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On cyclic CAT.0/ domains of discontinuity
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Abstract. Let X be a CAT.0/ space, and G a discrete cyclic group of isometries of X . We
investigate the domain of discontinuity for the action of G on the boundary @X .
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1. Introduction

The idea of a domain of discontinuity was first investigated in the setting of Kleinian
groups, discrete groups of isometries of hyperbolic m-space, Hm. Using the Poincaré
ball model of Hm, where Hm is the interior of the open unit m-ball, we see that
the visual boundary of Hm (see Section 2 for definition) is the unit sphere Sm�1,
and we see that isometries of Hm extend to homeomorphisms of the closed m-ball,
Hm [ Sm�1.

Let G be a discrete group of isometries of Hm, and .gi / a sequence of distinct
elements of G. Fixing a point a 2 Hm, using compactness and passing to a sub-
sequence, we may assume that gi .a/ ! p 2 Sm�1 and g�1

i .a/ ! n 2 Sm�1. It
can be shown that gi .x/ ! p uniformly on compact subsets of Sm�1 � fng. Since
any sequence of elements of G has such a subsequence, we say that G acts as a
convergence group on Sm�1.

The set of all such p is the limit set of the Kleinian group G,

ƒG D fp 2 Sm�1 W there exists .gi / � G with gi .x/ ! p for some x 2 Hmg
and the domain of discontinuity of G, �G D Sm�1 �ƒG. Clearly ƒG is G-invariant
and closed, and therefore �G is G-invariant and open. Let p 2 ƒG and .gi / � G

with gi .x/ ! p and g�1
i .x/ ! n 2 ƒG for some (any) x 2 Hm. Then for any

a 2 �G, gi .a/ ! p. Thus if �G ¤ ;, then p is a limit point of �G, and so �G is
dense in Sm�1.

�This work was partially supported by a grant from the Simons Foundation (209403).
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We thus arrive at the following result: If G is a discrete group of isometries of
hyperbolic m-space, Hm, then @Hm D Sm�1 is a disjoint union of the limit set of G,
ƒG, and the domain of discontinuity of G, �G, where �G is open and either dense
or empty. Since G acts as a convergence group on Sm�1, the action of G on �G is
properly discontinuous (for any compact C � �G, fg 2 G W g.C / \ C ¤ ;g is
finite).

This result holds whenever G acts as a discrete convergence group on a compact
Hausdorff space, in particular when G is a properly discontinuous group of isometries
of a proper ı-hyperbolic space [9].

In this paper we consider the case where the negative curvature (ı-hyperbolic)
condition is relaxed to a non-positive curvature (CAT.0/) condition. This result fails
in general, as [10] gives an example of a discrete group of isometries of a CAT.0/

space whose limit set contains a nonempty open subset of the boundary, but is not
the whole boundary.

The conjecture seems to be that if a cyclic subgroup acts “nicely” on a CAT.0/

space and the action on the boundary is not virtually trivial, then there should be
an open dense subset of the boundary on which the cyclic subgroup acts properly
discontinuously.

The conjecture is realized when the Tits diameter of the boundary is large:

Theorem 4. Let X be a complete CAT.0/ space with Tits radius of @X more
than 3� and j@X j > 2. If h is a hyperbolic isometry of X , then hhi acts prop-
erly discontinuously on the open subset � D @X � Œ xBT .hC; �

2
/ [ xBT .h�; �

2
/�. If

Œ xBT .hC; �
2

/ [ xBT .h�; �
2

/� � ƒX , then � is dense in @X .

Herein xBT .x; r/ is the closed ball in the Tits metric about x of radius r and ƒX

is the limits set of the isometry group of X .

Theorem 6. Let X be a proper CAT.0/ space with Tits radius more than 3� , and h

a parabolic isometry of X . Then there exists m 2 @X , a fixed point of h, such that
hhi acts properly discontinuously on the open dense subset � D @X � xBT .m; �/ of
@X . If xBT .m; �/ � ƒX , then � is dense in @X .

When the Tits radius is small, we get the following weaker (but much more
difficult) result.

Main Theorem. Let g be a hyperbolic isometry of the cocompact proper CAT.0/

space X . If � D @X � Sg ¤ ;, then � is a dense open subset of @X , and hgi acts
discretely on �.

Herein Sg is the union of fg˙g and all Tits geodesics of length � (if any) between
g� and gC in @X .

The case where @X D Sg will not be addressed in this note.
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In the process of proving this main theorem, we obtain the following result which
is of independent interest (perhaps more so than our original problem). The version
given here is slightly weaker than what we prove, but is easier to state.

