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The dynamics of Aut.Fn/ on redundant representations

Tsachik Gelander and Yair Minsky�

Abstract. We study some dynamical properties of the canonical Aut.Fn/-action on the space
Rn.G/ of redundant representations of the free groupFn inG, whereG is the group of rational
points of a simple algebraic group over a local field. We show that this action is always minimal
and ergodic, confirming a conjecture of A. Lubotzky. On the other hand for the classical cases
where G D SL2.R/ or SL2.C/ we show that the action is not weak mixing, in the sense that
the diagonal action on Rn.G/

2 is not ergodic.
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1. A short introduction

LetG be a group and consider Hom.Fn; G/– the representation space of the free group
Fn in G. The automorphism group Aut.Fn/ acts naturally on Hom.Fn; G/ by pre-
compositions, inducing a canonical action of Out.Fn/ on �n.G/ D Hom.Fn; G/=G

– the space of conjugacy classes of representations. (The difference between this
and the character variety Hom.Fn; G/==G will not be important to us in this paper,
and in particular they agree on the set of irreducible representations.) When G has
an additional structure (e.g. G is algebraic, topological, measurable or finite, etc.)
Hom.Fn; G/ often inherits the structure fromG and the action respects the structure.
For instance, if G is a topological group Hom.Fn; G/ is a topological space and
Aut.Fn/ acts by homeomorphisms. Similarly, if G is a locally compact group, the
Haar measure induces a measure on Hom.Fn; G/ and Aut.Fn/ preserves its measure
class. Moreover, if G is unimodular, Aut.Fn/ preserves the measure. There are
various reasons why people are interested in understanding the invariant subsets, and
more generally the dynamics, of this action (we refer to Lubotzky’s survey [Lu] for
some of the motivations).
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grant agreement 203418, and the Israeli Science Foundation grant 1345/07. Yair Minsky acknowledges
support from the National Science Foundation.
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W. M. Goldman conjectured that for every compact connected Lie group G, if
n � 3, the Aut.Fn/ action on Hom.Fn; G/ is ergodic. As he pointed out for n D 2

the action is not ergodic in general since the function f 7! trace.f .xyx�1y�1//,
where x; y 2 F2 are free generators, is Aut.F2/-invariant and nonconstant if G is
noncommutative. In [Go], Goldman proved his conjecture for the case that all the
simple factors of G are locally isomorphic to SU.2/. The general case of Goldman’s
conjecture was proved later in [Ge].

The compact-connected case is a bit misleading. For general G one first restricts
the attention to the subspace of epimorphisms, where in the context of topological
groups, by epimorphism we mean a homomorphism with dense image:

Epi.Fn; G/ D ff 2 Hom.Fn; G/ W f .Fn/ D Gg:
This is a measurable invariant subset, often even open, but in general its complement
is also big and can be divided to subsets of the form Epi.Fn;H/ for closed subgroups
H � G. In the special case when G is connected and compact almost every homo-
morphism has dense image (see [Ge], Lemma 1.10) and Hom.Fn; G/ D Epi.Fn; G/

as measure spaces.
The first noncompact cases that were studied are G D SL2.k/ where k is a local

field. The mutual outcomes were somewhat surprising. More or less simultaneously,
Y. Glasner [Gl] showed that when k is nonarchimedean Aut.Fn�3/ acts ergodically
on Epi.Fn; G/

1, while Y. Minsky [Mi] showed that for k D R;C the action is
not ergodic. Minsky [Mi] defined the notion of primitive-stable homomorphism,
and proved that the set of primitive-stable representations is open, containing the
Schottky representations as well as a part of Epi.Fn; G/, and the action of Out.Fn/ is
properly discontinuous on the set P�.Fn; G/ of conjugacy classes of primitive-stable
representations. On the other hand, in the nonarchimedean case, as one can deduce
from Weidmann’s theorem [We], [Gl], there are no primitive stable representations
of Fn in SL2.k/

2.
In an attempt to understand the global picture, and partly motivated by analogous

results from finite group theory, A. Lubotzky [Lu] formulated the correct conjecture,
namely that the action on the big subset of redundant representations is always ergodic.
Recall:

Definition 1.1. A representation � W Fn ! G is redundant if there exists a proper
free factor A of Fn with �.A/ dense in G. We denote by Rn.G/ � Hom.Fn; G/ the
set of redundant representations.

When G is a simple Lie group over a local field, the set Rn.G/ is open (see
Corollary 3.4).

1Assuming char.k/ ¤ 2.
2Kapovich and Weidmann [KW] established a kind of generalization of Weidmann’s theorem which

applies in particular for SL2.R; C/. It might be interesting to investigate the interplay between Minsky’s
and Kapovich–Weidmann’s results.
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At first glance, Lubotzky’s conjecture may seem wrong for the following reason.
Note that a representation � is redundant iff there is a free generating set fx1; : : : ; xng
for Fn such that �.hx1; : : : ; xn�1i/ is dense in G. Call a representation � W Fn ! G

very redundant if for any free generating set fx1; : : : ; xng forFn and every 1 � i � n,
�.hxj W j ¤ ii/ is dense in G and let VRn.G/ be the set of very redundant repre-
sentations. Clearly VRn.G/ is measurable, Aut.Fn/-invariant and strictly contained
in Rn.G/. Hence if both VRn.G/ and Rn.G/ n VRn.G/ have positive measure,
the conjecture is false. However, while when G is compact and n � 3, almost every
representation is very redundant, when G is noncompact one can show that there are
no very redundant representations at all. Moreover, Lubotzky’s conjecture is indeed
true (see Theorem 2.1 below).

2. Statement of the main results

The following theorem confirms Lubotzky’s conjecture:

Theorem 2.1. Let k be a local field, G a Zariski connected simple k group, and
G D G.k/ the group of k points. If char.k/ > 0 assume further that the adjoint
representation of G is irreducible. Then the action of Aut.Fn/ on Rn.G/ is ergodic
with respect to the Haar measure induced from Hom.Fn; G/ Š Gn.

