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1. Introduction

If G is a group, the profinite topology PT .G/ on G is the topology whose basic
open sets are cosets to finite-index normal subgroups in G. It follows that every
finite-index subgroup K � G is both closed and open in PT .G/, and G, equipped
with PT .G/, is a topological group (that is, the group operations are continuous with
respect to this topology). This topology is Hausdorff if and only if the intersection of
all finite-index normal subgroups is trivial inG. In this caseG is said to be residually
finite.

We will say that a subset A � G is separable in G if A is closed in PT .G/.
Suppose that for every element g 2 G, its conjugacy class gG ´ fhgh�1 j h 2
Gg � G is closed in PT .G/. ThenG is called conjugacy separable. In other words,
G is conjugacy separable if and only if for any two non-conjugate elements x; y 2 G
there exists a homomorphism ' from G to a finite group Q such that '.x/ is not
conjugate to '.y/ in Q.

Conjugacy separability is evidently stronger than residual finiteness, and is (usu-
ally) much harder to establish. The following classes of groups are known to be
conjugacy separable: virtually free groups (J. Dyer [24]); virtually surface groups
(A. Martino [40]); virtually polycyclic groups (V. Remeslennikov [52]; E. Formanek
[27]); limit groups (S. Chagas and P. Zalesskii [11]) and, more generally, finitely
presented residually free groups (S. Chagas and P. Zalesskii [12]).

Unfortunately, conjugacy separability does not behave very well under free con-
structions. V. Remeslennikov [53] and P. Stebe [58] showed that the free product
of two conjugacy separable groups is conjugacy separable. But so far we do not
know of any global criteria which tell when an amalgamated product (or an HNN-
extension) of conjugacy separable groups is conjugacy separable. Perhaps the most
general of local results can be found in [54], where L. Ribes, D. Segal and P. Zalesskii
define a new class of conjugacy separable groups X, which is closed under taking
free products with amalgamation along cyclic subgroups and contains all virtually
free and virtually polycyclic groups. Note that there is no analogue of this result
for HNN-extensions with associated cyclic subgroups, because an HNN-extension
of the infinite cyclic group may fail to be residually finite, as it happens for many
Baumslag–Solitar groups.

Let � be a finite simplicial graph, and let V and E be the sets of vertices and edges
of � respectively. The right-angled Artin group G, associated to � , is given by the
presentation

G ´ hV j uv D vu whenever u; v 2 V and .u; v/ 2 Ei: (1.1)

In the literature, right-angledArtin groups are also called graph groups or partially
commutative groups. These groups received a lot of attention in the recent years: they
seem to be interesting from both combinatorial and geometric viewpoints (they are
fundamental groups of compact non-positively curved cube complexes). A good
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overview of the current results concerning right-angled Artin groups can be found in
R. Charney’s paper [13].

In the case when the finite graph � is a simplicial tree, conjugacy separability of
the associated right-angled Artin group was proved by E. Green [29]. It also follows
from the result of Ribes, Segal and Zalesskii [54] mentioned above, because such tree
groups are easily seen to belong to the class X.

Following [12], we will say that a group G is hereditarily conjugacy separable if
every finite-index subgroup of G is conjugacy separable.

Note that all of the classes of conjugacy separable groups that we mentioned
above (possibly, with the exception of class X) consist, in fact, of hereditarily con-
jugacy separable groups due to the obvious reason: these classes are closed under
taking subgroups of finite index. However, there exist conjugacy separable, but not
hereditarily separable groups. The first (infinitely generated) example, demonstrat-
ing this, was constructed by Chagas and Zalesskii in [12]. It is also possible to find
finitely generated and finitely presented examples of this sort even among subgroups
of right-angled Artin groups (see [41]).

The main result of this work is the following theorem:

Theorem 1.1. Right-angled Artin groups are hereditarily conjugacy separable.

Remark that a finite-index subgroup of a right-angled Artin group may not be a
right-angled Artin group itself. The following example was suggested to the author
by M. Bridson:

Example 1.2. Let S be a finite group with a (finite) non-trivial second homology
group H2.S/ (for instance, on can take S to be the alternating group A5, since
H2.A5/ Š Z=2Z). As we know, there is an epimorphism  W F ! S for some
finitely generated free group F . Let K ´ f.x; y/ 2 F � F j  .x/ D  .y/g be
the fibre product associated to  . Observe that F � F is a right-angled Artin group
(associated to some finite complete bipartite graph) andK is a finite-index subgroup
in it. By [8], Theorem A, H2.S/ embeds into H1.K/ Š K=ŒK;K�. Therefore K
is not isomorphic to any right-angled Artin group, because the abelianization of a
right-angled Artin group is always free abelian and thus is torsion-free.

Generally speaking, we think that hereditary conjugacy separability is a lot stronger
than simply conjugacy separability. Corollaries in the next section can be viewed as
a confirmation of this.

Our proof of Theorem 1.1 is purely combinatorial and mostly self-contained (we
use basic properties of right-angled Artin groups and HNN-extensions). The basic
idea is to approximate right-angled Artin groups by HNN-extensions of finite groups
(which are, of course, virtually free). This is the main step of the proof. Once this
is done, we can use known properties of virtually free groups to obtain the desired
results.
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In Section 3 we study the Centralizer Condition, which, among other things,
shows that a given conjugacy separable group is hereditarily conjugacy separable.
This condition was originally introduced by Chagas and Zalesskii in [12], but in
a different form. In Sections 4, 5 and 7 we develop machineries of commuting
retractions and special HNN-extensions which are the two basic tools behind the
proof of Theorem 1.1.

Acknowledgements. The author is very grateful to Frédéric Haglund and Daniel
Wise for explaining their work in [34] and [35]. The author would also like to thank
Martin Bridson, Ilya Kazachkov, Graham Niblo and Pavel Zalesskii for discussions.

2. Consequences of the main theorem

Recall that a subgroup H of a group G is said to be a virtual retract of G, if there
is a finite-index subgroup K � G such that H � K and H is a retract of K (see
Section 4 for the definition).

It is not difficult to show (see Lemma 9.5) that a virtual retract of a hereditar-
ily conjugacy separable group is itself hereditarily conjugacy separable. Therefore,
Theorem 1.1 immediately yields

Corollary 2.1. If G is a right-angled Artin group and H is a virtual retract of G,
thenH is hereditarily conjugacy separable.

In view of the above corollary, it makes sense to define two classes of groups:
the class VR will consist of all groups which are virtual retracts of finitely generated
right-angled Artin groups, and the class AVR will consist of groups that contain
finite-index subgroups from the class VR.

Looking at the definition, it might seem that the class of right-angled Artin groups
is not very large. However, the class of subgroups and virtual retracts of right-angled
Artin groups is quite rich and includes many interesting examples. For instance, in the
famous paper [5] M. Bestvina and N. Brady constructed subgroups of right-angled
Artin groups which have the property FP2 but are not finitely presented.