Corollary 16. Let X be a proper CAT.0/ space with almost extendable geodesics
and finite dimensional Tits boundary, and G a group of isometries of X . Suppose
there is a convex subset W of X satisfying the following conditions:

� W D Y � Z where Y Š Em.
� @W contains an open subset U of @X .
� There exists a geodesic ray R � W with R.1/ 2 U , and a compact C � X

with R � S
g2G g.C /.

Then every point of @Y is a spherical suspension point of @X .

Herein a is a spherical suspension point of @X if there exists b 2 @X and W � @X

such that @X D fa; bg � W , where � is the spherical join. The author wishes to thank
M. Kapovich, G. Levitt and K. Ruane for helpful conversations, and the referee and
M. Kapovich for suggestions of improvement.

2. Definitions and basic results

We refer the reader to [5] or [1] for more details of the following.

Definition. For X a geodesic metric space and �.a; b; c/ a geodesic triangle in X

with vertices a; b; c 2 X there is a comparison triangle N� D �. Na; Nb; Nc/ � E2

with d.a; b/ D d. Na; Nb/, d.a; c/ D d. Na; Nc/ and d.b; c/ D d. Nb; Nc/. We define the
comparison angle x†a.b; c/ D † Na. Nb; Nc/.

Each point z 2 �.a; b; c/ has a unique comparison point, Nz 2 N�. We say that
the triangle �.a; b; c/ is CAT.0/ if for any y; z 2 �.a; b; c/ with comparison points
Ny; Nz 2 N�, d.y; z/ � d. Ny; Nz/. The space X is said to be CAT.0/ if every geodesic
triangle in X is CAT.0/.

If X is CAT.0/, notice that for any geodesics ˛ W Œ0; r� ! X and ˇ W Œ0; s� ! X

with ˛.0/ D ˇ.0/ D a, the function

�.r; s/ D x†r.0/.˛.r/; ˇ.s//

is an increasing function of r , s. Thus limr;s!0 �.r; s/ exists and we call this limit
†a.˛.r/; ˇ.s//. It follows that for any a; b; c 2 X , a CAT.0/ space,

†a.b; c/ � x†a.b; c/:

For the following discussion, we assume that X is a complete CAT.0/ space.
The (visual) boundary, @X , is the set of equivalence classes of rays, where rays are
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equivalent if they are within finite Hausdorff distance from each other. Given a ray
R and a point x 2 X , there is a ray S emanating from x with R � S . Fixing a base
point 0 2 X , we define the visual topology on xX D X [ @X by taking the basic open
sets of x 2 X to be the open metric balls about x. For y 2 @X , and R a ray from
0 representing y, we construct basic open sets U.R; n; "/ where n; " > 0. We say
z 2 U.R; n; "/ if the unit speed geodesic, S W Œ0; d.0; z/� ! xX , from 0 to z satisfies
d.R.n/; S.n// < ". These sets form a basis for a regular topology on xX and @X . For
any x 2 X and u; v 2 @X , we can define †x.u; v/ and x†x.u; v/ by parameterizing
the rays Œx; u/ and Œx; v/ by t 2 Œ0; 1/ and taking the limit of x†x as t ! 0 and
t ! 1 respectively.

For u; v 2 @X , we define †.u; v/ D supp2X †p.u; v/. It follows from [5] that
†.u; v/ D x†p.u; v/ for any p 2 X . Notice that isometries of X preserve the angle
between points of @X . The angle defines a path metric, dT on the set @X , called the
Tits metric, whose topology is finer than the visual topology of @X . Also †.a; b/ and
dT .a; b/ are equal whenever either of them is less than � . For any u 2 @X , we define
BT .u; "/ D fv 2 @X W dT .u; v/ < "g and xBT .u; "/ D fv 2 @X W dT .u; v/ � "g.

The set @X with the Tits metric is called the Tits boundary of X , denoted TX .
Isometries of X extend to isometries of TX

The identity function TX ! @X is continuous, but the identity function @X !
TX is only lower semi-continuous. That is for any sequences .un/; .vn/ � @X with
un ! u and vn ! v in @X , then

lim dT .un; vn/ � dT .u; v/:

Lemma 1 ([7], p. 175, Proposition 3.4.3). Let X be a complete CAT.0/ space,
v 2 @X , and H � X a horoball centered at v. Then xH \ @X D xBT .v; �

2
/.

