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1. Introduction

We mean by a p.m.p. action of a discrete countable group a measure-preserving

action of the group on a standard Borel space equipped with a probability measure,

where “p.m.p." stands for “probability-measure-preserving.” A p.m.p. action of a

discrete countable group is called stable if the associated equivalence relation is

isomorphic to its direct product with the ergodic hyper�nite equivalence relation

of type II1. Due to Connes, Feldman and Weiss [4] and to Ornstein and Weiss [19],

any ergodic, free and p.m.p. action of any in�nite amenable group gives rise to the

ergodic hyper�nite equivalence relation of type II1. It is a challenging problem to

decide whether a given group has an ergodic, free, p.m.p. and stable action unless

the group virtually has a direct summand which is in�nite and amenable.

Jones and Schmidt [15] characterized stability of ergodic p.m.p. actions in

terms of asymptotically central sequences. In [15, Example 4.4], they also noticed

that for any collection of countably in�nitely many, non-trivial discrete countable

groups, ¹Gnºn, and for any ergodic, free and p.m.p. action Gn Õ .Xn; �n/, the

product action of the direct sum,
L

n Gn Õ
Q

n.Xn; �n/, is stable.

On the other hand, Zimmer [24] obtained certain indecomposability results

on equivalence relations arising from semisimple Lie groups. Adams [1] showed

that for any ergodic, free and p.m.p. action of a non-elementary word-hyperbolic

group, the associated equivalence relation cannot be written as the direct product

of two discrete measured equivalence relations of type II1. Such indecomposabil-

ity is also obtained for any equivalence relation with its cost more than 1 or its �rst

`2-Betti number positive in [10] and [11], and for the equivalence relation associ-

ated with any action of the mapping class group of a surface in [16]. More strongly,

the von Neumann algebras associated with various group actions are shown to be

prime in [2], [3], [13], [14], [20], and [21].

For two integers p, q with 1 � jpj � jqj, the group with the presentation,

BS.p; q/ D h a; t j tapt�1 D aq i;

is called the Baumslag–Solitar group. �e group BS.p; q/ is amenable if and only

if jpj D 1. If 2 � jpj D jqj, then BS.p; q/ has a �nite index subgroup isomorphic

to the direct product of the in�nite cyclic groupZ with a non-abelian free group of

�nite rank. It readily follows that there exists a free and stable action of BS.p; q/

unless 2 � jpj < jqj. If 2 � jpj < jqj, then no �nite index subgroup of BS.p; q/

has an in�nite, amenable and normal subgroup. �is is proved through the action

of BS.p; q/ on the Bass–Serre tree and its boundary, as discussed in the �rst para-

graph of [17, Appendix B]. We could expect Adams’ argument in [1] applicable
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to BS.p; q/ because the action of a word-hyperbolic group on its compacti�ca-

tion plays an important role in his proof. By contrast, applying Jones–Schmidt’s

characterization of stable actions, we show the following:

�eorem 1.1. Let p and q be integers with 2 � jpj < jqj. �en BS.p; q/ has an
ergodic, free, p.m.p. and stable action. In particular, for any amenable, discrete
and countable group A, the group BS.p; q/ is measure equivalent to the direct
product A � BS.p; q/.

Any discrete countable group having an ergodic, free, p.m.p. and stable ac-

tion is inner amenable (see [15, Proposition 4.1]). �eorem 1.1 therefore implies

that any Baumslag–Solitar group is inner amenable. �e latter was proved by

Stalder [22]. We should compare �eorem 1.1 with Fima’s result in [7] that the

von Neumann algebra of BS.p; q/ with 2 � jpj < jqj is prime, is not solid and

has no Cartan subalgebra. After posting the �rst draft of this paper on the arXiv,

we were informed by Narutaka Ozawa that the von Neumann algebra of BS.p; q/

has property Gamma. �is also implies that BS.p; q/ is inner amenable.

Let Q denote the �eld of rational numbers. For a set of prime numbers, S , we

de�ne ZS as the subring of Q generated by all 1=s with s 2 S . As an application

of �eorem 1.1, we obtain the following:

�eorem 1.2. Let p and q be integers with 2 � jpj < jqj. Let S be a set of
prime numbers dividing neither p nor q. We denote by ˛ the isomorphism from
pZS onto qZS multiplying by q=p. �en the HNN extension of ZS relative to ˛

is measure equivalent to BS.p; q/.

In [15, Problem 4.2], Jones–Schmidt asked whether any inner amenable group

has an ergodic, free, p.m.p. and stable action. Recently, Vaes [23] discovered an

inner amenable group G whose von Neumann algebra LG is a factor and does not

have property Gamma. �is solved a longstanding problem posed by E�ros [5].

In particular, LG is not isomorphic to its tensor product with the hyper�nite II1

factor. �e Vaes group G could therefore be a candidate of a counterexample to

the above Jones–Schmidt’s question, whereas we show the following:

�eorem 1.3. �e Vaes group G has an ergodic, free, p.m.p. and stable action.
In particular, for any amenable, discrete and countable group A, the group G is
measure equivalent to the direct product A �G.

�e construction of a stable action of the group G is fairly similar to that for

Baumslag–Solitar groups.
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�is paper is organized as follows. In Section 2, we review the characterization

of stable actions due to Jones–Schmidt, and introduce the notation and terminol-

ogy employed throughout the paper. �eorem 1.1 is proved through Sections 3

and 4. In Section 3, focusing on a certain solvable quotient of BS.p; q/, we con-

struct its p.m.p. action based on the odometer action of Z. In Section 4, using

this action, we obtain an ergodic, free, p.m.p. and stable action of BS.p; q/. As a

by-product, we also �nd such a stable action of the normal subgroup of BS.p; q/

generated by a. In the case of p D 1, although BS.1; q/ is amenable, our construc-

tion of stable actions is still available, and reduces to the construction in Section 3.

�is will help us to get an intuition for a general case. In Sections 5 and 6, �eo-

rems 1.2 and 1.3 are proved, respectively.

2. Preliminaries

Let N denote the set of non-negative integers. Let Z� and ZC denote the set of

negative integers and the set of positive integers, respectively.

2.1. Jones–Schmidt’s characterization of stability. We mean by a standard
probability space a standard Borel space equipped with a probability measure.

All relations among Borel sets and maps that appear in the paper are understood

to hold up to sets of measure zero, unless otherwise stated.

Let .X; �/ be a standard probability space. We denote by BX the �-algebra

of Borel subsets of X . Let R be an ergodic, discrete measured equivalence re-

lation on .X; �/ of type II1. For x 2 X , let Rx denote the equivalence class of

R containing x. We de�ne ŒR� as the full group of R, that is, the group of Borel

automorphisms U of .X; �/ with Ux 2 Rx for a.e. x 2 X .

A sequence ¹Bj ºj 2N inBX is called an asymptotically invariant (a.i.) sequence
for R if for any U 2 ŒR�, we have

limj �.UBj 4 Bj / D 0:

An a.i. sequence ¹Bj ºj 2N for R is called trivial if we have

limj �.Bj /.1� �.Bj // D 0:
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A sequence ¹Uj ºj 2N in ŒR� is called an asymptotically central (a.c.) sequence
for R if the following two conditions hold:

(a) for any B 2 BX , we have limj �.Uj B 4 B/ D 0;

(b) for any V 2 ŒR�, we have limj �.¹ x 2 X j Uj Vx ¤ V Uj x º/ D 0.

An a.c. sequence ¹Uj ºj 2N for ŒR� is called trivial if we have

limj �.Uj Bj 4 Bj / D 0

for any a.i. sequence ¹Bj ºj 2N for R.

We mean by a discrete group a discrete and countable group. Let G be a

discrete group, and let G Õ .X; �/ be an ergodic p.m.p. action. We de�ne

R.G Õ .X; �// as the discrete measured equivalence relation associated with

the action G Õ .X; �/, that is,

R.G Õ .X; �// D ¹ .gx; x/ 2 X �X j g 2 G; x 2 X º;

which is often denoted by R.G Õ X/ if � is understood from the context. An

a.i. sequence for R.G Õ X/ is also called an asymptotically invariant (a.i.) se-
quence for the action G Õ .X; �/. Similarly, an a.c. sequence for R.G Õ X/ is

also called an asymptotically central (a.c.) sequence for the action G Õ .X; �/.

We note that a sequence ¹Bj ºj 2N in BX is a.i. for the action G Õ .X; �/ if and

only if for any g 2 G, we have limj �.gBj 4 Bj / D 0. We also note that a

sequence ¹Uj ºj 2N in ŒR.G Õ X/� is a.c. for the action G Õ .X; �/ if and only

if it satis�es condition (a) in the de�nition of an a.c. sequence and the following

condition:

(c) for any g 2 G, we have limj �.¹ x 2 X j Uj gx ¤ gUj x º/ D 0.