On the other hand, in the recent work [34] F. Haglund and D. Wise introduced a
new class of special (or A-special, in the terminology of [34]) cube complexes, that
admit a combinatorial local isometry to the Salvetti cube complex (see [13]) of a right-
angled Artin group (possibly, infinitely generated). They proved that the fundamental
group of every special complex X embeds into some right-angled Artin group G (if
X is not compact and has infinitely many hyperplanes, then the corresponding right-
angled Artin group G will be associated to an infinite graph � , and, hence, will not
be finitely generated).

An important property established by Haglund and Wise in [34], states that if
X is a compact A-special cube complex, then �1.X/ is a virtual retract of some
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right-angled Artin group, i.e., �1.X/ 2 VR. Therefore, using Corollary 2.1, we
immediately obtain

Corollary 2.2. If H is the fundamental group of a compactA-special cube complex,
thenH is hereditarily conjugacy separable.

Moreover, many other groups are virtually special, i.e., they possess finite-index
subgroups that are fundamental groups of special cube complexes. Among virtu-
ally special groups are all Coxeter groups (see [35]), fundamental groups of com-
pact surfaces (see [18]), fundamental groups of compact virtually clean square VH -
complexes, introduced by Wise in [59], (see [34]), graph braid groups, introduced by
A. Abrams in [1], (see [18]), and some hyperbolic 3-manifold groups (see [16]).

In this paper we will mainly discuss applications ofTheorem 1.1 to Coxeter groups,
even though similar corollaries can be derived for the other classes of virtually special
groups listed above.

Recall that a Coxeter group is a group G given by the presentation

G D hs1; : : : ; sn j .sisj /mij D 1 for all i; j with mij 2 Ni; (2.1)

where M ´ .mij / is a symmetric n � n matrix, whose entries satisfy the following
conditions: mi i D 1 for every i D 1; : : : ; n,mij 2 N [ f1g, andmij � 2whenever
1 � i < j � n. In the case, when mij 2 f2;1g for all i ¤ j , G is said to be a
right-angled Coxeter group.

For any Coxeter groupG, G. Niblo and L. Reeves [48] constructed a locally finite,
finite dimensional CAT.0/ cube complex C on whichG acts properly discontinuously.
In [35] Haglund and Wise show thatG has a finite-index subgroup F such that F acts
freely on C and the quotient F nC is anA-special cube complex. In the case whenG
is right-angled or word hyperbolic (in Gromov’s sense [30]), Niblo and Reeves proved
that the action of G on C is cocompact (see [48]). These results, combined with the
virtual retraction theorem of Haglund and Wise mentioned above, imply that word
hyperbolic (or right-angled) Coxeter groups belong to the class AVR. Therefore,
using Corollary 2.1 we achieve

Corollary 2.3. Every word hyperbolic (or right-angled ) Coxeter group G contains
a finite-index subgroup F which is hereditarily conjugacy separable.

Actually, as the paragraph above Corollary 2.3 shows, the conclusion of this
corollary holds for every finitely generated Coxeter group G, whose action on the
corresponding Niblo-Reeves cube complex is cocompact. Such Coxeter groups were
completely characterized by P.-E. Caprace and B. Mühlherr in [10].

The sole fact of existence of a conjugacy separable finite-index subgroup F in
G may seem somewhat unsatisfactory. However, every Coxeter group is virtually
torsion-free, and in a given Coxeter groupG it is usually easy to find some torsion-free
subgroup of finite index (for instance, ifG is a right-angled Coxeter group (2.1), then
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the kernel of the natural homomorphism fromG onto hs1i2�� � �� hsni2 Š .Z=2Z/n

is torsion-free). The following statement is proved in Section 9:

Corollary 2.4. If G is a word hyperbolic Coxeter group, then every torsion-free
finite-index subgroupH � G is hereditarily conjugacy separable.

The above corollary produces a lot of new examples of conjugacy separable
groups. More generally, in Corollary 9.11 we show that every torsion-free word
hyperbolic group from the class AVR is hereditarily conjugacy separable.

Now, let us discuss some other consequences of the main result. Besides being a
classical subject of group theory, conjugacy separability has two main applications.
One of the applications was found by E. Grossman in [31], where she showed that
the outer automorphism group Out.G/ of a finitely generated conjugacy separable
group G is residually finite, provided that every pointwise inner automorphism of G
is inner (an automorphism � 2 Aut.G/ is called pointwise inner if for every g 2 G,
�.g/ is conjugate to g in G). Thereafter, Grossman used this observation to prove
that the mapping class group of a compact orientable surface is residually finite.

Note that for a finitely generated residually finite group G, the group of outer
automorphisms Out.G/ need not be residually finite (this should be compared with
the classical theorem of G. Baumslag [4] claiming that the automorphism group
Aut.G/ of a finitely generated residually finite group G is residually finite). This
is a consequence of the result of I. Bumagina and D. Wise ([9]) which asserts that
for every finitely presented group S there exists a finitely generated residually finite
group G such that Out.G/ Š S .

In Section 6 we prove that pointwise inner automorphisms of right-angled Artin
groups are inner (see Proposition 6.9). Thus Grossman’s result, combined with The-
orem 1.1, gives

Theorem 2.5. For any right-angledArtin groupG, the group of outer automorphisms
Out.G/ is residually finite.

Presently not much is yet known about the outer automorphisms of an arbitrary
right-angled Artin group G. M. Laurence [37] showed that Aut.G/ (and, hence,
Out.G/) is finitely generated. More recently, M. Day [19] proved that Aut.G/ (and,
hence, Out.G/) is finitely presented. In [14] R. Charney and K.Vogtmann showed that
Out.G/ is virtually torsion-free and has finite virtual cohomological dimension. Im-
posing additional conditions on the finite graph � , corresponding toG, M. Gutierrez,
A. Piggott and K. Ruane were able to extract more information about the structure
of Aut.G/ and Out.G/ in [33]. After finishing this article the author learned that
Charney and Vogtmann gave a different proof of Theorem 2.5 in [15].

On the other hand, in Section 10 we use a recent result of the author with D. Osin
from [44] to prove the following theorem:
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Theorem 2.6. If G 2 AVR is a relatively hyperbolic group, then Out.G/ is resid-
ually finite.

Note that Theorem 2.5 is not a consequence of Theorem 2.6: it is not difficult to
show that a (non-cyclic) right-angled Artin group G is relatively hyperbolic if and
only if the graph � , corresponding to G, is disconnected.

Applying Theorem 2.6 to our favorite class of groups from AVR, we achieve

Corollary 2.7. For anyword hyperbolic Coxeter groupG, Out.G/ is residually finite.

Unlike automorphisms of right-angled Artin groups, automorphism groups of
Coxeter groups have already attracted a lot of attention. In many particular cases the
structure of the (outer) automorphism group is known: see, for instance, P. Bahls’s
paper [3] and references therein. However, because of its generality, the statement of
Corollary 2.7 seems to be new.

The second classical application of conjugacy separability was found by
A. Mal’cev. As Mal’cev proved in [39] (see also [45]), a finitely presented conjugacy
separable groupG has solvable conjugacy problem. Observe that finite presentability
of G is important here, because the set of finite quotients of an infinitely presented
group does not need to be recursively enumerable.