In case G is compact and connected almost every representation of Fn�3 is re-
dundant, hence Theorem 2.1 recovers Theorem 1.6 of [Ge], namely that the action
of Aut.Fn/ on the representation variety Hom.Fn; G/ is ergodic. Similarly, when
k is nonarchimedean and G D SL2.k/, almost every representation of Fn�3 with
dense image is redundant, as Glasner showed using Weidmann’s theorem (see [Gl]
for details). Hence the main result of [Gl]3 is also a special case of Theorem 2.1.

WhenG is compact and n � 3, the action Aut.Fn/ / Rn.G/ is even weakly mix-
ing. This is because Rn.G/ D Hom.Fn; G/ (up to measure 0) and Hom.Fn; G/ �
Hom.Fn; G/ is canonically identified with Hom.Fn; G �G/ while G �G is again a
compact connected group (see [Ge] for more details). Somehow, perhaps unexpect-
edly, this stronger property of compact groups does not hold in general:

Theorem 2.2. LetG D SL2.R/ or SL2.C/, and n � 3. Then the action of Out.Fn/

on xRn.G/ is not weakly mixing, in the sense that the diagonal action of Out.Fn/ on
xRn.G/ � xRn.G/ is not ergodic.

(Here xRn.G/ is the image of Rn.G/ in �n.G/. Note that nonergodicity in the
quotient implies it for the action of Aut.Fn/ upstairs).

3In [Gl] also the case of G D Aut.T /, where T is a regular tree, was treated. This case is not covered
by 2.1.
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Remark2.3. We state and prove Theorem 2.2 for SL2 since we will use3-dimensional
hyperbolic geometry in the proof. However the result extends immediately to every
rank one simple Lie group G (see also Remark 6.5).

Recall that an action on a topological space is minimal if every orbit is dense.
The representation space Hom.Fn; G/, hence also its subspace Rn.G/, inherits a
canonical topology from G. Moreover, the set Rn.G/ is open (cf. Corollary 3.4
below). The following result is new even in the context of compact Lie groups
(although a hint for it for compact G is given in Remark 1.5 (1) of [Ge]).

Theorem 2.4. Let G be as in Theorem 2.1. The action of Aut.Fn/ on Rn.G/ is
minimal.

Remark 2.5. Theorems 2.1 and 2.4 remain true, and the proofs requires only minor
changes, whenG is a general connected semisimple Lie group (not necessarily simple
or linear algebraic). However, when k is nonarchimedean and G has more than one
factor (i.e. semisimple but not simple) some parts of our arguments cannot be applied
directly.

In analogy, when G is a finite simple group, a classical result of Gilman [Gi] (for
n � 4) and Evans [E] (for n � 3) states that Aut.Fn/ acts transitively on Rn.G/.
As a consequence, the well known Weigold conjecture that Aut.Fn/ acts transitively
on Epi.Fn; G/, or equivalently, that the associated product replacement graph is
connected, reduces to the conjecture that every epimorphism is redundant, i.e. that
Epi.Fn; G/ D Rn.G/. Theorems 2.1 and 2.4 can be thought of as locally compact
analogs of the Gilman–Evans theorem where instead of groups such as SLn.Fq/ we
consider SLn.R/ and SLn.Qp/.

3. Remarks about dense subgroups

In this section we form some basic results about dense subgroups that are relevant in
the proofs of the main results.

Let k be a local field (i.e. R;C, a finite extension of Qp for some rational prime
p, or the field Fq..t// of Laurent series over a finite field), G a Zariski connected
simple algebraic group defined over k and G D G.k/ the group of k rational points.
In case k is archimedean (i.e. R or C), G is a connected real analytic Lie group, and
in case k is a finite extension of Qp ,G is a p-adic analytic group. We denote by g the
Lie algebra of G, and by A the simple associative algebra spanned by the image of
the adjoint representation Ad W G ! Aut.g/. In the positive characteristic case, it is
not always true that the representation Ad is irreducible, but we will restrict ourselves
to that case, thus by Burnside’s theorem A D End.g/.

Let us first formulate some simple useful criterions for a subgroup of G to be
dense:
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An archimedean density criterion (k D R or C): A subgroup � � G is dense iff it
is nondiscrete and Ad.�/ generates A.

The implication ) is obvious. For the other direction, denote H D x� and
h D Lie.H/ its Lie algebra. One sees that h is an ideal of g (being Ad.�/ invariant)
of positive dimension (sinceH is nondiscrete). As g is simple, it follows that h D g
and hence H D G.

A nonarchimedean density criterion (k is totally disconnected): A subgroup � �
G is dense iff it is nondiscrete, unbounded, Ad.�/ generates A, and the entries of �
are not contained in a proper closed subfield of k.

To explain the nontrivial implication (, let us again denote H D x� and h D
Lie.H/. As in the archimedean case, h is the full Lie algebra of G. It follows that
dimH D dimG and hence H is Zariski dense. We claim furthermore that H is
open. This is a consequence of the following criterion of R. Pink [Pi]:

Lemma 3.1 (Pink’s criterion). A compact subgroup ofG is open iff it is Zariski dense
and not contained in G.k0/ for a proper closed subfield k0.

LetU be an open compact subgroup ofG and consider the compact groupH \U .
It is well known thatH\U is Zariski dense inH and Lie.H\U/ D Lie.H/ (see [PR],
Lemma 3.2). Moreover since H Š G.k0/ for every closed subfield k0 < k while the
adjoint representation is defined over the prime field, we deduce that Ad.H/ is not
contained in Ad.G/.k0/, and since, for h 2 H , Ad.h/ is determined by the restriction
of ih W g 7! hgh�1 to the open (Zariski dense) set H \U \ h�1Uh, we deduce that
H \U Š G.k0/ (see [Gl] or [Sh] for more details). We deduce from Pink’s criterion
that H is open.

Finally, the density criterion follows from the following result of Tits [Pr]:

Lemma 3.2. IfH � G is open and unbounded thenH D G.

For the reader’s convenience we include a proof of Lemma 3.2 (we believe this
proof appears somewhere in the literature, but we are not aware of the correct source).
Consider the unitary representation ofG on the separable Hilbert space l2.G=H/ (or
l2.G=H/

0 if jG=H j < 1) arising from the left action of G on G=H . Clearly, there
are no nonzero invariant vectors. However, if ŒG W H� > 1, the unbounded subgroup
H admits a nontrivial invariant unit vector, in contrast to the Howe–Moore theorem.
Hence G D H .