Proof. We first show that xH \ @X 	 xBT .v; �
2

/. Suppose that w 2 xH \ @X with
†.v; w/ > �

2
. Choose a point y 2 X with †y.v; w/ > �

2
.

Let R W Œ0; 1/ ! X be the geodesic ray from y to v, and bR W X ! R be the
Buseman function associated to R, bR.x/ D limt!1Œd.x; R.t// � t �. Note the
bR.y/ D 0 and bR.R.t// D �t for t > 0. By [5], Exercise 8.23 (1), p. 272, any
horoball based at v is within finite distance of any other horoball based at v. It follows
that all horoballs based at v will have the same limit points in the boundary. Thus we
may assume that H D b�1

R .Œ�1; �1//.
Since w 2 xH , there exists yw 2 H such that †y.v; yw/ > �

2
.

We recall [5], Exercise 8.23 (4), p. 273. Choose a geodesic line xR W R ! E2. For
each x 2 X and n 2 N consider a comparison triangle N�.x; R.0/; R.n// with xR.i/

the comparison point for R.i/ (i D 0; n) and xn 2 E2 the comparison point for x.
Choose rn 2 R with xR.rn/ D � xR.xn/ (where � xR is orthogonal projection to the line
xR). Then rn ! r where bR.x/ D �r . Since bR. yw/ � �1, for n 
 0, rn > 0. It
follows that † xR.0/.

xR.n/; ywn/ < �
2

. However �
2

< †y.v; yw/ D †R.0/.R.n/; yw/ �
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x†R.0/.R.n/; yw/ D † xR.0/.
xR.n/; ywn/ < �

2
which is a contradiction. Thus xH \@X 	

xBT .v; �
2

/.
We now show that xH \ @X � xBT .v; �

2
/. Since xH is closed in xX , it suffices

to show that BT .v; �
2

/ � xH . Choose R W Œ0; 1/ ! X unit speed geodesic ray to
v, and with associated Buseman function bR.x/ D limt!1Œd.x; R.t// � t �. We
may assume that H D b�1

R .Œ0; �1//. Let y D R.0/. We note the bR.y/ D 0 and
bR.R.t// D �t for t > 0.

Let w 2 @X with †.w; v/ D � < � , and S W Œ0; 1/ ! X be the unit speed
geodesic from y to w. We will show that S.Œ0; 1// � H . Since the function bR is
convex and bR B S.0/ D 0, it suffices to show that bR B S.s/ � 0 for all s 
 0. By
[1], Proposition II 4.2, for s 
 0 †S.s/.y; v/ > �

2
. Fix such s 
 0 and let x D S.s/,

so †x.y; v/ > �
2

.
It suffices to show that bR.x/ � 0. Since limt!1 †x.y; R.t// D †x.y; v/,

for t 
 0, †x.y; R.t// > �
2

. Since x†x.y; R.t// � †x.y; R.t//, then for t 
 0,
x†x.y; R.t// > �

2
implying that d.x; R.t// < d.y; R.t// D t . Thus Œd.x; R.t// �

t � < 0 for all t 
 0 and so bR.x/ � 0 as required.

3. Large Tits radius

For A � @X , we define

radiusT .A/ D inffr W A � BT .u; r/ for some u 2 @Xg:
If g is an infinite order isometry of X , and hgi is proper, then g is either hyperbolic

or parabolic. When g is hyperbolic, it acts by translation on a line (called an axis of g)
in X with endpoints gC (in the direction of translation) and g� (see [5], Theorem 6.8,
p. 231).

Recall that a hyperbolic isometry h of X is said to be rank 1 if h has an axis
L which does not bound a half flat. From [1] we see that dT .hC; ˛/ D 1 for all
˛ ¤ hC, so if X has a rank 1 isometry, then radiusT .@X/ D 1.

Recall a result from [16].

Theorem 2 ([16]). Let X be a complete CAT.0/ space and .gi / a sequence of
isometries of X with the property that gi .x/ ! p 2 @X and g�1

i .x/ ! n 2 @X

for any x 2 X . Then for any � 2 Œ0; �� and any compact set K � @X � xBT .n; �/,
gn.K/ ! xBT .p; � ��/ (in the sense that for any open U � xBT .p; � ��/, gn.K/ �
U for all n sufficiently large).

This theorem is stated in [16] with stronger hypotheses, but they were not used
in the proof. We will refer to this result as �-convergence. For a given hyperbolic
element h with axis L, we set gi D hi , n D L.�1/ D h� and p D L.1/ D hC.

