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Abstract. We consider crossed product von Neumann algebras arising from free Bo-
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isomorphism results for free Bogoljubov crossed products are proved, focusing on those

arising from almost periodic representations. We complement our isomorphism results by
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1. Introduction

With an orthogonal representation .H; �/ of a discrete groupG, Voiculescu’s free
Gaussian functor associates an action of G on the free group factor �.H/00 Š

LFdim H (see Section 2.1 and [54, Section 2.6]). An action arising this way is
called a free Bogoljubov action of G. �e associated free Bogoljubov crossed
product von Neumann algebras �.H/00 Ì G, also denoted by �.H;G; �/00, were
studied by several authors [42, 17, 12, 13]. Note that in [42, Section 7] free Bo-
goljubov crossed products with Z appear under the name of free Krieger algebras
(see also [41, Section 3] and [17, Section 6]). �e classi�cation of free Bogoljubov
crossed products is especially interesting because of their close relation to free
Araki-Woods factors [40, 42]. In the context of the complete classi�cation of free
Araki-Woods factors associated with almost periodic orthogonal representations
of R [40, �eorem 6.6], already the classi�cation of the corresponding class of
free Bogoljubov crossed products becomes an attractive problem.

Popa initiated his deformation/rigidity theory in 2001 [30, 29, 31, 32, 34].
During the past decade this theory enabled him to prove a large number of non-
isomorphism results for von Neumann algebras and to calculate many of their
invariants. In particular, he obtained the �rst rigidity results for group measure
space II1 factors in [31, 32]. Moreover, he obtained the �rst calculations of funda-
mental groups not equal toR>0 in [29] and of outer automorphisms groups in [20].
Further developments in the deformation/rigidity theory led Ozawa and Popa to
the discovery of II1 factors with a unique Cartan subalgebra in [25, 26]. Also
W�-superrigidity theorems for group von Neumann algebras [21, 2] and group
measure space II1 factors [37, 35, 36, 19] were proved by means of deforma-
tion/rigidity techniques. In the context of free Bogoljubov actions Popa’s tech-
niques were applied too. In [30, Section 6], Popa introduced the free malleable
deformation of free Bogoljubov crossed products. �is lead in [15] and, using the
work of Ozawa-Popa, in [17, 16, 13] to several structural results and rigidity theo-
rems for free Araki-Woods factors and free Bogoljubov crossed products. We use
the main result of [17] in order to obtain certain non-isomorphism results for free
Bogoljubov crossed products.

In the cause of the deformation/rigidity theory, absence of Cartan algebras and
primeness were studied too. �e latter means that a given II1 factor has no decom-
position as a tensor product of two II1 factors. Ozawa introduced in [24] the notion
of solid II1 factors, that is II1 factorsM such that for all di�use von Neumann sub-
algebras A � M the relative commutant A0 \M is amenable. In [33], Popa used
his deformation/rigidity techniques in order to prove solidity of the free group
factors, leading to the discovery of strongly solid II1 factors in [25, 26]. A II1
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factor M is strongly solid if for all amenable, di�use von Neumann subalgebras
A � M , its normaliser NM .A/

00 is amenable too. We extend the results of [17] on
strong solidity of certain free Bogoljubov crossed products and point out a class
of non-solid free Bogoljubov crossed products.

Opposed to non-isomorphism results obtained in Popa’s deformation/rigidity
theory, there are two known sources of isomorphism results for von Neumann al-
gebras. First, the classi�cation of injective von Neumann algebras by Connes [3]
shows that all group measure space II1 factors L1.X/ Ì G associated with free,
ergodic, probability measure preserving actions G Õ X are isomorphic to the
hyper�nite II1 factor R. By [23, 5], if H Õ Y is another free, ergodic, probabil-
ity measure preserving action of an amenable group, then these actions are orbit
equivalent, meaning that there is a probability measure preserving isomorphism
� W X ! Y such that �.G � x/ D H ��.x/ for almost every x 2 X . By a result of
Singer [44], this means that there is an isomorphism L1.X/ Ì G Š L1.Y / Ì G

sending L1.X/ to L1.Y /.
�e second source of unexpected isomorphism results for von Neumann al-

gebras is free probability theory as it was initiated by Voiculescu [52]. We em-
ploy two branches of free probability theory. On the one hand, we use the work
of Dykema on interpolated free group factors and amalgamated free products.
Interpolated free group factors were independently introduced by Dykema [8]
and Rădulescu [38]. If M is a II1 factor, the ampli�cation of M by t is M t D

p.Mn.C/ ˝ M/p, where p 2 Mn.C/ ˝ M is a projection of non-normalised
trace Tr ˝�.p/ D t . It does not depend on the speci�c choice of n and p. �e
interpolated free group factors can be de�ned by

LFr D .LFn/
t , where r D 1C

n � 1

t2
, for some t > 1 and n 2 N�2 .

Dykema’s �rst result on free products of von Neumann algebras in [7] says that
L.Fn/�R Š L.FnC1/ for any natural number n. He developed his techniques in [8,
6, 9, 10] arriving in [11] at a description of arbitrary amalgamated free products
A �D B with respect to trace-preserving conditional expectations, where A and B
are tracial direct sums of hyper�nite von Neumann algebras and interpolated free
group factors and the amalgam D is �nite dimensional.

We combine the work of Dykema with a result on factoriality of certain amal-
gamated free products. �e �rst such results for proper amalgamated free prod-
ucts were obtained by Popa in [28, �eorem 4.1], followed by several results of
Ueda in the non-trace preserving setting [46, 47, 48, 49]. We will use a result of
Houdayer-Vaes [18, �eorem 5.8], which allows for a particularly easy application
in this paper.
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Operator-valued free probability theory, as it was developed by Voiculescu [53]
and Speicher [45], is the second aspect of free probability theory that we use. At
the heart of this theory lie the operator-valued semicircular elements. �e von
Neumann algebras generated by such elements have been described by Shlyakht-
enko in [42]. We use this work in order to identify a certain free Bogoljubov
crossed product as a free group factor.

Section 3 treats the structure of free Bogoljubov crossed products. We obtain
several di�erent representations of free Bogoljubov crossed products associated
with almost periodic orthogonal representations of Z in �eorem 3.3 and Propo-
sition 3.7. We calculate the normaliser and the quasi-normaliser of the canonical
abelian von Neumann subalgebra of a free Bogoljubov crossed product in Corol-
lary 3.9 and address the question of factoriality of free Bogoljubov crossed prod-
ucts in Corollary 3.10. Most of the results in this section are probably folklore.

In Section 4, we obtain isomorphism results for free Bogoljubov crossed prod-
ucts associated with almost periodic orthogonal representations. In particular, we
classify free Bogoljubov crossed products associated with non-faithful orthogonal
representations of Z in terms of the dimension of the representation and the index
of its kernel. �ey are tensor products of a di�use abelian von Neumann algebra
with an interpolated free group factor.

�eorem A (See �eorem 4.3). Let .�;H/ be a non-faithful orthogonal repre-
sentation of Z of dimension at least 2. Let r D 1 C .dim� � 1/=ŒZ W ker��.
�en

�.H;Z; �/00 Š L1.Œ0; 1�/˝ LFr ,

by an isomorphism carrying the subalgebra LZ of �.H;Z; �/00 onto the space
L1.Œ0; 1�/˝ C

ŒZWker ��.

For general almost periodic orthogonal representations of Z we can prove that
the isomorphism class of the free Bogoljubov crossed product depends at most on
their dimension and on the concrete subgroup of S1 generated by the eigenvalues
of their complexi�cation. More generally, we have the following result.

�eorem B (See �eorem 4.2). �e isomorphism class of the free Bogoljubov
crossed product associated with an orthogonal representation � of Z with almost
periodic part�ap depends at most on the weakly mixing part of � , the dimension of
�ap and the concrete embedding into S1 of the group generated by the eigenvalues
of the complexi�cation of �ap.

In contrast to the preceding result, we show later that representations with al-
most periodic parts of di�erent dimension can be non-isomorphic.
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�eorem C (See �eorem 5.1 and �eorem 6.4). If � denotes the left regular
orthogonal representation of Z and 1 denotes its trivial representation, then

�.`2.Z/˚ C;Z; �˚ 1/00 Š �.`2.Z/;Z; �/00 6Š �.`2.Z/˚ C
2;Z; �˚ 2 � 1/00 .

�e next results shows, however, that there are representations whose com-
plexi�cations generate isomorphic, but di�erent subgroups of S1 and their free
Bogoljubov crossed products are isomorphic nevertheless.

�eorem D (See Corollary 4.5). All faithful two dimensional representations of
Z give rise to isomorphic free Bogoljubov crossed products.

Inspired by the connection between free Bogoljubov crossed products and
cores of Araki-Woods factors, and classi�cation results for free Araki-Woods fac-
tors [40], Shlyakhtenko asked at the 2011 conference on von Neumann algebras and
ergodic theory at IHP, Paris, whether for an orthogonal representation .�R; HR/ of
Z the isomorphism class of �.HR;Z; �R/

00 is completely determined by the repre-
sentation

L
n�1 �

˝n
R up to ampli�cation. �e present paper shows that this is not

the case. We discuss other possibilities of how a classi�cation of free Bogoljubov
crossed products could look like and put forward the following conjecture in the
almost periodic case.

Conjecture (See Conjecture 4.6). �e abstract isomorphism class of the subgroup
generated by the eigenvalues of the complexi�cation of an in�nite dimensional,
faithful, almost periodic orthogonal representation of Z is a complete invariant
for isomorphism of the associated free Bogoljubov crossed product.

In Section 5, we describe strong solidity and solidity of a free Bogoljubov
crossed product �.H;Z; �/00 in terms of properties of � . �e main result of [17]
on strong solidity of free Bogoljubov crossed products is combined with ideas
of Ioana [19] in order to obtain a bigger class of strongly solid free Bogoljubov
crossed products of Z.

�eorem E (See �eorem 5.2). Let .�;H/ be the direct sum of a mixing rep-
resentation and a representation of dimension at most one. �en �.H;Z; �/00 is
strongly solid.