It follows that the conjugacy problem is solvable for every group G 2 VR: G
is finitely presented as a retract of a finitely presented group, and G is conjugacy
separable by Corollary 2.1. However, most of the groups from the class VR that
we discussed above are already known to have solvable conjugacy problem. More-
over, J. Crisp, E. Godelle and B. Wiest [17] showed that the conjugacy problem for
fundamental groups of A-special cube complexes can be solved in linear time.

Nevertheless, the property of hereditary conjugacy separability for a group G
turns out to be powerful enough to yield conjugacy separability and solvability of
the conjugacy problem for many subgroups which are not virtual retracts of G – see
Corollary 11.2.

Recall that a group G is called subgroup separable (or LERF) if every finitely
generated subgroup H � G is separable in G. In Section 11 we prove

Theorem 2.8. Let N be a normal subgroup of a right-angled Artin group G such
that the quotient G=N is subgroup separable. Then N is conjugacy separable. If, in
addition, N is finitely generated, then N has solvable conjugacy problem.

Note that requiring G=N to be subgroup separable cannot be dropped in the
above statement: in [43] C. Miller gives an example of a finitely generated subgroup
of F2 � F2 that has unsolvable conjugacy problem (here F2 denotes the free group
of rank 2, and so F2 � F2 is the right-angled Artin group associated to a square).

The second claim of Theorem 2.8 may seem surprising: in general we cannot
use Mal’cev’s result, mentioned above, to reach the needed conclusion, because the
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conditions imposed on N do not constrain it to be finitely presented. Indeed, let G
be the right-angled Artin group associated to a finite graph � and given by (1.1). Let
N� be the kernel of the homomorphism  W G ! Z satisfying  .v/ D 1 for each
v 2 V , and let L� be the simplicial flag complex, whose 1-skeleton is � .

J. Meier and L. VanWyk [42] proved that the group N� is finitely generated if
and only if the graph � is connected. And in [5] Bestvina and Brady showed thatN�
is finitely presented if and only if the complex L� is simply connected. In the case
when � is connected, we will say that N� is the Bestvina–Brady group associated
to � .

For example, if the graph � is a cycle of length at least 4, then N� is finitely
generated, but not finitely presented. Obviously, the quotient G=N� Š Z is sub-
group separable, hence, by Theorem 2.8,N� is conjugacy separable and has solvable
conjugacy problem. More generally, we have the following corollary:

Corollary 2.9. If N is a finitely generated normal subgroup of a right-angled Artin
groupG such thatG=N is abelian, thenN is hereditarily conjugacy separable andhas
solvable conjugacy problem. In particular, Bestvina–Brady groups are hereditarily
conjugacy separable and have solvable conjugacy problem.

Corollary 2.9 is a direct consequence of Corollary 11.3 (proved at the end of Sec-
tion 11), that covers the more general case whenG=N is polycyclic. We have chosen
to mention the particular situation when the quotient G=N abelian in Corollary 2.9,
because in this case one can tell whether or not the given normal subgroup N is
finitely generated, using Bieri–Neumann–Strebel invariants, which were studied for
right-angled Artin groups by Meier and VanWyk in [42].

After finishing this paper the author learned that the positive solution of the conju-
gacy problem for the group N from Theorem 2.8 (or Corollary 2.9) has been known
before. This follows from a more general result of M. Bridson [7], claiming that a nor-
mal subgroupN of a bicombable groupG has solvable conjugacy problem, provided
G=N has solvable generalized word problem (see [7] for the definitions). Indeed,
any right-angled Artin group G acts properly and cocompactly on a CAT.0/ space
(which is the universal cover of the corresponding compact non-positively curved
Salvetti cube complex), therefore G is bicombable by a theorem of J. Alonso and M.
Bridson [2]. And if N C G, the subgroup separability of G=N implies that G=N
has solvable generalized word problem, by Mal’cev’s result [39].

Nevertheless, the statement claiming thatN is conjugacy separable in Theorem 2.8
(resp. hereditarily conjugacy separable in Corollary 2.9) is new. Our solution of the
conjugacy problem forN uses a Mal’cev-type argument and can be viewed as another
application of hereditary conjugacy separability of G.
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3. Hereditary conjugacy separability and Centralizer Conditions

First, let us specify some notations. IfG is a group,H � G is a subgroup and g 2 G,
then the H -conjugacy class of the element g 2 G is the subset gH ´ fhgh�1 j
h 2 H g � G. For any A � G, we denote AH ´ fhah�1 j a 2 A; h 2 H g. The
H -centralizer of g 2 G is the subgroup CH .g/ ´ fh 2 H j hg D ghg � G. For
an epimorphism  W G ! F from G onto a group F ,  �1 W 2F ! 2G will denote
the corresponding full preimage map. IfA;B are two subsets ofG then their product
AB is defined as the subset fab j a 2 A; b 2 Bg � G. Note that if either A or B is
empty, then the product AB is empty as well.

Definition 3.1. Suppose thatG is a group. We will say thatG satisfies the Centralizer
Condition (briefly, CC), if for every finite-index normal subgroup K C G and every
g 2 G there is a finite-index normal subgroup L C G such that L � K and

CG=L. Ng/ �  .CG.g/K/ (3.1)

in G=L (where  W G ! G=L is the natural epimorphism and Ng ´  .g/).

Note that (3.1) is equivalent to  �1.CG=L. Ng// � CG.g/K in G, since ker. / D
L � K.

The idea behind this condition is to provide control over the growth of centralizers
in finite quotients of G. If the group G is residually finite, the Centralizer Condition
CC can be reformulated in terms of the topology on the profinite completion yG of
the group G. In the Appendix to this paper (see Corollary 12.2) we prove that the
condition CC from Definition 3.1 is equivalent to

CG.g/ D C yG.g/ (3.2)

in yG for every g 2 G (where CG.g/ denotes the closure of CG.g/ in yG).
Originally the condition (3.2) appeared in the recent work of Chagas and Za-

lesskii [12], where they proved that a conjugacy separable groupG satisfying (3.2) is
hereditarily conjugacy separable (see [12], Proposition 3.1). We will actually show
that, provided G is conjugacy separable, this condition is equivalent to hereditary
conjugacy separability:

Proposition 3.2. Let G be a group. Then the following are equivalent:

(a) G is hereditarily conjugacy separable;

(b) G is conjugacy separable and satisfies CC.

Before proving Proposition 3.2, let us define two more conditions.

Definition 3.3. Let G be a group, H � G and g 2 G. We will say that the pair
.H; g/ satisfies the Centralizer Condition inG (briefly, CCG), if for every finite-index
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normal subgroup K C G there is a finite-index normal subgroup L C G such that
L � K and C xH . Ng/ �  .CH .g/K/ in G=L, where  W G ! G=L is the natural
homomorphism, xH ´  .H/ � G=L, Ng ´  .g/ 2 G=L.

The subgroup H will be said to satisfy the Centralizer Condition in G (briefly,
CCG) if for each g 2 G, the pair .H; g/ has CCG .