The following theorem is due to Ballmann.
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Theorem 3 (Ballmann). If h is a rank 1 isometry of the complete CAT.0/ space X ,
then the group hhi generated by h, acts properly discontinuously on the open set
@X � fh˙g which is dense if it is non-empty.

Proof. Let K be a compact subset of @X �fh˙g. The Tits distance from K to n D h�
will be infinite. Thus, by �-convergence, hi .K/ ! p D hC and h�i .K/ ! n D h�.
Thus fi 2 Z W hi .K/\K ¤ ;g is finite and the action of hhi on @X �fh˙g is properly
discontinuous. Clearly @X � fh˙g is an open subset and for any a 2 @X � fh˙g,
hi .a/ ! hC and h�i .a/ ! h� so @X � fh˙g is dense in @X .

Definition. For X , a complete CAT.0/ space, we define the limit set ƒX � @X to be
the set fp 2 @X W there exist .gi / isometries of X with gi .x/ ! p and g�1

i .x/ !
n for some n 2 @X and for all x 2 Xg.

The following is a slight generalization of a result of Karlsson [12].

Theorem 4. Let X be a complete CAT.0/ space with radiusT .@X/ > 3� and j@X j >

2. If h is a hyperbolic isometry of X , then hhi acts properly discontinuously on the
open subset � D @X � Œ xBT .hC; �

2
/ [ xBT .h�; �

2
/�. If Œ xBT .hC; �

2
/ [ xBT .h�; �

2
/� �

ƒX , then � is dense in @X .

Proof. By Theorem 3, we may assume that h is not rank 1. Thus some axis of h

bounds a half-flat, which corresponds to a Tits geodesic of length � from hC to h�,
so dT .hC; h�/ D � .

If there is any point of w 2 @X which is isolated in the Tits metric, (dT .w; v/ D 1
for all v ¤ w) then, by �-convergence, the orbit of w under hhi is infinite and each
element of the orbit will be isolated as well.

By the triangle inequality, for any q 2 @X , there exist u; v 2 @X such that
dT .q; u/; dT .q; v/ � � and dT .u; v/ > 2� . If follows from �-convergence that for
any w 2 ƒX and any neighborhood W of w in @X , the Tits diameter diamT .W / >

2� . Since
diamT Œ xBT .hC; �

2
/ [ xBT .h�; �

2
/� � 2�;

W 6� xBT .hC; �
2

/ [ xBT .h�; �
2

/, so W \ � ¤ ;. Thus � is dense in ƒX . Since
closed Tits balls are closed in @X , � is open.

For any compact K � �, by �-convergence hi .K/ ! xBT .hC; �
2

/ and h�i .K/ !
xBT .h�; �

2
/. Using this, we can show that fi 2 Z W hi .K/ \ K ¤ ;g is finite and so

the action of hhi on � is properly discontinuous.

Example 5. Notice that � need not be dense in @X if we remove the condition that
xBT .hC; �

2
/ [ xBT .h�; �

2
/ � ƒX . You start with the half plane f.x; y/ W y � 0g

where h is unit translation in the first coordinate. Now you attach a line at the
origin and let g act by translation in that line. You construct the CAT.0/ space X

by translating this picture by g and h. This gives you an action of hg; hi on the
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CAT.0/ space X . The isometry g is a rank 1 hyperbolic element, so X is rank 1, but
� D @X � Œ xBT .hC; �

2
/ [ xBT .h�; �

2
/� is not dense in the boundary, in fact its closure

hits Œ xBT .hC; �
2

/ [ xBT .h�; �
2

/� only in h˙.

Definition. Recall that a metric space is proper if closed metric balls are compact,
and a metric space is cocompact if the quotient of the space by the isometry group
is compact.

Theorem 6. Let X be a proper CAT.0/ space with radiusT .@X/ > 3� , and h a
parabolic isometry of X . There exists m 2 @X fixed point of h such that hhi acts
properly discontinuously on the open dense subset � D @X � xBT .m; �/ of @X . If
xBT .m; �/ � ƒX , then � is dense in @X .

Proof. Clearly � is non-empty and open. By [5], Proposition 8.25, p. 275, there exists
m 2 @X such that h leaves invariant each horoball centered at m, which implies that
h fixes m. Suppose that hhi does not act properly discontinuously on �. Then there
exists K, a compact subset of �, and a strictly increasing sequence .ij / � N such
that K \ hij .K/ ¤ ; for all j 2 N.