�ese remarks are noticed in [15, Section 2] and [15, Remark 3.3], respectively.

Lemma 2.1. Let R and S be ergodic, discrete measured equivalence relations
of type II1, on standard probability spaces .X; �/ and .Y; �/, respectively. Let
� W X ! Y be a Borel map with ��� D � and �.Rx/ � S�.x/ for a.e. x 2 X .
If ¹Bj ºj 2N is an a.i. sequence for S, then ¹��1.Bj /ºj 2N is an a.i. sequence for R.

Proof. For j 2 N, we set Aj D ��1.Bj /. Pick g 2 ŒR� and " > 0. It is enough

to show that �.gAj n Aj / < " for any su�ciently large j 2 N. By [6, �eorem

1], we can �nd a discrete group H and a p.m.p. action of H on .Y; �/ such that

the associated equivalence relation is equal to S. Let ¹hnºn2N be an enumera-

tion of all elements of H with N a countable set. �ere exists a countable Borel
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partition X D
F

n2N Xn such that for any n 2 N and a.e. x 2 Xn, we have

�.gx/ D hn�.x/. Let F be a �nite subset of N with �
�

X n
S

n2F Xn

�

< "=2.

Choose a number J 2 N such that for any n 2 F and any j 2 N with j � J , we

have �.hnBj 4 Bj / < "=.2jF j/. For any n 2 N and j 2 N, the inclusion

g.Aj \Xn/ n Aj � ¹ x 2 X j �.g�1x/ 2 Bj ; hn�.g�1x/ D �.x/ 62 Bj º

� g��1.Bj n h�1
n Bj /

holds. For any j 2 N with j � J , we therefore obtain the inequality

�.gAj n Aj / � �
�

X n
[

n2F

Xn

�

C
X

n2F

�.g.Aj \ Xn/ n Aj / < ":

�e lemma is proved.

LetR0 be the ergodic hyper�nite equivalence relation on a standard probability

space .X0; �0/ of type II1. An ergodic, discrete measured equivalence relation R

on a standard probability space .X; �/ is called stable if R is isomorphic to the

direct product R � R0 on .X � X0; � � �0/ de�ned as

R � R0 D ¹ ..x; x0/; .y; y0// 2 .X � X0/2 j .x; y/ 2 R; .x0; y0/ 2 R0 º:

An ergodic p.m.p. action G Õ .X; �/ is called stable if R.G Õ X/ is stable.

Jones–Schmidt obtained the following characterization of stability.

�eorem 2.2 ([15, �eorem 3.4]). An ergodic discrete measured equivalence re-
lation of type II1 is stable if and only if it has a non-trivial a.c. sequence.

2.2. Abelian groups associated with integers. Fix an integer l with l � 2. Put

E D Z. We de�ne a ring El as the projective limit lim
 �

E=lnE, which is compact

and unital. We have an embedding of E into El through the canonical projection

from E onto E=lnE. Each element x of El is uniquely written as the formal sum

x D
P

1

iD0 xi l
i with xi 2 ¹0; 1; : : : ; l � 1º for any i 2 N.

�e additive group El is torsion-free. In fact, if k is a positive integer and a is an

element of El with ka D 0, then choosing a sequence ¹miºi2N in E approaching

a, we obtain the sequence ¹kmiºi2N in E approaching 0. It follows that for any

n 2 N, there exists a number I 2 N such that for any i 2 N with i � I , the

number kmi is divisible by ln. �is is equivalent to that for any n 2 N, there

exists a number J 2 N such that for any i 2 N with i � J , the number mi is

divisible by ln. We therefore have a D 0. �e claim is proved.
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Let Rl denote the ring of fractions of El by the multiplicative subset S D

¹ ln 2 E j n 2 N º. �e ring Rl consists of equivalence classes of all elements

in El � S , where two elements .a; s/; .b; t / 2 El � S are equivalent if and only

if there exists an element u 2 S with .at � bs/u D 0. �e equivalence class of

.a; s/ 2 El �S is denoted by a=s. Using that the additive group El is torsion-free,

we can show that El is naturally a subring of Rl . �e subring of Rl generated by

1=l is isomorphic to the ring ZŒ1= l�.

Suppose that we have two coprime integers p, q with 2 � p < q and l D pq.

We de�ne Rl;q as the subgroup of Rl generated by El and all elements of the form

1=qn with n 2 N. Similarly, we de�ne Rl;p as the subgroup of Rl generated by

El and all elements of the form 1=pm with m 2 N. Each element x of Rl;q n El

is uniquely written as the formal sum

x D xnqn C xnC1qnC1 C � � � C x�1q�1 C

1
X

j D0

xj lj

with n 2 Z�; xi 2 ¹0; 1; : : : ; q � 1º for any integer i with n � i � �1; xn ¤ 0;

and xj 2 ¹0; 1; : : : ; l � 1º for any j 2 N. Since p and q are coprime, the element

x is also uniquely written as the formal sum

x D yn

�
q

p

�n

C ynC1

�
q

p

�nC1

C � � � C y�1

�
q

p

��1

C

1
X

j D0

yj lj

with yi 2 ¹0; 1; : : : ; q � 1º for any integer i with n � i � �1; yn ¤ 0; and

yj 2 ¹0; 1; : : : ; l � 1º for any j 2 N. �e coe�cients yn; ynC1; : : : are inductively

determined by xn; xnC1; : : :, and the di�erence
P

1

j D0 xj lj �
P

1

j D0 yj lj lies in E.

We also have similar expansions of elements of Rl;p nEl .

3. Actions of certain solvable quotients

�roughout this section, we �x two coprime integers p, q with 1 � p < q. We set

G0 D G0.p; q/ D ZŒ1=p; 1=q�. Let a denote the multiplicative unit 1 in G0.

Let t denote the automorphism of the group G0 multiplying by q=p. We de�ne a

discrete group G D G.p; q/ as the semi-direct product of G0 and the in�nite cyclic

group generated by t . Note that for any positive integer r , the group G is a quotient

of the group BS.rp; rq/. �e aim of this section is to construct an interesting

ergodic p.m.p. action G Õ .Y; �/, which will be used in the next section.
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3.1. �e case of p D 1. We assume p D 1. �e group G then has the presenta-

tion h a; t j tat�1 D aq i. We set

Y D
Y

Z

¹0; 1; : : : ; q � 1º

and de�ne a probability measure � on Y as the direct product of the uniformly dis-

tributed probability measure on ¹0; 1; : : : ; q � 1º. Let a act on Y by the odometer

adding 1 to the 0th coordinate and increasing digits toward positive coordinates.

More precisely, for each y D .yn/n2Z 2 Y , the element ay D .zn/n2Z is deter-

mined by the formula zn D yn for n 2 Z� and the equality

1C

1
X

nD0

ynqn D

1
X

nD0

znqn

in the group Eq . Let t act on Y by the shift toward the right. Namely, for each

y D .yn/n2Z 2 Y , the element ty D .wn/n2Z is determined by the formula

wn D yn�1 for n 2 Z. �is de�nes an ergodic p.m.p. action of G on .Y; �/.

3.2. �e case of p > 1. We assume p > 1. �e group G then has the presen-

tation so that generators are ai for i 2 Z and t , and relations are Œai ; aj � D e,

a
p
iC1 D a

q
i and tai t

�1 D aiC1 for any i; j 2 Z. Note that for each i 2 Z, ai

corresponds to the number .q=p/i 2 ZŒ1=p; 1=q�. Under this identi�cation, we

have a0 D a.

We set

Y� D
Y

Z�

¹0; 1; : : : ; q � 1º;

Y0 D
Y

N

¹0; 1; : : : ; pq � 1º;

YC D
Y

ZC

¹0; 1; : : : ; p � 1º:

We de�ne a probability measure �� on Y� as the direct product of the uniformly

distributed probability measure on ¹0; 1; : : : ; q � 1º. Similarly, we de�ne proba-

bility measures �0 and �C on Y0 and YC, respectively. We set

.Y; �/ D .Y�; ��/ � .Y0; �0/ � .YC; �C/:

�e set Y0 is identi�ed with the group Epq under the map sending each element

.xk/k2N of Y0 to the sum
P

k2N
xk.pq/k. In the following argument, it is conve-

nient to regard each element of Y ,

y D ..yn/n2Z�
; y0; .ym/m2ZC

/ 2 Y� � Y0 � YC;
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as the formal sum

� � � C y�2

�
q

p

��2

C y�1

�
q

p

��1

C y0 C y1

q

p
C y2

�
q

p

�2

C � � � :

We now de�ne elements aiy 2 Y for i 2 Z and ty 2 Y .

