. Flags
.�; e/ of T and the vector spaces B.�; e; g/ D Bge

are defined as in Section 4.3.
As in Section 4.3, we have a homomorphism dg W N

.�;e/B.�; e; g/ ! K, where
.�; e/ runs over all flags of T , and a vector

bg D N
e

bge
2 N

.�;e�Int W /

B.�; e; g/

where e runs over all edges of T lying in IntW and .�; e/ runs over all flags of T
such that e � IntW . Contracting dg with bg , we obtain a homomorphism

hgi W N
e�M0[M1

B.�e; e; g/ ! K: (13)

Since @W D M1 [ .�M0/, the face of T adjacent to e � Mr lies on the left of e
for r D 1 and on the right of e for r D 0. Therefore

B.�e; e; g/ D
´
Bge

if e � M0;

Bg�1
e

D .Bge
/� if e � M1:

Here we identify Bg�1
e

with the dual of Bge
using the inner product �B on B . Thus,

the homomorphism (13) is adjoint to a homomorphism

AM0
D N

e�M0

Bge
! N

e�M1

Bge
D AM1

denoted 
.W /.
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Lemma 4.2. The homomorphism 
.W / does not depend on the choice of T and g.
(It depends only on the framings of the X -curvesM0;M1 and the homotopy class of
the given map .W; .@W /�/ ! .X; x/).

The proof goes along the same lines as the proof of Lemma 4.1. The only differ-
ence is that a skeleton of W meets @W along a set of 1-valent vertices that are the
centers of the 1-cells of M0 [M1.

Lemma 4.3. Let M0, M1, N be three framed X -curves. If a 2-dimensional X -
cobordism .W;M0;M1/ is obtained by gluing two X -cobordisms .W0;M0; N / and
.W1; N;M1/ along N , then 
.W / D 
.W1/ B 
.W0/ W AM0

! AM1
.

Proof. For r D 0; 1, pick a regular CW-decomposition Tr ofWr extending the given
CW-decompositions of the bases. Let gr be aG-system on Tr representing the given
map Wr ! X . Gluing T0 and T1 along N we obtain a regular CW-decomposition,
T , of W . Let g be the unique G-system on T extending g0 and g1. Formula (11)
implies that hgi D hg1i B hg0i W AM0

! AM1
.

To sum up, the rule M 7! AM , W 7! 
.W / defines a sort of HQFT for framed
X -curves and for X -cobordisms with framed bases. This “pseudo-HQFT” .A; 
/
satisfies all axioms of Section 3.2 except possibly Axiom (6).

4.5. A 2-dimensional HQFT. We now derive from the pseudo-HQFT .A D AB ,

 D 
B/ a genuine HQFT, cf. [Tu2], Section VII.3. For any X -curve M , denote by
TM the class of all framings .T; g/ ofM . Observe that for any framings t0; t1 2 TM ,
the cylinder W D M � Œ0; 1� (mapped to X via the composition of the projection
W ! M with the given map M ! X ) is an X -cobordism between the framed
X -curves .M; t0/ and .M; t1/. Set

p.t0; t1/ D 
.W / W A.M;t0/ ! A.M;t1/:

By Lemma 4.3, p.t0; t2/ D p.t1; t2/p.t0; t1/ for any t0; t1; t2 2 TM . In particular,
p.t0; t0/ is a projector onto a subspace Aı

.M;t0/
, of A.M;t0/. Moreover, p.t0; t1/

maps Aı
.M;t0/

isomorphically onto Aı
.M;t1/

. The vector spaces fAı
.M;t/

gt2TM
and the

isomorphisms fp.t0; t1/ W Aı
.M;t0/

! Aı
.M;t1/

gt0;t12TM
form a projective system of

vector spaces and isomorphisms. The corresponding projective limit is a vector space
denotedAı

M . By definition, for any framing t ofM , we have a canonical isomorphism
Aı

M Š Aı
.M;t/

. In other words, we have a canonical embedding Aı
M � A

.M;t/
and a

canonical projection PM W A
.M;t/

! Aı
M which is the identity on Aı

M .
To define the action f# W Aı

M ! Aı
M 0 of an X -homeomorphism f W M ! M 0,

pick a framing t of M and consider the framing t 0 D f .t/ of M 0. Then f# is the
composition of the identification isomorphism Aı

M Š Aı
.M;t/

with the isomorphism
Aı

.M;t/
Š Aı

.M 0;t 0/
induced by f and with the identification isomorphism Aı

.M 0;t 0/
Š

Aı
M 0 . This composition is independent of the choice of t .
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A 2-dimensional X -cobordism .W;M0;M1/ splits as a union of collars of M0,
M1 with a copy of W . Therefore for any framings t0, t1 of M0, M1, we have


.W / D PM1

.W /PM0

W A.M0;t0/ ! A.M1;t1/:

Let 
ı.W / W Aı
M0

! Aı
M1

be the restriction of 
.W / to Aı
M0

� A.M0;t0/. This
homomorphism does not depend on t0, t1 and enters the commutative diagram

A
.M0;t0/

�.W /

��

PM0 �� Aı
M0

�ı.W /

��

inclusion �� A
.M0;t0/

�.W /

��
A

.M1;t1/

PM1 �� Aı
M1

inclusion �� A
.M1;t1/

.

(14)

Theorem 4.4. The ruleM 7! Aı
M , W 7! 
ı.W / defines an X -HQFT.

This theorem follows from the results of Section 4.4. To stress the role of the
biangular G-algebra, B , we shall write Aı

B for Aı and 
ı
B for 
ı. If W is a closed

X -surface, then 
ı
B.W / D 
B.W /.

The vector space Aı
M associated with a connected X -curve M may be described

in terms of the G-algebra B as follows. The X -curve M yields a loop in .X; x/
representing an element ˛ D ˛.M/ of G D �1.X; x/. The X -curve M admits a
canonical framing t having only one vertex (located at the base point of M ) and one
edge. Then A.M;t/ D B˛ and Aı

M is the image of the projector PM W B˛ ! B˛ . We
shall compute PM in Section 9. Note that each � 2 B˛ yields a vector Œ�� D PM .�/

in Aı
M .

5. Reduction of Theorem 1.2 to a lemma

Consider a group epimorphism q W G0 ! G with finite kernel � . The biangular
G-algebra B D KŒG0� derived from q in Section 4.1 determines a 2-dimensional
HQFT .Aı D Aı

B ; 

ı D 
ı

B/ with target X D K.G; 1/. We compute .Aı; 
ı/ in two
different ways and deduce Theorem 1.2.

5.1. Lemmas. LetW be a compact connected oriented surface withm � 0 pointed
boundary components C1, …, Cm endowed with orientation induced by that of W .
For k D 1; : : : ; m, fix an embedded path ck W Œ0; 1� ! W leading from a base point
w 2 IntW to the base point of Ck . We assume that these m paths meet only at w,
and set c D S

k ck.Œ0; 1�/ � W . Transporting Ck along ck , we obtain a loop in W
based at w and representing some xk 2 � D �1.W;w/.

Let X D K.G; 1/ with base point x. Fix a homomorphism g W � ! G and
consider a map Qg W .W; c/ ! .X; x/ such that Qg# D g W � ! G D �1.X; x/. For
k D 1; : : : ; m, the X -curve .Ck; QgjCk

/ represents g.xk/ 2 G.
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Fix a set � D f�1; : : : ; �mg � G0 such that �k 2 q�1.g.xk// for all k. By
Section 4.5, the vector �k 2 Bg.xk/ projects to a vector Œ�k� 2 Aı

Ck
. Set

Œ�� D Nm
kD1Œ�k� 2 Aı

@W
D Nm

kD1A
ı
Ck
:

If m D 0, then � D ; and by definition Œ�� D 1K 2 K D Aı; D Aı
@W

.

Lemma 5.1. The homomorphism 
ı.�W; Qg/ W Aı
@W

! K associated with the
X -cobordism .�W; @W;;; Qg/ is computed on Œ�� by


ı.�W; Qg/.Œ��/ D j�j�.W /�1 � j��.g; �/j;
where ��.g; �/ is the ( finite) set of all pairs (a homomorphism g0 W � ! G0, a family
fak 2 �gm

kD1
) such that qg0 D g and g0.xk/ D ak�ka

�1
k

for all k.

Proof. Take a CW-decomposition T of W having the base points of C1, …, Cm and
w as the only vertices, having C1, …, Cm and c1, …, cm among edges, and having
only one face. Then �.W / D m C 2 � r , where r is the number of edges of T .
The map Qg is represented by a G-system on T assigning 1 to ck and g.xk/ to Ck

for all k. The computation of �B and fb˛g˛2G at the end of Section 4.1 implies that

ı.�W; Qg/.Œ��/ D j�j � j�j�.r�m/� (the number ofG0-systems on T which are lifts
of our G-system and which assign �k to Ck for all k). The latter number is equal to
j��.g; �/j.

Lemma 5.2. Suppose that the genus of W is positive and letH D hx1; : : : ; xmi be
the subgroup of � ( freely) generated by x1, …, xm. If g W � ! G is an epimorphism
whose restriction to H is injective, then the set � D f�1; : : : ; �mg � G0 is q-free in
the sense of Section 2 and


ı.�W; Qg/.Œ��/ D P
�2I0.q/

.dim �/�.W /g�.��;� /.ŒW; @W �/
mQ

kD1

t�.�k/: (15)

The first claim of the lemma follows from the equality hq.�/i D g.H/. Note that
��;� 2 H 2.G; g.H/IK�/ and g�.��;� / 2 H 2.�;H IK�/. We have

H2.�;H I Z/ D H2.W; c [ @W I Z/ D H2.W; @W I Z/ D Z � ŒW; @W �
so that we can evaluate g�.��;� / on ŒW; @W �. For the definition of I0.q/, see Sec-
tion 2.1.

Lemma 5.2 will be proven in Section 10. Combining Lemmas 5.1 and 5.2, we
obtain that for any q-free system � D f�k 2 q�1.g.xk//gm

kD1
,

j��.g; �/j D j�j P
�2I0.q/

.j�j= dim �/��.W /g�.��;� /.ŒW; @W �/
mQ

kD1

t�.�k/: (16)
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5.2. Proof ofTheorem1.2. We substitute (7) andg D id W � ! � in (16). Since the
genus ofW is positive, x1; : : : ; xm 2 � generate a free group of rankm. Therefore the
set � � � 0 constructed before the statement of Theorem 1.1 is q-free. Theorem 1.2
now follows from (16) provided we show that j�.p; s@/j D j��.id; �/j.

A pointed section s of p W E ! W extending s@ W @W ! E induces a homomor-
phism s# W � ! � 0 such that qs# D id. For k D 1; : : : ; m, the path Qck W Œ0; 1� ! E

used in the definition of �k in Section 1 and the path sck have the same endpoints and
both project to ck . Let ak 2 � D ˆ be represented by the loop .sck/ Qc�1

k
W Œ0; 1� ! E.

Clearly, .s#; fakgm
kD1

/ 2 ��.id; �/. The resulting mapping �.p; s@/ ! ��.id; �/ is
bijective, as can be easily shown using the same CW-decomposition of W as in the
proof of Lemma 5.1. The injectivity results from the identification of bubble equiva-
lent sections in �.p; s@/. The surjectivity is obtained by constructing an appropriate
section over the 1-skeleton of W and extending it over the face using the injectiv-
ity of the inclusion homomorphism �1.F; e/ ! � 0, where F D p�1.w/. Thus,
j�.p; s@/j D j��.id; �/j.