Orthogonal representations that have an invariant subspace of dimension two
give rise to free Bogoljubov crossed products, which are obviously not strongly
solid. In particular, all almost periodic orthogonal representations are part of this
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class of representations. �e next theorem describes a more general class of rep-
resentations of Z that give rise to non-solid free Bogoljubov crossed products. If
.�;H/ is a representation of Z, we say that a non-zero subspace K � H is rigid
if there is a sequence .nk/k in Z such that �.nk/jK converges to idK strongly as
nk ! 1.

�eorem F (See �eorem 5.4). If the orthogonal representation .�;H/ of Z

has a rigid subspace of dimension two, then the free Bogoljubov crossed prod-
uct �.H;Z; �/00 is not solid.

We conjecture that this theorem describes all non-solid free Bogoljubov cros-
sed products of the integers.

Conjecture (See Conjecture 5.5). If .�;H/ is an orthogonal representation of Z,
then the following are equivalent.

� �.H;Z; �/00 is solid.

� �.H;Z; �/00 is strongly solid.

� � has no rigid subspace of dimension two.

In Section 6, we prove a rigidity result for free Bogoljubov crossed products
associated with orthogonal representations having at least a two dimensional al-
most periodic part. Due to the lack of invariants for bimodules over abelian von
Neumann algebras, we can obtain only some non-isomorphism results.

�eorem G (See �eorem 6.4). No free Bogoljubov crossed product associated
with a representation in the following classes is isomorphic to a free Bogoljubov
crossed product associated with a representation in the other classes.

� �e class of representations �˚� , where � is the left regular representation
of Z and � is a faithful almost periodic representation of dimension at least
2.

� �e class of representations �˚� , where � is the left regular representation
of Z and � is a non-faithful almost periodic representation of dimension at
least 2.

� �e class of representations � ˚ � , where � is a representation of Z whose
spectral measure � and all of its convolutions ��n are non-atomic and sin-
gular with respect to the Lebesgue measure on S1 and � is a faithful almost
periodic representation of dimension at least 2.
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� �e class of representations � ˚ � , where � is a representation of Z whose
spectral measure � and all of its convolutions ��n are non-atomic and sin-
gular with respect to the Lebesgue measure and � is a non-faithful almost
periodic representation of dimension at least 2.

� Faithful almost periodic representations of dimension at least 2.

� Non-faithful almost periodic representations of dimension at least 2.

� �e class of representations �˚ � , where � is mixing and dim� � 1.
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2. Preliminaries

2.1. Orthogonal representations of Z and free Bogoljubov shifts. With a real
Hilbert space H , Voiculescu’s free Gaussian functor associates a von Neumann
algebra �.H/00 Š LFdim H [54]. For every vector � 2 H , we have a self-adjoint
element s.�/ 2 �.H/00 and �.H/00 is generated by these elements. If �; � 2 H

are orthogonal then s.�/C is.�/ is an element with circular distribution with re-
spect to the trace on �.H/00. In particular, the polar decomposition of s.�/C is.�/

equals a �u, where a; u are �-free from each other, a has a quarter-circular distribu-
tion and u is a Haar unitary. By construction, the resulting von Neumann algebra
of the free Gaussian construction �.H/00 is represented on the full Fock space
C�˚

L
n�1H

˝n. Here� is called the vacuum vector. It is cyclic and separating
for �.H/00 and�.H/00� � H˝algn for all n 2 N. Hence, for �1˝� � �˝�n 2 H˝algn,
there is a unique elementW.�1 ˝� � �˝�n/ 2 �.H/00 such thatW.�1 ˝� � �˝�n/� D

�1 ˝ � � � ˝ �n.

�e free Gaussian construction is functorial for isometries, so that an orthogo-
nal representation .�;H/ of a groupG yields a trace preserving actionG Õ �.H/00,
which is completely determined by g � s.�/ D s.�.g/�/. If �1 ˝ � � � ˝ �n 2 H˝algn

and g 2 G, then g �W.�1 ˝ � � � ˝ �n/ D W.�.g/�1 ˝ � � � ˝ �.g/�n/.
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An action obtained by the free Gaussian functor is called free Bogoljubov ac-
tion. If G Õ �.H/00 is the free Bogoljubov action associated with .�;H/, then
the representation of G on L2.�.H/00/ 	 C � 1 is isomorphic with

L
n�1 �

˝n.
�e associated von Neumann algebraic crossed product �.H/00 ÌG of a free Bo-
goljubov action is denoted by �.H;G; �/00. If there is no confusion possible, we
denote �.H;G; �/00 by M� and the algebra LG � �.H;G; �/00 by A� .

An orthogonal representation .�;H/ is called almost periodic if it is the direct
sum of �nite dimensional representations. It is called periodic if the map � has a
kernel of �nite index inG. We call � weakly mixing, if it has no �nite dimensional
subrepresentation. Every orthogonal representation .�;H/ is the direct sum of
an almost periodic representation .�ap; Hap/ and a weakly mixing representation
.�wm; Hwm/.

Spectral theory says that unitary representations � of Z correspond to pairs
.�;N /, where � is a Borel measure on S1 and N is a function with values in
N[¹1º called the multiplicity function of � . �e measure � and the equivalence
class of N up to changing it on �-negligible sets are uniquely determined by � .
Given any orthogonal representation .�;H/ ofZ, denote by .�C; HC/ its complex-
i�cation. Note that a pair .�;N / as above is associated with a complexi�cation of
an orthogonal representation if and only if � and N are invariant under complex
conjugation on S1 � C. An orthogonal representation .�;H/ is weakly mixing
if and only if � has no atoms. It is almost periodic if and only if the measure
associated with .�C; HC/ is completely atomic. In this case the atoms of � and
the function N together form the multiset of eigenvalues with multiplicity of �C.
Up to isomorphism, an almost periodic representation � is uniquely determined
by this multiset.

2.2. Rigid subspaces of group representations. A rigid subspace of an orthog-
onal representation .�;H/ of a discrete group G is a non-zero Hilbert subspace
K � H such that there is a sequence .gn/n of elements in G tending to in�nity
that satis�es �.gn/� �! � as n ! 1 for all � 2 K. Note that this terminology is
borrowed from ergodic theory and has nothing to do with property (T).

We call mildly mixing a representation � when it is without any rigid subspace.
�e main source of mildly mixing representations of groups are mildly mixing ac-
tions [39]. A probability measure preserving actionG Õ .X; �/ has a rigid factor
if there is a Borel subsetB � X , 0 < �.B/ < 1 such that lim infg!1�.B�gB/ D

0. We say that G Õ .X; �/ is mildly mixing if it has no rigid factor.
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Proposition 2.1. Let G Õ .X; �/ be a probability measure preserving action of
a group G. �en the Koopman representation G Õ L2

0.X; �/ is mildly mixing if
and only if G Õ .X; �/ is mildly mixing.

Proof. First assume that the Koopman representation is mildly mixing and take
B � X a Borel subset such that there is a sequence .gn/n inG going to in�nity that
satis�es �.B�gnB/ ! 0. Consider the function � D �.B/ � 1 � 1B 2 L2

0.X; �/.
�en

k� � gn�k
2
2 D k1gnB � 1Bk2

2 D �.B�gnB/ ! 0 .

By mild mixing of G Õ L2
0.X; �/, it follows that � D 0, so �.B/ 2 ¹0; 1º. Hence

G Õ .X; �/ is mildly mixing.
For the converse implication assume that there is a sequence .gn/n inG tending

to in�nity such that there is a unit vector � 2 L2
0.X; �/ that satis�es gn� ! �. We

have to show that G Õ .X; �/ has a rigid factor. Replacing � by its real part, we
may assume that it takes only real values. For ı > 0 de�ne Aı D ¹x j �.x/ � ıº

and Bı D ¹x j �.x/ > ıº. Since
R
X �.x/d�.x/ D 0, there is some ı > 0 such that

0 < �.Aı/ < 1.
Take " > 0. We have

T
ı0<ı Bı0 D Aı , so that we can choose ı0 < ı such that

�.Bı0 n Aı/ < "=4. Take N 2 N such that for all n � N we have k� � gn�k <

.ı � ı0/ � "=4. �en for all n � N , we have

�.Aı�gnAı/ D �.Aı n gnAı/C �.Aı n g�1
n Aı/

< �.Aı n gnBı0/C �.Aı n g�1
n Bı0/C

"

2

�
1

.ı � ı0/2

� Z

AıngnBı0

j�.x/ � gn�.x/j
2dx

C

Z

Aıng�1
n Bı0

j�.x/ � g�1
n �.x/j2dx

�
C
"

2

�
2

.ı � ı0/2

Z

X

j�.x/ � gn�.x/j
2d�.x/C

"

2

< " .

It follows that �.Aı�gnAı/ ! 0 as n ! 1. So G Õ .X; �/ is not mildly
mixing.

2.3. Bimodules over von Neumann algebras. Let M , N be von Neumann al-
gebras. An M -N -bimodule is a Hilbert space H with a normal �-representation
of � W M ! B.H/ and a normal anti-�-representation � W N ! B.H/ such that
�.x/�.y/ D �.y/�.x/ for all x 2 M , y 2 N . If M , N are tracial, then we have
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MH Š M.L
2.M/˝ `2.N/�/p with p 2 M ˝ B.`2.N//. �e left dimension

dimM � H of MH is .�M ˝ Tr/.p/ by de�nition. Similarly, we de�ne the right
dimension dim �N H of HN . We say that MHN is left �nite, if it has �nite left
dimension, we call it right �nite if it has �nite right dimension and we say that H
is a �nite index M -N -bimodule, if its left and right dimension are both �nite.

If A;B � M are abelian von Neumann algebras and AHB � L2.M/ is a
�nite index bimodule, then there are non-zero projections p 2 A; q 2 B , a �nite
index inclusion � W pA ! qB and a non-zero partial isometry v 2 pMq such that
av D v�.a/ for all a 2 pA. Since � is a �nite index inclusion, we can cut down
p and q so as to assume that � is an isomorphism.