Let a0 act on Y by adding 1 on Y0, that is, set

a0y D ..yn/n2Z�
; 1C y0; .ym/m2ZC

/;

where Y0 is identi�ed with the group Epq . For each i 2 Z�, let ai act on Y by

adding .q=p/i to y. More precisely, the element

aiy D ..zn/n2Z�
; z0; .zm/m2ZC

/ 2 Y� � Y0 � YC

of Y is determined by the formula zn D yn for any n 2 Z with n � i � 1 or n � 1

and the equation

�
q

p

�i

C

�1
X

nDi

yn

�
q

p

�n

C y0 D

�1
X

nDi

zn

�
q

p

�n

C z0

in the group Rpq . Similarly, for each j 2 ZC, let aj act on Y by adding .q=p/j

to y. More precisely, the element

aj y D ..wn/n2Z�
; w0; .wm/m2ZC

/ 2 Y� � Y0 � YC

of Y is determined by the formula wn D yn for any n 2 Z with n � �1 or

n � j C 1 and the equation

y0 C

j
X

mD1

ym

�
q

p

�m

C

�
q

p

�j

D w0 C

j
X

mD1

wm

�
q

p

�m

in the group Rpq . One can check that for any i 2 Z, the Borel automorphism ai of

Y de�ned above preserves the measure �, and that for any i; j 2 Z, the relations

Œai ; aj � D e and a
p
iC1 D a

q
i hold.
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Let � W Y0 ! ¹0; 1; : : : ; p�1º be the Borel map de�ned so that for any x 2 Epq ,

the element x � �.x/ belongs to pEpq . We de�ne ty 2 Y by the formula

ty D
�

.yn�1/n2Z�
; y�1 C

q

p
.y0 � �.y0//; .�.y0/; y1; y2; : : : /

�

:

Lemma 3.1. �e map t W Y ! Y de�ned above is a Borel automorphism of Y and
preserves the measure �.

Proof. Let � W Y0 ! ¹0; 1; : : : ; q � 1º be the Borel map de�ned so that for any

x 2 Epq , the element x � �.x/ belongs to qEpq . �e inverse of the map t is the

map sending each element y of Y , written as

y D ..yn/n2Z�
; y0; .ym/m2ZC

/ 2 Y� � Y0 � YC;

to

�

. : : : ; y�2; y�1; �.y0//;
p

q
.y0 � �.y0//C y1; .ymC1/m2ZC

�

2 Y� � Y0 � YC:

�e map t is thus a Borel automorphism of Y .

Let N and M be positive integers. Pick

k�N ; k�N C1; : : : ; k�1 2 ¹0; 1; : : : ; q � 1º

and

l1; l2; : : : ; lM 2 ¹0; 1; : : : ; p � 1º:

We also pick i 2 ¹0; 1; : : : ; p � 1º and a Borel subset A of i C pEpq . We de�ne

the Borel subset of Y ,

B D ¹ ..yn/n; y0; .ym/m/ 2 Y j yn D kn; for all n 2 ¹�N;�N C 1; : : : ;�1º;

y0 2 A; ym D lm; for all m 2 ¹1; 2; : : : ; M º º:

We then have

�.B/ D q�N �0.A/p�M

and

tB D ¹ ..yn/n; y0; .ym/m/ 2 Y j

yn D kn�1; for all n 2 ¹�N C 1;�N C 2; : : : ;�1º;

y0 2 k�1 C
q

p
.�i C A/; y1 D i; ym D lm�1;

for all m 2 ¹2; 3; : : : ; M C 1º º:
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�e equality

�.tB/ D q�N C1 p

q
�0.A/p�1p�M D �.B/

thus holds. It follows that t preserves �.

One can directly check the relation tai t
�1 D aiC1 as Borel automorphisms of

Y for any i 2 Z. We therefore obtain a p.m.p. action of G on .Y; �/.

Let S0 denote the equivalence relation on .Y; �/ de�ned as follows: Two ele-

ments of Y ,

y D ..yn/n2Z�
; . Nyi/i2N; .ym/m2ZC

/

and

z D ..zn/n2Z�
; . Nzi/i2N; .zm/m2ZC

/;

are equivalent in S0 if and only if

yn D zn for all but �nitely many n 2 Z�,

Nyi D Nzi for all but �nitely many i 2 N, and

ym D zm for all but �nitely many m 2 ZC.

For a.e. y 2 Y , the equivalence class of y with respect to S0 is equal to the orbit of

y under the action of the subgroup G0 on Y . �e action of G0 on .Y; �/ is therefore

ergodic.

Remark 3.2. In the above construction of the action G Õ .Y; �/, if we substitute

1 for p, then YC consists of a single point, and the action coincides with the action

constructed in Section 3.1. We however decided to discuss the cases of p D 1 and

p > 1 individually to avoid confusion.

Let � W Y ! Y0 denote the projection. �e following lemma will be used in

the proof of Lemma 4.5.

Lemma 3.3. For any s 2 G0 and a.e. y 2 Y , there exists a number K D K.s; y/ 2

N such that for any k 2 N with k � K,

�.t�ksy/ D �.t�ky/:

Proof. �e product of two elements of the group G0 is denoted multiplicatively.

Suppose that the lemma is true for s1; s2 2 G0. For a.e. y 2 Y and any integer k

bigger than K.s1; s2y/ and K.s2; y/, the equality

�.t�k.s1s2/y/ D �.t�ks1.s2y// D �.t�ks2y/ D �.t�ky/

holds. �e lemma is therefore true for s1s2.
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It is enough to show the lemma when s D t iat�i D .q=p/i for some i 2 Z

because all elements of this form generate G0. If i is non-negative, then for any

integer k and any y 2 Y , we have the equalities

t�ksy D t�kCiC1.t�i�1st iC1/.t�i�1y/

and

t�i�1st iC1 D
� q

p

��1

:

It is therefore enough to show the lemma when s D .q=p/i with i 2 Z�.

For n 2 Z�, let �n W Y ! ¹0; 1; : : : ; q � 1º denote the projection onto the nth

coordinate of Y�. For m 2 N, we de�ne a Borel map

�m W Y �! ¹0; 1; : : : ; q � 1º

by

�m.y/ D ��1.t�m�1y/ for y 2 Y .

We have the equality �n.t�mCny/ D ��1.t�m�1y/ for any m 2 N, n 2 Z� and

y 2 Y .

Claim 3.4. �e Borel subset of Y ,

A D ¹ y 2 Y j �m.y/ � q � p; for all m 2 N º;

has zero �-measure.

Proof. For k 2 N, we set

Ak D ¹ y 2 Y j �m.y/ � q � p; for all m 2 ¹0; 1; : : : ; kº º:

For any k 2 N and any y D ..yn/n; y0; .ym/m/ 2 Y , we have

t�k�1y D � � � C y�1

�
q

p

��k�2

C

�1
X

nD�k�1

�nCkC1.y/

�
q

p

�n

C � � � :

�e inclusion

t�k�1Ak �

�1
\

nD�k�1

��1
n .¹q � p; q � p C 1; : : : ; q � 1º/

thus holds. It follows that �.Ak/ D �.t�k�1Ak/ � .p=q/kC1. �e inclusion

A � Ak for any k 2 N implies that �.A/ D 0.
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Claim 3.5. Fix n; m 2 ZC. Pick a number zl 2 ¹0; 1; : : : ; q � 1º indexed by each
integer l with �n �mC 1 � l � �n. If z�n � q � p � 1, then for each integer l

with �n � mC 1 � l � �n, there exists a unique number z0

l
2 ¹0; 1; : : : ; q � 1º

with

q

�
q

p

��n�m

C

�n
X

lD�n�mC1

zl

�
q

p

�l

D

�n
X

lD�n�mC1

z0

l

�
q

p

�l

:

Proof. We �nd the number z0

l
by induction on m. If m D 1, then the equation

q

�
q

p

��n�1

C z�n

�
q

p

��n

D .p C z�n/

�
q

p

��n

holds. It thus su�ces to set z0
�n D pCz�n. In general, if pCz�n�mC1 � q�1, then

we set z0

�n�mC1 D pCz�n�mC1 and z0

l
D zl for any l with �n�mC2 � l � �n.

Otherwise, the left hand side of the equation in the claim is equal to

.p C z�n�mC1 � q/

�
q

p

��n�mC1

C q

�
q

p

��n�mC1

C

�n
X

lD�n�mC2

zl

�
q

p

�l

:

By using the inequality 0 � p C z�n�mC1 � q � q � 1 and the hypothesis of the

induction, we can �nd the number z0

l
in the claim. Uniqueness of z0

l
holds because

p and q are coprime.