Here is another basic result:

Proposition 3.3. The set Epi.Fn; G/ D ff 2 Hom.Fn; G/ W f .Fn/ is dense in Gg
is open in Hom.Fn; G/, and nonempty provided n � 2.
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Proof. This well known when k is archimedean (see [Ku1], [GZ], [BG]).
Suppose that k is nonarchimedean, and let f W Fn ! G be a homomorphism

with dense image. Since the set of nonelliptic elements in G is open, f .Fn/, as well
as f 0.Fn/ for any f 0 2 Hom.Fn; G/ sufficiently close to f , contains a nonelliptic
element and is hence unbounded. Moreover, G admits an open finitely generated
pro-p group K (see [BL]). It follows that the Frattini subgroup F of K is open. A
subgroup of K is dense in K iff it intersects each of the finitely many open cosets
of F in K. This is clearly an open condition. This shows that f 0.Fn/ for any f 0
sufficiently close to f is open and unbounded. By Lemma 3.2, any such f 0 has dense
image. Hence Epi.Fn; G/ is open.

To show the second statement, we have to produce a 2-generated dense subgroup
of G. First note that since the associative algebra A is finite dimensional, the set

f.a; b/ W Ad.a/;Ad.b/ generates Ag
is Zariski open in G2, and since G admits a 2-generated open subgroup (see [BL])
it is nonempty. Pick .a; b/ in this set such that a is elliptic of infinite order and b
is nonelliptic. The closed field k0 generated by the entries of a is a local subfield of
k. There are only finitely many intermediate fields between k0 and k, hence, slightly
deforming b if necessary, we may assume that its entries are not contained in any
of these intermediate fields. By the nonarchimedean density criterion sited above,
ha; bi is dense.

As an immediate corollary we have:

Corollary 3.4. The set Rn.G/ of redundant representations of Fn in G is also open
in Hom.Fn; G/. Moreover Rn.G/ ¤ ; provided n � 3.

For a finite collection of elements g1; : : : ; gk 2 G we define�.g1; : : : ; gk/ to be
the set of elements g in G that together with g1; : : : ; gk generates a dense subgroup
of G:

�.g1; : : : ; gk/ WD fg 2 G W hg1; : : : ; gk; gi is dense in Gg:
Then �.g1; : : : ; gk/ is an open (possibly empty) subset of G. We will sometimes
abuse notation and write�.S/ for�.g1; : : : ; gk/whenS is the setS D fg1; : : : ; gkg/.
We will need the data that (under certain conditions) sets of this form intersect each
other. In the archimedean case this will follow from:

Lemma 3.5. Suppose k is archimedean. If �.g1; : : : ; gk/ is nonempty, then there
is an identity neighborhood U in G, and a proper algebraic subvariety X � G such
that �.g1; : : : ; gk/ contains U nX .

Proof. If�.g1; : : : ; gk/ is nonempty, pickingg 2 �.g1; : : : ; gk/we may find finitely
many words Wi , i D 1; : : : ; m of k C 1 variables such that Ad.Wi .g1; : : : ; gk; g//,
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i D 1; : : : ; m spans A as a vector space. Define

X D fg W spanfAd.Wi .g1; : : : ; gk; g//; i D 1; : : : ; mg ¤ Ag:
Let V be a relatively compact Zassenhaus identity neighborhood ofG (see Chapter 8
in [R]). Recall that for every finite subset � � V which generates a discrete subgroup,
the Lie algebra generated by flog s W s 2 �g is nilpotent. LetU be a sufficiently small
identity neighborhood in G such that for any u 2 U , v 2 V and every word W in m
letters of length � dimG C 1 we have

W.W1.g1; : : : ; gk; v/; : : : ; Wm.g1; : : : ; gk; v//

uW.W1.g1; : : : ; gk; v/; : : : ; Wm.g1; : : : ; gk; v//
�1 2 V:

Now if g 2 U nX then fAd.Wi .g1; : : : ; gk; g//; i D 1; : : : ; mg generates A. Thus,
by the archimedean density criterion, in order to prove that hg1; : : : ; gk; gi is dense,
it is enough to show that it is nondiscrete. Suppose in contrary that it is discrete. Then
for every j � dimG C 1 the Lie algebra

nj D hlog.WgW�1/ W W is a word in Wi .g1; : : : ; gk; g/ of length � j i
is nilpotent. But then for some j � dimG we have nj D nj C1 which forces
the nontrivial nilpotent Lie algebra nj to be an ideal, since Ad.Wi .g1; : : : ; gk; g//

generates A. A contradiction to the simplicity of g.

In particular the collection of these sets have the finite intersection property:

Corollary 3.6. In the archimedean case, every finite collection of nonempty sets of
the form �.g1; : : : ; gk/ has a nonempty intersection.

In the nonarchimedean case we prove a somewhat weaker result:

Lemma 3.7. Let Sj ; j D 1; : : : ; r , be a finite family of finite sets. Assume that
�.Sj / is nonempty for every j � r and that the groups hSj i are simultaneously all
nondiscrete or unbounded. Then

T
j �r �.Sj / ¤ ;.

Proof. The fact that �.Sj / ¤ ; implies that for all g outside some proper algebraic
subvariety Xj the elements Ad.s/, s 2 Sj [ fgg, generate the algebra A. Let
kj � k be the closed subfield of k generated by the entries of the elements of Sj ,
and let fkj;ignj

iD1 be the finite collection of proper local subfields in k containing kj

(if kj D k this collection is empty). If all the hSj i are nondiscrete (resp. unbounded)
pick

g 2 G n � S
j �r Xj [ S

j �r;i�nj
G.kj;i /

�

nonelliptic (resp. elliptic of infinite order). Then each of the groups hs W s 2 Sj [
fggi satisfies the four condition of the nonarchimedean density criterion, i.e. it is
unbounded, nondiscrete, its image under Ad generate A and its entries generate k.
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We will also need:

Lemma 3.8. Suppose Si , i D 1; 2, are finite sets such that for both i , �.Si / ¤ ;
and each Si contains a nontorsion element. Then �.S1/ \�.S2/ ¤ ;.