2.4. �e measure associated with a bimodule over an abelian von Neumann

algebra. We describe bimodules over abelian von Neumann algebras, as in [4,
V. Appendix B]. Compare also with [22, Section 3] concerning our formulation.
Let A Š L1.X; �/ be an abelian von Neumann algebra and AHA an A-A-bimod-
ule such that �; � W A ! B.H/ are faithful. �e two inclusions �; � W A ! B.H/

generate an abelian von Neumann algebra A. Writing Œ�� for the class of a mea-
sure � and p1; p2 for the projections on the two factors of X �X , we can identify
A Š L1.X�X; �/where Œ�� is subject to the condition .p1/�.Œ��/ D .p2/�.Œ��/ D

Œ��. We can disintegrate H with respect to � and obtain a decomposition H DR ˚

X�X
Hx1;x2

d�.x1; x2/. Let N W X � X ! N [ ¹1º be the dimension function
Hx1;x2

7! dimC Hx1;x2
. �en N is unique up to changing it on �-negligible sets

and the triple .X; Œ��; N / is a conjugacy invariant for AHA in the following sense.
Let .X; Œ�X �; NX/ and .Y; Œ�Y �; NY / be triples as before associated with bimodules
HX and HY over A D L1.X; �X/ and B D L1.Y; �Y /, respectively. A measur-
able isomorphisms� W .X; Œ�X �/ ! .Y; Œ�Y �/ such that .���/�.Œ�X �/ D Œ�Y � and
NY ı .� � �/ D NX �Y -almost everywhere induces an isomorphism � W A ! B

and a unitary isomorphism U W HX ! HY satisfying

U�X .a/ D �Y .�.a//U and U�X .a/ D �Y .�.a//U for all a 2 A .

Moreover, any such pair .U; �/ arises this way. �e proof of this fact works similar
to that of [22].

Let AHA be an A-A-bimodule and identify A Š L1.X; �/ and denote by
.X; Œ��; N / the spectral invariant of AHA as described in the previous paragraph.
If S � X is a non-negligible Borel subset and p D 1S 2 A denotes the asso-
ciated non-zero projection, then it follows right away that the spectral invariant
associated with pA.pHp/pA equals .S; Œ�jS�S �; N jS�S /.
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Let Z Õ P be an action of Z on a tracial von Neumann algebra P and M D

P Ì Z. Let .�;N�/ denote the spectral invariant of the representation � on the
space L2.P /	C1 associated with the action ofZ onP . WriteA D LZ Š L1.S1/,
where the identi�cation is given by the Fourier transform. We describe the spectral
invariant .S1; Œ��; N / of the A-A-bimodule L2.M/	 L2.A/ in terms of .�;N�/.

We �rst calculate the measure ��˝ın
on S1 � S1 de�ned by

Z

S1�S1

satb d��˝ın
.s; t / D hua.� ˝ ın/ub ; � ˝ ıni ,

with a; b 2 Z, � 2 L2.P / 	 C1 and ın 2 `2.Z/ the canonical basis element
associated with n 2 Z. Denote by �� the measure on S1 de�ned by

Z

S1

sa d��.s/ D h�.a/�; �i .

We obtain for a; b 2 Z, � 2 L2.P /	 C1 and n 2 Z

Z

S1�S1

satb d��˝ın
.s; t / D hua.� ˝ ın/ub; � ˝ ıni

D ıa;�bh�.a/�; �i

D ıa;�b

Z

S1

sa d��.s/

D

Z

S1�S1

sataCb d.�� ˝ �/.s; t /

D

Z

S1�S1

satb dT�.�� ˝ �/.s; t / ,

where T W S1 � S1 ! S1 � S1 W .s; t / 7! .s; st /. So ��˝ın
D T�.�� ˝ �/ for all

� 2 L2.M/	 C1 and for all n 2 Z. It follows that Œ�� D T�.Œ�˝ ��/.
We calculate the multiplicity function N of L2.M/ 	 L2.A/ in terms of N� .

Let Yn; n 2 N[¹1º be pairwise disjoint Borel subsets of S1 such thatN� jYn
D n

for all n. �ere is a basis .�n;k/0�k<n2N[¹1º of L2.P / 	 C such that ��n;k
has

support equal to Yn. So �n;k ˝ ıl with l 2 Z and 0 � k < n 2 N [ ¹1º is a basis
of L2.M/	 L2.A/. Write Zn D T .Yn � S1/. �en

Z

Zn

satb d��n;k˝ıl
.s; t / D

Z

Yn�S1

sataCb d.��n;k
˝ �/.s; t / ,

so the support of ��n;k˝ıl
is equal to Zn. As a consequence, N jZn

D n for all
n 2 N [ ¹1º. We obtain the following proposition.
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Proposition 2.2. Let .�;N / be a symmetric measure with multiplicity function
on S1 having at least one atom and let � be the orthogonal representation of Z
on H D L2

R.S
1; �; N / given by

�.1/f D idS1 � f:

Identifying LZ Š L1.S1/ via the Fourier transform, the multiplicity function of
the bimodule L1.S1/�.H;Z; �/

00
L1.S1/ is equal to 1 almost everywhere.

Proof. We have �.H;Z; �/00 D �.H/00 Ì Z, where the crossed product is taken
with respect to the free Bogoljubov action of Z on �.H/00, which has ˚n�1�

˝n

as its associated representation on L2.�.H/00/	 C � 1. If a is an atom of �, then
also Na is one. Denote by �a the character of Z de�ned by bZ Š S1. We have
� D �˝.�a/

˝n˝.� Na/
˝n � �˝2nC1. As a consequence, the multiplicity function

of ˚n�1�
˝n is equal to 1 almost everywhere. So, by the calculations preceding

the remark, this is also the case for the multiplicity function of the bimodule

L1.S1/L2.�.H;Z; �/00/L1.S1/.

Proposition 2.3. �e disintegration of Œ�� with respect to the projection onto the
�rst component of S1 � S1 is given by Œ�� D

R
Œ� � ıs� d�.s/.

Proof. Let Y;Z � S1 be Borel subsets and denote by .�s/s2S1 the constant �eld
of measures with value �.

.T�

�Z

S1

�s d�.s/

�
/.Y �Z/ D

Z

Y

�.Z � s�1/ d�.s/

D

Z

Y

� � ıs.Z/ d�.s/

D

� Z

S1

� � ıs d�.s/

�
.Y � Z/ .

�is �nishes the proof.

2.5. Amalgamated free products over �nite dimensional algebras. Let R2

denote the class of �nite direct sums of hyper�nite von Neumann algebras and
interpolated free group factors, equipped with a normal faithful tracial state. In [11,
�eorem 4.5], amalgamated free products of elements of R2 over �nite dimen-
sional tracial von Neumann subalgebras were shown to be in R2 again. Moreover,
their free dimension in the sense of Dykema [10] was calculated in terms of the
free dimension of the factors and of the amalgam of the amalgamated free product.
We explain the free dimension and �eorem 4.5 of [11].
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�e free dimension of a set of generators of a von Neumann algebra M 2 R2

is used to keep track of the parameter of interpolated free group factors. If an
interpolated free group factor has a generating sets of free dimension r , then it is
isomorphic to LFr . Following [11], we de�ne the class Fd � R2, d 2 R>0 as the
class of von Neumann algebras

M D D ˚
M

i2I

piLFri
˚

M

j 2J

qj Mnj
.C/ ,

where

� pi is the unit of LFri
and qj the unit of Mnj

.C/,

� ti D �M .pi /, sj D
�M .qj /

nj
and D is a di�use hyper�nite von Neumann alge-

bra, and

� 1C
P

i t
2
i .ri � 1/ �

P
j s

2
j D d .

�eorem 4.5 of [11] says that ifM D M1�AM2 withM1;M2 2 R2 andA a �nite
dimensional tracial von Neumann algebra, thenM 2 R2. Moreover, if M1 2 Fd1

,
M2 2 Fd2

and A 2 Fd , then M 2 Fd1Cd2�d . We will use the following special
case.

�eorem 2.4 (See �eorem 4.5 of [11]). LetM1 2 Fd1
andM2 2 Fd2

andA 2 Fd

a common �nite dimensional subalgebra of M1 and M2. If M D M1 �A M2 is a
non-amenable factor, then M Š LFr with r D d1 C d2 � d .

We will use this result in combination with a special case �eorem 5.8 of [18].

�eorem 2.5 (See �eorem 5.8 of [18]). Let M1, M2 be di�use von Neumann
algebras and A a common �nite dimensional subalgebra. If

Z.M1/ \ Z.M2/ \ Z.A/ D C1;

then M1 �A M2 is a non-amenable factor.

2.6. Operator valued semicircular random variables. Given an inclusion of
von Neumann algebras A � M with conditional expectation E W M ! A, we say
that an element X of M is a random variable with A-valued distribution

�
.n/

.X;A/
W A � � � � � A �! A W .a1; : : : ; an/ 7�! E.Xa1X � � �anX/ , n 2 N .
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If NC.n/ denotes the set of all non-crossing partitions on n points, then we can
use the framework of operator-valued multiplicative function of Speicher [45,
Chapter II] in order to write the operator-valued free cumulants ofX as the unique
maps c.n/ W A � � � � � A ! A satisfying

�
.n/

.X;A/
.a1; : : : ; an/ D

X

�2NC

c
.�/

.X;A/
.a1; : : : ; an/ ,

where c.�/

.X;A/
is de�ned recursively over the block structure of � . If b D ¹i ,

i C 1; : : : ; i C k � 1º is an interval of � 2 NC.nC 1/, then we put

c
.�/

.X;A/
.a1; : : : ; an/ D c

.�nb/

.X;A/
.a1; : : : ; ai�1c

.k/

.X;A/
.ai ; : : : ; aiCk�1/aiCk; : : : ; an/ .

If � W A ! A is a completely positive map, then an A-valued random variable
X 2 M is called A-valued semicircular with distribution �, if c.1/

.X;A/
.a/ D �.a/

and c.n/

.X;A/
D 0 for all n ¤ 1. We will need the following proposition.

Proposition 2.6 (See Example 3.3(a) in [42]). If A Š LZ and X is an A-valued
semicircular with distribution � D � W A ! C � A, then W�.X; A/ Š LF2 where
u1 2 A is identi�ed with one canonical generator of LF2.