Fix x 2 X . Passing to a subsequence, we may assume that hij .x/ ! p 2 @X and
h�ij .x/ ! n 2 @X . Since h leaves the horosphere S centered at m passing through x

invariant, then n; p 2 @S � xBT .m; �
2

/ by Lemma 1. Since @X is normal, there exists
U � @X open with xBT .m; �/ � U and U \ K D ;. Since xBT .n; �

2
/; xBT .p; �

2
/ �

xBT .m; �/ � U , by �-convergence hij .K/ � U for all j 
 0 which implies
hij .K/ \ K D ; for all j 
 0 contradicting the choice of .ij /. Thus hhi acts
properly on �.

By the triangle inequality, for any q 2 @X , there exists u; v 2 @X such that
dT .q; u/; dT .q; v/ � � and dT .u; v/ > 2� . If follows from �-convergence that for
any w 2 ƒX and any neighborhood W of w in @X , the Tits diameter diamT .W / >

2� .
Since diamT . xBT .m; �// � 2� , W 6� xBT .m; �/ so W \ � ¤ ;. Thus � is

dense in ƒX .

4. Small Tits radius

We now assume that X is a proper CAT.0/ space.

Definition. We say that a; b 2 @X are antipodes if dT .a; b/ � � . The suspension of
the antipodes a and b, Sb

a , is the union of a and b together with of all Tits geodesics
from a to b of length � (if any). Notice that Sb

a D Sa
b

.

Let a 2 @X and .gi / a sequence of X . We say that .gi / pulls from n 2 @X if
there is some unit speed geodesic ray R W Œ0; 1/ ! X representing n, and a sequence
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.si / � Œ0; 1/ with si ! 1 such that the sequence .gi .R.si /// is bounded. Clearly
this is independent of the ray chosen. Passing to a subsequence, we may assume
that gi .R.si // ! b, and that the sequence of rays .gi .R// (each reparametrized)
converges uniformly on compact subsets to a geodesic line L with gi .�i/ ! L.�1/,
and L.0/ D b. Notice that for some (and so any) x 2 X , gi .x/ ! L.�1/

and g�1
i .x/ ! n. We say a group of isometries pulls from n 2 @X , if there is a

sequence in G which pulls from n. Notice that if there is a compact C � X such that
R.Œ0; 1// � S

g2G g.C /, then G pulls from n D R.1/.
For any x 2 @X , passing to a subsequence, we may assume that gi .x/ ! Ox 2 @X .

Thus for any compact set C � TX we can define f W C ! @X by f .x/ D Ox. In
fact we can define f whenever C has a countable dense subset as a subset of TX .
By [5], f W C ! TX is a contraction (Lipschitz with constant one). Notice that
f .n/ D L.�1/.

Lemma 7. In the above setting for any a 2 xBT .n; �/, f W Œn; a� ! TX is an
isometric embedding of Œn; a� into S

L.1/

L.�1/
, where Œn; a� is a Tits geodesic from n

to a.

Proof. Because f is a contraction, if dT .n; a/ D dT .f .n/; f .a// then f W Œn; a� !
TX is an isometry. Since f .n/ D L.�1/, it suffices to show that dT .f .n/; f .a//C
dT .f .a/; L.1// D � .

Let � D dT .n; a/, so by �-convergence � � � � dT .f .a/; L.1//. Since f is
Lipschitz with constant one, dT .f .n/; f .a// � � . However,

� D � C .� � �/ � dT .f .n/; f .a// C dT .f .a/; L.1//

� dT .L.�1/; L.1// � �:

Example 8. The function f defined above need not be an embedding on BT .n; �/.
Consider the half flat Y D R � Œ0; 1/. For each n 2 Z glue the quarter flat
Xn D Œn; 1/ � Œ0; 1/ by identifying .a; b/ 2 Y with .c; d/ 2 Xn if a D c, b D d ,
and ln.a C 1 � n/ � b. Let Z be the resulting space. @Z is broom attached at 1 in
the R factor of Y . Notice that Z acts on Z (1 2 Z sends Xn to XnC1). Letting gi be
subtraction by i , we have f .@Z/ D @Y .

Definition. Let g be a hyperbolic isometry of the CAT.0/ space X . We define

Sg D S
gC

g� , that is, the suspension of the endpoints of g.

Theorem 9. The group hgi acts discretely on the open set � D @X � Sg .

Proof. It suffices to show that for any point a 2 @X , the limit points of the fgi .a/ W
i 2 Ng are in Sg . Let b be a limit point of fgi .a/ W i 2 Ng. Choose an increasing
sequence .ij / � N such that gij .a/ ! b.