6. Crossed G -algebras

We introduce crossed G-algebras which will be our main tools in the study of 2-
dimensional HQFTs with target K.G; 1/.

6.1. Basics. We use terminology of Section 4.1. A crossed G-algebra is a triple (a
G-algebraL D L

˛2G L˛ , an inner product � onL, a homomorphism ˛ 7! '˛ from
G to the group of algebra automorphisms of L) such that for all ˛; ˇ 2 G,

(1) '˛.Lˇ / � L˛ˇ˛�1 and '˛jL˛
D id;

(2) for any a 2 L˛; b 2 L, we have '˛.b/a D ab;
(3) �.'˛.a/; '˛.b// D �.a; b/ for all a; b 2 L;
(4) for any c 2 L˛ˇ˛�1ˇ�1 , the homomorphism �c W L ! L; x 7! cx satisfies

Tr.�c 'ˇ W L˛ ! L˛/ D Tr.'˛�1�c W Lˇ ! Lˇ /: (17)

Axiom (2) implies that L1 � L lies in the center of L. In particular, L1 is a
commutative associative K-algebra with unit. The group G acts on L1 by algebra
automorphisms. This action determines the dimensions of all L˛: applying (4) to
ˇ D 1 and c D 1L 2 L1, we obtain

DimL˛ D Tr.id W L˛ ! L˛/ D Tr.'1 W L˛ ! L˛/ D Tr.'˛�1 W L1 ! L1/:

Isomorphisms of crossed G-algebras are algebra isomorphisms preserving the
G-grading and the inner product, and commuting with the action of G.

The direct sum L˚L0 of two crossed G-algebras L;L0 is the crossed G-algebra
defined by .L ˚ L0/˛ D L˛ ˚ L0̨ for ˛ 2 G with coordinate-wise multiplication,
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inner product, and action of G. For k 2 K�, the k-rescaling transforms a crossed
G-algebra .L; �; '/ into the crossed G-algebra .L; k�; '/.

6.2. Example. Let  D f˛;ˇ g˛;ˇ2G be a normalized K�-valued 2-cocycle of G.
The cocycle identity ˛;ˇ˛ˇ;� D ˛;ˇ�ˇ;� for ˛; ˇ; � 2 G and the normalization
condition 1;1 D 1 imply that 1;˛ D ˛;1 D 1 and ˛;˛�1 D ˛�1;˛ for all ˛.

We define a crossed G-algebra L D L� as follows. For ˛ 2 G, let L˛ D Kl˛
be the one-dimensional vector space generated by a vector l˛ . Multiplication in
L D L

˛ L˛ is defined by l˛lˇ D ˛;ˇ l˛ˇ . This makes L into an associative algebra
with unit 1L D l1 2 L1. The inner product on L is defined by �.l˛; l˛�1/ D ˛;˛�1

for all ˛ 2 G. The action of ˛ 2 G is defined on the basis flˇ gˇ of L by

'˛.lˇ / D �1
˛;˛�1˛;ˇ˛ˇ;˛�1 l˛ˇ ˛�1 :

It is clear that '˛ is the only K-linear automorphism of L satisfying Axioms (1) and
(2). The other axioms of a crossed G-algebra are verified by direct computations
using solely the cocycle identity and the normalization condition.

Note that the isomorphism class ofL� depends only on the cohomology class of  .
For k 2 K�, denote L�;k the crossed G-algebra obtained from L� by k-rescaling. If
 D 1, then this yields a structure of a crossed G-algebra on the group ring KŒG�.

6.3. Transfer. Let H be a subgroup of G of finite index. A crossed H -algebra
.L D L

˛2H L˛; �; '/ gives rise to a crossed G-algebra . QL D L
˛2G

QL˛; Q�; Q'/
called its transfer and defined as follows. LetHnG be the set of right cosets ofH in
G. For each i 2 HnG, fix a representative!i 2 G so that i D H!i . (It is convenient
but not necessary to take !i D 1 for i D H .) For ˛ 2 G, set

N.˛/ D fi 2 HnG j !i˛!
�1
i 2 H g and QL˛ D L

i2N.˛/

L!i ˛!�1
i
:

In particular, if ˛ is not conjugate to elements of H , then QL˛ D 0.
We provide QL D L

˛
QL˛ with coordinate-wise multiplication. Thus, for ˛; ˇ 2

G, the multiplication QL˛ � QLˇ ! QL˛ˇ restricted toL!i ˛!�1
i

�L!j ˇ!�1
j

is 0 if i ¤ j ,

and is induced by multiplication in L

L!i ˛!�1
i

� L!i ˇ!�1
i

! L!i ˛ˇ!�1
i

if i D j 2 N.˛/ \ N.ˇ/. By definition, the algebra QL1 is a direct sum of ŒG W H�
copies of L1 numerated by the elements of HnG. The corresponding sum of copies
of 1L 2 L1 is the unit of QL1. The inner product Q� on QL is defined by

Q�j QL˛˝ QL
˛�1

D L
i2N.˛/DN.˛�1/

�jL
!i ˛!�1

i

˝L
!i ˛�1!�1

i

:

We now define Q'. The group G acts on HnG by ˛.j / D j˛�1 for ˛ 2 G,
j 2 HnG. The equality H!˛.j / D H!j˛

�1 implies that j̨ D !˛.j /˛!
�1
j 2 H .
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Note that the fixed point set of the mapHnG ! HnG, j 7! ˛.j / isN.˛/. Therefore
for any ˇ 2 G, this map sends N.ˇ/ bijectively onto N.˛ˇ˛�1/. For j 2 N.ˇ/,
consider the homomorphism

'
j̨

W L!j ˇ!�1
j

! L
j̨ !j ˇ!�1

j
˛�1

j
D L!˛.j /˛ˇ ˛�1!�1

˛.j /
: (18)

We define Q'˛ W QLˇ ! QL˛ˇ˛�1 to be the direct sum of these homomorphisms over
all j 2 N.ˇ/. The identity .˛˛0/j D ˛˛0.j /˛

0
j for any ˛; ˛0 2 G implies that

Q'˛˛0 D Q'˛ Q'˛0 . Hence Q' is an action of G on QL.

Lemma 6.1. The triple . QL; Q�; Q'/ is a crossed G-algebra.

Proof. That Q� is an inner product preserved by Q' follows directly from the definitions
and properties of L. We check Axioms (1), (2), (4) of Section 6.1.

For j 2 N.˛/, we have ˛.j / D j and j̨ D !j˛!
�1
j . By Axiom (1) for L, the

homomorphism (18) with ˇ D ˛ is the identity. This yields Axiom (1) for QL.
Let a 2 L!i ˛!�1

i
� QL˛; b 2 L!j ˇ!�1

j
� QLˇ with i 2 N.˛/; j 2 N.ˇ/. Then

Q'˛.b/ D '
j̨
.b/ 2 L!˛.j /˛ˇ ˛�1!�1

˛.j /
:

If i ¤ j then ˛.j / ¤ ˛.i/ D i and Q'˛.b/a D 0 D ab. If i D j , then j̨ D ˛i D
!i˛!

�1
i . By Axiom (2) for L,

Q'˛.b/a D '
j̨
.b/a D '!i ˛!�1

i
.b/a D ab:

We now check formula (17) with L, ' replaced by QL, Q'. Since both sides are
linear functions of c, it suffices to treat the case where

c 2 L!i ˛ˇ˛�1ˇ�1!�1
i

� QL˛ˇ ˛�1ˇ�1

with i 2 N.˛ˇ˛�1ˇ�1/. A direct application of definitions shows that both sides of
the desired formula are equal to 0 unless i 2 N.˛/\N.ˇ/. If i 2 N.˛/\N.ˇ/ then
the trace of�c Q'ˇ W QL˛ ! QL˛ is equal to the trace of the endomorphism�c'!i ˇ!�1

i
of

QL!i ˛!�1
i

. The trace of Q'˛�1�c W QLˇ ! QLˇ is equal to the trace of the endomorphism

'!i ˛�1!�1
i
�c of QL!i ˇ!�1

i
. The equality of these two traces follows from Axiom (4)

for L.

It follows from Lemma 8.4 below that the isomorphism class of . QL; Q�; Q'/ does
not depend on the choice of the representatives f!igi . A direct algebraic proof is left
to the reader as an exercise.

We can apply transfer to the crossed H -algebra L� derived from a K�-valued
normalized 2-cocycle  on H . The resulting crossed G-algebra is denoted LG;H;� .
For k 2 K�, denote LG;H;�;k the crossed G-algebra obtained from LG;H;� by
k-rescaling. It is clear that transfer and rescaling commute so that LG;H;�;k is the
transfer of the crossed H -algebra L�;k .
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6.4. Semisimple G -algebras. A crossed G-algebra L D L
˛2G L˛ is semisim-

ple if L1 is a direct sum of several mutually annihilating (and therefore mutually
orthogonal) copies of K. For instance, the crossed G-algebra L� in Example 6.2
is semisimple since L1 D K. Direct sums, rescalings, and transfers of semisimple
crossed group-algebras are semisimple.

If a crossed G-algebra L is semisimple, then L1 has a basis I such that ij D ıi
j i

for all i; j 2 I , where ıi
j is the Kronecker delta. Such a basis is unique and denoted

bas.L/. Its elements are called the basic idempotents of L. Algebra automorphisms
of L1 preserve bas.L/ set-wise. In particular, the action of G on L restricts to an
action of G on bas.L/. We call L simple if (it is semisimple and) the action of G
on bas.L/ is transitive. The crossed G-algebra L� in Example 6.2 is simple because
bas.L� / is a one point set. The crossed G-algebra L D LG;H;�;k constructed at
the end of Section 6.3 is simple because L1 is a direct sum of copies of L�

1 D K

numerated by elements of HnG and the action of G on L1 permutes these copies of
K via the natural (transitive) action of G on HnG.

Consider again a semisimple crossed G-algebra L and set I D bas.L/. The
equality 1L D P

i2I i and the fact that I lies in the center of L imply that L splits
as a direct sum of mutually annihilating subalgebras fiLgi2I :

L D L
i2I

iL where iL D Li D L̨
2G

iL˛:

The subalgebras fiLgi2I of L are permuted via the action of G on L. Therefore
for any orbit � � I of the action of G on I , the vector space �L D L

i2	 iL is a
G-invariant subalgebra of L. Restricting the action of G and the inner product on L
to �Lwe transform the latter into a simple crossedG-algebra. We conclude that each
semisimple crossed G-algebra canonically splits as a direct sum of simple crossed
G-algebras.

We now classify simple crossed G-algebras. Denote by A.G/ the set of isomor-
phism classes of pairs (a simple crossedG-algebraL, a basic idempotent i 2 bas.L/).
(Two such pairs are isomorphic if there is an isomorphism of the crossed G-algebras
preserving the distinguished basic idempotent.) The group G acts on A.G/ by
˛.L; i/ D .L; '˛.i// for ˛ 2 G. Let B.G/ be the set of triples (a subgroup
H � G of finite index, a cohomology class  2 H 2.H IK�/, an element k of
K�). The group G acts on B.G/ by ˛.H; ; k/ D .˛H˛�1; ˛�./; k/ where ˛ 2 G
and ˛� W H 2.H IK�/ ! H 2.˛H˛�1IK�/ is the isomorphism induced by the con-
jugation by ˛.