2.7. Deformation/rigidity. Let A � M be an inclusion of von Neumann alge-
bras. �e normaliser of A inM , denoted by NM .A/

00, is the von Neumann algebra
generated by all unitaries u 2 M satisfying uAu� D A. �e quasi-normaliser
of A in M is the von Neumann algebra QNM .A/

00 generated by all elements
x 2 M such that there are a1; : : : ; an and b1; : : : ; bm satisfying Nx �

P
i aiN

and xN �
P

i Nbi .
�e following notion was introduced in [31, �eorem 2.1 and Corollary 2.3]. If

M is a tracial von Neumann algebra, A;B � M are von Neumann subalgebras,
we say that A embeds into B inside M if there is a right �nite A-B-subbimodule
of L2.M/. In this case, we write A �M B . If every A-M -subbimodule of L2.M/

contains a right �nite A-B-subbimodule, then we say that A fully embeds into B
inside M and write A �f

M B .
�e notion of relative amenability was introduced in [27] and further developed

in [1, 25]. If A;B � .M; �/ is an inclusion of tracial von Neumann algebras, we
say that A is amenable relative to B inside M , if there is an A-central state ' on
the basic construction hM; eBi such that 'jM D � . If A is amenable relative to an
amenable subalgebra, then it is amenable itself.

We will use the following theorem from [17]. It is proven there for unital von
Neumann subalgebras only, but the same proof shows that it’s true for non-unital
von Neumann subalgebras.



Free Bogoljubov crossed product von Neumann algebras 1221

�eorem 2.7 (�eorem 3.5 of [17]). LetG be an amenable group with an orthogo-
nal representation .�;H/ and writeM D �.H;G; �/00. Let p 2 M be a non-zero
projection and P � pMp a von Neumann subalgebra such that P 6�M LG. �en
NpMp.P /

00 is amenable.

Since we need full embedding of subalgebras in this paper, let us deduce a
corollary of the previous theorem.

Corollary 2.8 (See �eorem 3.5 of [17]). Let G be an amenable group with an
orthogonal representation .�;H/ and write M D �.H;G; �/00. Let P � M be
a von Neumann subalgebra such that NM .P /

00 has no amenable direct summand.
�en P �f

M LG.

Proof. Take P � M as in the statement and let us assume for a contradiction that
P 6�f

M LG. Let p 2 P 0 \ M be the maximal projection such that pP 6�M LG.
�en p 2 Z.NM .P /

00/. By [31, Lemma 3.5], we have NpMp.pP /
00 � pNM .P /

00p.
By �eorem 2.7, NpMp.pP /

00 is amenable. So NM .P /
00 has an amenable direct

summand. �is is contradiction.

�e next theorem, due to Vaes, allows us to obtain from intertwining bimodules
a much better behaved �nite index bimodule.

Proposition 2.9 (Proposition 3.5 of [51]). Let M be a tracial von Neumann al-
gebra and suppose that A;B � M are von Neumann subalgebras that satisfy the
following conditions.

� A �M B and B �f
M A.

� If H � L2.M/ is an A-A bimodule with �nite right dimension, then H �

L2.QNM .A/
00/.

�en there is a �nite index A-B-subbimodule of L2.M/.

2.7.1. Deformation/rigidity for amalgamated free products. We will make
use of the following results, which control relative commutants in amalgamated
free products.

�eorem 2.10 (See �eorem 1.1 of [20]). LetM D M1 �AM2 be an amalgamated
free product of tracial von Neumann algebras and p 2 M1 a non-zero projection.
If Q � pM1p is a von Neumann subalgebra such that Q 6�M1

A, then

Q0 \ pMp D Q0 \ pM1p:
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�eorem 2.11 (See �eorem 6.3 in [19]). LetM D M1 �AM2 be an amalgamated
free product of tracial von Neumann algebras and p 2 M . Let Q � pMp be
an arbitrary von Neumann subalgebra and ! a non-principal ultra�lter. Denote
by B the von Neumann algebra generated by A! and M . One of the following
statements is true.

� Q0 \ .pMp/! � B and Q0 \ .pMp/! �M ! A! ,

� NpMp.Q/
00 �M Mi , for some i 2 ¹1; 2º or

� Qe is amenable relative toA for some non-zero projection e 2 Z.Q0\pMp/.

Also, we will need one result on relative commutants in ultrapowers.

Lemma 2.12 (See Lemma 2.7 in [19]). LetM be a tracial von Neumann algebra,
p 2 M a non-zero projection, P � pMp and ! a non-principal ultra�lter. �ere
is a decomposition p D e C f , where e; f 2 Z.P 0 \ .pMp/!/ \ Z.P 0 \ pMp/

are projections such that

� e.P 0 \ .pMp/!/ D e.P 0 \pMp/ and this algebra is completely atomic and

� f .P 0 \ .pMp/!/ is di�use.

A tracial inclusion B � M of von Neumann algebras is called mixing if for all
sequences .xn/n in the unit ball .B/1 that go to 0weakly and for all y; z 2 M 	B ,
we have

kEB.yxnz/k2 �! 0 if n ! 1 .

If a subalgebra is mixing, we can control the normaliser of algebras embedding
into it.

Lemma 2.13 (See Lemma 9.4 in [19]). LetB � M be a mixing inclusion of tracial
von Neumann algebras. Let p 2 M be a projection and Q � pMp. If Q �M B ,
then NM .Q/

00 �M B .

Finally, we will use two theorems on intertwining in amalgamated free prod-
ucts from the work of Ioana [19]. �is theorem is stated in [19] for unital inclusions
into amalgamated free products, but it remains valid in the more general case.

�eorem 2.14 (See �eorem 1.6 in [19]). LetM D M1 �AM2 be an amalgamated
free product of tracial von Neumann algebras, p 2 M a projection and Q �

pMp an amenable von Neumann subalgebra. Denote by P D NpMp.Q/
00 the

normaliser of Q inside pMp and assume that P 0 \ .pMp/! D Cp for some
non-principal ultra�lter !. �en, one of the following holds.
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� Q �M A,

� P �M Mi , for some i 2 ¹1; 2º or

� P is amenable relative to A.

�eorem 2.15 (See �eorem 9.5 in [19]). Let B � M be a mixing inclusion of
von Neumann algebras. Take a non-principal ultra�lter !, a projection p 2 M

and let P � pMp be a von Neumann subalgebra such that P 0 \.pMp/! is di�use
and P 0 \ .pMp/! �M ! B! . �en P �M B .

3. General structure of �.H;Z; �/00

Recall that we write M� for �.H;Z; �/00. �e decomposition of orthogonal rep-
resentations into almost periodic and weakly mixing part also gives rise to a de-
composition of their free Bogoljubov crossed products.

Remark 3.1. Let .�;H/ be an orthogonal representation of a discrete group G.
�en

�.H/00 Š �.Hap/
00 � �.Hwm/

00

and so we get a decomposition

M� D �.H/00 ÌG Š .�.Hap/
00

ÌG/ �LG .�.Hwm/
00

ÌG/ .

More generally, if � D
L

i �i , then M� Š �LG;iM�i
.

3.1. �.H;Z; �/00 for almost periodic representations. If not mentioned ex-
plicitly, � denotes an almost periodic orthogonal representation of Z in this sec-
tion. Recall that an irreducible almost periodic orthogonal representation of Z

has dimension 1 if and only if its eigenvalue is 1 or �1. In all other cases, it has
dimension 2 and its complexi�cation has a pair of conjugate eigenvalues �; N� 2

S1 n ¹1;�1º.

Notation 3.2. We denote by LZÌ�Z, � 2 S1 the crossed product by the action of
Z on LZ where 1 2 Z acts by multiplying the canonical generator of LZ with �.
�is is isomorphic to the crossed products L1.S1/Ì� Z and ZË� L1.S1/, where
Z acts on S1 by rotation by �. Moreover, 1 ˝ LZ is carried onto 1 ˝ LZ and
1˝ L1.S1/, respectively, under this isomorphism.
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�eorem 3.3. Let � be an almost periodic orthogonal representation of Z. Let
�i ; �i , 0 � i < n1 2 N[¹1º be an enumeration of all eigenvalues in S1 n¹1;�1º

of the complexi�cation of � . Denote by n2 and m0 the multiplicity of �1 and 1,
respectively, as an eigenvalues of � . Note that dim� D 2n1 C n2 Cm0 and write
n D n1 C n2, m D n1 Cm0. �en

M� Š .LFm ˝ LZ/ �1˝LZ .LFn Ì˛ Z/

Š .LFm ˝ L1.S1// �1˝L1.S1/ .Fn Ëˇ L1.S1// ,

where, denoting by gi , 0 � i < n1, and hi , 0 � i < n2, the canonical basis of
Fn1Cn2

Š Fn,

� ˛.1/ acts on ugi
by multiplication with �i for 0 � i < n1,

� ˛.1/ acts on uhi
by multiplication with �1 for 0 � i < n2,

� ˇ.gi / acts on S1 by multiplication with �i for 0 � i < n1,

� ˇ.hi/ acts on S1 by multiplication with �1 for 0 � i < n2.

Moreover, �.H�/
00 Š L.FmCn/ under this identi�cation and A� is carried onto

LZ and L1.S1/, respectively.

Proof. If � is the trivial representation, thenM� Š LFdim � ˝ LZ. If � is the one
dimensional representation with eigenvalue �1, then

.A� � M�/ Š .1˝ LZ � LZ Ì�1 Z/ .