We now prove Lemma 3.3 for s D .q=p/i 2 G0 with i 2 Z�. Fix K 2 N. For

any k 2 N with k > K and any y D ..yn/n; y0; .ym/m/ 2 Y , we have

t�ky D � � � C

�1�k
X

nDi�k

ynCk

�
q

p

�n

C

�kCK
X

mD�k

�mCk.y/

�
q

p

�m

C � � � :

�e equalities t�ksy D t�kstk.t�ky/ and t�kstk D .q=p/i�k imply that t�ksy

is obtained by adding .q=p/i�k to t�ky. If yi < q � 1, then the coordinates

of t�ksy and t�ky except for the .i � k/th one of Y� are equal. If yi D q � 1

and �K.y/ � q � p � 1, then by Claim 3.5, the coordinates of t�ksy and t�ky

except for the j th one of Y� with i � k � j � �k C K are equal. We thus

have �.t�ksy/ D �.t�ky/ for any k 2 N with k > K and any y 2 Y with

�K.y/ � q � p � 1. Lemma 3.3 then follows from Claim 3.4.
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4. Stable actions of Baumslag–Solitar groups

�roughout this section, we �x two coprime integers p, q with 1 � p < q, and �x

a positive integer r with rp � 2. We set

� D BS.rp; rq/ D h a; t j tarpt�1 D arq i

and set E D hai. Let H be the normal subgroup of � generated by a. �e quotient

group �=H is isomorphic to Z and is generated by the image of t . Let G0 D

G0.p; q/ and G D G.p; q/ be the groups de�ned in the beginning of Section 3.

We have the surjective homomorphism � W � ! G sending a to the multiplicative

unit 1 of G0 and sending t to the automorphism of G0 multiplying by q=p. Let N

be the kernel of �.

We set

X D
Y

N

¹0; 1º

and de�ne a probability measure � on X as the direct product of the uniformly

distributed probability measure on ¹0; 1º. We de�ne an ergodic p.m.p. action of

� on .X; �/ so that a acts on it trivially, and t acts on it by the odometer adding

1 to the 0th coordinate of X and increasing digits toward the right. Note that H

acts on X trivially. For j 2 N and l0; l1; : : : ; lj 2 ¹0; 1º, we set

X.l0; l1; : : : ; lj / D ¹.xn/n2N 2 X j x0 D l0; x1 D l1; : : : ; xj D lj º:

Let G Õ .Y; �/ be the action constructed in Section 3. Let � act on .Y; �/ through

the homomorphism � W � ! G.

4.1. Co-induced actions. We set

Z0 D
Y

N

¹0; 1; : : : ; pq � 1º

and de�ne a probability measure �0 on Z0 as the direct product of the uniformly

distributed probability measure on ¹0; 1; : : : ; pq � 1º. Let E act on .Z0; �0/ by

odometers so that a adds 1 to the 0th coordinate and increases digits toward the

right. We set

.Z; �/ D
Y

�=E

.Z0; �0/

and de�ne an action of � on .Z; �/ as the action co-induced from the action E Õ

.Z0; �0/. Namely, �xing a section s W �=E ! � for the canonical map from �

onto �=E, for  2 � and f 2 Z, we de�ne an element f 2 Z by the equation

.f /.˛/ D b�1f .ˇ/
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for ˛ 2 �=E, where b 2 E and ˇ 2 �=E are the unique elements determined by

the equation s.ˇ/b D �1s.˛/. �is indeed de�nes a p.m.p. action of � on .Z; �/.

One can check that this action is essentially free, that is, the stabilizer of a.e. point

of Z for the action is trivial, by using that the action of E on .Z0; �0/ is essentially

free. �e construction of co-induced actions appears in [12, Section 3.4].

Lemma 4.1. �e following assertions hold.

(i) For any g 2 �, there exist K; K 0; L; L0 2 N such that KCL D K 0CL0 and

for any k; l 2 N, we have garpKCkqLCl

g�1 D arpK0CkqL0Cl

.

(ii) For any sequence ¹nkºk2N of positive integers and any Borel subset B of Z,
we have

lim
k!1

�.arnk.pq/k

B 4 B/ D 0:

�is convergence is indeed uniform with respect to the sequence ¹nkºk2N.
Namely, for any " > 0 and any Borel subset B of Z, there exists K 2 N such
that for any sequence ¹nkºk2N of positive integers and for any k 2 N with
k � K, we have �.arnk.pq/k

B 4 B/ < ".

(iii) �e action of N on .Z; �/ is ergodic.

Proof. �e presentation of � implies that for any g 2 �, there exist K; L 2 N

with garpK qL
g�1 2 E, which is equal to arpK0

qL0

for some K 0; L0 2 N with

K C L D K 0 C L0. �e equality in assertion (i) then follows.

By the de�nition of odometers, for any sequence ¹mkºk2N of positive integers

and any Borel subset C of Z0, we have

lim
k!1

�0.amk.pq/k

C 4 C / D 0;

and this convergence is uniform with respect to the sequence ¹mkºk2N. Let F

be a �nite subset of �=E. By assertion (i), there exist K; L 2 N satisfying the

following: For any ˛ 2 F , we have K˛; L˛ 2 N such that KCL D K˛CL˛, and

if ¹nkºk2N is a sequence of positive integers, then for any k 2 N with k � KCL,

the equality

a�rnk.pq/k

s.˛/ D a�rnkpK qLpk�K qk�L

s.˛/

D s.˛/a�rnkpK˛ qL˛ pk�K qk�L

D s.˛/a�rnkpK˛ CLqL˛ CK.pq/k�K�L
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holds. Let �F W Z !
Q

F Z0 be the natural projection. For any sequence ¹nkºk2N

of positive integers and any Borel subset D of
Q

F Z0, we therefore have

lim
k!1

�.arnk.pq/k

��1
F .D/4 ��1

F .D// D 0

uniformly with respect to the sequence ¹nkºk2N. Assertion (ii) is proved.

�e assumption rp � 2 implies that N is in�nite. Assertion (iii) holds because

N acts on �=E freely.

We set

.W; !/ D .X; �/� .Y; �/� .Z; �/

and de�ne a p.m.p. action � Õ .W; !/ as the diagonal action so that for  2 �

and w D .x; y; z/ 2 W , we have w D .x; y; z/. �e action � Õ .W; !/

is ergodic because so are the actions N Õ .Z; �/, H=N Õ .Y; �/ and �=H Õ

.X; �/. �e action � Õ .W; !/ is essentially free because so is the action � Õ

.Z; �/. We will show that the action � Õ .W; !/ has a non-trivial a.c. sequence

and is therefore stable. �is is enough to show �eorem 1.1 for � because one can

�nd a �-invariant conull Borel subset of W on which � acts freely.

4.2. �e case of p D 1. We assume p D 1. Fix a positive integer M with

qM > r . We set

S D
Y

N

¹0; 1; : : : ; qM � 1º

and de�ne a probability measure � on S as the direct product of the uniformly

distributed probability measure on ¹0; 1; : : : ; qM � 1º. �e odometer relation on

.S; �/, denoted by R0, is de�ned so that two elements .ci /i ; .c0

i /i 2 S are equiva-

lent if and only if for any su�ciently large i 2 N, we have ci D c0

i .

Recall that we have constructed the action of � on the space

Y D
Y

Z

¹0; 1; : : : ; q � 1º

with the probability measure �. Let � act on X � Y diagonally. For each j 2 N,

we de�ne �j W X �Y ! ¹0; 1; : : : ; q� 1º as the projection onto the j th coordinate

of Y .

We de�ne a Borel map � W X � Y ! S as follows. Pick an element

� D ..xn/n2N; .ym/m2Z/ 2 X � Y:

For each j 2 N, the j th coordinate of �.�/ 2 S , denoted by �.�/j , is de�ned by

�.�/j D

M �1
X

kD0

�jM Ck.t�x0�2x1�����2j xj �/qk D

M �1
X

kD0

yjM CkCx0C2x1C���C2j xj
qk:
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Lemma 4.2. In the above notation, the following assertions hold:

(i) the equality ��.� � �/ D � holds;

(ii) for any j 2 N, the map �.�/j W X�Y ! ¹0; 1; : : : ; qM �1º is invariant under
the restriction of t to the subset of X � Y ,

.X nX.1; : : : ; 1
„ ƒ‚ …

j C1

// � Y;

that is, for any element � of this subset, we have �.t�/j D �.�/j ;

(iii) for a.e. � 2 X � Y , we have �.��/ � R0�.�/;

Proof. Pick d 2 N and h0; h1; : : : ; hd 2 ¹0; 1; : : : ; qM � 1º, and set

T D ¹ .ci /i2N 2 S j c0 D h0; c1 D h1; : : : ; cd D hd º:

To prove assertion (i), it su�ces to show that .� � �/.��1.T // D q�.dC1/M .