Lemma 6.2. There is a canonical G-equivariant bijection A.G/ ! B.G/.

Proof. Let L D L
˛2G L˛ be a simple crossed G-algebra and i 2 bas.L/. Let

Gi D f˛ 2 G j '˛.i/ D ig be the stabilizer of i . We first compute the dimension of
iL˛ � L˛ for all ˛ 2 G. Applying (17) to ˇ D 1 and c D i 2 L1, we obtain

dim.iL˛/ D Tr.�i W L˛ ! L˛/ D Tr.'˛�1�i W L1 ! L1/:



Sections of fiber bundles and TQFTs 299

The endomorphism '˛�1�i of L1 carries i to '˛�1.i/ 2 I and carries all other
elements of the basis I to 0. Hence

dim.iL˛/ D
´
1 if ˛ 2 Gi ;

0 if ˛ 2 G �Gi :

For every ˛ 2 Gi � f1g, pick a non-zero vector s˛ 2 iL˛ . For ˛ D 1, set s˛ D
i 2 iL1. Then for any ˛; ˇ 2 Gi , we have s˛sˇ D r˛;ˇ s˛ˇ with r˛;ˇ 2 K. We
claim that r˛;ˇ ¤ 0. Indeed, the inner product � in L satisfies �.sˇ sˇ�1 ; 1L/ D
�.sˇ ; sˇ�1/ ¤ 0. Hence sˇ sˇ�1 D rs1 D ri with r 2 K� and

.s˛sˇ /sˇ�1 D s˛.sˇ sˇ�1/ D rs˛i D rs˛ ¤ 0: (19)

Therefore s˛sˇ ¤ 0 and r˛;ˇ ¤ 0.
The associativity of multiplication in L and the choice s1 D i ensure that

fr˛;ˇ g˛;ˇ is a normalized K�-valued 2-cocycle on Gi . Let ri 2 H 2.Gi IK�/ be its
cohomology class. Under a different choice of fs˛g˛ we obtain the same ri .

The formula .L; i/ 7! .Gi ;ri ; �.i; i// defines aG-equivariant mapping A.G/ !
B.G/. In the opposite direction, any triple .H; ; k/ 2 B.G/ determines a simple
crossed G-algebra QL D LG;H;�;k . The elements of bas. QL/ bijectively correspond to
the elements of HnG. Let i� 2 bas. QL/ correspond to HnH 2 HnG. The formula
.H; ; k/ 7! . QL; i� / defines a mapping B.G/ ! A.G/.

We claim that these mappings B.G/ ! A.G/ and A.G/ ! B.G/ are mutually
inverse bijections. Let us verify that the composition B.G/ ! A.G/ ! B.G/ is
the identity. Consider the pair . QL; i� / derived as above from .H; ; k/ 2 B.G/. The
stabilizer of i� D HnH 2 HnG D bas. QL/ with respect to the natural action of
G is H . It follows from the definition of QL that i� QL˛ D L�

˛ for all ˛ 2 H . Set
s˛ D l˛ 2 L�

˛ D i� QL˛ , where l˛ is the vector used in the definition of L� . Now, it
is obvious that the mapping A.G/ ! B.G/ carries . QL; i� / to .H; ; k/.

To accomplish the proof, it suffices to show that the mapping A.G/ ! B.G/ is
injective. It is enough to prove that a simple crossed G-algebra L with distinguished
basic idempotent i0 2 L1 can be uniquely reconstructed from the triple (the stabilizer
H � G of i0, the H -algebra i0L, the element k D �.i0; i0/ of K). Recall that
L D L

i2I iL, where I D bas.L/. Since the action of G on I is transitive, for each
i 2 I there is !i 2 G such that '!i

.i0/ D i . We take !i0 D 1. The isomorphism
'!i

W L ! L maps i0L bijectively onto iL. Pick a non-zero vector s˛ in i0L˛ Š K

for all ˛ 2 H . Then the set f'!i
.s˛/ j i 2 I; ˛ 2 H g is a basis of L. Multiplication

in L is computed in this basis by

'!i
.s˛/ '!i0 .s˛0/ D

´
'!i

.s˛s˛0/ if i D i 0;
0 if i ¤ i 0:

The inner product � onL is determined by the algebra structure ofL and the equalities
�.i; 1L/ D �.i; i/ D k for all i 2 I . It remains to recover the action ' of G
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on L. Given ˛ 2 H , the homomorphism '˛ W i0L ! i0L is fully determined by
the condition '˛.sˇ /s˛ D s˛sˇ for all ˇ 2 H (we use that s˛ˇ ˛�1s˛ ¤ 0, cf. (19)).
Each ˇ 2 G expands as a product !i˛ where i D 'ˇ .i0/ and ˛ 2 H . This gives
'ˇ D '!i

'˛ and computes the restriction of 'ˇ to i0L. Knowing these restrictions
for all ˇ 2 G, we can recover 'ˇ W L ! L by 'ˇ .'!i

.s˛// D 'ˇ!i
.s˛/.

7. The underlying G -algebra

We study a two-dimensionalX -HQFT .A; 
/whereX D K.G; 1/with base point x.
We derive from .A; 
/ an “underlying” crossed G-algebra.

7.1. Conventions. Given an oriented surface W and a component M of @W , we
writeMC (resp.M�) forM with orientation induced from that inW (resp. in �W ).
When all components M of @W are labeled with signs ".M/ D ˙, we have in the
category of oriented manifolds @W D P

M ".M/M".M/. We view such a W as a
cobordism whose bottom (resp. top) base is formed by the boundary components
labeled with � (resp. with C).

7.2. Disks with holes. We describe the structures of X -cobordisms on annuli and
disks with two holes. Set C D S1 � Œ0; 1�. Fix once and for all an orientation in C .
Set C 0 D S1 � 0 � @C and C 1 D S1 � 1 � @C . It is convenient to think of C as
of an annulus in R2 with clockwise orientation such that C 0 (resp. C 1) is its internal
(resp. external) boundary component. We provide C 0, C 1 with base points s � 0,
s � 1, respectively, where s 2 S1. Given "; � D ˙1, denote by C";
 the oriented
annulus C with oriented pointed boundary C 0

" [C 1

. For example, if C lies in R2 as

above, then both components of @C�C are oriented clockwise.
The homotopy class of a map g W C";
 ! X is determined by the elements ˛; ˇ

ofG, represented by the loops gjC 0
"

and gjs�Œ0;1�, respectively. Here Œ0; 1� is oriented
from 0 to 1. Note that gjC 1

�
represents ˇ�1˛�"
ˇ 2 G. The X -surface (C";
, the

map C";
 ! X corresponding to ˛; ˇ 2 G) is denoted C";
.˛Iˇ/; see Figure 1.
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Figure 1 The X -annuli C�C.˛Iˇ/ and C��.˛Iˇ/.
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Let D be a 2-disk with two holes. Let Y , Z, T be the boundary components of
D with base points y, z, t , respectively. Fix proper embedded arcs ty and tz in D
oriented from t to y, z and meeting solely at t . We provide D with the orientation
obtained by rotating ty towards tz in D around t . One can view D as a disk with
two holes in R2 with clockwise orientation such that Y;Z are the internal boundary
components, T is the external boundary component, and y, z, t are the bottom points
of Y , Z, T . Given "; �; 	 D ˙, let D";
;� be D with oriented pointed boundary
Y" [Z
 [T� . For example, ifD lies in R2 as above, then all components of @D��C
are oriented clockwise.

To a map g W D";
;� ! X we assign the homotopy classes of the loops gjY"
,

gjZ�
, gjty , gjtz . This gives a bijection from the set of homotopy classes of maps

D";
;� ! X ontoG4. For a tuple .˛; ˇ; �; ı/ 2 G4, denoteD";
;�.˛; ˇI �; ı/ the disk
with holes D";
;� endowed with the map g to X corresponding to this tuple, cf. Fig-
ure 2. Note that the loops gjY"

, gjZ�
, gjT�

represent ˛; ˇ; � D .�˛�"��1ıˇ�
ı�1/� ,
respectively. As an exercise, the reader may construct an X -homeomorphism

D";
;�.˛; ˇI �; ı/ � D
;�;".ˇ; � I ��1ı; ��1/ (20)

cyclically permuting the components Y , Z, T of @D.

¯®

½ ±

t

y z

T

Y Z

Figure 2 The X -disk with holes D��C.˛; ˇI �; ı/.

7.3. Algebra L. A connected X -curve M (i.e., a connected 1-dimensional
X -manifold) represents an element ˛ D ˛.M/ of �1.X; x/ D G, cf. Section 4.5.
We shall sometimes write .M; ˛/ for M . The vector space AM depends only on
˛.M/ up to canonical isomorphisms. This follows from Lemma 3.1 because any two
oriented pointed circles are related by a (unique up to isotopy) orientation-preserving
and base point preserving homeomorphism. In this way, for every ˛ 2 G, the HQFT
.A; 
/ gives a finite-dimensional vector space. It is denoted L˛ .

We provideL D L
˛2G L˛ with multiplication and inner product as follows. For

˛; ˇ 2 G, the disk with two holes D��C.˛; ˇI 1; 1/ is an X -cobordism between the
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X -curves .Y�; ˛/q .Z�; ˇ/ and .TC; ˛ˇ/. Consider the associated homomorphism

.D��C.˛; ˇI 1; 1// W L˛ ˝ Lˇ ! L˛ˇ . We define multiplication in L by

ab D 
.D��C.˛; ˇI 1; 1//.a˝ b/ 2 L˛ˇ

for a 2 L˛ , b 2 Lˇ . The annulus C��.˛I 1/ is an X -cobordism between .C 0�; ˛/q
.C 1�; ˛�1/ and ;. Set

�˛ D 
.C��.˛I 1// W L˛ ˝ L˛�1 ! K:

The properties of HQFTs stated in Section 3.2 imply that �˛ is non-degenerate for
all ˛ and �˛�1 is obtained from �˛ by the permutation of the tensor factors. Let
� W L˝ L ! K be the symmetric bilinear form whose restriction to L˛ ˝ Lˇ with
˛; ˇ 2 G is zero if ˛ˇ ¤ 1 and is �˛ if ˛ˇ D 1.

The group G acts on L as follows. For ˛; ˇ 2 G, the annulus C�C.˛Iˇ�1/ is an
X -cobordism between .C 0�; ˛/ and .C 1C; ˇ˛ˇ�1/. Set

'ˇ D 
.C�C.˛Iˇ�1// W L˛ ! Lˇ˛ˇ�1 :

Axioms (3) and (6) of an HQFT yield that 'ˇ� D 'ˇ'� for ˇ; � 2 G and '1 D id.

Lemma 7.1. The triple .L; �; '/ is a crossed G-algebra.