Now let us demonstrate why the Centralizer Conditions are useful.

Lemma 3.4. Suppose that G is a group, H � G and g 2 G. Assume that the pair
.G; g/ satisfies CCG and the conjugacy class gG is separable in G. If the double
coset CG.g/H is separable in G, then the H -conjugacy class gH is also separable
in G.

Proof. Consider any element y 2 G with y … gH .
If y … gG , then, using the separability of gG , we can find a finite quotient Q

of G and a homomorphism � W G ! Q so that �.y/ … �.g/Q. Hence �.y/ …
�.g/�.H/ D �.gH /, as required.

Therefore we can assume that y D zgz�1 for some z 2 G. If there existed an
element f 2 CG.g/\ z�1H , then zf 2 H and y D zgz�1 D .zf /g.zf /�1 2 gH ,
leading to a contradiction with our assumption on y. Hence CG.g/ \ z�1H D ;,
i.e., z�1 … CG.g/H . Since CG.g/H is separable in G, there is K C G such that
jG W Kj < 1 and z�1 … CG.g/HK. Now, the condition CCG implies that there
exists a finite-index normal subgroup L C G such that L � K and CG=L. .g// �
 .CG.g/K/, where  W G ! G=L is the natural epimorphism.

We claim that  .y/ …  .gH / in G=L. Indeed, if  .y/ D  .hgh�1/ for some
h 2 H , then  .z�1h/ 2 CG=L. .g//. Hence  .z�1/ 2 CG=L. .g// .H/ �
 .CG.g/KH/, i.e., z�1 2 CG.g/KHL D CG.g/HK because L � K C G. But
this yields a contradiction with the construction of K.

Therefore we have found an epimorphism  from G to a finite group G=L such
that the image of y does not belong to the image of gH . Hence gH is separable inG.

Observe that for a subgroupH of a groupG and any subset S � H , if S is closed
in PT .G/, then S is closed in PT .H/. Therefore Lemma 3.4 immediately implies
the following:

Corollary 3.5. LetG be a conjugacy separable group satisfying CC, and letH � G

be a subgroup such that CG.h/H is separable in G for every h 2 H . Then H is
conjugacy separable. Moreover, for each h 2 H theH -conjugacy class hH is closed
in PT .G/.

It is not difficult to see that Lemma 3.4 has a partial converse (we leave its proof
as an exercise for the reader):
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Remark 3.6. Assume that H is a subgroup of a group G and g 2 G is an arbitrary
element. If gH is separable in G then the double coset CG.g/H is separable in G.

In this paper we are going to use another converse to Lemma 3.4:

Lemma 3.7. Let G be a group. Suppose that H � G, g 2 G, K C G and
jG W Kj < 1. If the subset gH\K is separable in G, then there is a finite-index
normal subgroup L C G such that L � K and C xH . Ng/ �  .CH .g/K/ in G=L (in
the notations of Definition 3.3).

Proof. Write k ´ jH W .H\K/j � jG W Kj < 1. ThenH D Fk
iD1 zi .H\K/ for

some z1; : : : ; zk 2 H . Renumbering the elements zi , if necessary, we can suppose
that there is l 2 f0; 1; : : : ; kg such that whenever 1 � i � l , z�1

i gzi … gH\K , and
whenever l C 1 � j � k, z�1

j gzj 2 gH\K in G.
By the assumptions, there exists a finite-index normal subgroupL C G such that

z�1
i gzi … gH\KL whenever 1 � i � l . Moreover, after replacing L with L \ K,

we can assume that L � K.
Let  be the natural epimorphism from G to G=L and consider any element

Nx 2 C xH . Ng/. Then Nx D  .x/ for some x 2 H , and  .x�1gx/ D  .g/ in G=L,
i.e., x�1gx 2 gL in G. As we know, there is i 2 f1; : : : ; kg and y 2 H \K such
that x D ziy. Consequently, z�1

i gzi 2 ygLy�1 D ygy�1L � gH\KL. Hence,
i � l C 1, that is, z�1

i gzi D ugu�1 for some u 2 H \K.
Thus ziu 2 CH .g/ and x D ziy D .ziu/.u

�1y/ 2 CH .g/.H \K/ � CH .g/K.
Therefore we proved that Nx 2  .CH .g/K/ in G=L for every Nx 2 C xH . Ng/. This
yields the inclusion C xH . Ng/ �  .CH .g/K/ in G=L, as required.

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. First let us assume (b). Consider an arbitrary finite-index
subgroup H � G. For every h 2 H the double coset CG.h/H is a finite union of
left cosets modulo H , hence it is separable in G. Therefore, by Corollary 3.5, H is
conjugacy separable. That is, (b) implies (a).

Now, assume that G is hereditarily conjugacy separable. We need to show that
G satisfies CC. Take any g 2 G and any K C G with jG W Kj < 1. Observe
that the subgroup H ´ Khgi � G has finite index in G, and gH D gK D gH\K .
Since H is conjugacy separable, gH is closed in PT .H/, but then it is also closed
in PT .G/ because any finite-index subgroup of H has finite index in G. Therefore
gH\K D gH is separable in G, and so we can apply Lemma 3.7 to find the finite-
index normal subgroup L C G from its claim. Hence the group G satisfies CC.
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4. Commuting retractions

In this section we establish certain properties of commuting retractions that constitute
the core of our approach to studying residual properties of right-angled Artin groups.
This approach is based on a simple observation that canonical retractions of a right-
angled Artin group onto its special subgroups pairwise commute (see Remark 6.1 in
Section 6).

Let G be a group and let H be a subgroup of G. Recall that an endomorphism
�H W G ! G is called a retraction of G onto H if �H .G/ D H and �H .h/ D h for
every h 2 H . In this case H is said to be a retract of G. Note that �H B �H D �H .
If H is a retract and g 2 G, then the subgroup F ´ gHg�1 � G, conjugate to H
in G, is also a retract. The corresponding retraction �F 2 End.G/ is given by the
formula �F .x/ ´ g�H .g

�1xg/g�1 for all x 2 G.
The following observation is very useful.

Lemma 4.1. LetH be a retract of a groupG and let �H W G ! G be the correspond-
ing retraction. Suppose thatM C G satisfies �H .M/ � M . Then the retraction �H
canonically induces a retraction � xH W G=M ! G=M ofG=M onto the natural image
xH ofH in G=M , defined by the formula � xH .gM/ D �H .g/M for all gM 2 G=M .

Proof. Evidently, it is enough to check that � xH is well-defined. If g1M D g2M for
some g1; g2 2 G, then f D g�1

2 g1 2 M , g1 D g2f and �H .f / 2 M . Hence

� xH .g1M/ D �H .g1/M D �H .g2/�H .f /M D �H .g2/M D � xH .g2M/;

as required.

Assume that H and F are two retracts of a group G and �H ; �F 2 End.G/ are
the corresponding retractions. We will say �H commutes with �F if they commute as
elements of the monoid of endomorphisms End.G/, i.e., if �H .�F .g// D �F .�H .g//

for all g 2 G.