Proof. Let si 2 Si be a nontorsion element. In view of the previous lemma, it suffices
to consider the case where s1 is elliptic and s2 is not. Then one deduces that there is
an open set V2 � �.S2/ of elliptic elements. Moreover by choosing V2 to be inside
a small neighborhood of the identity, we can guarantee that the set s2V2 consists of
nonelliptic elements. Let X1 be the proper algebraic subvariety

X1 D fg 2 G W Ad.g/;Ad.s/; s 2 S1 do not generate Ag;
and let k1; : : : ; kn be the proper local subfields containing the field generated by the
entries of S1. Then

s2V2 n �
X1 [ Sn

iD1 G.ki /
� � �.S1/ \�.S2/:

Indeed, if g 2 s2V2 n �
X1 [ Sn

iD1 G.ki /
�

then g together with S1 generates an
unbounded (since g is nonelliptic) nondiscrete (since s1 is elliptic of infinite order)
subgroup whose image under Ad generates A, and is not contained in G.k0/ for a
proper local subfield k0 < k, hence is dense. On the other hand, g together with S2

generates a subgroup which contain S2 [ fs�1
2 gg and is hence dense.

For a finite set S D fg1; : : : ; gkg let us also define:

z�.S/ WD z�.g1; : : : ; gk/ WD T
iD1;:::;k �.S n fgig/:

We will say that an ordered set (or an n-tuple) S D .g1; : : : ; gn/ � Gn is redun-
dant if the element f 2 Hom.Fn; G/ defined by f .xi / D gi , where fx1; : : : ; xng is
an arbitrary base, is redundant (this is independent of the choice of the generators xi ).
For� 2 Aut.Fn/we will denote by� �S the ordered set .f .��1 �x1/; : : : ; f .�

�1 �xn//.
We will make use of the following:

Lemma 3.9. Let S be an ordered set of size n in G. Suppose that either

� S is redundant, or

� hSi is dense and S contains two nontorsion elements which are simultaneously
elliptic or nonelliptic.

Then there is � 2 Aut.Fn/ such that z�.� � S/ ¤ ;.

Proof. When k is archimedean the lemma follows directly from Corollary 3.6 with
� D 1, even if we only assume that hSi is dense.

If k is nonarchimedean and the second condition holds, z�.S/ ¤ ; by Lemma 3.7.
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Assume therefore that k is nonarchimedean and S is redundant. Up to replacing
S by � � S for a suitable � 2 Aut.Fn/ we may assume that S D .g1; : : : ; gn/ and
hg1; : : : ; gn�1i is dense in G. Then the open set �.g2; : : : ; gn�1/ is nonempty as
it contains g1, and hence we may multiply gn by some element g0 belonging to the
dense subgroup hg1; : : : ; gn�1i and obtain a non-torsion element g0gn belonging to
�.g2; : : : ; gn�1/. Then we can find an element g00 belonging to the dense subgroup
hg2; : : : ; g

0gni such that g00g1 is non-torsion of the same type (elliptic or non-elliptic)
asg0gn, and belongs to the nonempty open set�.g2; : : : ; gn�1/. Note that the ordered
set S 0 D .g00g1; g2; : : : ; gn�1; g

0gn/ was obtained from S by a sequence of Nielsen
transformations and is hence of the form � �S for some � 2 Aut.Fn/. Moreover, any
subset of cardinality n � 1 of S 0 contains either the first or the last element (which
are both nonelliptic). Hence by Lemma 3.7 z�.S 0/ ¤ ;.

4. Minimality

In this section we prove Theorem 2.4.
Given an element 	 2 Rn.G/ and an open set U � Rn.G/ we will find ˛ 2

Aut.Fn/ with ˛ � 	 2 U . By the definition of Rn.G/, for an appropriate free
generating set fx1; : : : ; xng we have that h	.xi / W i � n�1i is dense inG. Moreover
acting by Nielsen transformations which change only the last coordinate, and then
by Nielsen transformations which change only the first coordinate, we may change
	 so that in addition to the previous condition, 	.xn/ 2 �.	.x2/; : : : ; 	.xn�1// and
	.x1/ is nontorsion. Moving U by some appropriate element of Aut.Fn/ we may
furthermore assume that for some 	0 2 U , h	0.xi / W i � n � 1i is dense, and 	0.x1/

is nontorsion as well.
We will say that an element 2 Rn.G/ links an element ' 2 Rn.G/ if for every

k < n, the group

h'.x1/; : : : ; '.xk�1/;  .xkC1/; : : : ;  .xn/i
is dense in G. The set

Ł.'/ WD f 2 Rn.G/ W  links 'g
is always open.

We claim that Ł.	/ is contained in the closure of the orbit Aut.Fn/ � 	 (and the
analog statement for 	0). Indeed, given 2 Ł.	/, since h	.xi / W i < ni is dense and
 .xn/ belongs, by definition, to�.	.x1/; : : : ; 	.xn�2//, for an appropriate composi-
tion of Nielsen transformations which act on then-th coordinate by multiplying it with
other coordinates, we obtain an element �n for which �n � 	.xi / D 	.xi / for i < n

and �n � 	.xn/ is arbitrarily close to  .xn/ and belongs to �.	.x1/; : : : ; 	.xn�2//.
After that, using the density of h�n � 	.x1/; : : : ; �n � 	.xn�2/; �n � 	.xn/i we may
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find an element �n�1 2 Aut.Fn/ which is a composition of Nielsen transforma-
tions acting on the .n � 1/-th coordinate by multiplying it by the others, such
that �n�1�n � 	.xi / D �n	.xi / for i ¤ n � 1, and �n�1�n � 	.xn�1/ belongs to
�.	.x1/; : : : ; 	.xn�3/; �n � 	.xn// and is arbitrarily close to  .xn�1/. Repeating
this procedure recursively for the lower indices we obtain an element �1�2 : : : �n

which moves 	 arbitrarily close to  .
Next observe that Ł.	/ \ Ł.	0/ ¤ ;. Indeed, by Lemma 3.8,

�.	.x1/; : : : ; 	.xn�2// \�.	0.x1/; : : : ; 	
0.xn�2// ¤ ;:

Pick gn in this set. Again, by Lemma 3.8,

�.	.x1/; : : : ; 	.xn�3/; gn/ \�.	0.x1/; : : : ; 	
0.xn�3/; gn/ ¤ ;;

so pick gn�1 in this intersection. In a recursive way we define gi for the lower indices.
Defining  by  .xi / D gi ; i D 1; : : : ; n we obtain an element  which links both
	 and 	0.