Proof. Let us prove that .ab/c D a.bc/ for any a 2 L˛ , b 2 Lˇ , c 2 L� with
˛; ˇ; � 2 G. Consider the X -cobordisms W0 D D��C.˛; ˇI 1; 1/q C�C.� I 1/ and
W1 D D��C.˛ˇ; � I 1; 1/. HereW0 is anX -cobordism between .Y�; ˛/q.Z�; ˇ/q
.C 0�; �/ and .TC; ˛ˇ/q.C 1C; �/. ByAxioms (4) and (6) of an HQFT and the definition
of multiplication in L, the homomorphism 
.W0/ W L˛ ˝ Lˇ ˝ L� ! L˛ˇ ˝ L�

carries a ˝ b ˝ c into ab ˝ c. The homomorphism 
.W1/ W L˛ˇ ˝ L� ! L˛ˇ�

carries ab ˝ c into .ab/c. The gluing of W0 to W1 along an X -homeomorphism
.TC; ˛ˇ/q .C 1C; �/ � .Y�; ˛ˇ/q .Z�; �/ yields an X -cobordism W and


.W /.a˝ b ˝ c/ D 
.W1/ 
.W0/.a˝ b ˝ c/ D 
.W1/.ab ˝ c/ D .ab/c:

The same X -cobordism W can be also obtained by gluing the X -cobordisms
C�C.˛I 1/qD��C.ˇ; � I 1; 1/ andD��C.˛; ˇ� I 1; 1/ along anX -homeomorphism

.C 1C; ˛/q .TC; ˇ�/ � .Y�; ˛/q .Z�; ˇ�/:

Therefore 
.W /.a˝ b ˝ c/ D a.bc/. Thus, .ab/c D a.bc/.
The unit of L is constructed as follows. Let BC be an oriented 2-disk whose

boundary is pointed and endowed with induced orientation. There is only one homo-
topy class of maps BC ! X . The corresponding homomorphism 
.BC/ W K ! L1

carries 1K 2 K into an element of L1, denoted 1L. Let us prove that 1L is a right
unit of L (the proof that it is a left unit is similar). Let a 2 L˛ with ˛ 2 G. Consider
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the X -cobordisms W0 D C�C.˛I 1/q BC and W1 D D��C.˛; 1I 1; 1/. The gluing
ofW0 toW1 along an X -homeomorphism .C 1C; ˛/q .@BC; 1/ � .Y�; ˛/q .Z�; 1/
yields an X -cobordism X -homeomorphic to C�C.˛I 1/. By Axioms (6) and (3) of
an HQFT,

a D 
.C�C.˛I 1//.a/ D 
.W1/
.W0/.a/ D 
.W1/.a˝ 1L/ D a1L:

To show that � is an inner product on L, we need only to prove that �.ab; c/ D
�.a; bc/ for any a 2 L˛ , b 2 Lˇ , c 2 L� with ˛; ˇ; � 2 G. If ˛ˇ� ¤ 1,
then �.ab; c/ D 0 D �.a; bc/. Assume that ˛ˇ� D 1. Gluing C��.˛ˇI 1/ to
D��C.˛; ˇI 1; 1/ along .C 0�; ˛ˇ/ � .TC; ˛ˇ/, we obtain D���.˛; ˇI 1; 1/. Hence

�.ab; c/ D 
.D���.˛; ˇI 1; 1//.a˝ b ˝ c/:

Similarly, gluing C��.˛I 1/ to D��C.ˇ; � I 1; 1/ along .C 1�; ˛�1/ � .TC; ˇ�/, we
obtain D���.ˇ; � I 1; 1/. Hence

�.a; bc/ D 
.D���.ˇ; � I 1; 1//.b ˝ c ˝ a/:

By (20) (where � D ı D 1) and Axiom (2) of an HQFT, �.ab; c/ D �.a; bc/.
Let us prove that '� W L ! L is an algebra homomorphism for all � 2 G. Pick

a 2 L˛ , b 2 Lˇ with ˛; ˇ 2 G. Note that for any �; ı 2 G, the homomorphism


.D��C.˛; ˇI �; ı// W L˛ ˝ Lˇ ! L�˛��1ıˇı�1

carries a ˝ b to '�.a/'ı.b/. This is so because D��C.˛; ˇI �; ı/ can be ob-
tained by gluing C�C.˛I ��1/q C�C.ˇI ı�1/ to D��C.˛; ˇI 1; 1/. Similarly, glu-
ing C�C.˛ˇI ��1/ to D��C.˛; ˇI 1; 1/ along an X -homeomorphism .C 0�; ˛ˇ/ �
.TC; ˛ˇ/, we obtain D��C.˛; ˇI �; �/. Therefore

'�.ab/ D 
.D��C.˛; ˇI �; �//.a˝ b/ D '�.a/'�.b/:

Let us verify Axioms (1)–(4) of a crossed G-algebra.
(1) The Dehn twist along the circle S1 � .1=2/ � C�C.˛I 1/ yields an

X -homeomorphism C�C.˛I 1/ ! C�C.˛I˛�1/. Axiom (2) of an HQFT implies
that '˛jL˛

D 
.C�C.˛I˛�1// D 
.C�C.˛I 1// D id.
(2) Consider a self-homeomorphism f of the disk with two holes D which is

the identity on T and permutes .Y; y/ and .Z; z/. We choose f so that f .tz/ D ty

and f .ty/ is an arc leading from t to z and homotopic to the product of four arcs
ty, @Y , .ty/�1, tz. An easy computation shows that f is an X -homeomorphism
D��C.˛; ˇI 1; 1/ ! D��C.ˇ; ˛I 1; ˇ�1/. Axiom (2) of an HQFT implies that the
homomorphism 
.D��C.˛; ˇI 1; 1// W L˛ ˝ Lˇ ! L˛ˇ is obtained from the ho-
momorphism 
.D��C.ˇ; ˛I 1; ˇ�1// W Lˇ ˝L˛ ! L˛ˇ by composing with the flip
L˛ ˝ Lˇ ! Lˇ ˝ L˛ . Therefore for any a 2 L˛ , b 2 Lˇ ,

ab D 
.D��C.˛; ˇI 1; 1//.a˝ b/ D 
.D��C.ˇ; ˛I 1; ˇ�1//.b ˝ a/ D b'ˇ�1.a/:
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Replacing a with '˛.b/ and b with a, we obtain '˛.b/a D a'˛�1.'˛.b// D ab.
(3) The identity �.'ˇ .a/; 'ˇ .b// D �.a; b/with a 2 L˛ , b 2 L˛�1 follows from

the fact that the annulus C��.˛I 1/ used to define �˛ may be obtained by gluing the
annuli C�C.˛Iˇ�1/, C��.ˇ˛ˇ�1I 1/, and C�C.˛�1Iˇ�1/.

(4) Fix an orientation of S1 and a point s 2 S1. Let P be the punctured torus
obtained from S1 � S1 by removing a small open 2-disk disjoint from S1 � fsg and
fsg � S1. We assume that the circle @P meets S1 � fsg and fsg � S1 precisely at the
point .s; s/ and we take .s; s/ as the base point of @P . Provide P with orientation
induced from the product orientation in S1 � S1.

Fix a map g W P ! X D K.G; 1/ such that g.s; s/ D x and the restrictions of g to
S1 �fsg and fsg�S1 represent ˛; ˇ 2 G, respectively. (The orientations on S1 �fsg,
fsg�S1 are induced by that of S1.) Then the loop gj@P W .@P /� D �@P ! X repre-
sents ˛ˇ˛�1ˇ�1. We view .P; g/ as anX -cobordism between ..@P /�; gj@P / and ;.
We compute the associated homomorphism 
.P; g/ W L˛ˇ ˛�1ˇ�1 ! K in two differ-
ent ways. Observe first that .P; g/ can be obtained fromD��C.˛ˇ˛�1ˇ�1; ˛I 1; ˇ/
by gluing the boundary circles .Z�; ˛/ and .TC; ˛/ along an X -homeomorphism.
(These circles give S1 � fsg � P .) The axioms of an HQFT imply that 
.P; g/
carries c 2 L˛ˇ˛�1ˇ�1 to the trace of the homomorphism

L˛ ! L˛; d 7! 
.D��C.˛ˇ˛�1ˇ�1; ˛I 1; ˇ//.c ˝ d/ D c 'ˇ .d/:

The same pair .P; g/ is obtained from D��C.˛ˇ˛�1ˇ�1; ˇI˛�1; ˛�1/ by gluing
along .Z�; ˇ/ � .TC; ˇ/. (The circles Z� and TC give fsg � S1 � P .) Therefore

.P; g/ carries c 2 L˛ˇ˛�1ˇ�1 to the trace of the homomorphism

Lˇ ! Lˇ ; d 7! 
.D��C.˛ˇ˛�1ˇ�1; ˇI˛�1; ˛�1//.c ˝ d/ D '˛�1.cd/:

Thus, Tr.�c'ˇ W L˛ ! L˛/ D 
.P; g/.c/ D Tr.'˛�1�c W Lˇ ! Lˇ /.

7.4. Example. By Section 3.3, any a 2 H 2.GIK�/ determines a 2-dimensional
X -HQFT .Aa; 
a/, where X D K.G; 1/ with base point x. By Section 6.2, a
determines an isomorphism class of crossed G-algebras La.

Theorem7.2. Foranya 2 H 2.GIK�/, the underlying crossedG-algebraof .Aa; 
a/

is isomorphic to L�a.

Proof. Set S1 D fz 2 C j jzj D 1g with clockwise orientation and base point
�i . For each ˛ 2 G D �1.X; x/, fix a loop u˛ W S1 ! X carrying �i to x and
representing ˛. We choose u1 to be the constant loop at x. Let p W Œ0; 1� ! S1 be
the map carrying t 2 Œ0; 1� to �i exp.�2�it/ 2 S1. Let � � R3 be the standard
2-simplex with the vertices v0 D .1; 0; 0/, v1 D .0; 1; 0/, v2 D .0; 0; 1/. For
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˛; ˇ 2 G, pick a map f˛;ˇ W � ! X such that

f˛;ˇ ..1 � t /v0 C tv1/ D u˛p.t/;

f˛;ˇ ..1 � t /v1 C tv2/ D uˇp.t/;

f˛;ˇ ..1 � t /v0 C tv2/ D u˛ˇp.t/:

for all t 2 Œ0; 1�. We represent a 2 H 2.GIK�/ D H 2.X IK�/ by a K�-valued
singular 2-cocyle ‚ on X . For any ˛; ˇ 2 G, let ˛;ˇ D ‚.f˛;ˇ / 2 K� be the
evaluation of ‚ on the singular simplex f˛;ˇ . Observe that ˛;ˇ does not depend on
the choice of f˛;ˇ . Indeed, if f 0

˛;ˇ
W � ! X is another map as above, then the formal

difference f˛;ˇ �f 0
˛;ˇ

is a singular 2-cycle inX . The homology class of this 2-cycle

is trivial because it can be realized by a map S2 ! X and �2.X/ D 0. Therefore
‚.f˛;ˇ / D ‚.f 0

˛;ˇ
/. A similar argument shows that  D f˛;ˇ g˛;ˇ2G is a 2-cocycle.

Multiplying, if necessary, ‚ by a coboundary, we can ensure that 1;1 D 1. Both ‚
and  represent a 2 H 2.GIK�/ and � D f�1

˛;ˇ
g˛;ˇ2G represents �a.

Let L be the crossed G-algebra underlying the HQFT .A‚; 
‚/. We prove that
L is isomorphic to the crossed G-algebra L�� determined by the cocycle �.