Let � be an irreducible two dimensional representation of Z with eigenvalues
�; N� 2 S1 of its complexi�cation. We show that

M� Š .LZ ˝ LZ/ �1˝LZ .LZ Ì� Z/

where the inclusion 1 ˝ LZ � .LZ ˝ LZ/ �1˝LZ .LZ Ì� Z/ is identi�ed with
A� � M� under this isomorphism. Indeed, let �; � 2 H be orthogonal such
that � C i� is an eigenvector with eigenvalue � for the complexi�cation of � .
Write c D s.�/ C is.�/. �en c is a circular element in M� such that ˛�.1/c D

�c. Let c D ua be the polar decomposition. As explained in Section 2.1, u is
a Haar unitary and a has quarter-circular distribution and they are �-free from
each other. Moreover, ˛�.1/a D a and thus ˛�.1/u D �u, by uniqueness of the
polar decomposition. So the von Neumann algebra generated by a, u and LZ is
isomorphic to .LZ˝LZ/�1˝LZ.LZÌLZ/ andA� is identi�ed with the subalgebra
1 ˝ LZ. �is gives the �rst isomorphism in the statement of the theorem. Since
LZÌ�Z Š ZË�L1.S1/ sending 1˝LZ onto 1˝L1.S1/ via the Fourier transform,
we also obtain the second isomorphism in the statement of the theorem.
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�e case of a general almost periodic orthogonal representation � follows by
considering its decomposition into irreducible components as in Remark 3.1. In-
deed, denote by

� D
M

0�i<n1

�i;c ˚
M

0�i<n2

�i;�1 ˚
M

0�i<m0

�i;1

the decomposition of � into irreducible components. Here �i;c has dimension 2
with eigenvalues�i ; �i of .�i;c/C and�i;�1 has eigenvalue �1 and�i;1 is the trivial
representation. �en

M� Š .�0�i<n1
M�i;c

/ �A�
.�0�i<n2;AM�i;�1

/ �A�
.�0�i<m0;AM�i;1

/

Š .�0�i<n1;1˝L1.S1/.LZ ˝ L1.S1// �1˝L1.S1/ .Z Ë�i
L1.S1///

�1˝L1.S1/ .�0�i<n2;1˝L1.S1/.Z Ë�1 L1.S1///

�1˝L1.S1/ .�0�i<m0;1˝L1.S1/.LZ ˝ L1.S1///

Š .LFn1Cm0
˝ L1.S1// �1˝L1.S1/ .Fn1Cn2

Ëˇ L1.S1//

D .LFm ˝ L1.S1// �1˝L1.S1/ .Fn Ëˇ L1.S1//

and this isomorphism carries A� D LZ onto L1.S1/.

Corollary 3.4. A� is regular inside M� .

Proof. By �eorem 3.3, we know that

M� Š .LFm ˝ L1.S1// �1˝L1.S1/ .Fn Ëˇ L1.S1// ,

and A� is sent onto 1˝ L1.S1/ under this isomorphism. It follows immediately
that A� � M� is regular.

Note that in �eorem 3.3 the action of Fm on S1 is not free.

Proposition 3.5. Adopting the notation of �eorem 3.3, the relative commutant
of L1.S1/ in .LFm ˝ L1.S1//�1˝L1.S1/ .Fn Ë L1.S1// is LG˝ L1.S1/, where
G D Fm � ker� and � W Fn ! S1 sends a generator gi to �i and hi to �1.

Proof. It is clear that the algebra generated by the elements ug with g 2 G is
part of the relative commutant of L1.S1/ in M� , so we have to prove the other
inclusion. Let x 2 L1.S1/0 \M� and write x D

P
k2Z xkuk the Fourier decom-

position with respect to the action of Z on �.H�/
00. �en xk 2 LZ0 \ M� , so

we can assume that x 2 �.H�/
00 Š L.FmCn/. Write x D

P
g2FmCn

agug with
ag 2 C. Since for all g the action of ˛.1/ leaves Cug invariant, x is �xed by ˛ if
and only if it has only coe�cients in G. �is proves the lemma.
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Corollary 3.6. �e von Neumann algebraM� is factorial if and only if � is faith-
ful.

Proof. Let � be a non-faithful representation and take g 2 Z such that �.g/ D id.
�en ug 2 LZ is central in M� . For the converse implication, note that � is
faithful if and only if the eigenvalues of �C generate an in�nite subgroup of S1.
Any central element x of M� must lie in LG ˝ LZ and hence in LZ, since G is a
free group. Writing LFn Ì Z Š Fn Ë L1.S1/ as in �eorem 3.3, the assumption
implies that the action of Fn on L1.S1/ is ergodic. So x 2 C1.

Using Proposition 3.5, we can derive a representation of M� as a cocycle
crossed product of LG˝LZ by the groupK � S1 generated by the eigenvalues of
�C. For any element k 2 K choose an elementgk 2 Fn such that ˛.1/ugk

D kugk
.

De�ne a G valued 2-cocycle� on K by

�.k; l/ D gklg
�1
l g�1

k .

�en K acts on G by conjugation and on LZ by k � u1 D k � u1. Note that if
K is cyclic and in�nite, then we can choose � to be trivial. In this case, denote
by g1; g2; : : : a basis of FmCn such that ug1

acts by rotation on S1 and g2; g3; : : :

commute with A� . We see that the elements gk
1gig

�k
1 , i � 2, k 2 Z are a free

basis of G. So K acts by shifting a free basis of G. �is proves the following
proposition.

Proposition 3.7. �ere is an isomorphism .A� � M�/ Š .1˝ L1.S1/ � K Ë�

.LG ˝ L1.S1///. In particular, if � is two dimensional and faithful, then M� Š

Z Ë .LF1 ˝ L1.S1//, where Z acts on F1 by shifting the free basis and on S1

by multiplication with a non-trivial eigenvalue of �C.

3.2. A�-A�-bimodules in L2.M�/. If � is weakly mixing, it is known [50,
Proof of �eorem D.4] that every right �nite A� -A� -bimodule is contained in
L2.A�/. More generally, we have the following proposition.

Proposition 3.8. Let .�;H/ be an orthogonal representation of Z and letM� D

Map�A�
Mwm be the decomposition ofM� into almost periodic and weakly mixing

part. �en every right �nite A� -A� -bimodule in L2.M�/ lies in L2.Map/.

Proof. By Lemma D.3 in [50], we have to prove that there is a sequence of uni-
taries .uk/k in A� tending to 0 weakly such that for all x; y 2 M� 	 Map we
have kEA�

.xuny
�/k2 ! 0. It su�ces to consider x D w.�1 ˝ � � � ˝ �n/; y D

w.�1 ˝ � � � ˝ �m/ for some �1 ˝ � � � ˝ �n 2 H˝n; �1 ˝ � � � ˝ �m 2 H˝m such that
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at least one �i and one �j lie in Hwm. Take a sequence .gk/k going to in�nity in
Z such that h�.gk/�; �i ! 0 for all �; � 2 Hwm. �en

kEA�
.xugk

y�/k2 D kEA�
.w.�1 ˝ � � � ˝ �n/w.�.gk/�1 ˝ � � � ˝ �.gk/�m/

�/ugk
k2

D j�.w.�1 ˝ � � � ˝ �n/w.�.gk/�1 ˝ � � � ˝ �.gk/�m/
�/j

D h�1 ˝ � � � ˝ �n; �.gk/�1 ˝ � � � ˝ �.gk/�m/i

D ın;m � h�1; �.gk/�1i � � � h�n; �.gk/�ni

�! 0 .

�is �nishes the proof.

As an immediate consequence, we obtain the following corollaries.

Corollary 3.9. Let � be an orthogonal representation of Z. �e quasi-normaliser
and the normaliser of A� � M� are equal to Map. In particular, A0

� \ M� D

LG ˝ A� , where G as de�ned in Proposition 3.5 is isomorphic to a free group.

Proof. �is follows from Proposition 3.8 and Corollary 3.4.

Corollary 3.10. If � is an orthogonal representation of Z, thenM� is factorial if
and only if � is faithful.

Proof. �is follows from Proposition 3.8 and Corollary 3.6.

Remark 3.11. Note that Corollary 3.10 also follows directly from �eorem 5.1
of [17].

4. Almost periodic representations

In this section, we prove that the isomorphism class ofM� for an almost periodic
orthogonal representation � of the integers depends at most on the concrete sub-
group of S1 generated by the eigenvalues of the complexi�cation of � . We also
classify non-faithful almost periodic orthogonal representations, that is periodic
orthogonal representations, in terms of their kernel and their dimension.

4.1. Isomorphism of free Bogoljubov crossed products of almost periodic

representations depends at most on the subgroup generated by the eigenval-

ues of their complexi�cations. �e following lemma will be used extensively in
the proof of �eorem 4.2.
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Lemma 4.1. Let S be any set and xs, s 2 S a free basis of FS . Let I � S and
ws , s 2 I be words with letters in ¹xs j s 2 S n I º. �en ys D xsws, s 2 I together
with ys D xs , s 2 S n I form a basis of FS .

Proof. It su�ces to show that the map FS ! FS W xs 7! ys has an inverse. �is
inverse is given by the map

FS �! FS W xs 7�!

8
<
:
xsw

�1
s if s 2 I;

xs otherwise.

�eorem 4.2. Let �; � be orthogonal representations of Z whose weakly mixing
parts are equal and whose almost periodic parts have the same dimension and the
eigenvalues of their complexi�cations generate the same concrete subgroup of S1.
�en M� Š M� via an isomorphism that is the identity on A� D LZ D A�.

Proof. By the amalgamated free product decompositionM� Š Map �A�
Mwm of

Remark 3.1, it su�ces to consider almost periodic representations. Denote by G
the subgroup of S1 generated by the eigenvalues of the complexi�cation of � . We
may assume that the number of eigenvalues in e2�i.0; 1

2
/ of the complexi�cation of

� is not less than the one of �. Denote by �i 2 e2�i.0; 1
2

/, 0 � i < n1, n1 2 N[¹1º

and �i , 0 � i < n1 the eigenvalues of the complexi�cation of � that are not equal
to 1 or �1. Denote by n2; m0 2 N[¹1º the multiplicity of �1 and 1, respectively,
as eigenvalues of � . By �eorem 3.3, we have M� Š Fdim � Ë L1.S1/, where
Fdim � has a basis consisting of

� elements xi , 0 � i < n1 acting on S1 by multiplication with �i ,

� elements yi , 0 � i < n1 acting trivially on S1,

� elements zi , 0 � i < n2 acting on S1 by multiplication with �1, and

� elements wi , 0 � i < m0 acting trivially on S1.

Denote by �i 2 e2�i.0; 1
2

/, 0 � i < l1 2 N [ ¹1º the non-trivial eigenvalues of
the complexi�cation of � that lie in the upper half of the circle and by l2; k0 2

N [ ¹1º the multiplicity of �1 and 1, respectively, as eigenvalues of �. Since
dim� D dim �, we have 2 � l1 C l2 C k0 D 2 � n1 C n2 Cm0. We will �nd a new
basis ri .0 � i < l1/, si .0 � i < l1 C k0/, ti .0 � i < l2/ of Fdim � such that

� ri , 0 � i < l1, acts by multiplication with �i on S1,

� si , 0 � i < k0 C l1, acts trivially on S1, and

� ti , 0 � i < l2, acts by multiplication with �1 on S1.