Since Ł.	/\Ł.	0/ is open nonempty and contained in Aut.Fn/ �	0, we may find
� 2 Aut.Fn/ such that � � 	0 2 Ł.	/ \ Ł.	0/. Similarly we can find � 2 Aut.Fn/

such that � � 	 2 Ł.	/ \ Ł.	0/ \ � � U . It follows that ��1� � 	 2 U .

5. Ergodicity

We are now in a position to prove Theorem 2.1. Let fx1; : : : ; xng be a generating set
of Fn.

We will say that an n-tuple .g1; : : : ; gn/ 2 Gn is strongly redundant if every
.n � 1/-subtuple generates a dense subgroup of G. We first claim that if n � 3 then
there exists a strongly redundant n-tuple. To see this, start with an arbitrary .n� 1/-
subtuple .g1; : : : ; gn�1/ which generates a dense subgroup. If k is archimedean, by
Corollary 3.6, z�.g1; : : : ; gn�1/ ¤ ; and the claim follows, using .g1; : : : ; gn�1; g/

for any g 2 z�.g1; : : : ; gn�1/. If k is nonarchimedean, slightly deforming the gi ; i �
n�1we may assume that they are all nontorsion. Then again z�.g1; : : : ; gn�1/ ¤ ;;
for n D 3 this follows from Lemma 3.8, while for n > 3 from Lemma 3.9 since at
lease two of the (� 3) elements .g1; : : : ; gn�1/ are simultaneously elliptic or not.

The set �R of strongly redundant n-tuples is open in Gn. We will call a sub-
set of �R of the form

Qn
iD1 Ui a strongly redundant open cube. We shall iden-

tify Hom.Fn; G/ with Gn via the map f 7! .f .x1/; : : : ; f .xn//. In particu-
lar, we shall say that a representation f 2 Hom.Fn; G/ is strongly redundant if
.f .x1/; : : : ; f .xn// is a strongly redundant n-tuple.

Let A � Rn.G/ be a measurable Aut.Fn/ almost invariant subset. We wish
to show that A is either null or conull. Replacing A by the countable intersectionT

�2Aut.Fn/ � � A we may assume that it is precisely invariant rather than almost
invariant.
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Let us fix once and for all a strongly redundant open cubeU D Qn
iD1 Ui . Arguing

as in the proof of [Ge], Theorem 1.6, one deduces that the intersection ofAwith U is
either null or conull in U . Indeed, assuming the contrary, one derives from Fubini’s
theorem that for some index i0 2 f1; : : : ; ng and a choice ofuj 2 Uj for every j ¤ i0,
the set

fu 2 Ui0 W .u1; : : : ; ui0�1; u; ui0C1; : : : ; un/ 2 Ag
is neither null nor conull in Ui0 and hence the set

Y D fg 2 G W .u1; : : : ; ui0�1; g; ui0C1; : : : ; un/ 2 Ag
is neither null nor conull in G. However, since A is invariant under Nielsen transfor-
mations, Y is invariant under the left action of the group hui ; i ¤ i0i. But this group
is dense and hence acts ergodically on G, a contradiction. Thus, up to replacing A
by its complement, we may assume that A \ U is null.

Now let f 2 Rn.G/ be an arbitrary redundant representation. Since the action
of Aut.Fn/ on Rn.G/ preserves the topology and is minimal, for some � 2 Aut.Fn/

we have � � f 2 U and hence ��1U is an open neighborhood of f which meets A
in a null set.

Since Rn.G/ is homeomorphic to an open subset of Gn it is second countable,
and thus can be covered by a countable union of open sets, each meetsA in a null set.
It follows that A is null.

6. Nonmixing

In this section we consider the case of G D SL.2;C/ and G D SL.2;R/, where
hyperbolic geometry gives us additional structure. In these cases we show that the
action on Rn.G/, in spite of being minimal and ergodic, is not weakly mixing in
a suitable sense. We will consider the action of Out.Fn/ on the space of �n.G/ D
Hom.Fn; G/=G, letting xRn.G/ D Rn.G/=G be the space of conjugacy classes of
redundant representations.

Theorem 6.1. The action of Out.Fn/ on xRn.G/, for n � 3, is not weakly mixing.
Indeed, the diagonal action is not ergodic on xRn.G/� xRn.G/, and in fact there is an
open nonempty invariant subset of xRn.G/� xRn.G/ on which Out.Fn/ acts properly
discontinuously.

We begin by recalling some definitions.
If X is a generating set for Fn and A a set of cyclically reduced words in Fn,

the Whitehead graph Wh.A;X/ is defined as follows: The vertex set of Wh.A;X/
is set X˙ D fx; x�1 W x 2 Xg. An (unoriented) edge Œab� appears whenever ab�1

is a subword of a cyclic permutation of a word of A (and in addition Œaa�1� is an
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edge whenever A contains the length 1 word a). See Whitehead [Wh1], [Wh2] and
Stallings [St].

For a single word write Wh.
;X/ D Wh.f
g; X/. If ˛ is a collection of loops
in the handlebody of genus n, or conjugacy classes in Fn, define Wh.˛;X/ to be
Wh.A;X/ for (any) set of cyclically reduced words representing ˛.

Note that Wh.A [ B;X/ D Wh.A;X/ [ Wh.B;X/ where “union” of graphs
means union followed by identification of duplicate edges.