Let L be an axis of g, then the sequence .gij / pulls from n D L.�1/ D g�,
leaving L invariant. If dT .a; n/ � � , then by �-convergence b D L.1/ D gC.
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If dT .a; n/ < � , then we construct the function f W Œn; a� ! TX as above and so
f .a/ D b.

By Lemma 7, f embeds Œn; a� into S
L.1/

L.�1/
D Sg . Thus b 2 Sg .

Definition. A bounded metric space X is almost a product (K) of Y and Z if there
is a convex subset W Š Y � Z and X � Nbh.W; K/.

Definition. For C > 0, we say that X has almost extendable (C ) geodesics if for any
x; y 2 X there exists z 2 B.y; C / such that the geodesic segment Œx; z� extends to
a ray from x. If X has almost extendable geodesics (C ) for some C , we say X has
almost extendable geodesics.

By [11], if X is cocompact then it has almost extendable geodesics.

Lemma 10. Let X be a proper CAT.0/ space X with almost extendable geodesics.
Given there is a convex subset W of X where W D Y � Z, and a non-empty open
subset V � @X with V � @W . If the isometries of X pull from a point of V , then X is
almost a product of yY and yZ, convex subsets of X . Additionally, if Y is cocompact,
then yY Š Y .

Proof. Let C be the almost extendability constant. We may assume that Y and Z are
(convex) subsets of W . Fix a base point w 2 W . Let ˛ 2 V be a point which the
isometries of X pulls from. Let R W Œ0; 1/ ! W be a geodesic ray with R.0/ D w

and R.1/ D ˛. There exist N 2 N, " > 0 such that U.˛; N; "/ � V .
By definition of pulling from ˛, there is a sequence of isometries .gi / and ti !

1 such that gi .Rti / ! L uniformly on compact subset where Rti is the ray R

reparametrize to have domain Œ�ti ; 1/. Using the fact that X is proper and passing to
a subsequence, there are unbounded sequences .yi / � Y , .zi / � Z so that gi .wi / !
yw 2 X where wi D .yi ; zi /. Using properness and passing to a subsequence, we
have that gi .W / ! yW , a convex subset of X . Let Yi be the copy of Y in W which
contains zi , and Zi the copy of Z in W which contains yi , so that Yi \ Zi D fwig.
Passing to a subsequence, we may assume that gi .Yi / ! yY , a convex subset of yW
and gi .Zi / ! yZ, a convex subset of yW . Now let Oa; Ob 2 yW . Thus there are sequences
.ai /; .bi / � W with gi .ai / ! Oa and gi .bi / ! Ob. For each i , let aY

i D �Yi
.ai /, the

projection of ai in Yi . Define bY
i , aZ

i and bZ
i similarly. For each i , W is the metric

product of Yi and Zi , i.e.,

d.ai ; bi /
2 D d.aY

i ; bY
i /2 C d.aZ

i ; bZ
i /2:

The sequence .gi .a
Y
i // will clearly converge to the closest point projection � yY . Oa/.

Similarly gi .a
Z
i / ! � yZ. Oa/, gi .b

Y
i / ! � yY . Ob/, and gi .b

Z
i / ! � yZ. Ob/. It follows

that
d. Oa; Ob/2 D d.� yY . Oa/; � yY . Ob//2 C d.� yZ. Oa/; � yZ. Ob//2;
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so yW D yY � yZ.
When Y admits a cocompact action, we can arrange it so that for some y 2 Y ,

and hi isometry of Y , gi .hi .y// is bounded and so there is an isometric embedding
h W Y ! X such that h.Y / D yY , and similarly for Z.

Now we claim that X � Nbh. yW ; C /. Suppose not, then let x 2 X with
d.x; yW / > C . Notice that g�1

i . xB.x; C // ! ˛. Thus for i 
 0 g�1
i . xB.x; C // �

QU .˛; N; "/.
By almost extendable geodesics(C ) there is a point vi 2 g�1

i . xB.x; C // such
that vi is on a ray S W Œ0; 1/ ! X from our base point w. Notice that for i 
 0,
d.x; gi .W // > C , so in that case d.vi ; W / > 0, so S.Œ0; 1// 6� W .

Since the (unit speed geodesic) rays based at w give unique representatives of
@X and every element of @W is represented by a ray in W from w, this implies that
S.1/ 62 @W , but S.1/ 2 U.˛; N; "/ � @W , which is a contradiction.