Invoking �eorem 3.3, this su�ces to �nish the proof.
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In what follows, we will apply Lemma 4.1 repeatedly. Replace the basis el-
ements yi , 0 � i < n1 by Qyi D yixi for 0 � i < n1. �en Qyi acts on S1 by
multiplication with �i , 0 � i < n1. Since the number of eigenvalues of � in
e2�i.0; 1

2 / is not less than the corresponding number of eigenvalues of �, we have
l1 � n1. Since the subgroups of S1 generated by the eigenvalues of the complexi�-
cations of � and � agree, for every 0 � i < l1 there are elements ai;1; : : : ; ai;˛ 2 Z,
0 � ji;1; : : : ; ji;˛ < n1 and ai;0 2 ¹0; 1º such that

�i D �
ai;1

j1
� � � �

ai;˛

j˛
� .�1/ai;0 ,

where ai;0 D 0 if �1 is not an eigenvalue of � . Replacing xi , 0 � i < l1 by

ri D xi Qy�1
i Qy

ai;1

ji;1
� � � Qy

ai;˛.i/

ji;˛.i/
� z

ai;0

1 ,

we obtain a new basis of Fdim � consisting of ri .0 � i < l1/, xi .l1 � i < n1/, Qyi

.0 � i < n1/, zi .0 � i < n2/ and wi .0 � i < m0/.
We distinguish whether �1 in an eigenvalue of � or not. If �1 is no eigenvalue

of �, we produce elements si .0 � i < .n1 � l1/C n1 C n2 Cm0/ acting trivially
on S1, where we put n1 � l1 D 0, if l1 D n1 D 1. Replace xi by xi Qy�1

i for
l1 � i < n1 and then multiply Qyi , 0 � i < n1 and zi , 0 � i < n2 from the
right with words in ri , 0 � i < l1 so as to obtain these new basis elements si
.0 � i < .n1 � l1/ C n1 C n2 C m0/. Since dim� D 2n1 C n2 C m0 D l1 C

.n1 � l1/ C n1 C n2 C m0 and l2 D 0, we found a basis ri .0 � i < l1/, si

.0 � i < l1 C k0/ of Fdim � acting on S1 as desired. �is �nishes the proof in the
case �1 is no eigenvalue of �.

Now assume that �1 is an eigenvalue of �. We distinguish three further cases.
Case l1 < n1. �ere are elements a1; : : : ; a˛ 2 Z, 0 � i1; : : : ; i˛ < n1 and a0 2

¹0; 1º such that
�1 D �

a1

i1
� � � �

a˛

i˛
� .�1/a0 ,

where a0 D 0 if �1 is not an eigenvalue of � . Replace xl1C1 by

t1 D xl1C1 Qy�1
l1C1 Qy

a1

i1
� � � Qy

a˛

i˛
z

a0

1 .

Case l1 D n1 and �1 is an eigenvalue of � . Put t1 D z1.

Case l1 D n1 and �1 is no eigenvalue of � . Since 2n1 C m0 D 2l1 C l2 C

k0, in this case, � has a trivial subrepresentation of dimension 1 or � is in�nite
dimensional. Hence, we may assume that m0 � 1, since all yi ; 0 � i < n1 act
trivially on S1. �ere are elements a1; : : : ; a˛ 2 Z, 0 � i1; : : : ; i˛ < n1 such that

�1 D �
a1

i1
� � � �

a˛

i˛
.
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Put
t1 D w1 Qy

a1

i1
� � � Qy

a˛

i˛
.

In all three cases, we obtain a basis of Fdim � with elements ri .0 � i < l1/,
possibly t1 and some other elements such that

� ri , 0 � i < l1, acts by multiplication with �i on S1,

� t1 acts by multiplication with �1 on S1 and

� all other elements of the basis act on S1 by multiplication with some element
in G � S1.

We can multiply the elements di�erent from ri , .0 � i < l1/, and t1 in the basis
by some word in the letters ri , 0 � i < l1 and t1 in order to obtain a basis ri .0 �

i < l1/, si .0 � i < dim� � l1 � 1/, t1 or ri .0 � i < l1/, si .0 � i < dim� � l1/

where all elements si act trivially on S1. We used the convention dim�� l1 D 1,
if l1 D dim� D 1. If l1 C k0 < 1, replace si , .l1 C k0 � i < l1 C k0 C l2/ by
ti�kC2 D si � t1, in order to obtain a basis ri .0 � i < l1/, si .0 � i < l1 C k0/,
ti .0 � i < l2/ of Fdim � acting on S1 as desired. If l1 C k0 D 1, then replace
l2-many si by si t1 so as to obtain the new basis ri .0 � i < l1/, si .0 � i < l1Ck0/,
ti .0 � i < l2/ of Fdim � acting on S1 as desired. �is �nished the proof.

4.2. �e classi�cation of free Bogoljubov crossed products associated with

periodic representations of the integers. �e classi�cation of free Bogoljubov
crossed products associated with non-faithful, that is periodic, orthogonal rep-
resentations of Z implies a solution to the isomorphism problem for free group
factors. For example, if 1 denotes the trivial orthogonal representation of Z, we
haveMn�1 Š LFn ˝ LZ. So, proving whetherMn�1 Š Mm�1 or not for di�erent n
and m amounts to solving the isomorphism problem for free group factors. More
generally, we have the following result.

�eorem 4.3. Let � be a periodic orthogonal representation of the integers. If �
is trivial, then A� � M� is isomorphic to an inclusion

1˝ L1.Œ0; 1�/ � LFdim � ˝ L1.Œ0; 1�/:

If � is one dimensional and non-trivial, then

.A� � M�/ Š .C2 ˝ 1˝ L1.Œ0; 1�/ � M2.C/˝ L1.Œ0; 1�/˝ L1.Œ0; 1�//:

If � has dimension at least 2, let T be the index of the kernel of � in Z. �en

.A� � M�/ Š .CT ˝ L1.Œ0; 1�/ � LFr ˝ L1.Œ0; 1�//;
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where LFr is an interpolated free group factor with parameter

r D 1C
1

T
.dim� � 1/ .

Proof. �e case where � is trivial, follows from the de�nition of �.H;Z; �/00.
To prove all other cases, by �eorem 4.2, it su�ces to consider representations
� D �0 ˚ n � 1 with �0 irreducible and non-trivial and n 2 N [ ¹1º.

We �rst consider irreducible representations. �e case of � one dimensional
is veri�ed from the de�nition of M� D �.H;Z; �/00. If � has dimension 2 and is
irreducible denote by � D e

2�i
T and N� D e� 2�i

T , with T D ŒZ W ker�� 2 N�2, the
eigenvalues of �C. �en

M� Š .LZ ˝ LZ/ �1˝LZ .LZ Ì� Z/

Š .LZ ˝ C
T ˝ L1.Œ0; 1�//�1˝CT ˝L1.Œ0;1�/

.L1.Œ0; 1�/˝ MT .C/˝ L1.Œ0; 1�//

Š ..LZ ˝ C
T / �1˝CT .L1.Œ0; 1�/˝ MT .C///˝ L1.Œ0; 1�/ .

Since .LZ ˝ C
T / �1˝CT .L1.Œ0; 1�/˝ MT .C// is a non-amenable factor by �e-

orem 2.5, �eorem 2.4 shows that

..LZ ˝ C
T / �1˝CT .L1.Œ0; 1�/˝ MT .C/// Š LFr

with

r D 1C 1 �
�
1 �

1

T

�
D 1C

1

T
.dim� � 1/ .

Moreover,

.A� � M�/ Š .1˝ C
T ˝ L1.Œ0; 1�/

� ..LZ ˝ C
T / �1˝CT .L1.Œ0; 1�/˝ MT .C///˝ L1.Œ0; 1�//

Š .CT ˝ L1.Œ0; 1�/ � LFr ˝ L1.Œ0; 1�// .

Consider now � D �0 ˚ n � 1 for an irreducible, non-trivial and non-faithful
representation of dimension two �0. �e case where �0 is of dimension one and
has eigenvalue �1 is similar, but simpler. Let T D ŒZ W ker�0� 2 N�2 and
n 2 N [ ¹1º. Let r0 D 1C 1

T
. �en �eorems 2.4 and 2.5 imply that

M�0˚n�� Š .LFn ˝ LZ/ �1˝LZŠCT ˝L1.Œ0;1�/ .LFr0
˝ L1.Œ0; 1�//

Š .LFn ˝ C
T �1˝CT LFr0

/˝ L1.Œ0; 1�/

Š LFr ˝ L1.Œ0; 1�/ ,
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with

r D 1C
1

T
.n� 1/C r0 �

�
1 �

1

T

�
D 1C

1

T
.dim.�0 ˚ n � 1/ � 1/ .

Also

.A� � M�/ Š .CT ˝ L1.Œ0; 1�/ � LFr ˝ L1.Œ0; 1�//

and this �nishes the proof.

4.3. A �exibility result for representations with one pair of non-trivial eigen-

value. In this section, we will show that all free Bogoljubov crossed products
associated with almost periodic orthogonal representations ofZwith a single non-
trivial irreducible component, which is faithful, are isomorphic.

Proposition 4.4. Let �i for i 2 ¹1; 2º be almost periodic orthogonal representa-
tions of Z having the same dimension. Assume that their complexi�cations .�i/C

each have a single pair of non-trivial eigenvalues �i ; �i 2 e2�iRnQ with any mul-
tiplicity. �en M�1

Š M�2
by an isomorphism, which carries A�1

onto A�2
.

Proof. By �eorem 4.2 is su�ces to consider the case where the eigenvalue �i of
.�i /C has multiplicity one. �eorem 3.3 shows that

M�1
Š .LFdim �1�1 ˝ L1.S1// �1˝L1.S1/ .Z Ë�i

L1.S1// ,

by an isomorphism, which cariesA�i
onto L1.S1/. Taking an orbit equivalence of

the ergodic hyper�nite II1 equivalence relations induced byZ
�1
Õ S1 andZ

�2
Õ S1,

we obtain an isomorphism Z Ë�1
L1.S1/ Š Z Ë�2

L1.S1/, which preserves
L1.S1/ globally. �is can be extended to an isomorphism M�1

Š M�2
, which

carries A�1
onto A�2

.