For ˛ 2 G, the pair .S1; u˛/ is an X -curve denoted M˛ . The singular 1-simplex
p W Œ0; 1� ! S1 is a fundamental cycle of M˛ . By definition of .A‚; 
‚/ and L,
this cycle determines a generating vector p˛ D hpi in L˛ D A‚

M˛
Š K. We claim

that p˛pˇ D �1
˛;ˇ
p˛ˇ for all ˛; ˇ 2 G. To compute p˛pˇ , we apply 
‚ to the disk

with holes D D D��C.˛; ˇI 1; 1/ viewed as an X -cobordism between M˛ q Mˇ

and M˛ˇ . By definition, p˛pˇ D k p˛ˇ for k D g�.‚/.B/, where g W D ! X

is the map determined by the tuple .˛; ˇI 1; 1/ and B 2 C2.DI Z/ is a fundamental
singular 2-chain in D such that @B D p˛ˇ � p˛ � pˇ . Recall the segments ty,
tz � D. Clearly, D0 D D=ty [ tz is an oriented triangle with oriented edges
and identified vertices. Deforming g in its homotopy class, we may assume that
g.ty [ tz/ D x. Then g expands as the composition of the projection q W D ! D0
with a map g0 W D0 ! X , and k is the evaluation of .g0/�.‚/ on q�.B/. Instead of
q�.B/ we can use more general 2-chains in D0. Namely, let @D0 D q.@D/ be the
union of the sides of D0. Then k D .g0/�.‚/.B 0/ for any 2-chain B 0 in D0 such
that @B 0 D qp˛ˇ � qp˛ � qpˇ and the image of B in C2.D

0; @D0I Z/ represents
the generator of H2.D

0; @D0I Z/ D Z determined by the orientation of D0. There
is an obvious projection f W � ! D0 identifying the vertices of � and such that
g0f D f˛;ˇ (up to homotopy relative to @�). The singular chain B 0 D �f satisfies
all the conditions above. Therefore

k D .g0/�.‚/.B 0/ D ..g0/�.‚/.f //�1 D .‚.g0f //�1 D .‚.f˛;ˇ //
�1 D �1

˛;ˇ :

By definition ofL�� , the formula p˛ 7! `˛ for ˛ 2 G defines an isomorphism of
G-algebrasL Š L�� . It remains to compare the inner products and the actions ofG.
The inner product, ��, on L�� satisfies ��.1L; 1L/ D 1. By Remark 8.2 below, the
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inner product � on L satisfies �.1L; 1L/ D 
‚.S2/ D 1. Since L1 D L
��
1 D K, we

have �� D �. The isomorphism L Š L�� commutes with the action of G because
there is only one action of G on L�� satisfying the axioms of a crossed G-algebra,
cf. Section 6.2.

8. Properties of the underlying crossed G -algebras

As above, X D K.G; 1/ with base point x.

8.1. Functoriality. An isomorphism of 2-dimensional X -HQFTs induces an iso-
morphism of the underlying crossed G-algebras in the obvious way. This defines a
functor from the category of 2-dimensionalX -HQFTs and their isomorphisms to the
category of crossed G-algebras and their isomorphisms. This functor is an equiva-
lence of categories, see [12]. We will need only the following weaker claim.

Lemma 8.1. Any isomorphism of the underlying crossed G-algebras of 2-dimen-
sional X -HQFTs is induced by an isomorphism of the HQFTs themselves.

Proof. We first show how to reconstruct a 2-dimensional X -HQFT .A; 
/ from its
underlying crossed G-algebra L D .L; �; '/. The discussion at the beginning of
Section 7.3 shows that A is determined by L. We need only to reconstruct 
 .

It is clear that every 2-dimensional X -cobordism W can be obtained by gluing
several X -cobordisms whose underlying surfaces are disks with � 2 holes. Axioms
of an HQFT imply that 
.W / is determined by the values of 
 on suchX -cobordisms
and the restrictions f�˛ W L˛ ˝ L˛�1 ! Kg˛2G of �. It remains to show that the
values of 
 on the disks with � 2 holes are determined by L.

We begin by computing 
 for annuli. An X -annulus is X -homeomorphic to
C�C.˛Iˇ/,C��.˛Iˇ/, orCCC.˛Iˇ/with˛; ˇ 2 G. By definition, 
.C�C.˛Iˇ// D
'ˇ�1 jL˛

. The annulus C��.˛Iˇ/ can be obtained by gluing the annuli C�C.˛Iˇ/
and C��.ˇ�1˛ˇI 1/ along .C 1C; ˇ�1˛ˇ/ � .C 0�; ˇ�1˛ˇ/. Axiom (3) of an HQFT
and the definition of � imply that 
.C��.˛Iˇ// W L˛ ˝Lˇ�1˛�1ˇ ! K carries a˝b

to �.'ˇ�1.a/; b/ for any a 2 L˛ , b 2 Lˇ�1˛�1ˇ . To compute the vector


.CCC.˛Iˇ// 2 HomK.K;L˛ ˝ Lˇ�1˛�1ˇ / D L˛ ˝ Lˇ�1˛�1ˇ ;

we expand it as a finite sum
P

i pi ˝ qi , where pi 2 L˛ and qi 2 Lˇ�1˛�1ˇ . The
gluing of C��.˛�1I 1/ to CCC.˛Iˇ/ along .C 1�; ˛/ � .C 0C; ˛/ yields C�C.˛�1Iˇ/.
The axioms of an HQFT yield that

P
i �˛.a; pi / qi D 'ˇ�1.a/ for all a 2 L˛�1 .

Since �˛ is non-degenerate, this uniquely determines 
.CCC.˛Iˇ// D P
i pi ˝ qi .

There are two X -disks: BC as in the proof of Lemma 7.1 and B� obtained
from BC by reversing the orientation of the boundary. The vector 
.BC/ D 1L is
determined by L. The X -disk B� may be obtained by gluing BC and C��.1I 1/
along @BC � C 0�. Therefore 
.B�/ W L1 ! K carries any a 2 L1 to �.1L; a/.
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An X -disk with two holes D splits along disjoint loops parallel to its boundary
components into three X -annuli and a smaller X -disk with two holes D0. Choosing
appropriate orientations of the loops and an appropriate map D ! X in the given
homotopy class, we can ensure that D0 is X -homeomorphic to D��C.˛; ˇI 1; 1/ for
some ˛; ˇ 2 G. The homomorphism 
.D0/ and the values of 
 on the annuli are then
determined by L. The axioms of an HQFT allow us to recover 
.D/. We conclude
that .A; 
/ can be entirely reconstructed from L.

We now prove the claim of the theorem. Let .A; 
/ and .A0; 
 0/ be 2-dimensional
X -HQFTs with underlying crossed G-algebras L;L0, respectively. An isomorphism
� W L ! L0 defines in the obvious way an isomorphism AM ! A0

M for any con-
nected X -curve M . This extends to non-connected M via ˝. We claim that these
isomorphisms fAM ! A0

M gM make the natural square diagrams associated withX -
homeomorphisms andX -cobordisms commutative. The part concerning the homeo-
morphisms is obvious. Each X -cobordism can be obtained by gluing X -surfaces of
type BC,D��C.˛; ˇI 1; 1/, and annuli. It suffices to check the commutativity of the
corresponding diagrams. For BC and D��C.˛; ˇI 1; 1/, the commutativity follows
from the assumption that � is an algebra isomorphism. For annuli, the commutativ-
ity follows from the computations above because � preserves the inner product and
commutes with the action of G.

8.2. Remark. The computation of 
.B˙/ in the proof of Lemma 8.1 allows us to
compute 
.S2/ 2 K in terms of the underlying crossedG-algebra .L; �; '/ of .A; 
/.
The unique homotopy class of maps S2 ! X turns S2 into an X -manifold. This X -
manifold can be obtained from BC and B� by gluing along the boundary. Therefore
the homomorphism K ! K, k 7! 
.S2/ k is the composition of 
.BC/ W K ! L1

with 
.B�/ W L1 ! K. Thus, 
.S2/ D �.1L; 1L/.

8.3. Transformations. The following lemmas show that under the passage to the
underlying algebra, the direct sums, rescalings, and transfers of HQFTs correspond
to the direct sums, rescalings, and transfers of algebras.

Lemma 8.2. If .A1; 
1/ and .A2; 
2/ are X -HQFTs with underlying crossed
G-algebras L1 and L2, respectively, then the underlying crossed G-algebra of the
direct sum .A1; 
1/ ˚ .A2; 
2/ is L1 ˚ L2. Moreover, if the underlying crossed
G-algebraL of a 2-dimensionalX -HQFT .A; 
/ splits as a direct sum of two crossed
G-algebras L D L1 ˚ L2, then .A; 
/ splits as a direct sum of two X -HQFTs with
underlying crossed G-algebras L1 and L2.

Proof. The first claim follows from the definitions. We prove the second claim.
The splitting L˛ D L1

˛ ˚ L2
˛ for all ˛ 2 G induces a splitting AM D A1

M ˚
A2

M for any connected X -curve M . For a non-connected X -curve M , we define
A1

M , A2
M via Axiom (4) of an HQFT. This yields a natural embedding ikM W Ak

M !
AM and a natural projection pk

M W AM ! Ak
M , where k D 1; 2. Observe now
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that given a connected 2-dimensional X -cobordism .W;M;N /, the homomorphism

.W / W AM ! AN expands uniquely as i1N 


1.W /p1
M C i2N 


2.W /p2
M for some


k.W / 2 Hom.Ak
M ; A

k
N /, where k D 1; 2. For cobordisms of type D��C, C��,

C�C, andBC this follows from the splittingL D L1˚L2. For other cobordisms, this
is obtained by splitting them into disks with � 2 holes as in the proof of Lemma 8.1.
It is easy to check that .A1; 
1/ and .A2; 
2/ are X -HQFTs and .A; 
/ is their direct
sum.

Lemma 8.3. If an HQFT .A0; 
 0/ is obtained from a 2-dimensional HQFT .A; 
/
by k-rescaling with k 2 K�, then the underlying crossed G-algebra of .A0; 
 0/ is
obtained from the underlying crossed G-algebra of .A; 
/ by k-rescaling.

Proof. For a cobordism .W;M;N / of type D��C, C��, and C�C, the number
�.W /Cb0.M/�b0.N / is equal to �1C2�1 D 0, 0C2�1 D 1, and 0C1�1 D 0,
respectively.

Lemma8.4. LetH � G be a subgroup of finite index, a 2 H 2.H IK�/, andk 2 K�.
The underlying crossedG-algebra of theX -HQFT .AG;H;a; 
G;H;a;k/ is isomorphic
to the transfer LG;H;�a;k of the crossedH -algebra L�a;k .