An element ofFn is primitive if it is a member of a free generating set. Whitehead
gave the following property as part of an algorithm for deciding primitivity in Fn:

Basic Lemma (Whitehead). If 
 is a primitive cyclically reduced element then, for
any generating set X , Wh.
;X/ is either disconnected or has a cutpoint.

Primitive-stable pairs. Since G acts on H3 in both the real and complex case, we
can consider as in [Mi] the geometric properties of representations in Hom.Fn; G/.

We define a subset P�2
n � �n.G/

2 as follows. Recall from [Mi] that for each
� 2 Hom.Fn; G/ and basepointx 2 H3 there is an orbit map ��;x W Fn ! H3, namely
g 7! �.g/x. Fixing a set of generators we also extend ��;x to the corresponding
Cayley graph of Fn, by mapping edges to geodesic segments.

Recall also that every nontrivial element of Fn has an axis in the Cayley graph,
and let P denote the set of axes of primitive elements.

Given a constant K and basepoint x, let A.K; x; �/ denote the set of axes which
��;x maps K-quasi-geodesically to H3. (A map f W R ! Y to a metric space Y is
K-quasi-geodesic if js � t j=K � K � dY .f .s/; f .t// � Kjs � t j C K.) In [Mi],
P�n was defined as the set of (conjugacy classes of) representations for which there
exists K; x such that P � A.K; x; �/.

Now define P�2
n as the set of pairs .Œ�1�; Œ�2�/ such that there exist representatives

�1; �2, K > 0, and x 2 H3 with

P � A.K; x; �1/ [ A.K; x; �2/:

We state some basic properties of this set:

Lemma 6.2. Let n � 3 and G D SL.2;C/ or SL.2;R/.

(1) P�2
n is open.

(2) P�2
n is Out.Fn/-invariant.

(3) The action on P�2
n is properly discontinuous.

Proof. The proof proceeds essentially as in [Mi] for the corresponding facts for P�n.
We give sketches.

(1) In [Mi] in the proof of Theorem 3.2, the following stability property is given:
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Lemma 6.3. GivenK; x and � there existsK 0 and a neighborhood U of � such that

A.K; x; �/ � A.K 0; x; �0/

for all �0 2 U
The idea of this is the following: LetA be an axis in A.K; x; �/. Its ��;x image is

composed of a biinfinite sequence of segments such that successive ones are related
by (conjugates of) �-images of generators. The K-quasi geodesic property implies
that this axis makes “definitely fast” progress in H3, which means the following:
There exists k depending only onK; x and � such that any pair of segments separated
by k steps are separated by a hyperplane in H3 such that the sequence of hyperplanes
separate each other and are pairwise separated by a distance strictly greater than 0.
A small perturbation of � affects each sequence of k generators by a small amount,
and hence preserves this hyperplane property (but changes the constants). Hence the
��0;x image of A is K 0-quasi-geodesic, where K 0 depends on K; x and how close �0
is to �.

With this lemma in hand, suppose .Œ�1�; Œ�2�/ 2 P�2
n and let x;K be such that

P is contained in A.K; x; �1/ [ A.K; x; �2/. Let U1; K1 and U2; K2 be given by
Lemma 6.3 for �1 and �2 respectively, and let K 0 D max.K1; K2/. Then we have

P � A.K 0; x; �0
1/ [ A.K 0; x; �0

2/

for all .�0
1; �

0
2/ 2 U1 � U2. It follows, letting U 0

i denote the image of Ui in �n.G/,
thatU 0

1 �U 0
2 � P�2

n. (Note that Hom.Fn; G/ ! �n.G/, being a quotient by a group
action, is an open map, so that U 0

1 and U 0
2 are open.)

(2) Suppose .Œ�1�; Œ�2�/ 2 P�2
n. Any  2 Aut.Fn/ acts by quasi-isometry on

the Cayley graph of Fn, and it follows that the image of the axis of any g 2 Fn is a
quasi-geodesic (with constants depending on ) that shadows the axis of .g/. Now
if g is primitive, so is  .g/, so that the axis of  .g/ is in A.K; x; �i ; / for i D 1 or
2. But this means, forK 0 depending onK and the quasi-isometry constant of  , that
the axis of g is in A.K 0; x; �i B  /. Hence .Œ�1 B  �; Œ�2 B  �/ 2 P�2

n too.

(3) (Following the argument of Theorem 3.3 of [Mi].)
For a conjugacy class c 2 Fn let jjcjj denote the length of a cyclically reduced

representative, or equivalently the translation length of any representative of c on its
axis in the Cayley graph, and let `�.c/ denote the translation length of the conjugacy
class �.c/ in H3. If the axis of (any representative of) c is in A.K; x; �/ then
`�.c/=jjcjj is bounded above and below by positive constants depending on K; x.

So now if .Œ�1�; Œ�2�/ 2 P�2
n, all primitive conjugacy classes c satisfy such a bound

either on `�1
.c/=jjcjj or on `�2

.c/=jjcjj. Moreover these bounds vary by a bounded
ratio for a fixed c and small perturbations of the representation, as a consequence of
Lemma 6.3.

Now let E be a compact subset in P�2
n. The above gives us uniform upper and

lower bounds either on `�1
.c/=jjcjj or on `�2

.c/=jjcjj, for each primitive c, over all
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of E. If ˆ 2 Out.Fn/ such that ˆ.E/ \ E ¤ ;, let .�1; �2/ be in this intersection.
For each primitive c we obtain a bound of the form `�i

.c/ � b1jjcjj for i D 1 and
i D 2, simply because the maps ��i ;x have uniform Lipschitz bounds on E. Since
.�1; �2/ 2 ˆ.E/ we also obtain a bound of the form jjˆ.c/jj � b2`�i

.c/, for at
least one i 2 f1; 2g. Putting these together we obtain a uniform upper bound on
jjˆ.c/jj=jjcjj. This suffices, e.g. by Lemma 3.4 of [Mi], to restrictˆ to a finite set in
Out.Fn/. It follows that the action is properly discontinuous.

Lemma 6.2 tells us that P�2
n\ xRn.G/� xRn.G/ is the set required by Theorem 6.1,

provided we can prove that it is non-empty.
The proof of this will take a somewhat different form when G D SL.2;C/

and G D SL.2;R/. Although it suffices in fact to prove the real case since it
embeds in the complex case, we give a separate proof in the complex case since the
theory of hyperbolic 3-manifolds can be applied, giving a more flexible and geometric
construction.