We set

� D X.0; : : : ; 0
„ ƒ‚ …

dC1

/

and

Aj D
°

.yn/n2Z 2 Y
ˇ
ˇ
ˇ

M �1
X

kD0

yjM Ckqk D hj

±

for each j 2 ¹0; 1; : : : ; dº. For each integer l with 0 � l � 2dC1 � 1, we denote

by l0; l1; : : : ; ld 2 ¹0; 1º as the numbers determined by the equation

l D l0 C 2l1 C � � � C 2d ld :

We then have the equality

��1.T / D

2dC1�1
G

lD0

.t l�/ �
� d

\

j D0

t l0C2l1C���C2j lj Aj

�

:

Fix an integer l with 0 � l � 2dC1 � 1. For any j 2 ¹0; 1; : : : ; dº, we have

t l0C2l1C���C2j lj Aj D
°

.yn/n2Z 2 Y
ˇ
ˇ
ˇ

M �1
X

kD0

yjM CkCl0C2l1C���C2j lj
qk D hj

±

:
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�e inequality

jM CM � 1C l0 C 2l1 C � � � C 2j lj < .j C 1/M C l0 C 2l1 C � � � C 2j C1lj C1

for any j 2 ¹0; 1; : : : ; d � 1º implies that

�
� d

\

j D0

t l0C2l1C���C2j lj Aj

�

D q�.dC1/M :

It follows that .� � �/.��1.T // D q�.dC1/M . Assertion (i) is proved.

Assertion (ii) follows from the de�nition of �.�/j . Assertion (ii) implies that

for a.e. � 2 X�Y , the element �.t�/ belongs toR0�.�/. �e action of H on .Y; �/

generates the odometer relation on .Y; �/ so that two elements .yn/n; .y0
n/n 2 Y

are equivalent if and only if for all but �nitely many n 2 Z, we have yn D y0
n. �e

action of H on .X; �/ is trivial. By the de�nition of � , for a.e. � 2 X � Y , we

have �.H�/ � R0�.�/. Assertion (iii) is proved.

For j 2 N, we set

Cj D ¹ .ci /i2N 2 S j cj D 0 º 2 BS ;

Bj D ��1.Cj / �Z 2 BW :

For any j 2 N, we then have !.Bj / D �.Cj / D q�M . �e sequence ¹Cj ºj 2N

is an a.i. sequence for the odometer relation R0. It follows from Lemma 2.1 and

Lemma 4.2 (i), (iii) that ¹Bj ºj 2N is an a.i. sequence for the action � Õ .W; !/.

We de�ne Uj 2 ŒR.� Õ W /� so that for any l0; l1; : : : ; lj 2 ¹0; 1º, we have

Uj D t l0C2l1C���C2j lj arqjM

t�l0�2l1�����2j lj D arq
jM Cl0C2l1C���C2j lj

on the subset X.l0; l1; : : : ; lj /� Y �Z of W . Since a acts on X trivially, the map

Uj is indeed an element of the full group ŒR.� Õ W /�.

Lemma 4.3. In the above notation, the following assertions hold:

(i) for any j 2 N, we have Uj a D aUj on W , and Uj t D tUj on the subset
of W ,

.X n X.1; : : : ; 1
„ ƒ‚ …

j C1

// � Y �ZI

(ii) for any j 2 N, we have Uj Bj \ Bj D ;.
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Proof. Assertion (i) follows from the de�nition of Uj . For any j 2 N, we have

Bj D

2j C1�1
G

lD0

°

..xn/n; .ym/m; z/ 2 W
ˇ
ˇ
ˇ

j
X

nD0

2nxn D l;

M �1
X

kD0

yjM CkClq
k D 0

±

:

�e equation
M �1
X

kD0

yjM CkClq
k D 0

is equivalent to the condition that

yjM CkCl D 0 for any k 2 ¹0; 1; : : : ; M � 1º.

Since we have chosen the number M so that qM > r in the beginning of this

subsection, for any j 2 N, we have

Uj Bj D

2j C1�1
G

lD0

°

..xn/n; .ym/m; z/ 2 W
ˇ
ˇ
ˇ

j
X

nD0

2nxn D l;

M �1
X

kD0

yjM CkClq
k D r

±

:

Assertion (ii) follows.

�eorem 4.4. In the above notation, the sequence ¹Uj ºj 2N is a non-trivial a.c.
sequence for the action � Õ .W; !/. �e action � Õ .W; !/ is therefore stable.

Proof. It su�ces to check the following three conditions:

(1) for any B 2 BW , we have limj !.Uj B 4 B/ D 0;

(2) for any g 2 �, we have limj !.¹w 2 W j Uj gw ¤ gUj w º/ D 0;

(3) the sequence ¹Bj ºj 2N in BW is an a.i. sequence for the action � Õ .W; !/,

and we have !.Uj Bj 4 Bj / D 2q�M for any j 2 N.

�e element a of � acts on .X; �/ trivially. Since a acts on .Y; �/ by the q-adic

odometer, for any sequence ¹nkºk2N of positive integers and any A 2 BY , we have

lim
k!1

�.ankqk

A4 A/ D 0:

�e convergence is uniform with respect to the sequence ¹nkºk2N. Combining

this with Lemma 4.1 (ii), we obtain condition (1). Condition (2) follows from

Lemma 4.3 (i). �e former assertion in condition (3) has already been checked

right after the proof of Lemma 4.2. Finally, the latter assertion follows from

Lemma 4.3 (ii).
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4.3. �e case of p > 1. We assume p > 1. Fix a positive integer M with

.pq/M > r . We set

S D
Y

N

¹0; 1; : : : ; .pq/M � 1º:

We have constructed the action of � on the standard probability space

.Y; �/ D .Y�; ��/ � .Y0; �0/ � .YC; �C/;

where

Y� D
Y

Z�

¹0; 1; : : : ; q � 1º;

Y0 D
Y

N

¹0; 1; : : : ; pq � 1º;

YC D
Y

ZC

¹0; 1; : : : ; p � 1º:

Let � act on X�Y diagonally. For each j 2 N, let �j W X�Y ! ¹0; 1; : : : ; pq�1º

be the projection onto the j th coordinate of Y0.

We de�ne a Borel map � W X � Y ! S as follows. Pick an element

� D ..xn/n2N; y/ 2 X � Y:

For each j 2 N, the j th coordinate of �.�/ 2 S , denoted by �.�/j , is de�ned by

�.�/j D

M �1
X

kD0

�dj Ck.t�x0�2x1� ��� �2j xj �/.pq/k;

where we put dj D j C 2j C1. For each j 2 N, we set

Cj D ¹ .ci /i2N 2 S j cj D 0 º 2 BS ;

Bj D ��1.Cj / �Z 2 BW :

Lemma 4.5. In the above notation, the following assertions hold:

(i) for any j 2 N, we have !.Bj / D .pq/�M ;

(ii) the sequence ¹Bj ºj 2N in BW is an a.i. sequence for the action � Õ .W; !/.



Stability in orbit equivalence 223

Proof. Fix j0 2 N. We set

� D X.0; : : : ; 0
„ ƒ‚ …

j0C1

/

and

A D

M �1
\

kD0

¹ .y�; .yi/i2N; yC/ 2 Y� � Y0 � YC j ydj0
Ck D 0 º:

�e equality ��1.Cj0
/ D

F2j0C1
�1

lD0 t l .� � A/ then holds. Assertion (i) follows.

We prove assertion (ii). By the de�nition of � , for any j 2 N, we have

�.t�/j D �.�/j for any element � of the subset

.X nX.1; : : : ; 1
„ ƒ‚ …

j C1

// � Y

of X � Y . We therefore have limj !.tBj 4 Bj / D 0.

Let � W Y ! Y0 be the projection. For K 2 N, we set

Y.K/ D ¹ y 2 Y j �.t�kay/ D �.t�ky/; for all k � K º:

Lemma 3.3 implies that Y D
S

K2N
Y.K/. Pick " > 0. Choose a number K0 2 N

with �.Y n Y.K0// < "=2. For j 2 N, we set

Xj D ¹ .xn/n2N 2 X j x0 C 2x1 C � � � C 2j xj � K0 º:

Choose J 2 N such that, for any j 2 N with j � J , we have �.X n Xj / < "=2.

For any j 2 N and any � 2 Xj �Y.K0/, we have �.a�/j D �.�/j . For any j 2 N,

the inclusion

a.��1.Cj / \ .Xj � Y.K0/// � ��1.Cj /

thus holds. For any j 2 N with j � J , we have

!.aBj n Bj / D .� � �/.a��1.Cj / n ��1.Cj //

� .� � �/..X � Y / n .Xj � Y.K0///

� �.X nXj /C �.Y n Y.K0//

< ":

We therefore obtain limj !.aBj 4 Bj / D 0. Assertion (ii) is proved.
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For j 2 N, we de�ne Uj 2 ŒR.� Õ W /� so that, for any l0; l1; : : : ; lj 2 ¹0; 1º,

Uj D t l0C2l1C���C2j lj ar.pq/
dj

t�l0�2l1�����2j lj

D arp
dj �l0�2l1�����2j lj q

dj Cl0C2l1C���C2j lj

on the subset X.l0; l1; : : : ; lj /� Y �Z of W . Since a acts on X trivially, the map

Uj is indeed an element of the full group ŒR.� Õ W /�.