Proof. By the previous lemma, it is enough to consider the case k D 1. Let p W zX !
X be the covering corresponding toH � G. SetY D zX=p�1.x/ and consider theY -
HQFT .Aa; 
a/ determined by a 2 H 2.H IK�/ D H 2. zX IK�/ D H 2.Y IK�/. By
definition, the HQFT .A0 D AG;H;a; 
 0 D 
G;H;a;1/ is the transfer of .Aa; 
a/ to X .
Let L Š L�a be the underlying crossed H -algebra of .Aa; 
a/. We compute the
underlying crossedG-algebra .L0; �0; '0/ of .A0; 
 0/. Pick a base point Qx 2 p�1.x/ of
zX . For each y 2 p�1.x/ fix a path in zX leading from Qx to y. Let!y 2 G D �1.X; x/

be the homotopy class of the loop obtained by projecting this path to X . Then
f!ygy2p�1.x/ is a set of representatives of the right H -cosets in G. For an X -curve
M D .M; g W M ! X/, the vector spaceA0

M is a direct sum of copies ofK numerated
by the lifts of g to zX . IfM is connected and g W M ! X represents ˛ 2 G, then the
lifts of g to zX are numerated by y 2 p�1.x/ such that !y˛!

�1
y 2 H . Thus, L0

M is
the direct sum of copies of K numerated by such y 2 p�1.x/. Comparing with the
definition of the transfer . QL; Q�; Q'/ ofL (determined by the same set of representatives
f!ygy), we obtain that L0 D QL as G-graded vector spaces. Multiplication in L0 is
defined using the maps D��C ! X carrying the segments ty; tz � D��C to the
base point x. A lift of such a map to zX carries these segments to the same point
of p�1.x/ and induces multiplication in the corresponding copy of K. Therefore,
multiplication inL0 is a direct sum of multiplications in the copies ofK indexed by the
same point of p�1.x/. Hence L0 D QL as G-graded algebras. That �0 D Q� is proven
similarly. The definition of the transfer implies that for any ˛ 2 G, both ' 0̨ and Q'˛

carry K D L!j ˇ!�1
j

� L0
ˇ

D QLˇ to K D L!˛.j /˛ˇ ˛�1!�1
˛.j /

� L0
˛ˇ ˛�1 D QL˛ˇ ˛�1 ,

where we use the notation of Section 6.3. The equality ' 0̨ D Q'˛ follows then from
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the uniqueness of the action of G on L satisfying the axioms of a crossed G-algebra
(Section 6.2).

9. The G -center of a biangular G -algebra

Let B D L
˛2G B˛ be a biangular G-algebra. We compute the crossed G-algebra

underlying the HQFT .Aı
B ; 


ı
B/ derived from B .

We begin with algebraic preliminaries. For ˛ 2 G, define a K-linear homomor-
phism ˛ W B ! B by ˛.a/ D P

i p
˛
i aq

˛
i , where

P
i p

˛
i ˝q˛

i D b˛ 2 B˛ ˝B˛�1

is the vector derived from the inner product � D �B in Section 4.1. Here i runs over
a finite set of indices J˛ and p˛

i 2 B˛; q
˛
i 2 B˛�1 . Clearly,  ˛.Bˇ / � B˛ˇ ˛�1 for

all ˇ 2 G. By (10),  ˛.1B/ D 1B . The symmetry of � implies that

 ˛�1.a/ D
X

j 2J
˛�1

p˛�1

j aq˛�1

j D
X
i2J˛

q˛
i ap

˛
i :

The following lemma exhibits the main properties of the homomorphisms f ˛g˛ .

Lemma 9.1. For any ˛; ˇ 2 G and a; b 2 B ,

�. ˛.a/; b/ D �.a;  ˛�1.b//; (21)

 ˛.a ˇ .b// D  ˛.a/ ˛ˇ .b/; (22)

 ˛ ˇ .b/ D  ˛ˇ .b/: (23)

If b 2 Bˇ , then for any ˛ 2 G,

 ˛ˇ .b/ D  ˛.b/ (24)

and for any ˛ 2 G, a 2 B ,

 ˛.a/b D b ˇ�1˛.a/: (25)

For any ˛; ˇ 2 G and c 2 B˛ˇ˛�1ˇ�1 ,

Tr.�c  ˇ W B˛ ! B˛/ D Tr. ˛�1�c W Bˇ ! Bˇ /; (26)

where �c is the homomorphism B ! B , a 7! ca.

Proof. We first check that for any ˇ 2 G and b 2 Bˇ�1 ,P
i2J˛

p˛
i ˝ q˛

i b D P
j 2Jˇ˛

bp
ˇ˛
j ˝ q

ˇ˛
j : (27)

Both sides belong toB˛ ˝B˛�1ˇ�1 and it suffices to prove that they determine equal
functionals on the dual space B˛�1 ˝ Bˇ˛ . Pick x 2 B˛�1 and y 2 Bˇ˛ . By (11),
the left-hand side of (27) evaluated on x ˝ y givesP

i

�.p˛
i ; x/�.q

˛
i b; y/ D P

i

�.x; p˛
i /�.q

˛
i ; by/ D �.x; by/:
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Note that the expression �.ab; c/ with a; b; c 2 B is invariant under cyclic permu-
tations of a; b; c; indeed, �.ab; c/ D �.a; bc/ D �.bc; a/. Therefore the right-hand
side of (27) evaluated on x ˝ y givesP

j

�.bp
ˇ˛
j ; x/�.q

ˇ˛
j ; y/ D P

j

�.xb; p
ˇ˛
j /�.q

ˇ˛
j ; y/ D �.xb; y/ D �.x; by/:

This proves (27). Formula (27) implies that for any a 2 B , b 2 Bˇ�1 ,

 ˛.a/b D P
i2J˛

p˛
i aq

˛
i b D P

j 2Jˇ˛

bp
ˇ˛
j aq

ˇ˛
j D b ˇ˛.a/: (28)

This implies (25). By the cyclic symmetry,

�. ˛.a/; b/ D �.
P

i p
˛
i aq

˛
i ; b/ D �.a;

P
i q

˛
i bp

˛
i / D �.a;  ˛�1.b//:

This proves (21). Using (27), we obtain

 ˛.a ˇ .b// D P
i2J˛

p˛
i a ˇ .b/q

˛
i D P

i2J˛

p˛
i aq

˛
i  ˛ˇ .b/ D  ˛.a/ ˛ˇ .b/:

This proves (22). Substituting a D 1B in (22), we obtain (23).
Formula (27) implies that for any b 2 Bˇ�1 ,

 ˛�1.b/ D P
i2J˛

q˛
i bp

˛
i D P

j 2Jˇ˛

q
ˇ˛
j bp

ˇ˛
j D  .ˇ˛/�1.b/ D  ˛�1ˇ�1.b/:

This is equivalent to (24). We now check (26):

Tr.�c ˇ W B˛ ! B˛/ D P
i2J˛

�.�c ˇ .p
˛
i /; q

˛
i /

D P
i2J˛ ;j 2Jˇ

�.cp
ˇ
j p

˛
i q

ˇ
j ; q

˛
i /

D P
i2J˛ ;j 2Jˇ

�.q˛
i cp

ˇ
j p

˛
i ; q

ˇ
j /

D P
j 2Jˇ

�. ˛�1�c.p
ˇ
j /; q

ˇ
j /

D Tr. ˛�1�c W Bˇ ! Bˇ /: �

Lemma9.2. SetL D L
˛2G L˛ whereL˛ D  1.B˛/ � B˛ . ThenL is a subalgebra

of B and  ˛.L/ D L for all ˛ 2 G. The triple .L; �jL; f ˛jLg˛2G/ is a semisimple
crossed G-algebra.

Proof. Formula (22) with ˛ D ˇ D 1 shows that L D Im 1 is a subalgebra of B
with unit 1B D  1.1B/. Formula (23) implies that  2

1 D  1. By (21), the projector
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 1 W B ! B is self-adjoint with respect to � D �B . Hence B splits as an orthogonal
sum of L and Ker 1. Therefore �jL is an inner product on L.

Formula (23) with ˛ D 1 shows that  ˇ .B/ � L for all ˇ 2 G. Set 'ˇ D
 ˇ jL W L ! L. Formula (23) with ˛ D ˇ�1 implies that 'ˇ and 'ˇ�1 are mutually
inverse automorphisms of L. That they preserve multiplication follows from (22)
with ˇ D 1. By (23) and (21), '˛ˇ D '˛'ˇ and '˛ preserves �jL. Formula (24)
with ˛ D 1 yields 'ˇ jLˇ

D id. Formula (25) implies that '˛.b/a D ab for a 2 L˛ ,
b 2 L. Finally, for any ˛; ˇ 2 G and c 2 L˛ˇ˛�1ˇ�1 ,

Tr.�c'ˇ W L˛ ! L˛/ D Tr.�c ˇ W L˛ ! L˛/

D Tr.�c ˇ W B˛ ! B˛/

D Tr. ˛�1�c W Bˇ ! Bˇ /

D Tr. ˛�1�c W Lˇ ! Lˇ /

D Tr.'˛�1�c W Lˇ ! Lˇ /;

where the second and fourth equalities follow from the inclusion  ˇ .B/ � L and
the third equality is (26). Thus L satisfies all axioms of a crossed G-algebra.

The radical of a finite-dimensionalK-algebra C can be defined as the annihilator
of the symmetric bilinear form C � C ! K carrying a pair .c1; c2/ 2 C � C

to the trace of the homomorphism C ! C , c 7! c1c2c. By the definition of
a biangular G-algebra, the radical of B1 is trivial. Hence B1 is a direct sum of
matrix rings over K. If B1 is a matrix ring, B1 D Matn.K/ with n � 1, then
� D �B carries a pair .a1; a2/ 2 B1 � B1 to nTr.a1a2/, where Tr is the standard
matrix trace on Matn.K/. The vector b1 2 B1 ˝ B1 determined by �jB1

is equal to
n�1

Pn
i;j D1 ei;j ˝ ej;i where ei;j is the elementary .n�n/-matrix whose .i; j /-term

is 1 and all other terms are zero. The homomorphism  1 W B1 ! B1 carries any
a 2 B1 to n�1

Pn
i;j D1 ei;jaej;i D n�1 Tr.a/En whereEn is the unit .n�n/-matrix.

Thus,  1 is a projection of Matn.K/ onto its 1-dimensional center. If B1 is a direct
sum of N matrix rings then  1 is a projection of B1 onto its center KN . Hence
L1 D  1.B1/ D KN . Thus L is semisimple.

The crossed G-algebra L � B is called the G-center of B .

Lemma 9.3. The crossed G-algebra .L0 D L
˛2G L0̨ ; �0; f' 0̨ g˛/ underlying the

HQFT .Aı
B ; 


ı
B/ is isomorphic to the G-center L of B .

Proof. To compute L0̨ , we represent ˛ 2 G by a loop g W S1 ! X D K.G; 1/,
where S1 D fz 2 C j jzj D 1g with clockwise orientation and base point s D 1. The
X -curveM D .S1; g/ has a canonical framing t formed by one vertex s, one edge e,
and the G-system assigning ˛ to the edge e oriented clockwise. By Section 4.5,
L0̨ D Aı

M is the image of the projector PM W A.M;t/ ! A.M;t/, where A.M;t/ D B˛ .
Recall that PM D 
.W; g1 W W ! X/, where W D S1 � Œ0; 1� is viewed as a
cobordism between two copies of .M; t/ and g1 is the composition of the projection
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W ! S1 with g W S1 ! X . Let T be the CW-decomposition of W formed by the
vertices .s; 0/, .s; 1/, the edges e0 D e � f0g, e1 D e � f1g, e2 D fsg � Œ0; 1�, and
the face .S1 � fsg/ � .0; 1/. We orient e0; e1 clockwise and e2 from .s; 0/ to .s; 1/.
The map g1 is presented by the G-system on T assigning ˛ to e0; e1 and 1 2 G

to e2. It is clear from the definitions that PM D 
.W; g1/ W B˛ ! B˛ carries any
a 2 B˛ to

P
i p

1
i aq

1
i , where

P
i p

1
i ˝ q1

i D b1 2 B1 ˝ B1. Hence PM D  1 and
L0̨ D Im 1 D L˛ .