Remark 4.2. If the retractions �H and �F commute then �H .F / D H\F D �F .H/

and the endomorphism �H\F ´ �H B�F D �F B�H is a retraction ofG ontoH\F .

Indeed, obviously the restriction of �H\F to H \ F is the identity map. And
�H\F .G/ � �H .G/\�F .G/ D H \F , hence �H\F .G/ D H \F . Consequently
�H .F / D �H .�F .G// D �H\F .G/ D H \ F . Similarly, �F .H/ D H \ F .

In the next proposition we establish an important property of commuting retrac-
tions that could be of independent interest.

Proposition 4.3. LetH1; : : : ;Hm be retracts of a groupG such that the correspond-
ing retractions �H1

; : : : ; �Hm
pairwise commute. Then for any finite-index normal

subgroupK C G there is a finite-index normal subgroupM C G such thatM � K
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and �Hi
.M/ � M for each i D 1; : : : ; m. Consequently, for every i D 1; : : : ; m,

the retraction �Hi
canonically induces a retraction � SHi

of G=M onto the image SHi
ofHi in G=M .

Proof. The second claim of the proposition follows from Lemma 4.1, so it suffices
to construct the subgroup M C G with the needed properties.

If J D fi1; : : : ; ikg is a subset of the finite set I ´ f1; 2; : : : ; mg, we define the
retraction �J of G onto

T
j2J Hj by

�J ´ �Hi1
B �Hi2

B � � � B �Hik
:

This makes sense since our retractions pairwise commute. When J D ;, �J will be
the identity map of G.

Now, for every subset J of I D f1; 2; : : : ; mg we define the subgroup DJ � G

as follows. First we set DI ´ Tm
iD1Hi \ K – a finite-index normal subgroup of

.H1 \ � � � \ Hm/. Next, if J is a proper subset of I , we define DJ recursively,
according to the formula

DJ ´ �J
� T
i2InJ

��1
J[fig.DJ[fig/

� \K; (4.1)

where ��1
J[fig.DJ[fig/ denotes the full preimage (under �J[fig) of DJ[fig in G.

Since the intersection of a finite number of finite-index normal subgroups is again
a finite-index normal subgroup, and images, as well as full preimages, of finite-index
normal subgroups under homomorphisms are again normal and of finite index (in
their respective groups), we see that DJ is normal and has finite index in �J .G/ DT
j2J Hj . Thus, if we setM ´ D; D T

i2I ��1
Hi
.Dfig/\K, we shall haveM C G,

jG W M j < 1 and M � K.
If J � I and i 2 I n J , using (4.1) and the fact that �fig B �J D �J[fig, we can

observe that �fig.DJ / � DJ[fig.
On the other hand, let us show that DJ[fig � DJ . We will use induction on

the cardinality jI n J j. If jI n J j D 1 then I D J t fig. And if g 2 DJ[fig D
DI D T

i2I Hi \ K, then �I .g/ D g, therefore g 2 ��1
I .DI / and g D �J .g/ 2

�J .�
�1
I .DI //. Thus g 2 DJ .

Now suppose that the statement has been proved for all proper subsets J 0 of I
with jJ 0j > jJ j. Take any i 2 I n J and consider an element g 2 DJ[fig �T
j2J[figHj \ K. Then �J[fig.g/ D g, therefore g 2 ��1

J[fig.DJ[fig/. We need

to show that for any i 0 2 I n .J [ fig/, g 2 ��1
J[fi 0g.DJ[fi 0g/, or, equivalently, that

�J[fi 0g.g/ 2 DJ[fi 0g. But

�J[fi 0g.g/ D �i 0.�J .g// D �fi 0g.g/ 2 �fi 0g.DJ[fig/ � DJ[fi;i 0g:

And, since DJ[fi;i 0g � DJ[fi 0g by the induction hypothesis, we can conclude that
g 2 T

i 02InJ ��1
J[fi 0g.DJ[fi 0g/. Recalling that g 2 T

j2J Hj \ K, we achieve
g D �J .g/ 2 DJ . Thus DJ[fig � DJ and the inductive step is established.
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We are now able to show that �Hi
.M/ � M for every i 2 I . Indeed, since

�Hi
.M/ � Dfig, it is enough to check that Dfig � M . Take any j 2 I . As we

proved, �Hj
.Dfig/ D �fj g.Dfig/ � Dfig[fj g � Dfj g. Therefore,Dfig � ��1

Hj
.Dfj g/

for each j 2 J . By definition, Dfig � K, consequently, for any i 2 I , we achieve

�Hi
.M/ � Dfig � T

i2I
��1
Hi
.Dfig/ \K D M;

as required.

The next observation is an easy consequence of the definition of M using the
formula (4.1).

Remark 4.4. In Proposition 4.3, if G=K is a finite p-group for some prime number
p, then so is G=M .

Given two subgroupsH andF of a groupG, it is usually difficult to find quotient-
groups Q of G such that the image of the intersection of H and F in Q coincides
with the intersection of the images of these subgroups in Q. However, in the case
when H and F are retracts and the corresponding retractions commute this will be
automatic for many quotients of G.

Lemma 4.5. Suppose that the retractions �H ; �F 2 End.G/ commute, andM C G

is a normal subgroup satisfying �H .M/ � M and �F .M/ � M . Then '.H \F / D
'.H/ \ '.F / in G=M , where ' W G ! G=M is the natural epimorphism.

Proof. By Lemma 4.1, �H and �F canonically induce retractions �'.H/ and �'.F /
of G=M onto '.H/ and '.F / respectively.

Clearly, '.H \F / � '.H/\'.F /, and so we only need to establish the inverse
inclusion. Consider an arbitrary Ng 2 '.H/\'.F /. Then Ng D '.g/ for some g 2 G,
and �'.F /. Ng/ D Ng, �'.H/. Ng/ D Ng. Therefore

Ng D �'.H/.�'.F /.'.g/// D �'.H/.'.�F .g/// D '.�H .�F .g/// 2 '.H \ F /;
where the last inclusion follows from Remark 4.2. Thus '.H/\'.F / � '.H \F /.

Lemma 4.5 allows to obtain the first interesting application of Proposition 4.3.

Corollary 4.6. Let H1; : : : ;Hm be retracts of a group G such that the correspond-
ing retractions �H1

; : : : ; �Hm
pairwise commute. Then for any finite-index normal

subgroupK C G there is a finite-index normal subgroupM C G such thatM � K

and �Hi
.M/ � M for each i D 1; : : : ; m. Moreover, if ' W G ! G=M denotes the

natural epimorphism, then '.
Tm
iD1Hi / D Tm

iD1 '.Hi /.
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Proof. First we apply Proposition 4.3 to find the finite-index normal subgroup M
from its claim. The last statement of the corollary will be proved by induction onm.
Ifm D 1 there is nothing to prove. So let us assume thatm � 2 and we have already
shown that '.