Lemma 4.6. In the above notation, the following assertions hold:

(i) for any j 2 N, we have Uj a D aUj on W , and Uj t D tUj on the subset
of W ,

.X n X.1; : : : ; 1
„ ƒ‚ …

j C1

// � Y �ZI

(ii) for any j 2 N, we have Uj Bj \ Bj D ;.

Proof. Assertion (i) follows from the de�nition of Uj . For any j 2 N, we have

Bj D

2j C1
�1

G

lD0

°

.�; z/ 2 W
ˇ
ˇ
ˇ

j
X

nD0

2nxn D l;

M �1
X

kD0

�dj Ck.t�l�/.pq/k D 0
±

;

where we put � D ..xn/n2N; y/ 2 X � Y . Since we have chosen the number M

so that .pq/M > r in the beginning of this subsection, for any j 2 N, we have

Uj Bj D

2j C1�1
G

lD0

°

.�; z/ 2 W
ˇ
ˇ
ˇ

j
X

nD0

2nxn D l;

M �1
X

kD0

�dj Ck.t�l�/.pq/k D r
±

:

Assertion (ii) follows.

�eorem 4.7. In the above notation, the sequence ¹Uj ºj 2N is a non-trivial a.c.
sequence for the action � Õ .W; !/. �e action � Õ .W; !/ is therefore stable.

Proof. It su�ces to check the following three conditions:

(1) for any B 2 BW , we have limj !.Uj B 4 B/ D 0;

(2) for any g 2 �, we have limj !.¹w 2 W j Uj gw ¤ gUj w º/ D 0;

(3) the sequence ¹Bj ºj 2N in BW is an a.i. sequence for the action � Õ .W; !/,

and we have !.Uj Bj 4 Bj / D 2.pq/�M for any j 2 N.
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�e element a of � acts on .X; �/ trivially. Since a acts on .Y0; �0/ by the

.pq/-adic odometer, and acts on both .Y�; ��/ and .YC; �C/ trivially, for any se-

quence ¹nkºk2N of positive integers and any A 2 BY ,

lim
k!1

�.ank.pq/k

A4A/ D 0:

�e convergence is uniform with respect to the sequence ¹nkºk2N. For any j 2 N,

we have a Borel partition X D
F2j C1�1

lD0 Xl such that’ for any l 2 ¹0; 1; : : : ;

2j C1 � 1º, the restriction of Uj to Xl � Y � Z is equal to a power of a, and its

exponent is divisible by r.pq/j because dj �.2j C1�1/ > j . Combining this with

Lemma 4.1 (ii), we obtain condition (1). Condition (2) follows from Lemma 4.6 (i).

�e former assertion in condition (3) is proved in Lemma 4.5 (ii). �e latter as-

sertion follows from Lemma 4.5 (i) and Lemma 4.6 (ii).

Proof of �eorem 1.1. Let p, q, r and � D BS.rp; rq/ be the symbols introduced

in the beginning of this section. It is enough to show that for any two integers k,

l with rp D jkj and rq D jl j, the group BS.k; l/ has an ergodic, free, p.m.p. and

stable action. We put ƒ D BS.k; l/. If kl is positive, then � and ƒ are isomorphic,

and the desired assertion follows from �eorems 4.4 and 4.7. Assume that kl is

negative. �ere exists an index 2 subgroup of � isomorphic to an index 2 subgroup

of ƒ. In fact, if we have the presentations

� D h a; t j tarpt�1 D arq i;

ƒ D h b; u j ubku�1 D bl i;

then let �1 denote the subgroup of � generated by a, tat�1 and t2, and let ƒ1 de-

note the subgroup of ƒ generated by b, ubu�1 and u2. We then have Œ� W �1� D 2

and Œƒ W ƒ1� D 2. �e homomorphism ' from �1 into ƒ1 with '.a/ D b,

'.tat�1/ D ub�1u�1 and '.t2/ D u2 is well-de�ned and is an isomorphism.

Let � Õ .W; !/ be the action constructed in �eorems 4.4 and 4.7. �e subset

W1 D X.0/ � Y � Z is �1-invariant and has !-measure 1=2. We can de�ne an

action of ƒ on .W; !/ such that the associated equivalence relation is equal to

that for the action � Õ .W; !/; the subset W1 is ƒ1-invariant; and the actions

�1 Õ W1 and ƒ1 Õ W1 are conjugate through the isomorphism '. �is action

ƒ Õ .W; !/ is a desired one.
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4.4. Stable actions of H . Let p, q, r , � D BS.rp; rq/ and H be the symbols

introduced in the beginning of this section. Let � Õ .Y; �/ and � Õ .Z; �/ be the

actions constructed in Sections 4.1–4.3. We set

.W1; !1/ D .Y; �/� .Z; �/

and de�ne an action H Õ .W1; !1/ as the diagonal action, which is ergodic,

p.m.p. and essentially free.

�eorem 4.8. In the above notation, the action H Õ .W1; !1/ is stable.

We construct a non-trivial a.c. sequence for this action. �e argument is similar

to and simpler than those in Sections 4.2 and 4.3.

Proof of �eorem 4.8 in the case of p D 1. We de�ne the positive integer M , the

standard probability space .S; �/ and the odometer relation R0 on .S; �/ as in the

beginning of Section 4.2. De�ne a Borel map � W Y ! S as follows. Pick an

element y D .yn/n2Z of Y . For each j 2 N, the j th coordinate of �.y/, denoted

by �.y/j , is de�ned by the formula

�.y/j D

M �1
X

kD0

yjM Ckqk:

�e equality ��� D � then holds. For a.e. y 2 Y , we have �.Hy/ � R0�.y/

because the action H Õ .Y; �/ generates the odometer relation on .Y; �/.

For j 2 N, let Cj D ¹ .ci /i2N 2 S j cj D 0 º be the Borel subset of S de�ned in

Section 4.2. Set Aj D ��1.Cj / � Z. For any j 2 N, we have !1.Aj / D �.Cj / D

q�M . �e sequence ¹Aj ºj 2N is an a.i. sequence for the action H Õ .W1; !1/.

For j 2 N, we de�ne an element Vj of ŒR.H Õ W1/� by setting Vj D arqjM
on

W1. �e set Aj consists of all points .y; z/ of W1 D Y � Z with �.y/j D 0. �e

set Vj Aj consists of all points .y; z/ of W1 with �.y/j D r because we assumed

qM > r . It follows that Vj Aj \ Aj D ; and !1.Vj Aj 4 Aj / D 2q�M for any

j 2 N.

We now check the following three conditions:

(1) for any A 2 BW1
, we have limj !1.Vj A4A/ D 0;

(2) for any g 2 H , we have limj !1.¹w 2 W1 j Vj gw ¤ gVj w º/ D 0;

(3) the sequence ¹Aj ºj 2N inBW1
is an a.i. sequence for the action H Õ .W1; !1/,

and we have !1.Vj Aj 4 Aj / D 2q�M for any j 2 N.
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Condition (1) follows from Lemma 4.1 (ii) and that a acts on .Y; �/ by the q-adic

odometer. Condition (2) holds because for any g 2 H , we have garqk
g�1 D arqk

for any su�ciently large, positive integer k. Condition (3) has already been

checked in the previous paragraph. We have shown that ¹Vj ºj 2N is a non-trivial

a.c. sequence for the action H Õ .W1; !1/. �eorem 4.8 in the case of p D 1 is

proved.

Proof of �eorem 4.8 in the case of p > 1. �e proof of this case is similar to that

in the case of p D 1. We hence give only a sketch of the proof. Let M be a positive

integer with .pq/M > r , and de�ne the standard Borel space

S D
Y

N

¹0; 1; : : : ; .pq/M � 1º

as in the beginning of Section 4.3. Let � be the probability measure on S de�ned

as the direct product of the uniformly distributed probability measure on the set

¹0; 1; : : : ; .pq/M � 1º. Let R0 denote the odometer relation on .S; �/ so that two

elements .ci /i ; .c0

i /i 2 S are equivalent if and only if for any su�ciently large

i 2 N, we have ci D c0

i .