Replacing in this construction the labels of e1, e2 by ˇ˛ˇ�1; ˇ�1 2 G, re-
spectively, we obtain a G-system on T representing a map gˇ W W ! X . The
X -cobordism .W; gˇ / is the annulus C�C.˛Iˇ�1/ used to define '0

ˇ
on L0̨ D L˛ in

Section 7.3. By definition,

'0
ˇ jL˛

D 
ı.W; gˇ / D 
.W; gˇ /jL˛
W L˛ ! Lˇ˛ˇ�1 :

The homomorphism 
.W; gˇ / W B˛ ! Bˇ˛ˇ�1 carries any a 2 B˛ to
P

i p
ˇ
i aq

ˇ
i D

 ˇ .a/, where
P

i p
ˇ
i ˝ q

ˇ
i D bˇ 2 Bˇ ˝ Bˇ�1 . Hence '0

ˇ
D  ˇ jL.

Inverting the orientation of S1 � f1g � @W , we can view .W; g1/ as an
X -cobordism between .M; t/q .�M; t/ and ;. In the notation of Section 7.3, this
cobordism is C��.˛I 1/. By definition, �0̨ D 
ı.W; g1/ W L˛ ˝ L˛�1 ! K is the
restriction of 
.W; g1/ W B˛ ˝ B˛�1 ! K. For a 2 B˛ , b 2 B˛�1 ,


.W; g1/.a˝ b/ D P
i

�B.ap
1
i bq

1
i ; 1B/ D �B.a;  1.b//:

Since  1jL D id, we conclude that �0 D �B jL˝L.

By the proof of Lemma 9.2, the K-algebra B1 splits as a direct sum of matrix
algebras over K and  1 W B1 ! B1 maps each of these matrix algebras onto its
center. The set I D bas.L/ of the basic idempotents of L1 D  1.B1/ is the set of
unit elements of these matrix algebras. More precisely, each basic idempotent i 2 I
is the unit element of a direct summand Matni

.K/ of B1, where ni � 1. Let I0 � I

be the fixed point set of the action of G on I . For i 2 I0, the subalgebra iL of L is
a crossed G-algebra with unique basic idempotent i . The pair .iL; i/ determines a
cohomology class ri 2 H 2.GIK�/ by Lemma 6.2.

Theorem 9.4. For any closed connected oriented surface W endowed with a map
Qg W W ! X D K.G; 1/ such that g D Qg# W �1.W / ! G is an epimorphism,


B.W; Qg/ D P
i2I0

n
�.W /
i g�.ri /.Œ�W �//: (29)

Proof. By the previous lemma, L is the underlying crossed G-algebra of the HQFT
.Aı

B ; 

ı
B/. As we know, L splits as a direct sum of simple crossed G-algebras L	

numerated by the orbits � of the action of G on I D bas.L/. By Lemma 8.2,
the HQFT .Aı

B ; 

ı
B/ splits as a direct sum of HQFTs .A	 ; 
	/ such that L	 is the
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underlying crossed G-algebra of .A	 ; 
	/ for all orbits � � I . Then 
B.W; Qg/ D

ı

B.W; Qg/ D P
	 


	.W; Qg/.
We claim that 
	.W; Qg/ D 0 for any orbit � � I with at least two elements.

Indeed, the proof of Lemma 6.2 shows that L	 is isomorphic to LG;H;�;k , where H
is a subgroup ofG of index jmj � 2,  2 H 2.H IK�/, and k 2 K�. By Lemma 8.4,
LG;H;�;k underlies the X -HQFT .AG;H;�� ; 
G;H;��;k/. By Lemma 8.1, this X -
HQFT is isomorphic to .A	 ; 
	/. Thus, .A	 ; 
	/ is isomorphic to the transfer of a
K.H; 1/-HQFT. The assumption g.�1.W // D G implies that the map Qg W W ! X

does not lift to non-trivial coverings of X . Hence, 
	.W; Qg/ D 0.
A one-element orbit � � I is just fig for i 2 I0. By Lemma 6.2, L	 D iL is

obtained from Lri by ki -rescaling, where ki D �B.i; i/ D n2
i . Hence L	 underlies

the X -HQFT obtained from .A�ri ; 
�ri / by ki -rescaling. By Lemma 8.1, the latter
HQFT is isomorphic to .A	 ; 
	/. We have therefore


	.W; Qg/ D 
 fig.W; Qg/ D k
�.W /=2
i g�.�ri /.ŒW �/ D n

�.W /
i g�.ri /.Œ�W �/:

Hence


B.W; Qg/ D P
i2I0


 fig.W; Qg/ D P
i2I0

n
�.W /
i g�.ri /.Œ�W �//:

Note that for W D S2, we have G D f1g and ri D 0 for all i 2 I0 D I .
Formula (29) gives in this case 
B.W; Qg/ D P

i2I n
2
i D dimB1.

We now establish an analogue of formula (29) for a compact connected oriented
surface W of positive genus whose boundary has m � 1 components. We use the
notation introduced in the first two paragraphs of Section 5.1 assuming that the given
homomorphism g W � D �1.W;w/ ! G is surjective and that its restriction to the
free group H D hx1; : : : ; xmi � � is injective. As above, L is the G-center of
B and I0 is the fixed point set of the action of G on bas.L/. Suppose that for each
k D 1; : : : ; m, we are given a vector N�k 2 Lg.xk/ D Aı

.Ck ; Qg/
whereAı D Aı

B andCk

is the k-th component of @W . Let I �
0 � I0 consist of all i 2 I0 such that i N�k ¤ 0 for

all k D 1; : : : ; m (note that i N�k is the projection of N�k to the direct summand iLg.xk/

ofLg.xk/). For each i 2 I �
0 , we define a cohomology class r�

i 2 H 2.G; g.H/IK�/
as ri in Lemma 6.2 choosing the generating vectors s˛ 2 iL˛ Š K as follows.
Set sg.xk/ D i N�k for all k. The properties of the crossed G-algebra iL imply that
there is a unique vector sg.xk/�1 2 iLg.xk/�1 whose left and right products with
sg.xk/ are equal to i 2 iL1. Each ˛ 2 g.H/ expands as a product of the generators
g.xk/

˙1 2 g.H/, and we let s˛ be the product of the corresponding vectors sg.xk/˙1

(note that s˛ ¤ 0). For ˛ 2 G � g.H/, the generating vector s˛ 2 iL˛ is chosen in
an arbitrary way. The equality s˛sˇ D r˛;ˇ s˛ˇ for ˛; ˇ 2 G defines a K�-valued
2-cocycle r D fr˛;ˇ g˛;ˇ2G whose restriction to g.H/ is trivial. This cocycle
represents r�

i 2 H 2.G; g.H/IK�/.
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Theorem 9.5. Set N� D Nm
kD1 N�k 2 Aı

.@W; Qg/
. Then


ı
B.�W; Qg/. N�/ D P

i2I
�
0

n
�.W /Cm
i g�.r�

i /.ŒW; @W �//; (30)

where we view ŒW; @W � as an element ofH2.�;H I Z/, cf. Lemma 5.2.

Proof. The first part of the proof of Theorem 9.4 applies directly and gives


B.�W; Qg/. N�/ D P
i2I0


 fig.�W; Qg/.Nm
kD1 i N�k/: (31)

For i 2 I0 � I �
0 , the i -th term on the right-hand side is equal to 0. It remains to show

that for every i 2 I �
0 ,


 fig.�W; Qg/.Nm
kD1 i N�k/ D n

�.W /Cm
i g�.r�

i /.ŒW; @W �//: (32)

We can assume that X D K.G; 1/ contains a CW-subspace Y D K.g.H/; 1/

with the same base point x. Let p W Œ0; 1� ! S1, fu˛ W S1 ! Xg˛2G , � � R3,
and ff˛;ˇ W � ! Xg˛;ˇ2G be as in the proof of Theorem 7.2. We can assume that
u˛.S

1/ � Y for all ˛ 2 g.H/ and f˛;ˇ .�/ � Y for all ˛; ˇ 2 g.H/. Pick a
singular K�-valued 2-cocycle ‚ on X such that ‚.f˛;ˇ / D r�1

˛;ˇ
for all ˛; ˇ 2 G,

where r D fr˛;ˇ g is the 2-cocycle onG determined by the vectors s˛ 2 iL˛ chosen
above. Modifying if necessary ‚ by a coboundary, we can assume additionally that
‚ annihilates all singular chains in Y and defines thus a cohomology class Œ‚� 2
H 2.X; Y IK�/. This class is equal to �r�

i under the identificationH 2.X; Y IK�/ D
H 2.G; g.H/IK�/. Consider theX -HQFT .A‚; 
‚/ and itski -rescaling .A‚; 
‚;ki /

where ki D n2
i . Let R and R0 be the crossed G-algebras underlying these two

X -HQFTs, respectively. For ˛ 2 G, consider the generating vector

p˛ D hpi 2 R˛ D R0̨ D A‚
S1;˛

Š K

represented by the singular 1-simplex p W Œ0; 1� ! S1 viewed as a fundamental cycle
of the X -curve .S1; u˛/. By the proof of Theorem 7.2, p˛pˇ D r˛;ˇp˛ˇ for all
˛; ˇ 2 G. Moreover, the formula s˛ 7! p˛ defines an isomorphism of crossed
G-algebras iL ! R0. By Lemma 8.1, this isomorphism lifts to an isomorphism of
X -HQFTs .Afig; 
 fig/ ! .A‚; 
‚;ki /. Therefore


 fig.�W; Qg/.Nm
kD1 i N�k/ D 
 fig.�W; Qg/.Nm

kD1 sg.xk//

D 
‚;ki .�W; Qg/.Nm
kD1 pg.xk//

D n
�.W /Cm
i 
‚.�W; Qg/.Nm

kD1 pg.xk//:

We can choose Qg W W ! X in its homotopy class so that the restriction of Qg to the
k-th component Ck of @W is the composition of an orientation-preserving pointed
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homeomorphism fk W Ck ! S1 with ug.xk/ W S1 ! X for all k D 1; : : : ; m. It then
follows that pg.xk/ D hf �1

k
pi 2 A‚

.Ck ; Qg/
is represented by the singular 1-simplex

f �1
k
p W Œ0; 1� ! Ck viewed as a fundamental cycle in Ck . By the definition of 
‚,


‚.�W; Qg/.Nm
kD1hf �1

k
pi/ D Qg�.Œ‚�/.�ŒW; @W �/ D g�.r�

i /.ŒW; @W �//:

Combining these formulas we obtain (32).