Corollary 11. Let X be a proper CAT.0/ space with almost extendable geodesics
and W a convex subset with cocompact stabilizer in the isometry group of X . If some
nonempty open subset of @X is in @W , then X lies in a uniform neighborhood of W ,
so @X D @W .

Proof. In the proof of Lemma 10, we may choose the sequence .gi / in the stabilizer
of W , so yW D W .

Unfortunately, the previous result raises more questions than it answers

Question. If X and Y are cocompact proper CAT.0/ spaces and U � @X , V � @Y

non-empty open subsets with U Š V , is @X Š @Y ? (Here Š is a homeomorphism
in cone topology and an isometry in the Tits metric.)

What if additionally we have a group G acting geometrically on both X and
Y ? The answer is clearly yes if X or Y is rank 1 and the isomorphism U Š V is
G-equivariant.

See [6] and [15] for related questions.
We now generalize part of a result of Lytchak to our setting.

Theorem 12. [14] Let Z be a geodesically complete finite dimensional CAT.1/ space.
Then Z has a unique decomposition Z D Sn�G1�  �Gk �Y1�  �Ym where Gj is
a thick irreducible building and Yj is an irreducible (via spherical join) non-building.

In our setting, the Tits boundary TX is not geodesically complete. Nonetheless,
we obtain the following result: If Z is a finite dimensional CAT.1/ space then there
is a unique decomposition Z D Sn � Y where Y doesn’t have a sphere as a spherical
join factor.

Lemma 13. If Y and Z are CAT.0/ spaces and F is a flat sector in Y � Z, then
�Y .F / is a flat sector in A.
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Proof. Since a flat sector is the nested union of flat triangles (and this is sufficient),
it suffices to show that the projection of a flat triangle is a flat triangle.

Let abc be a triangle in a CAT.0/ space. Consider the following condition: For
t 2 .0; 1/ if e 2 Œa; b� and f 2 Œa; c� with d.a; e/ D td.a; b/ and d.a; f / D td.a; c/

then d.e; f / D td.b; c/. Notice that if abc is flat, then this condition is satisfied
by similar triangles. If on the other hand this condition is satisfied, then by similar
triangles, the Euclidian comparison angle x†a.b; c/ D x†a.e; f /. It follows that
†a.b; c/ D x†a.b; c/ and so the triangle abc is flat.

Thus we may assume that abc is a triangle in satisfying this condition. For
t 2 .0; 1/ choose e and f as above. Let a1, b1, c1, e1, f1 be the projections of a,
b, c, e, f respectively into Y and a2, b2, c2, e2, f2 the projections of a, b, c, e,
f respectively into Z. By similar Euclidean triangles d.ai ; ei / D td.ai ; bi / and
d.ai ; fi / D td.ai ; ci / for i D 1; 2.

By hypothesis d.e; f / D td.b; c/, so d.e; f /2 D t2d.b; c/2. Thus,

d.e1; f1/2 C d.e2; f2/2 D t2d.b1; c1/2 C t2d.b2; c2/2:

By the CAT.0/ inequality applied to the triangles aibici , i D 1; 2, d.ei ; fi / �
td.bi ; ci / for i D 1; 2. It follows that d.ei ; fi / D td.bi ; ci / for i D 1; 2, and so the
triangles aibici are flat for i D 1; 2.

Definition ([5], Corollary 5.11, p. 62). For Y and Z, metric spaces of diameter � � ,
we define Y � Z to be the quotient of the space Y � Z � Œ0; �

2
� by the identifications

.y; z; 0/ D .y; Oz; 0/ and .y; z; �
2

/ D . Oy; z; �
2

/. We denote the class .y; z; �/ by
y cos � C z sin � , so .y; z; 0/ D y and .y; z; �

2
/ D z, and so we have Y; Z � Y � Z.

For u D y cos � C z sin � , u0 D y0 cos � 0 C z0 sin � 0 2 Y � Z we define d.u; u0/ by

cos.d.u; u0// D cos � cos � 0 cos.d.y; y0// C sin � sin � 0 cos.d.z; z0//:

Clearly for � ¤ 0; �
2

, d.u; u0/ D � if and only if d.y; y0/ D � D d.z; z0/ and
� C � 0 D �

2
.

Lemma 14. Let ˛ be a geodesic in A�B where A and B are CAT.1/ spaces. Notice
that A and B are �-convex subsets of A � B . If the image of ˛ misses B , then the
projection of ˛ to A is a geodesic.