Tm�1
iD1 Hi / D Tm�1

iD1 '.Hi /. Using Remark 4.2 we see that the map
�F ´ �H1

B � � � B �Hm�1
2 End.G/ is a retraction of G onto F ´ Tm�1

iD1 Hi . By
Proposition 4.3, �Hi

.M/ � M for each i D 1; : : : ; m, therefore

�F .M/ D .�H1
B � � � B �Hm�2

/.�Hm�1
.M//

� .�H1
B � � � B �Hm�3

/.�Hm�2
.M// � � � � � �H1

.M/ � M:

By the assumptions, the retractions �F and �Hm
commute, hence we can ap-

ply Lemma 4.5 to conclude that '.F \ Hm/ D '.F / \ '.Hm/. But '.F / DTm�1
iD1 '.Hi / by the induction hypothesis, consequently '.

Tm
iD1Hi / D '.F \

Hm/ D Tm
iD1 '.Hi /, and the proof is finished.

Let us now give an example which shows that the statements of Corollary 4.6 and
Lemma 4.5 are no longer true if the retractions do not commute.

Example 4.7. Let S be any infinite simple group, and let H be an arbitrary group
possessing non-trivial finite quotients. Set G ´ H � S , fix an element s 2 S n f1g
and denote F ´ sHs�1 � G. Evidently H is a retract of G, where the retraction
�H W G ! G of G onto H is the identity on H and trivial on S . Clearly the
endomorphism �F 2 End.G/ defined by �F .g/ ´ s�H .s

�1gs/s�1 for every g 2 G,
is a retraction of G onto F .

It is not difficult to see that the retractions�H and�F do not commute (for instance,
because .�H B �F /.G/ D H , .�F B �H /.G/ D F and H \ F D f1g).

If K C G is an arbitrary proper normal subgroup of finite index, then S � K

(because S has no non-trivial finite quotients), hence the kernel ker.�H / (which is
equal to the normal closure of S in G) is contained in K. Consequently, �H .K/ �
��1
H .�H .K// � K. Similarly, �F .K/ � K.

Observe thatH \F D f1g by construction. Denote byQ the quotient G=K and
let ' W G ! Q be the natural epimorphism. Since s 2 S � ker.'/ we see that

'.H/ \ '.F / D '.H/ D Q ¤ f1g D '.H \ F /:
That is, in any non-trivial finite quotient Q of G the intersection of the images of H
and F is strictly larger than the image of H \ F .

5. Implications for the profinite topology

Throughout this section we will assume that A and B are retracts of a group G
such that the corresponding retractions �A 2 End.G/ and �B 2 End.G/ commute.
Our goal here is to establish several consequences of these settings for the profinite
topology on G.
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Lemma5.1. Forarbitrary elementsx; y 2 G define˛ ´ �A.�B.x/x
�1/x�B.x�1/ 2

AxB � G and ˇ ´ �A.�B.y/y
�1/y�B.y�1/ 2 AyB � G. Then the following two

conditions are equivalent:

(i) y 2 AxB;
(ii) ˇ 2 ˛A\B .

Proof. Observe that y 2 AxB if and only if AyB D AxB , which is equivalent to
AˇB D A˛B . Thus y 2 AxB if and only if ˇ 2 A˛B .

To show that (i) implies (ii), suppose that there are a 2 A and b 2 B such that

ˇ D a˛b: (5.1)

By definition, �A.˛/ D 1 D �A.ˇ/, hence 1 D �A.a/�A.b/. Therefore, (5.1) implies
that a D �A.a/ D �A.b

�1/ 2 �A.B/ D A \ B (by Remark 4.2).
Now, since �B B �A D �A B �B , we have �B.˛/ D 1 D �B.ˇ/. Therefore,

applying �B to both sides of the equality (5.1), we get 1 D �B.a/�B.b/ D ab

because a; b 2 B . Hence b D a�1 2 A \ B and ˇ D a˛a�1 2 ˛A\B .
Now suppose that ˇ 2 ˛A\B . Then ˇ 2 .A \ B/˛.A \ B/ � A˛B . Thus (ii)

implies (i).

Let us look at the proof of the above lemma in the particular case when y D x.
Then we see that ˇ D ˛, and

A \ xBx�1 D ��1.A \ ˛B˛�1/�;

where � ´ �A.�B.x/x
�1/ 2 A.

We also see that a 2 A\˛B˛�1 if and only if there is b 2 B such that˛ D a�1˛b.
But, as we showed in the proof of Lemma 5.1, this can happen only if b D a 2 A\B .
I.e, ˛a D a˛ and a 2 A \ B , which is equivalent to a 2 CA\B.˛/. Thus, in this
particular case we obtain the following statement:

Lemma 5.2. If x 2 G is an arbitrary element, then

A \ xBx�1 D ��1CA\B.˛/�

in G, where ˛ ´ �A.�B.x/x
�1/x�B.x�1/ 2 AxB and � ´ �A.�B.x/x

�1/ 2 A .

Combining Lemma 5.1 with Corollary 4.6 we achieve

Lemma 5.3. Consider any x 2 G and denote ˛ ´ �A.�B.x/x
�1/x�B.x�1/ 2

AxB � G. If the conjugacy class ˛A\B is separable in G, then the double coset
AxB is also separable in G.
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Proof. Suppose that an element y 2 G satisfies y … AxB . By Lemma 5.1, this
is equivalent to ˇ … ˛A\B , where ˇ ´ �A.�B.y/y

�1/y�B.y�1/. Since ˛A\B
is separable, there is a finite-index normal subgroup K C G such that  .ˇ/ …
 .˛A\B/ D  .˛/ .A\B/, where  W G ! G=K is the canonical epimorphism.

By Corollary 4.6, there exists a finite-index normal subgroup M C G such that
M � K, �A.M/ � M , �B.M/ � M and '.A \ B/ D '.A/ \ '.B/, where '
is the natural epimorphism from G to G=M . Since  factors through ', we can
conclude that '.ˇ/ … '.˛/'.A\B/ D '.˛/'.A/\'.B/. But by Lemma 4.1, there are
canonically induced commuting retractions � xA and � xB ofG=M onto xA ´ '.A/ and
xB ´ '.B/ respectively. Moreover, letting Nx ´ '.x/, Ny ´ '.y/ and using the
definition of the retractions � xA and � xB , we obtain '.˛/ D � xA.� xB. Nx/ Nx�1/ Nx� xB. Nx�1/
and '.ˇ/ D � xA.� xB. Ny/ Ny�1/ Ny� xB. Ny�1/. Therefore, by Lemma 5.1, applied to the
retracts xA and xB in G=M , we have Ny … xA Nx xB . That is, '.y/ … '.AxB/. Hence the
double coset AxB is separable in G.

Since the 1A\B D f1g is separable in G whenever G is residually finite, we have
the following immediate consequence of Lemma 5.3.

Corollary 5.4. If A and B are retracts of a residually finite group G such that the
corresponding retractions commute, then the double coset AB is separable in G.

The statement of Corollary 5.4 has been known before – see, for example, [34],
Lemma 9.3, but the proof that we have presented here is new.

The following statement is well known.

Lemma 5.5. Suppose that G is a residually finite group and A � G is a retract of
G. If a subset S � A is closed in PT .A/, then S is closed in PT .G/.