Corollary 4.5. All faithful two dimensional representations of Z give rise to iso-
morphic free Bogoljubov crossed products.

4.4. Some remarks on a possible classi�cation of Bogoljubov crossed prod-

ucts associated with almost periodic orthogonal representations. In �eo-
rem 4.2 we showed that the isomorphism class of free Bogoljubov crossed prod-
ucts associated with almost periodic orthogonal representations of Z depends at
most on the concrete subgroup of S1 generated by the eigenvalues of its com-
plexi�cation. However, �eorem 4.3 and Proposition 4.4 both show that there are
orthogonal representations �; � of Z such that these subgroups of S1 are not equal
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and still they give rise to isomorphic free Bogoljubov crossed products. �is an-
swers a question of Shlyakhtenko, asking whether a complete invariant for the
isomorphism class of the free Bogoljubov crossed products associated with an or-
thogonal representation � of Z is ˚n�1�

˝n up to ampli�cation. By �eorem 4.3,
the classi�cation of free Bogoljubov crossed products associated with non-faithful
orthogonal representations of Z is equivalent to the isomorphism problem for free
group factors. However, assuming that M� is a factor, i.e. that � is faithful, the
abstract isomorphism class of the group generated by the eigenvalues of the com-
plexi�cation of � could be an invariant. Due to the fact that the isomorphisms
found in �eorem 4.3 preserve the subalgebra A� � M� for non-faithful orthog-
onal representations, we believe that this abstract group is indeed an invariant for
in�nite dimensional representations.

Conjecture 4.6. �e abstract isomorphism class of the subgroup generated by
the eigenvalues of the complexi�cation of an in�nite dimensional faithful almost
periodic orthogonal representation of Z is a complete invariant for isomorphism
of the associated free Bogoljubov crossed product.

5. Solidity and strong solidity for free Bogoljubov crossed products

�e proof of the following result can be extracted literally from the proof of [43,
�eorem 1]. It shows that the dimension of the almost periodic part of an orthogo-
nal representation of Z is relevant for the isomorphism class of its free Bogoljubov
crossed product. We give a full proof for the convenience of the reader. Recall
that we denote by 1 the trivial orthogonal representation of the integers.

�eorem 5.1. �e free Bogoljubov crossed products M� and M�˚1 are isomor-
phic to LF2.

Proof. We haveM� Š LF1 Ì Z, where Z acts by shifting a free basis of F1, so
M� Š LF2. Consider M�˚1 Š M� �A .LZ ˝ A/. Let B D LZ ˝ A. By [41], we
know thatM� is isomorphic to the free Krieger algebraˆ.A; �/ for the completely
positive map � W A ! C � A. Let X 2 M� be the A-valued semicircular variable
coming from this isomorphism. We show that X is B-valued semicircular with
distribution �B D � ˝ � W B ! C � B . �en it follows that M�˚1 Š ˆ.B; �B/ Š

LF2.
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From the de�nition of freeness with amalgamation, we see that for all b1; : : : ,
bn 2 B we have

EB.Xb1X � � � bnX/ D EA.XEA.b1/X � � � EA.bn/X/

D EA.X.id ˝ �/.b1/X � � � .id ˝ �/.bn/X/ .

As a result, for the free cumulants of c.n/

.X;B/
ofX with respect toB can be expressed

in terms of the free cumulants c.n/

.X;A/
of X with respect to A as

c
.n/

.X;B/
.b1; : : : ; bn/ D c

.n/

.X;A/
..id ˝ �/.b1/; : : : ; .id ˝ �/.bn//

D

8
<
:
.� ˝ �/.b1/ if n D 1 ,

0 otherwise .

�is shows that X is B-valued semicircular with distribution

�B D � ˝ � W LZ ˝ A �! C � LZ ˝ A:

We have �nished the proof.

�e fact that the left regular representation plus a trivial one dimensional repre-
sentation gives rise to a strongly solid free Bogoljubov crossed product, triggered
the following observation.

�eorem 5.2. Let � be an orthogonal representation of Z that is the direct sum
of a mixing representation and a representation of dimension at most one. �en
M� is strongly solid.

�is theorem follows from the next, more general, one. Its proof can be taken
almost literally from [19, �eorem 1.8]. We include a proof for the convenience of
the reader. Also note the similarity of our theorem with [16, �eorem D (2)].

�eorem 5.3. Let A be an amenable von Neumann algebra and A � M1;M2 be
inclusions of A into two strongly solid, tracial von Neumann algebras. Assume
that A � M1 is mixing. �en M D M1 �A M2 is strongly solid.

Proof. We �rst show that M2 � M is mixing. As in [19, �eorem 1.8], we have
to show that for every sequence .xn/n in .M2/1 with xn ! 0 weakly and for all
x; y 2 M2, a; b 2 M1 	 A we have

EA.aEA.xxny/b/
k k2

���! 0 .
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Since xn ! 0 weakly, also EA.xxny/ ! 0 weakly. �e fact that A � M1 is
mixing, then implies that kEA.aEA.xxny/b/k2 ! 0.

Let Q � M be a di�use, amenable von Neumann subalgebra and write

P D NM .Q/
00:

Let p 2 Z.P / be the maximal projection such that Pp has no amenable direct
summand. We assumep ¤ 0 and deduce a contradiction. Let! be a non-principal
ultra�lter. By �eorem 2.12 we have p D e C f with

e; f 2 Z..Pp/0 \ pMp/ \ Z..Pp/0 \ .pMp/!/

such that

� e..Pp/0 \ .pMp/!/ D e..Pp/0 \ pMp/ and this algebra is atomic and

� f ..Pp/0 \ .pMp/!/ is di�use.

Either e ¤ 0 or f ¤ 0. In both cases, we will deduce that Pp �M M1 or
Pp �M M2.

If e ¤ 0 let e0 2 .Pp/0 \ pMp be a minimal projection. �en

.Pe0/
0 \ .e0Me0/

! D Ce0;

so �eorem 2.14 applies to Ae0 � e0Me0 and Pe0 � Ne0Me0
.Qe0/

00. We obtain
that one of the following holds:

� Qe0 �M A,

� Pe0 �M M1,

� Pe0 �M M2 or

� Pe0 is amenable relative to A.

�e �rst item implies thatQe0 �M M2 and sinceM2 � M is mixing, Lemma 2.13
shows that Pe0 �M M2. �e last item implies that Pe0 has an amenable direct
summand, which contradicts the choice of p. We obtain Pp �M M1 or Pp �M

M2 in the case e ¤ 0.
If f ¤ 0 then �eorem 2.11 applied to Pf � fMf shows that one of the

following holds:

� .Pf /0 \ .fMf /! �M ! A! ,

� Pf �M M1,

� Pf �M M2 or

� there is a non-zero projection f0 2 Z..Pf /0 \ fMf / such that Pf0 is
amenable relative to A.



1236 S. Raum

�e �rst item implies .Pf /0 \ .fMf /! �M ! M!
2 and since M2 � M is mix-

ing, �eorem 2.15 shows that Pf �M M2. �e last item implies that Pf has an
amenable direct summand, contradicting the choice of p. �is shows Pp �M M1

or Pp �M M2 in the case f ¤ 0.
We showed that there is i 2 ¹1; 2º such that Pp �M Mi . Let p0 2 P , q 2 Mi ,

p0 � p be non-zero projections, v 2 pMq satisfying vv� D p0 and

� W p0Pp0 �! qMiq

a *-homomorphism such that xv D v�.x/ for all x 2 p0Pp0. We have v�v 2

�.p0Pp0/
0 \ M . Since p0Pp0 has no amenable direct summand it follows that

�.p0Pp0/ 6�M A, and hence �eorem 2.10 shows that v�v 2 Mi . So we can
conjugate P by a unitary in order to assume p0Pp0 � Mi . Take partial isometries
w1; : : : ; wn 2 P such that z D

P
i wiw

�
i 2 Z.P / and w�

i wi D Qp � p0 for all
i D 1; : : : ; n. �en we obtain a *-homomorphism

 W Pz �! Mn.C/˝ QpMi Qp W x 7�! .w�
i xwj /i;j .

By [14, Proposition 5.2], we know that Mn.C/ ˝ QpMi Qp is strongly solid. �is
contradicts

 .P z/ � NMn.C/˝ QpMi Qp. .Az//
00

and the choice of p.

Proof of �eorem 5.2. Write � D �1 ˚ �2 with �1 mixing and dim�2 � 1. �en
M� Š M�1

�AM�2
. SinceA � M�1

is mixing by [50, �eorem D.4], it is strongly
solid by [17, �eorem B]. Also M�2

is amenable, and in particular it is strongly
solid, so �eorem 5.3 applies.

We have a partial converse to the previous theorem.

�eorem 5.4. Let � be an orthogonal representation of Z with a rigid subspace
of dimension at least two. �en M� is not solid.

Proof. Let ! be a non-principal ultra�lter. Let �; � 2 H be orthogonal vec-
tors such that there is a sequence .nk/k going to in�nity in Z and �.nk/� ! �,
�.nk/� ! � if k ! 1. Denote by K the subspace generated by � and �. �en
the von Neumann subalgebra �.K;Z; �jK/

00 of M� contains the non-trivial cen-
tral sequence .unk

/k , so by [24, Proposition 7] it follows that �.K;Z; �jK/
00 is not

solid. So neither can M� be solid.

We conjecture that the previous theorem is sharp.
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Conjecture 5.5. Let � be an orthogonal representation of Z. �en the following
are equivalent:

� M� is strongly solid;

� M� is solid;

� � has no rigid subspace of dimension two.

�e �eorems 5.2 and 5.4 of this work as well as �eorem A of [13] on free
Bogoljubov crossed products that do not have property Gamma are supporting
evidence for our conjecture. We explain how Houdayer’s result is related with it.

�eorem 5.6 (See �eorem A of [13]). Let G be a countable discrete group and
� W G ! O.H/ any faithful orthogonal representation such that dimH � 2 and
�.G/ is discrete in O.H/ with respect to the strong topology. �en �.H/00 Ì� G

is a II1 factor which does not have property Gamma.