6.1. The complex case. The proof will hinge on the following construction:

Lemma 6.4. Let H be the genus n handlebody for n � 3. There exist simple loops
˛1 and ˛2 on @H , and a generating set X for �1.H/, such that a representative of
each ˛i in Fn is contained in a proper free factor, but the Whitehead graph of the
union, Wh.f˛1; ˛2g; X/, is connected and without cutpoints.

Moreover, each ˛i can be chosen so that H admits a geometrically finite hyper-
bolic structure for which ˛i is the unique parabolic.

Proof. We can write H as a boundary connected sum (i.e. gluing along disks)

H D T1 [H 0 [ T2

whereH 0 is a handlebody of genus n� 2 and T1 and T2 are handlebodies of genus 1,
i.e. solid tori. We then rearrangeH as a union of overlapping handlebodies of genus
n � 1, H1 D T1 [H 0 and H2 D T2 [H 0.

Choose generators X D fX1; : : : ; Xng for Fn D �1.H/ so that X1 generates
�1.T1/,X2 generates�1.T2/, and the rest generate�1.H

0/. Now for i D 1; 2 suppose
that 
i is an element of �1.Hi / whose Whitehead graph Wh.
i ; fXi ; X3; : : : ; Xng/
is connected and without cutpoints. Considered with respect to all generators,
Wh.
1; X/ is disconnected because it has no edges incident to X2̇ , and indeed 
1 is
contained in the proper free factor hX1; X3; : : : ; Xni. The corresponding statements
hold for 
2.

However, Wh.f
1; 
2g; X/ is the union of two connected graphs without cutpoints,
which together meet every vertex and intersect along at least two vertices (since there
are two vertices per generator). It follows that Wh.f
1; 
2g; X/ is both connected
and without cutpoints.
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Now as discussed in [Mi], we may select ˛i in the Masur domain ofHi , and this
will imply that the Whitehead graph of ˛i with respect to some generating set will
be connected without cutpoints. Applying a homeomorphism if necessary, we may
assume that the generating set is the one we have already fixed. Moreover, being in
the Masur domain implies that Hi admits a geometrically finite hyperbolic structure
for which ˛i is the sole parabolic.

One can always choose representatives of such curves onH1 or onH2 which are
disjoint from the gluing disks, and hence they can be made to lie on the boundary
of H . Finally, the geometrically finite representations we have on Hi can be ex-
tended to representations onH which are still geometrically finite with the ˛i as sole
parabolics – this is an immediate consequence of the Klein Combination Theorem
which gives conditions on constructing free products of Kleinian groups (in this case,
the factors are �i .�1.Hi // and a hyperbolic cyclic group corresponding to �1.T3�i /)
and describes the type of the resulting group. See Klein [Kl] and Maskit [Ma].

Let ˛1, ˛2 and the generating setX be as in Lemma 6.4, and let �1; �2 W �1.H/ !
G be representations corresponding to the geometrically finite structures the lemma
provides for ˛1 and ˛2. We claim that .Œ�1�; Œ�2�/ 2 P�2

n. The proof follows the
argument in [Mi] with minor variations:

The property of geometric finiteness implies that each quotient manifold Ni D
H3=�i .Fn/ contains a convex core Ci which is not compact, but can be written as
Hi [Qi whereHi is a compact handlebody andQi is a cusp neighborhood associated
to ˛i . All closed geodesics in Ni are contained in Ci , and if a closed geodesic 

penetrates deeply intoQi then the corresponding reduced word in Fn contains a high
power of the reduced form of ˛i . This is shown in the proof of Theorem 4.1 of [Mi].

Hence, after possibly enlarging Hi , we have the following property: If a con-
jugacy class 
 in Fn has geodesic representative 
 i which is not contained in Hi ,
then Wh.
;X/ contains Wh.˛i ; X/. On the other hand by compactness there exists
K and x 2 H3 so that if 
 i is contained in Hi then the axis of 
 i is mapped K-
quasi-geodesically by ��i ;x . Let Pi be the set of conjugacy classes whose geodesic
representatives in Ni are contained in Hi , and hence satisfy the quasi-geodesic con-
dition with respect to �i .

What we have shown is that any element not in P1 [ P2 has Whitehead graph
containing Wh.f˛1; ˛2g; X/. Since this graph is connected and without cutpoints,
Whitehead’s Lemma tells us that such an element cannot be primitive. We conclude
that P1 [ P2 cover all the primitive elements, so that .Œ�1�; Œ�2�/ 2 P�2

n.
Now, since ˛i is contained in a proper free factorBi < Fn, �i jBi

is not a Schottky
group. It can therefore be approximated by dense representations of Bi (as in the
proof of Lemma 3.2 of [Mi]). It follows that �i can be approximated by redundant
representations ofFn. Since P�2

n is open, we conclude that P�2
n\. xRn.G/� xRn.G//

is nonempty.
This concludes the proof in the complex case.
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6.2. The real case. A discrete faithful representation Fn ! SL2.R/ corresponds
to a Fuchsian group, and if this group is a lattice with just one parabolic then the
representation is automatically in P�n, by the main theorem of [Mi]. So we have to
consider groups with two or more parabolics.

Let † be a sphere with k � 4 punctures. Then �1.†/ can be written as a free
group on n D k � 1 lettersX1; : : : ; Xn, representing k � 1 of the punctures, with the
last puncture represented by the product X1X2 � � �Xn.

Let g1 be a cyclically reduced word in the generators X2; : : : ; Xn, such that the
Whitehead graph W1 D Wh.g1; fX2; : : : ; Xng/ is connected and without cutpoints.
Let ˆ1 2 Aut.Fn/ be the automorphism defined by

X1 7! X1g
m
1 ;

X2 7! X2X1g
m
1 ;

:::

Xn 7! XnX1g
m
1 :

(This can be obtained as a composition of Nielsen moves, first multiplyingX1 by the
letters in gm

1 , and then multiplying each Xi for i > 1 by the image of X1.) If m is
chosen sufficiently large then theˆ1 image of each of the k punctures has Whitehead
graph (with respect to all the generators) containing W1.