Proof. Let Y D C0.A/ and Z D C0.B/ be the Euclidian cones on A and B respec-
tively. By [5], C0.A � B/ D X Š Y � Z and so A � B D @.Y � Z/. By [5],
Proposition 5.15, p. 64, it suffices to show that the projection of ˛ to A is a local Tits
geodesic. There is a flat sector F � X based at the cone point 0 of X with @F D ˛.
We can think of Y and Z as being convex subsets of X . By Lemma 13, the projection
FY of F into Y is a Euclidean sector based at the cone point of Y (which is 0 of
course). By the proof of [5], Proposition 5.15, p. 64, the @FY will be the projection
of ˛ to A. It follows that this projection is a Tits geodesic in A.
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The following can also be done using the main result of [8].

Theorem 15. If Z is a finite dimensional complete CAT.1/ space, then there is a
unique decomposition Z D S � D, where S Š Sn and D does not have a non-empty
sphere as a spherical join factor.

Proof. Suppose that Z D Sk �U and Z D fa; bg�A, where fa; bg 6� Sk . It follows
that a is the unique antipode to b in Z and visa versa (so fa; bg \ Sk D ;). By the
metric on Z D Sk � U , we have a1; b1 2 Sk , a2; b2 2 U and � 2 .0; �=2� with
a D a1 cos � C a2 sin � and b D b1 sin � C b2 cos � . If follows that a2 is the unique
antipode of b2 in U and visa versa (and similarly for a1 and b1 in Sk).

Since Z D fa; bg � A, it follows that Z D Sb
a , and every point of Z is on a Tits

geodesic from a to b. Fix u 2 U � Sk � U ; the point u is on a Tits geodesic from
a to b which misses Sk . By Lemma 13, the projection of this Tits geodesic into U is
a Tits geodesic from a2 to b2 passing through u. It follows that U is the union of all
Tits geodesics in U from a2 to b2. This implies by [14], 4.1, that U D fa2; b2g � W ,
where W is the set of all points of U at Tits distance �=2 from both a2 and b2. Thus
by [5], Proposition 5.15, p. 64, Z D Sk � .fa2; b2g � W / D .Sk � fa2; b2g/ � W D
SkC1 � W . Since Z is finite dimensional, this process must terminate, and so for
some n, Z D Sn � Y , where Y does not have a non-empty sphere as a spherical join
factor. Notice by our construction that

S D fa 2 Z W Z is a spherical suspension with suspension point ag:
Thus this decomposition is canonical.

Corollary 16. Suppose that the Tits boundary, TX , is finite dimensional. Under the
hypothesis of Lemma 10, if Y Š Em for some m, then @Y � S , the set of suspension
points of @X .

Proof. By @X D S � D as in Theorem 15. Since En admits a cocompact isometric
group action, yY Š Y Š En. @X D @. yY � yZ/ D .@Y / � .@ yZ/. Since @ yY Š
@En D Sn�1, we have @ yY � S . Let ˛ 2 @Y � S , so dT .˛; D/ < �=2. We may
assume gi .˛/ ! ˇ preforce with ˇ 2 @ yY � S . However gi .D/ D D for all i , so
dT .ˇ; D/ � dT .˛; D/ < �=2, but that is a contradiction since every point of S has
distance �=2 from every point of D. Thus @Y � S .

Definition. We say a group G acts discretely on a space X if every orbit is a discrete
subset. This is strictly weaker than saying that a group acts properly discontinuously.

Theorem 17. Let g be a hyperbolic isometry of the proper CAT.0/ space X . Suppose
that TX is finite dimensional and the isometry group of X pulls from a dense subset
of Sg . If � D @X � Sg ¤ ;, then � is a dense open subset of @X , and hgi acts
discretely on �.
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Proof. By Theorem 9, hgi acts discretely on the open set �. We must show that �

is dense whenever it is non-empty.
Suppose that � is not dense. Then there is an open subset V of @X with V � @Sg .

Recall that Sg Š R � Z for some Z, where the endpoints of R are g˙. Thus by
Corollary 16, g˙ 2 S , the set of suspension points of @X . It follows that Sg D @X

as required.

Main Theorem. Let g be a hyperbolic isometry of the cocompact proper CAT.0)
space X . If � D @X � Sg ¤ ;, then � is a dense open subset of @X , and hgi acts
discretely on �.

Proof. By [13], TX is finite dimensional. Since the isometry group of X is cocom-
pact, it pulls from every point of @X , and Theorem 17 applies.
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