First of all, note that in view of Proposition 7 of [24], being non-Gamma can
be considered as a weak form of solidity. Secondly, we remark that an orthog-
onal representation � W G ! O.H/ has discrete range, if and only if the whole
Hilbert space H is not rigid in our terminology. �is explains the link between
our conjecture and the result of Houdayer.

6. Rigidity results

In this section, we want to show how to extract some information about � from
the von Neumann algebraM� . As an application, we exhibit orthogonal represen-
tations of Z that cannot give rise to isomorphic free Bogoljubov crossed products.

�eorem 6.1. Let �1, �2 be orthogonal representations of Z such that each of
them has a �nite dimensional invariant subspace of dimension 2. Assume that
M D M�1

Š M�2
. Let A D A�1

and identify A�2
with a subalgebra B � M .

�en there is a �nite index A-B-subbimodule of L2.M/.

Proof. We want to use �eorem 2.9 in order to �nd a �nite index A-B bimod-
ule in L2.M/. So we have to verify its assumptions. Corollary 3.9 implies that
the normalisers of A and B are non-amenable. So by Corollary 2.8, A �f

M B

and B �f
M A hold. By Proposition 3.8, every right �nite A-A subbimodule of

L2.M/ lies in L2.QNM .A/
00/. So �eorem 2.9 says that there is a �nite index

A-B-subbimodule of L2.M/.
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Corollary 6.2. Let �1; �2 be two orthogonal representations of Z having a �nite
dimensional subrepresentation of dimension at least 2. Let A1 � M1 and A2 �

M2 be the inclusions of the free Bogoljubov crossed products associated with �1

and �2, respectively. Assume thatM1 Š M2. �en there are projections p1 2 A1,
p2 2 A2 and an isomorphism � W A1p1 ! A2p2 preserving the normalised traces
such that the bimodules A1p1

.p1L2.M/p1/A1p1
and �.A1p1/.p2L2.M/p2/�.A1p1/ are

isomorphic.

Proof. By �eorem 6.1, there are projections p1 2 A1, p2 2 A2, an isomorphism
� W A1p1 ! A2p2 and a partial isometry v 2 p1Mp2 such that av D v�.a/

for all a 2 A1p1. Denote by q1 and q2 the left and right support of v, respec-
tively. Cutting down p1 and p2, we can assume that supp EA1

.q1/ D p1 and
supp EA2

.q2/ D p2. �e map q1Mq1 3 x 7! v�xv 2 q2Mq2 is trace preserving
and hence, by the intertwining relation av D v�.a/, it extends to an isomorphism
of the bimodules A1p1

.q1L2.M/q1/A1p1
and �.A1p1/.q2L2.M/q2/�.A1p1/.

By Proposition 3.5, the centre of .A1/
0 \ M equals A1, so p1 is the cen-

tral support of q1 in .A1/
0 \ M . �e element EA1

.q1/ can be considered as a
function on a standard Borel space. Let �n 2 A1, n 2 N� be the almost ev-
erywhere well-de�ned characteristic functions of the sets ¹EA1

.q1/ D 1º and
¹ 1

n�1
> EA1

.q1/ � 1
n
º, n � 2, and put en D �nq1. �en q1 D

P
n en, since EA1

is
positive and satis�es kEA1

k D 1. Since the restriction EA1
W .A1/

0 \ M ! A1 is
the centre-valued trace, there are partial isometries vk

n 2 .A1/
0 \M , n 2 N, k � n

such that
P

k�n v
k
n.v

k
n/

� D �n and .v1
n/

�v1
n D en, .vk

n/
�vk

n � en, for all n 2 N and
all 2 � k � n. Since the multiplicity function of A1

L2.M/A1
is constantly equal to

in�nity by Proposition 2.2, we �nd that for all n;m 2 N

A1p1
.emL2.M/en/A1p1

Š
M

k�m;l�n

A1p1
.vk

mL2.M/.vl
n/

�/A1p1

Š A1p1
.�mL2.M/�n/A1p1

.

So also

A1p1
.p1L2.M/p1/A1p1

Š
M

m;n2N

A1p1
.�mL2.M/�n/A1p1

Š
M

m;n2N

A1p1
.emL2.M/en/A1p1

Š A1p1
.q1L2.M/q1/A1p1

.

Similarly, we have

A2p2
.p2L2.M/p2/A2p2

Š A2p2
.q2L2.M/q2/A2p2

:
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So the chain of isomorphisms

Ap1
.p1L2.M/p1/Ap1

Š Ap1
.q1L2.M/q1/Ap1

Š �.Ap1/.q2L2.M/q2/�.Ap1/

Š �.Ap1/.p2L2.M/p2/�.Ap1/

�nishes the proof.

A measure theoretic reformulation of Corollary 6.2 can be given as follows.

Corollary 6.3. Let .�1; N1/; .�2; N2/ be symmetric probability measures with
multiplicity function on S1 such that both have at least 2 atoms when counted with
multiplicity. For i D 1; 2, let �i be the orthogonal representation of Z by mul-
tiplication with idS1 on L2

R.S
1; �i ; Ni /. If M�1

Š M�2
, then there are Lebesgue

non-negligible Borel subsets B1; B2 � S1 and a Borel isomorphism ' W B1 ! B2

preserving the normalised Lebesgue measures such that

'�

�h X

n�0

��n
1 � ı'.s/

iˇ̌
ˇ
B1

�
D

h X

n�0

��n
2 � ıs

iˇ̌
ˇ
B2

,

for Lebesgue almost every s 2 B2.

Proof. Write

M D M�1
Š M�2

and Ai , for i 2 ¹1; 2º. Denote by

Œ�i � D

Z h X

n�0

��n
i � ıs

i
d�.s/

the maximal spectral type of Ai
L2.M/Ai

according to Proposition 2.3. By Corol-
lary 6.2, there are projections p1 2 A1, p2 2 A2 and an there is an isomorphism

� W A1p1 �! A2p2

such that the bimodules A1p1
.p1L2.M/p1/A1p1

and �.A1p1/.p2L2.M/p2/�.A1p1/ are
isomorphic. �e projectionspi are indicator functions of Lebesgue non-negligible
Borel setsBi � S1 and the isomorphism � equals '� for some Borel isomorphism
' W B1 ! B2 preserving the normalised Lebesgue measures. Since the bimodules

A1p1
.p1L2.M/p1/A1p1

and A2p2
.p2L2.M/p2/A2p2

are isomorphic via �, their max-
imal spectral types are isomorphic via ' � '. Using their integral decomposition
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with respect to the projection on the �rst component of S1 � S1 as it is calculated
in Proposition 2.3, we obtain

� Z

B2

h X

n�0

��n
2 � ıs

iˇ̌
ˇ
B2

d�.s/

�
D .' � '/�

� Z

B1

h X

n�0

��n
1 � ıs

iˇ̌
ˇ
B1

d�.s/

�

D .' � id/�

� Z

B2

h X

n�0

��n
1 � ı'.s/

iˇ̌
ˇ
B1

d�.s/

�

D

� Z

B2

'�

�h X

n�0

��n
1 � ı'.s/

iˇ̌
ˇ
B1

�
d�.s/

�

As a result, for almost every s 2 B2, we obtain the equality

'�

�h X

n�0

��n
1 � ı'.s/

iˇ̌
ˇ
B1

�
D

h X

n�0

��n
2 � ıs

iˇ̌
ˇ
B2

.

�e next theorem follows by applying the previous one to some special cases.

�eorem 6.4. No free Bogoljubov crossed product associated with a representa-
tion in the following classes is isomorphic to a free Bogoljubov crossed product
associated with a representation in the other classes.

(i) �e class of representations �˚�ap, where � is a multiple of the left regular
representation of Z and �ap is a faithful almost periodic representation of
dimension at least 2.

(ii) �e class of representations �˚�ap, where � is a multiple of the left regular
representation of Z and �ap is a non-faithful almost periodic representation
of dimension at least 2.

(iii) �e class of representations �˚�ap, where � is a representation of Z by mul-
tiplication with idS1 on L2

R.S
1; �/,� is a probability measure on S1 such that

��n is singular for all n and �ap is a faithful almost periodic representation
of dimension at least 2.

(iv) �e class of representations � ˚ �ap, where � is a representation of Z by
multiplication with idS1 on L2

R.S
1; �/, � is a probability measure on S1 such

that ��n is singular for all n and �ap is a non-faithful almost periodic repre-
sentation of dimension at least 2.

(v) Faithful almost periodic representations of dimension at least 2.

(vi) Non-faithful, almost periodic representations of dimension at least 2.

(vii) �e class of representations �˚ � , where � is mixing and dim� � 1.

Note that by [17], there are measures as mentioned item (iii) and (iv).
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Proof. By �eorem 5.3, all free Bogoljubov crossed products associated with rep-
resentations in (vii) are strongly solid, but for all other free Bogoljubov crossed
products A � M is an amenable di�use von Neumann subalgebra with a non-
amenable normaliser.

It remains to consider representations in (i) to (vi). �ey satisfy the require-
ments of Corollaries 6.2 and 6.3.

We �rst claim that representations from (i) to (vi) with a faithful and non-
faithful almost periodic part, respectively, cannot give rise to isomorphic free Bo-
goljubov crossed products. Let � be an orthogonal representation of Z and let
B � S1 be Lebesgue non-negligible. �e subgroup generated by the eigenvalues
of the complexi�cation of � is dense if and only if the almost periodic part of � is
faithful. So by Section 2.4, the atoms of the spectral invariant of pA�

pL2.M/ppA�

are an ergodic equivalence relation on B �B if and only if � has a faithful almost
periodic part. So Corollary 6.2 proves our claim.

Let us now consider the weakly mixing part of the representations in the the-
orem. It is known that the spectral measure of the left regular representation of Z
on `2

R.Z/ is the Lebesgue measure. So from Corollary 6.3, it follows that the rep-
resentations whose weakly mixing part is the left regular representation, cannot
give a free Bogoljubov crossed product isomorphic to a free Bogoljubov crossed
product associated with any of the other representations in the theorem. Finally,
note that for any non-zero projection p 2 A� the bimodules pA�

L2.pM�p/pA�
is

a direct sum of �nite index bimodules if and only if the representation � has no
weakly mixing part. So appealing to Corollary 6.2, we �nish the proof.
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