Proof. We will show thatS coincides with its closure clG.S/ in the profinite topology
onG. By Corollary 5.4 the subgroupA D AA is closed in PT .G/, hence clG.S/ �
A. Now, if a 2 A n S , then there is a homomorphism � W A ! Q from A to a finite
groupQ such that �.a/ … �.S/. SinceA is a retract ofG, we have a homomorphism
 W G ! Q defined by  ´ � B �A. Evidently  .a/ D �.a/ … �.S/ D  .S/,
hence a … clG.S/. Thus S D clG.S/, as required.

Now the reason why we need Lemma 5.2 is because it tells us that if one can
control the A \ B-centralizers in G, then one can also control the intersections of
conjugates of the retractsA andB . As it can be seen from Example 4.7, in general we
may not be able to find a finite quotientQ ofG, in which the image of the intersection
of two particular conjugates of A and B is equal to the intersection of their images.
However, provided that a certain Centralizer Condition is satisfied, we can find many
finite quotients Q of G where these two sets are very close to each other.
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Lemma 5.6. Let x be an element of G and let ˛ ´ �A.�B.x/x
�1/x�B.x�1/ 2 G.

Suppose that the pair .A \ B; ˛/ satisfies the Centralizer Condition in G. Then for
any finite-index normal subgroupK C G there exists a finite-index normal subgroup
M C G such that M � K, �A.M/ � M , �B.M/ � M and '.A/ \ '.xBx�1/ �
'.A \ xBx�1/'.K/ in G=M , where ' W G ! G=M is the natural epimorphism.

Proof. By Lemma 5.2,A\xBx�1 D ��1CA\B.˛/� , where � ´ �A.�B.x/x
�1/ 2

A. Since the pair .A \ B; ˛/ has CCG , there is a subgroup L C G of finite index
in G, such that L � K and  �1.C .A\B/. .˛/// � CA\B.˛/K in G, where
 W G ! G=L is the natural epimorphism. Applying Corollary 4.6 to A, B and
L we find a finite-index normal subgroup M C G, together with the epimorphism
' W G ! G=M , such that M � L � K, �A.M/ � M , �B.M/ � M and '.A/ \
'.B/ D '.A \ B/.

By Lemma 4.1, �A and �B canonically induce retractions � xA and � xB of G=M
onto xA ´ '.A/ and xB ´ '.B/ respectively. Obviously � xA commutes with � xB
in End.G=M/, because �A commutes with �B in End.G/. Put Nx ´ '.x/, N̨ D
� xA.� xB. Nx/ Nx�1/ Nx� xB. Nx�1/ 2 G=M and N� ´ � xA.� xB. Nx/ Nx�1/ 2 xA. Observe that
N̨ D '.˛/ and N� D '.�/ by the definitions of � xA and � xB . Then by Lemma 5.2,
xA\ Nx xB Nx�1 D N��1C xA\ xB. N̨ / N� inG=M . Therefore, recalling that xA\ xB D '.A\B/,

we get

'�1. xA \ Nx xB Nx�1/ D '�1. N��1C xA\ xB. N̨ / N�/ D ��1'�1.C'.A\B/. N̨ //�:
But since  factors through ' (as ker.'/ D M � L D ker. /), we obviously

have
'�1.C'.A\B/. N̨ // �  �1.C .A\B/. .˛/// � CA\B.˛/K:

Hence we can conclude that'�1. xA\ Nx xB Nx�1/ � ��1CA\B.˛/�K D .A\xBx�1/K.
Consequently, '.A/ \ '.xBx�1/ D xA \ Nx xB Nx�1 � '.A \ xBx�1/'.K/, and the
lemma is proved.

In this paper we will need one more criterion for separability of specific double
cosets in G. In a certain sense it generalizes Remark 3.6.

Lemma 5.7. Consider arbitrary elements x; g 2 G. Write D ´ xBx�1 � G and
˛ ´ �A.�B.x/x

�1/x�B.x�1/ 2 G. Suppose that the conjugacy classes ˛A\B and
gA\D are separable in G, and the pair .A \ B; ˛/ satisfies CCG . Then the double
coset CA.g/D is separable in G.

Proof. Consider any z 2 G with z … CA.g/D. First, suppose that z … AD. Since
˛A\B is separable in G, Lemma 5.3 implies that AxB is separable, hence AD D
.AxB/x�1 is separable as well (because multiplication by a fixed group element on the
right is a homeomorphisms of G with respect to the profinite topology). Therefore
there is a finite-index normal subgroup N C G such that z … ADN , hence z …
CA.g/DN because CA.g/ � A.
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Thus we can assume that z 2 AD, i.e., there exist a0 2 A and d0 2 D such
that z D a0d0. Since z … CA.g/D, y ´ zd�1

0 … CA.g/.A \ D/. Consequently,
for every h 2 A \ D, .yh/g.yh/�1 ¤ g, i.e., y�1gy ¤ hgh�1, implying that
y�1gy … gA\D in G.

Now the separability of gA\D in G implies that there is a finite-index normal
subgroup K C G such that y�1gy … gA\DK. And, by Lemma 5.6, we can find
a finite-index normal subgroup M C G such that M � K and '.A/ \ '.D/ �
'.A \D/'.K/, where ' W G ! G=M is the natural epimorphism. Let xK, xA, xD, Ny
and Ng denote the '-images of K, A, D, y and g respectively.

Since xK C G=M , we have Ng xA\ xD � Ng'.A\D/ xK � Ng'.A\D/ xK and Ny�1 Ng Ny …
Ng'.A\D/ xK as M � K. Hence Ny�1 Ng Ny … Ng xA\ xD .

To finish the proof, it remains to show that '.z/ … '.CA.g/D/. Suppose, on
the contrary, that there exist a 2 CA.g/ and d 2 D such that '.z/ D '.ad/.
Then '.a0d0/ D '.ad/, thus Nh ´ '.a�1a0/ D '.dd�1

0 / 2 xA \ xD, and '.z/ D
'.a/ Nh'.d0/. Consequently, Ny D '.z/'.d�1

0 / D '.a/ Nh and

Ny�1 Ng Ny D Nh�1'.a�1ga/ Nh D Nh�1 Ng Nh 2 Ng xA\ xD;

contradicting to our construction.
Thus, for every z … CA.g/D we found M C G with jG W M j < 1 such that

z … CA.g/DM . Therefore the double coset CA.g/D is separable in G.

6. Some properties of right-angled Artin groups

In this section we recall a few properties of right-angled Artin groups, which will be
used in the proof of the main result. At the end of the section we prove that every
pointwise inner automorphism of a right-angled Artin group is inner.

Let � be a finite graph (without loops or multiple edges) with the set of vertices
V . For any vertex v 2 V its star star.v/ consists of all vertices (including v itself)
that are adjacent to v in � . If � � V , then star.�/ ´ T

v2� star.v/. Observe that
for two subsets � ; T � V , T � star.�/ happens if and only if � � star.T /.