De�ne a Borel map

� W Y �! S

as follows. Pick an element y D .y�; .yi /i2N; yC/ of Y D Y��Y0�YC. For each

j 2 N, the j th coordinate of �.y/, denoted by �.y/j , is de�ned by the formula

�.y/j D

M �1
X

kD0

yjM Ck.pq/k:

�e equality ��� D � then holds. For a.e. y 2 Y , we have �.Hy/ � R0�.y/

because the action H Õ .Y; �/ generates the equivalence relation S0 on .Y; �/

de�ned right before Remark 3.2.

For j 2 N, we set Cj D ¹ .ci /i2N 2 S j cj D 0 º and Aj D ��1.Cj / � Z.

We de�ne an element Vj of ŒR.H Õ W1/� by Vj D ar.pq/jM

on W1. �e

sequence ¹Aj ºj 2N is then an a.i. sequence for the action H Õ .W1; !1/. We

have Vj Aj \ Aj D ; and !1.Vj Aj 4 Aj / D 2.pq/�M for any j 2 N. �e se-

quence ¹Vj ºj 2N can be checked to be a non-trivial a.c. sequence for the action

H Õ .W1; !1/ along the proof in the case of p D 1.

Remark 4.9. Let k and l be integers with rp D jkj and rq D jl j. Set

ƒ D BS.k; l/ D h b; u j ubku�1 D bl i:

�e normal subgroup of ƒ generated by b is isomorphic to H and therefore has

an ergodic, free, p.m.p. and stable action by �eorem 4.8.
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5. Semi-direct products ME to direct products

De�nition 5.1. Two discrete groups � and ƒ are called measure equivalent (ME)
if there exists a measure-preserving action of � �ƒ on a standard Borel space †

with a �-�nite positive measure m such that we have Borel subsets X , Y of † with

m.X/ < 1, m.Y / < 1 and the equality † D
F

2�.; e/Y D
F

�2ƒ.e; �/X up

to m-null sets.

ME is indeed an equivalence relation between discrete groups (see [8, Sec-

tion 2]). It is known that two discrete groups � and ƒ are ME if and only if there

exist ergodic, essentially free and p.m.p. actions � Õ .X; �/ and ƒ Õ .Y; �/

which are weakly orbit equivalent, that is, we have Borel subsets A � X and

B � Y with positive measure such that the two equivalence relations

R.� Õ X/ \ .A � A/ and R.ƒ Õ Y / \ .B � B/

are isomorphic (see [9, Section 3]). To prove �eorem 1.2, we need the following:

Lemma 5.2. Let K, L and M be discrete groups. Let G D .K � L/ Ì M be a
semi-direct product such that for any m 2M , we have m.K �¹eº/m�1 D K �¹eº

and m.¹eº �L/m�1 D ¹eº �L. Suppose that we have a non-increasing sequence
of �nite index, normal subgroups of M , M D M0 > M1 > M2 > � � � , with K

equal to the union of the centralizer of Mn in K for n 2 N.
We de�ne H D K � .L Ì M/ as the direct product of K with the subgroup

L Ì M of G. �en G and H are ME.

Proof. Pick free and p.m.p. actions K Ì M Õ .X; �/ and L Ì M Õ .Y; �/ of the

subgroups (or quotients) of G. We de�ne Z as the projective limit lim
 �

M=Mn and

de�ne � as the normalized Haar measure on the compact group Z. We have the

p.m.p. action of M on .Z; �/ de�ned by left multiplication. We de�ne an action

of G on the direct product .W; !/ D .X; �/ � .Y; �/� .Z; �/ by the formula

..k; l/; m/.x; y; z/D ..k; m/x; .l; m/y; mz/

for k 2 K, l 2 L, m 2 M , x 2 X , y 2 Y and z 2 Z. �is action of G is free and

p.m.p.

For each n 2 N, let Kn denote the centralizer of Mn in K as subgroups of G.

Let �n W Z ! M=Mn be the canonical projection. We de�ne an action of Kn on

.W; !/, denoted by ˛n, by the formula ˛n.k/w D mkm�1w for k 2 Kn, m 2 M

and w 2 X � Y � ��1
n .mMn/. �is action is well-de�ned and commutes with the

action of M on .W; !/. For any n 2 N and any k 2 Kn, we have ˛nC1.k/ D ˛n.k/.
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By assumption, K is equal to the union
S

n Kn. We can thus de�ne an action

of K on .W; !/, denoted by ˛, by ˛.k/w D ˛n.k/w for k 2 Kn and w 2 W .

�is action ˛ of K commutes with the action of the subgroup L Ì M on .W; !/.

We therefore obtain an action of H on .W; !/. �is action is free and p.m.p., and

gives rise to the same equivalence relation as that for the action of G on .W; !/.

It follows that G and H are ME.

Proof of �eorem 1.2. Applying an argument of the same kind as in the proof of

�eorem 1.1, we can reduce the proof of �eorem 1.2 to that in the case where p

and q are integers with 2 � p < q. Let p and q be such integers. Let S be a

set of prime numbers dividing neither p nor q. We may assume that S is non-

empty. We set F D ZS and de�ne ƒ as the HNN extension of F relative to the

isomorphism ˛ from pF onto qF multiplying by q=p. Let t denote the element

of ƒ implementing ˛ with the relation tbt�1 D ˛.b/ for any b 2 pF . We will

construct a locally compact and second countable group G containing a lattice

isomorphic to ƒ.

Let T denote the Bass–Serre tree associated with the decomposition of ƒ into

the HNN extension. �e set of vertices of T is ƒ=F , and the set of edges of T

is ƒ=.qF /. For � 2 ƒ, the edge corresponding to �.qF / 2 ƒ=.qF / joins the

vertices corresponding to �F; �tF 2 ƒ=F . We introduce an orientation of T so

that for each � 2 ƒ, the vertex corresponding to �F is the origin of the edge

corresponding to �.qF /. �e group ƒ acts on T by left multiplication, as sim-

plicial automorphisms preserving this orientation. Let Aut.T / denote the group

of orientation-preserving simplicial automorphisms of T , which is locally com-

pact and second countable. We have the homomorphism { W ƒ ! Aut.T / asso-

ciated with the action of ƒ on T . We also have the continuous homomorphism

� W Aut.T / ! Z with �.{.t// D 1 and �.'/ D 0 for any element ' of Aut.T /

�xing a vertex of T .

For a prime number r , let Qr denote the quotient group Qr=Zr , which is re-

garded as a discrete group. We de�ne Q as the direct sum
L

r2S Qr . For each

r 2 S , since neither p nor q is divisible by r , the multiplication by q=p induces an

automorphism of Qr . We de�ne an action of Aut.T / on Q�R by automorphisms,

by the formula

'..xr/r2S ; y/ D ...q=p/�.'/xr /r2S ; .q=p/�.'/y/

for ' 2 Aut.T /, .xr /r2S 2 Q and y 2 R. Let G denote the associated semi-direct

product .Q �R/ Ì Aut.T /.
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We de�ne a homomorphism � W ƒ! G by

�.b/ D ...Œb�r/r2S ; b/; {.b//; �.t / D ..0; 0/; {.t //

for any b 2 F , where Œb�r denotes the equivalence class of b in Qr for r 2 S . �e

homomorphism � is injective. �e image �.ƒ/ is a lattice in G with ¹0º�Œ0; 1/�K0

a fundamental domain, where K0 is the stabilizer in Aut.T / of the vertex of T

whose stabilizer in ƒ is equal to F .

Let E be the in�nite cyclic subgroup of F generated by the multiplicative unit

of the ring F . We de�ne � as the subgroup of ƒ generated by E and t . �e group �

is the HNN extension generated by E and t and whose relations are tbt�1 D ˛.b/

for any b 2 pE. It follows that � is isomorphic to BS.p; q/. �e image �.�/ is a

lattice in the subgroup .¹0º�R/ÌAut.T / of G, with ¹0º�Œ0; 1/�K0 a fundamental

domain. Let � be the subgroup of G generated by Q and �.�/. �e group � is

written as the semi-direct product

.Q � {.ker.� ı {/ \ �// Ì h{.t /i

and is a lattice in G with ¹0º � Œ0; 1/ � K0 a fundamental domain. It turns out

that ƒ and � are ME. Since Q is an increasing union of �nite subgroups invariant

under the action of {.t /, by applying Lemma 5.2, we see that � and Q�� are ME.

�e groups ƒ and Q�� are therefore ME. By �eorem 1.1, ƒ and � are ME.

We end this section with another application of Lemma 5.2 and a comment

on Monod-Shalom’s class C . Let p and q be coprime integers with 1 � p < q.

Let r be a positive integer with rp � 2. De�ne the group G D G.p; q/ as in the

beginning of Section 3. Set

� D BS.rp; rq/ D h a; t j tarpt�1 D arq i:

We de�ne the homomorphism � W � ! G and the subgroups H , N of � as in the

beginning of Section 4. We set E D hai and de�ne L as the subgroup ��1.�.E//

of H , which is the semi-direct product N Ì hai.