10. Proof of Lemma 5.2

10.1. Preliminaries. Recall the notation of Lemma 5.2: q W G0 ! G is a group epi-
morphism with finite kernel � and B D KŒG0� is the associated biangular
G-algebra. By Lemma 9.2, the G-center .L D  1.B/; �B jL; f ˛jLg˛2G/ of B
is a semisimple crossedG-algebra. Let I D bas.L/ be theG-set of its basic idempo-
tents. As we know, each i 2 I is the unit element of a direct summand Matni

.K/ of
B1, where ni � 1. Let �C

i W B1 ! Matni
.K/ be the projection onto this summand.

Clearly, �C
i .i/ D Eni

, where En is the unit n � n matrix. The homomorphism
�C

i determines a representation �i D �C
i j� W � ! GLni

.K/ of � and is recovered
from �i as its linear extension. We can describe �i as the unique (up to equivalence)
irreducible representation of � such that �C

i .i/ ¤ 0. It is clear that the mapping
I ! Irr.�/, i 7! �i , is a bijection. We show that it is G-equivariant. By definition
of the action of G on I , for ˛ 2 G and i 2 I ,

˛i D  ˛.i/ D j�j�1
P

a2q�1.˛/

aia�1:

All the summands on the right-hand side are equal because i lies in the center of L1.
Therefore ˛i D aia�1 for any a 2 q�1.˛/. By Section 2.1, a�i .b/ D �i .a

�1ba/ for
all b 2 B1. Hence a�i .˛i/ D �i .i/ ¤ 0. Therefore a�i D �˛i for all a 2 q�1.˛/,
i.e., the bijection I ! Irr.�/, i 7! �i is G-equivariant. We identify I with Irr.�/
along this bijection. Though we shall not need it, note that each idempotent i 2 I

can be computed from the character �i of �i by i D j�j�1�i .1/
P

h2� �i .h/h
�1;

see, for instance, [3], Chapter 2, Theorem 5.
In the sequel, I0 D I0.q/ is the fixed point set of the action of G on I D Irr.�/

and .Aı D Aı
B ; 


ı D 
ı
B/ is the 2-dimensional HQFT with target X D K.G; 1/

determined by B .

10.2. The case @W D ;. For a closed connected oriented surface W , Lemma 5.2
is equivalent to the following claim: for any pointed map Qg W W ! X inducing an
epimorphism g W �1.W / ! G,


ı.W; Qg/ D P
i2I0

n
�.W /
i g�.��i /.Œ�W �/: (33)
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To deduce this formula from (29) it is enough to show that ri D ��i for all i 2 I0.
Pick i 2 I0 and set � D �i and n D ni D dim �. Fix the lifts f Q̨ 2 q�1.˛/g˛2G and
the matrices fM˛g˛ 2 GLn.K/ as in Section 2.2. This data determines a K�-valued
2-cocycle f�˛;ˇ g˛;ˇ representing ��. The proof of Lemma 2.1 yields an extension of
� W � ! GLn.K/ to a map N� W G0 ! GLn.K/. Let N�C W B D KŒG0� ! Matn.K/ be
the induced K-linear map. Then N�CjB1

D �C and in particular N�C.i/ D �C.i/ D
En. Since N�C.B1/ D Matn.K/, for each ˛ 2 G, there is d˛ 2 B1 such that
N�C.d˛/ D M�1

˛ D . N�C. Q̨ //�1. Set

s˛ D i 1.d˛ Q̨ / D j�j�1
P

a2�

iad˛ Q̨a�1 2 iL˛ � B˛:

By (6) and the identity �˛;1 D �1;˛ D 1, we have N�C.ab/ D N�C.a/ N�C.b/ fora; b 2 B
provided a 2 B1 or b 2 B1. Therefore

N�C.s˛/ D j�j�1
P

a2�

N�C.iad˛ Q̨a�1/

D j�j�1
P

a2�

N�C.i/ N�C.a/ N�C.d˛/ N�C. Q̨ / N�C.a�1/

D j�j�1
P

a2�

N�C.a/ N�C.a�1/

D j�j�1
P

a2�

�.a/�.a�1/ D En:

Thus, s˛ is a non-zero vector in iL˛ Š K. We take Q1 D 1 2 G0 and d1 D 1 2 B1 so
that s1 D i . The cohomology class ri is represented by the normalized K�-valued
2-cocycle fr˛;ˇ g˛;ˇ2G defined from s˛sˇ D r˛;ˇ s˛ˇ . Formula (6) implies that

r˛;ˇEn D N�C.r˛;ˇ s˛ˇ / D N�C.s˛sˇ / D �˛;ˇ N�C.s˛/ N�C.sˇ / D �˛;ˇEn:

Hence, r˛;ˇ D �˛;ˇ for all ˛; ˇ 2 G�.

10.3. The case @W ¤ ;. Pick k 2 f1; : : : ; mg. Then �k 2 q�1.g.xk// � G0 is
one of the generating vectors of Bg.xk/ and  1.�k/ is its projection to Lg.xk/. Set

N�k D P
i2I0

ini 1.�k/ 2 Lg.xk/:

We verify first that i N�k D 0 if and only if t�i
.�k/ D 0. Fix i 2 I0 and set � D �i and

n D ni D dim �. Fix the lifts f Q̨ 2 q�1.˛/g˛2G and the matrices fM˛g˛ 2 GLn.K/

as in Section 2.3. In particular, for ˛ D g.xk/ with k D 1; : : : ; m, we have Q̨ D �k

and TrM˛ D t�.�k/ 2 f0; 1g. We extend � W � ! GLn.K/ to N�C W B D KŒG0� !
Matn.K/ as above. Observe that i N�k D in 1.�k/ 2 iLg.xk/. A computation similar
to the one in Section 10.2 shows that

Tr N�C.i N�k/ D nTr N�C.i 1.�k// D nTr N�C.�k/ D nTrMg.xk/ D nt�.�k/:
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Consider the generating vectors fs˛ 2 iL˛ Š Kg˛2G defined in Section 10.2. Com-
paring the traces of N�C.i N�k/ and N�C.sg.xk// D En, we obtain that either i N�k D 0

and t�.�k/ D 0 or i N�k D sg.xk/ and t�.�k/ D 1.
If i N�k ¤ 0 for all k D 1; : : : ; m, then the vectors fs˛g˛2G satisfy the require-

ments needed in the definition r�
i given before Theorem 9.5. Indeed, the computa-

tion at the end of Section 10.2 shows that the 2-cocycle fr˛;ˇ g˛;ˇ2G defined from
s˛sˇ D r˛;ˇ s˛ˇ is equal to the 2-cocycle f�˛;ˇ g˛;ˇ2G derived in Section 2.3 from
the lifts f Q̨ g˛2G . In particular, r˛;ˇ D �˛;ˇ D 1 for all ˛; ˇ 2 g.H/. There-
fore s˛sˇ D s˛ˇ for all ˛; ˇ 2 g.H/. This and the equality sg.xk/ D i N�k for
all k are precisely the conditions used in the definition of r�

i . We conclude that
r�

i D ��i ;� 2 H 2.G; g.H/IK�/ and rewrite formula (32) as


 fig.�W; Qg/.Nm
kD1 i N�k/ D n

�.W /Cm
i g�.��i ;� /.ŒW; @W �//:

Dividing both sides by nm
i , we obtain that


 fig.�W; Qg/.Nm
kD1 i 1.�k// D n

�.W /
i g�.��i ;� /.ŒW; @W �//:

Summing up over all i 2 I0 such that i N�k ¤ 0 for all k and using (31) (with N�k

replaced by  1.�k/), we obtain


B.�W; Qg/.Œ��/ D P
i2I0

t�i
.�k/D1for all k

n
�.W /
i g�.��i ;� /.ŒW; @W �//:

This formula is equivalent to the one claimed by the lemma.

11. The case of a trivial bundle

For trivial bundles, Theorem 1.2 simplifies but remains non-trivial. We begin with a
computation of the cohomology classes ��;� for direct products.

Lemma 11.1. Let G, � be groups, G0 D G � � and q W G0 ! G be the projection.
(a) The action of G on Irr.�/ determined by q is trivial so that I0.q/ D Irr.�/.
(b) Let � D f�kgk be a finite subset of G0, where �k D .˛k 2 G; yk 2 �/ and

f˛kgk generate a free groupH � G of rank j� j. Let

@ W H2.G;H I Z/ ! H1.H I Z/ D L
k

Z � Œ˛k�

be the boundary homomorphism, where Œ˛k� 2 H1.H I Z/ is the class of ˛k . For any
� 2 Irr.�/ and any Z 2 H2.G;H I Z/ such that @Z D P

kŒ˛k�,

��;� .Z/
Q
k

t�.�k/ D Q
k

Tr �.yk/: (34)
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Proof. Claim (a) is obvious. We prove (b). We first compute the function t� W G0 !
f0; 1g. Let a D .˛; y/ 2 G0 with ˛ 2 G and y 2 � . Then a� D y� D M�1�M for
M D �.y/. Thus, t�.a/ D 0 if and only if Tr �.y/ D 0. To prove (34) it suffices
to consider the case where Tr �.yk/ ¤ 0 and t�.�k/ D 1 for all k. Set n D dim �.
Define a lift ˛ 7! Q̨ 0 of elements of G to G0 by Q̨ 0 D .˛; 1/ for ˛ 2 G � H and
Q̨ 0 D .˛; q�.˛// for ˛ 2 H , where q� W H ! � is the homomorphism sending ˛k

to yk for all k. In the role of associated conjugating matrices (as in Section 2.2) we
take M 0̨ D En for ˛ 2 G � H and M 0̨ D �.q�.˛// for ˛ 2 H . It follows from
the definitions that the corresponding 2-cocycle f�0

˛;ˇ
g is trivial. The present choice

of conjugating matrices M 0̨ differs from the one in the definition of ��;� where it is
arbitrary on G � H and is given on H by the homomorphism � W H ! GLn.K/

sending ˛k to .Tr �.yk//
�1�.yk/ for all k. The homomorphisms �; �q� W H !

GLn.K/ are projectively equal, so there is a homomorphism  W H ! K� such
that �q� D  �. We extend  to G by  .G � H/ D 1 and conclude that ��;�

is represented by the cocycle f �1
˛ˇ
 ˛ ˇ g˛;ˇ2G . Clearly,  .˛k/ D Tr �.yk/ for

all k. Therefore if Z 2 H2.G;H I Z/ and @Z D P
k rkŒ˛k� with rk 2 Z, then

��;� .Z/ D Q
k.Tr �.yk//

rk . This implies (34).

This lemma allows us to simplify formula (16) in the case where G D � , g D
id W � ! � ,G0 D G�� , and q W G0 ! G is the projection. This gives the following
theorem. Let W be a compact connected oriented surface of positive genus d with
m � 0 boundary components and base point w. Let x1; : : : ; xm 2 �1.W;w/ be as in
Section 5.1. Then for any finite group � and any conjugacy classes L1, …, Lm in � ,
the number of homomorphisms�1.W;w/ ! � sendingxk toLk for allk D 1; : : : ; m

is equal to

j�j2d�1
P

�2Irr.�/

˚
.dim �/2�2d�m

Qm
kD1

P
y2Lk

Tr �.y/
�
:

This theorem is due to Frobenius [6] forW D S1 �S1 and to Mednykh [9] for allW ;
see also [8]. Theorem 1.2 for trivial bundles (over surfaces of positive genus) is an
equivalent reformulation of the Frobenius–Mednykh theorem.
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