Let �0 W �1.†/ ! SL2.R/ be a discrete faithful Fuchsian representation taking
all k punctures to parabolics, and let

�1 D �0 Bˆ�1
1 :

Then the parabolics of �1 are in k conjugacy classes, each of whom by itself has
Whitehead graph containing W1.

Now define g2, W2, ˆ2 and �2 the same way, but interchanging the roles of X1

with X2. The graph W2 is then connected and without cutpoints when restricted to
the vertices associated to X1; X3; : : : ; Xn.

The rest of the proof goes through in essentially the same way to show that
.Œ�1�; Œ�2�/ is in P�2

n. Namely, a conjugacy class whose axis is badly non-quasi-
geodesic in both representations must wrap around at least one of the parabolics in
�1 and at least one of the parabolics in �2 as well. Hence its Whitehead graph (with
respect to all n generators) contains W1 [W2. Since W1 and W2 intersect in at least
two vertices (those associated toX3), their union is connected and without cutpoints.

We see that each �i is approximated by redundant representations as before, since
each contains a parabolic that is inside a free factor (in fact is itself primitive).

Remark 6.5. The non-mixing result Theorem 2.2 extends to every rank one simple
Lie group. Indeed, Lemma 6.2 holds in this generality and the same proof applies.
The only issue that requires some justification is the non-emptiness of P�2

n \ xR2.
However, since every noncompact simple Lie group G admits a subgroup H locally
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isomorphic to SL2.R/ such that for some point x in the symmetric space G=K the
orbitH �x is isometric to the hyperbolic plane H2 (cf. [PR], Theorem 3.7), this result
can be deduced easily from the SL2.R/ analog.

7. Some related problems

Let us end this paper by recalling and suggesting some old and new related problems.

7.1. The other conjecture of Lubotzky. First let us repeat Lubotzky’s second con-
jecture [Lu], mentioned also in [Mi], which is still a mystery, even for SL2.R/ and
SL2.C/:

Problem 7.1. Let n � 3. Given a connected simple Lie group, is it true that almost
every representation of Fn is either redundant or primitive stable?

When k is non-archimedean and G D G.k/ is the group of k rational points
of some Zariski connected simple algebraic group G, Problem 7.1 still makes sense
when restricting to unbounded representations. It can be deduced from [Gl] that for
SL2.k/ almost every dense representation of Fn is redundant. Hence, the question in
this case is whether almost every discrete faithful representation is primitive stable or
even Schottky. For higher rank groups, e.g. for SL3.k/ it is unclear if the definition
of primitive stable representations extends in a useful way.

7.2. Does density of primitives imply redundant?. It is straightforward, that if
f W Fn ! G is redundant then f .Pn/ is dense in G, where Pn � Fn is the set of
primitive elements. Moreover, if G is discrete (e.g. finite) then the opposite is also
true, i.e. if f .Pn/ D G then f is redundant (consider a basis containing a primitive
element that maps to 1 2 G).

Problem 7.2. LetG be a topological group, or more specifically, a simple Lie group
over a local field. Is it true that every representation f W Fn ! G for which f .Pn/

is dense, is redundant?

It could be that the answer depends on n.

7.3. Extending the results of this paper to semisimple groups. In this paper we
restricted ourselves to the case where the group G is simple rather than semisimple.
However, as remarked in 2.5, over R or C, Theorems 2.1 and 2.4 remain true, with only
slight modifications in the arguments, when G has more than one factor. However
for nonarchimedean fields, although we expect that the theorems remain valid, some
parts of our proofs do not directly apply:
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Problem 7.3. Extend the result of this paper to all semisimple groups over local
fields, and more generally, to groups of the form

Qn
iD1 Gi .ki / where Gi are simple

algebraic groups and ki are local fields.

7.4. Other notions of weak mixing. For a groupG acting on a finite measure space
X , weak mixing is equivalent to each of the following:

(1) the action of G on X �X is ergodic,

(2) for every finite measure preserving ergodic space Y , the action on X � Y is
ergodic,

(3) the unitary representation L2.X/ has no finite dimensional sub-representation
but the constants.

For a compact Lie group G, since the space Rn.G/ D Hom.Fn; G/ has finite
measure, the three conditions above are equivalent and, as shown in [Ge], satisfied
whenever n � 3.

However, when G is noncompact and n � 3, the space Rn.G/ is an infinite
measure space, hence the various notions of weak mixing are no longer equivalent.
One may still ask whether for every ergodic probability space Y the action of Aut.Fn/

on Rn.G/ � Y is ergodic. In particular, one may study this question in the special
case Y D Hom.Fn;H/ where H is a connected compact group.

7.5. The notion of spread for topological groups. Recall that a finite (or discrete)
groupG is said to have spread k if for any k nontrivial elements g1; : : : ; gk 2 G nf1g
there is h 2 G n f1g which generates G simultaneously with each of the gi ’s, i.e.
for all i , hh; gi i D G. Any finite simple group has spread 2 (see [GKS], [GS]). We
can extend the definition of spread to topological groups by requiring that the closure
hh; gi i equals G for all i .

Let now G be a connected center-free simple Lie group. By [AV] G has spread
1 (see also [Ku1], [Ku2]). Additionally, given g 2 G, it is not hard to show that if
hg; hi is dense in G for some h 2 G then the set fh 2 G W hg; hi D Gg contains a
neighborhood of the identity minus some exponential proper subvariety. Hence if G
has spread 1, it has spread k for any finite k. The same result holds with respect to
Zariski topology.

Similarly, one can define the notion of random-spread as follows: Say that G
has random-spread k if for almost every k elements g1; : : : ; gk in G there is a si-
multaneous generating partner, i.e. h such that hh; gi i is dense for each i . One can
deduce from the discussion in Section 3 that every connected semisimple Lie group
has random-spread k for every finite k.

It might be interesting however to study the notion of random-spread (as well as the
true spread and other variants of it) for semisimple Lie groups over non-Archimedean
local fields.
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