Proposition 5.3. Let F1 denote the free group of countably in�nite rank. �en L

and F1 � Z are ME.

Proof. �e group N is free because it acts on the Bass–Serre tree associated with

� freely. For k 2 N, we denote by Zk the centralizer of ar.pq/k
in N . We then have

the equality N D
S

k2N
Zk . Since this union is strictly increasing, the group N

is not �nitely generated. It turns out that N is isomorphic to F1. �e proposition

follows from Lemma 5.2.



Stability in orbit equivalence 231

Remark 5.4. Monod-Shalom [18] introduced Class C consisting of all discrete

groups A such that for some mixing unitary representation � of A on a Hilbert

space, the second bounded cohomology group of A with coe�cient � is non-zero.

�ey proved the following three assertions:

� for any discrete group A in C , any in�nite normal subgroup of A belongs

to C ;

� whether a discrete group belongs to C or not is invariant under ME;

� no amenable group belongs to C .

We refer to [18, Proposition 7.4], [18, Corollary 7.6] and [18, Proposition 7.10 (i)]

for these assertions, respectively. Combining these results with Proposition 5.3,

we see that none of L, H and � belongs to C . Although the above Monod–

Shalom’s results on C and �eorem 1.1 also imply that � does not belong to C , the

proof of this fact through Proposition 5.3 is much simpler.

6. Stable actions of Vaes groups

�e following construction of the group G is a slight generalization of the original

one due to Vaes [23] (see Remark 6.2 for the group discussed in [23]).

Construction of a group. We follow the notation in [23]. For n 2 N, let Hn

be a non-trivial �nite group, and let En be a discrete group. Let ƒ be a discrete

group acting on Hn by automorphisms for each n 2 N. We denote this action as

� � h for � 2 ƒ and h 2 Hn, using a dot. Set K D
L

n2N
Hn. Let ƒ act on K

diagonally, that is, for � 2 ƒ and h D .hn/n2N 2 K, we have � � h D .� � hn/n2N.

For each N 2 N, let KN be the subgroup of K de�ned by KN D
L

1

nDN Hn.

We set G0 D K Ì ƒ and inductively de�ne a group GN C1 as the amalgamated

free product

GN C1 D GN �KN
.KN � EN /;

where KN is regarded as a subgroup of GN through the inclusion KN < K <

G0 < GN , and GN is naturally a subgroup of GN C1. Let G denote the inductive

limit of the increasing sequence of groups, G0 < G1 < G2 < � � � .

For any N 2 N, we have the homomorphism �N W GN C1 ! GN that is the

identity on GN and sends EN to the neutral element. We thus obtain the homo-

morphism � W G ! G0 that is equal to �0 ı �1 ı � � � ı �N on GN C1 for any N 2 N.

Let ı W G ! ƒ denote the composition of � and the quotient map from G0 onto ƒ.
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Construction of an action �e construction is similar to that in Section 4. For

each n 2 N, let ƒn denote the subgroup of ƒ consisting of all elements acting

on Hi trivially for any i 2 N with i � n. We de�ne X as the projective limit

lim
 �

ƒ=ƒn and de�ne � as the normalized Haar measure on the compact group X .

We have the action ƒ Õ .X; �/ de�ned by left multiplication. Let G act on .X; �/

through the homomorphism ı W G ! ƒ.

We set Z0 D
Q

n2N
Hn and denote by �0 the normalized Haar measure on the

compact group Z0. Let K act on Z0 by left multiplication. We set

.Z; �/ D
Y

G=K

.Z0; �0/

and de�ne a p.m.p. action of G on .Z; �/ as the action co-induced from the action

of K on .Z0; �0/. Since the action K Õ .Z0; �0/ is essentially free, so is the action

G Õ .Z; �/. If ker � is in�nite, then the action ker � Õ .Z; �/ is ergodic because

ker � acts on G=K freely.

We set .Y; �/ D .Z0; �0/. �e group ƒ acts on the group Y by automorphisms,

and K acts on Y by left multiplication. We then obtain the action G0 Õ .Y; �/.

Let G act on .Y; �/ through the homomorphism � W G ! G0.

We set

.W; !/ D .X; �/� .Y; �/� .Z; �/

and de�ne a p.m.p. action G Õ .W; !/ as the diagonal action so that for g 2 G

and w D .x; y; z/ 2 W , we have gw D .gx; gy; gz/. �e action G Õ .W; !/ is

essentially free, and is ergodic if ker � is in�nite.

�eorem 6.1. In the above notation, we assume that ker � is in�nite. �en the
action G Õ .W; !/ is stable.

Proof. For each n 2 N, let �n W X ! ƒ=ƒn be the canonical projection. We

de�ne a Borel map � W W ! Y as follows. Pick w D .x; y; z/ 2 W and n 2 N.

Choosing � 2 ƒ with x 2 ��1
n .�ƒn/, we de�ne the nth coordinate of �.w/,

denoted by �.w/n, as �.w/n D ��1 � yn, where yn denotes the nth coordinate

of y. �is is well-de�ned because ƒn acts on Hn trivially. We can check the

following:

(i) the equality ��! D � holds;

(ii) the map � W W ! Y is ƒ-invariant and .ker �/-invariant;

(iii) for any w 2 W , we have �.Kw/ D K�.w/.
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We now construct a non-trivial a.c. sequence for the action G Õ .W; !/. For

each n 2 N, �x a non-neutral element hn of Hn. We choose a subset In of Hn

with hnIn \ In D ; and jInj � jHnj=3. Such an In is obtained as follows. Let

M be the least integer with M � jHnj=3. We de�ne elements of Hn, l1; : : : ; lM ,

inductively. Pick an arbitrary element l1 of Hn. Let m be a positive integer with

m < M . If l1; : : : ; lm are de�ned, then we set Lm D ¹l1; : : : ; lmº. �e set

Hn n .h�1
n Lm [ Lm [ hnLm/

is non-empty because m < jHnj=3. Let lmC1 be an element of this set. We de�ned

l1; : : : ; lM 2 Hn, and set In D ¹l1; : : : ; lM º. �is is a desired set.

We set

Cn D ¹ .ym/m2N 2 Y j yn 2 In º 2 BY ;

Bn D ��1.Cn/ 2 BW :

De�ne an element Un of ŒR.G Õ W /� by Un D �hn��1 on ��1
n .�ƒn/ � Y � Z

with � 2 ƒ. �is is well-de�ned because ƒn acts on Hn trivially. We check the

following three conditions:

(1) for any A 2 BW , we have limn !.UnA4 A/ D 0;

(2) for any g 2 G, we have limn !.¹w 2 W j Ungw ¤ gUnw º/ D 0;

(3) the sequence ¹Bnºn2N in BW is an a.i. sequence for the action G Õ .W; !/,

and we have !.UnBn4 Bn/ � 2=3 for any n 2 N.

Let ¹nºn2N be a sequence with n 2 Hn for any n 2 N. Pick g 2 G and choose

N 2 N with g 2 GN . For any n 2 N with n � N � 1, we have g�1ng 2 Hn.

We therefore have limn �.nD 4D/ D 0 for any D 2 BZ . By the de�nition of

the action of K on Y , we have limn �.nC 4 C / D 0 for any C 2 BY . �ese

convergences are uniform with respect to the sequence ¹nºn2N. �e action of K

on X is trivial. Condition (1) follows.

For any n 2 N, by de�nition, Un commutes with any element of ƒ. For any

m 2 N, if n 2 N is bigger than m, then Un commutes with any element of Hm and

Em. Since G is generated by ƒ, Hm and Em for all m 2 N, condition (2) follows.

�e sequence ¹Cnºn2N in BY is an a.i. sequence for the action K Õ .Y; �/.

Conditions (i)–(iii) and Lemma 2.1 imply that ¹Bnºn2N is an a.i. sequence for the

action G Õ .W; !/. For any n 2 N, we have !.UnBn4Bn/ D jhnIn4Inj=jHnj �

2=3. Condition (3) is proved.

Conditions (1)–(3) show that ¹Unºn2N is a non-trivial a.c. sequence for the ac-

tion G Õ .W; !/. �e theorem follows from �eorem 2.2.
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Remark 6.2. Vaes [23] showed that G is inner amenable, the conjugacy class of

any non-neutral element of G in G is in�nite, and the von Neumann algebra of

G does not have property Gamma, under the following assumption: We choose

an arbitrary sequence of mutually distinct prime numbers, ¹pnºn2N. For each

n 2 N, we set Hn D .Z=pnZ/3 and En D Z, and set ƒ D SL.3;Z/. �e

group ƒ naturally acts on Hn by automorphisms. �eorem 6.1 therefore implies

�eorem 1.3.
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