Let G D G.�/ be the associated right-angled Artin group. To simplify notation,
we will identify elements of V with the corresponding generators of G. Then for
each v 2 V , star.v/ contains precisely those elements from V that commute with v
in G. For any subset A of G, A˙1 will denote the union A [ A�1 � G. Thus every
element g 2 G can be represented as a word W in letters from V˙1. The support
supp.W / is the set of all v 2 V such that v˙1 appears as a letter in W . A word W is
said to be graphically reduced if it has no subwords of the form vUv�1 or v�1Uv,
where v 2 V and supp.U / � star.v/. Evidently, if the word W is not graphically
reduced, then one can find a shorter word representing the same element of the group
G. This process will eventually terminate (because the length of W is finite), hence
for each element g 2 G there exists a graphically reduced word representing it in G.
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E. Green [29] proved that if two graphically reduced words W and W 0 represent
the same element g 2 G, then W and W 0 have the same length and supp.W / D
supp.W 0/. Moreover, for any given g 2 G, graphically reduced words are precisely
the shortest possible words representing g inG (proofs of these facts using re-writing
systems can also be found in [25], Section 2.2). Therefore, for any element g we can
define its length jgj as the length of any graphically reduced word W representing g
in G, and its support supp.g/ as supp.W /.

Finally, for any g 2 G define FL.g/ – the set of first letters of g – as the set of
all letters a 2 V˙1 such that a appears as the first letter of some graphically reduced
word W representing g in G. Similarly, we define the set of last letters LL.g/ of
g as those a 2 V˙1 that appear as a last letter of some graphically reduced word
representing g inG. A useful fact observed by Green in [29] states that for any g 2 G
the letters in FL.g/ pairwise commute (in G). Evidently, LL.g/ D .FL.g�1//�1.

Consider any subset � of V and let � be the full subgraph of � on the vertices
from � . LetH denote the right-angled Artin group corresponding to�. The identity
map on � can be regarded as a map from the generating set of H into G. Since
� is a subgraph of � all the relations between these generators of H hold between
their images in G. Therefore, by von Dyck’s Theorem, there is a homomorphism
	 W H ! G extending the identity map on � .

On the other hand, since � is a full subgraph of � , by von Dyck’s Theorem, the
map �� W V [ f1g ! V [ f1g defined by �� .1/ ´ 1 and

�� .v/ ´
´
v if v 2 � ;

1 if v 2 V n � ,
(6.1)

can be extended to a homomorphism �H W G ! H . Obviously, the composition
�H B 	 W H ! H is the identity map on H . Therefore 	 is injective, hence it is
an isomorphism between H and the subgroup of G generated by � . Consequently,
�H , regarded as an endomorphism of G, becomes a (canonical) retraction of G onto
h�i � G.

For any � � V the subgroup H ´ h�i � G is called special (or full, or
canonically parabolic, depending on the source). Note that the trivial subgroup
f1g � G is also special and corresponds to the empty subset of V . As we saw above,
any special subgroup is a right-angled Artin group itself, and is a retract of G. It is
easy to see that if � , T are two subsets of V then the corresponding maps �� and
�T defined by (6.1) commute with each other. This leads to the following important
observation.

Remark 6.1. IfH andF are special subgroups of a right-angled Artin groupG, then
H and F are retracts of G and the corresponding canonical retractions �H ; �F 2
End.G/ commute.

Remark 6.2. If � ; T � V then h�i \ hT i D h� \ T i.
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Indeed, by Remarks 6.1 and 4.2, we have

h�i \ hT i D �hT i.h�i/ D h�hT i.�/i D h�T .�/i D h� \ T i:
Recall that a group G is said to have the Unique Root Property if for any positive

integer n and arbitrary elements x; y 2 G the equality xn D yn implies that x D y

in G. The group G is called bi-orderable if G can be endowed with a total order 	,
which is bi-invariant, i.e., for any x; y; z 2 G, if x 	 y, then zx 	 zy and xz 	 yz.

Lemma 6.3. Right-angled Artin groups have the Unique Root Property.

Proof. G. Duchamp and D. Krob [21] (see also [22]) proved that right-angled Artin
groups are bi-orderable. Let G be a right-angled Artin group, and let 	 be a total
bi-invariant order on G.

Suppose that xn D yn for some x; y 2 G, n 2 N, and x ¤ y. Without loss of
generality we can assume that x 
 y. Let us show that xk 
 yk for every k 2 N.
This is true for k D 1, so, proceeding by induction on k, suppose that k � 2 and
xk�1 
 yk�1 has already been shown. Thenxk D xk�1x 
 xk�1y 
 yk�1y D yk ,
where we used the induction hypothesis together with the bi-invariance of the order.

Hence, we have proved that xn 
 yn, contradicting to xn D yn. Thus x D y.

The Unique Root Property for right-angled Artin groups can also be easily estab-
lished using the fact that these groups are residually torsion-free nilpotent, which was
also proved in [21].

Lemma 6.4. Let H be a conjugate of a special subgroup in a right-angled Artin
group G. If K � G is a subgroup such that jK W .K \H/j < 1 then K � H .

Proof. By the assumptions, H is a retract of G. Let �H 2 End.G/ denote the
corresponding retraction. Take any x 2 K. Since jK W .K \ H/j < 1, there
is n 2 N such that xn 2 H . Therefore, setting y ´ �H .x/ 2 H , we obtain
xn D �H .x

n/ D yn. And the Unique Root Property for G implies that x D y 2 H .
Thus K � H .

After writing down the proof of the next technical result (Lemma 6.5), the au-
thor learned that it has already been established by A. Duncan, I. Kazachkov and
V. Remeslennikov in their recent paper [23], Proposition 2.6. However, the proof
presented here is somewhat different, and the author decided to keep it in this work
for completeness.

Lemma 6.5. LetG be a right-angled Artin group associated to a finite graph � with
vertex set V . Suppose that � ; T � V and g 2 G. Then there are P � T and h 2 hT i
such that gh�ig�1 \ hT i D hhP ih�1 in G. Thus, the intersection of conjugates of
two special subgroups in G is a conjugate of a special subgroup of G.
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Proof. We will use induction on .j� j C jgj/, where j� j denotes the cardinality of � .
If � D ;, then h�i D f1g and the statement is trivial. If jgj D 0, i.e., g D 1 in G,
then gh�ig�1 \ hT i D h�i \ hT i D h� \ T i by Remark 6.2.

Thus we can assume that � ¤ ; and g ¤ 1, n ´ j� j C jgj � 2, and the claim
has been proved for all � and g with j� j C jgj < n.

If there is a 2 FL.g/ \ T ˙1, set f ´ a�1g. Then jf j < jgj, ahT ia�1 D hT i
and

gh�ig�1 \ hT i D a.f h�if �1 \ hT i/a�1 D .ah/hP i.ah/�1
for some h 2 hT i and some P � T by the induction hypothesis.

If, on the other hand, there is b 2 LL.g/ \ �
� [ star.�/

�˙1
, set f ´ gb�1.

Then jf j < jgj, bh�ib�1 D h�i and gh�ig�1\ hT i D f h�if �1\ hT i and we can
apply the induction hypothesis once again.

Therefore, we can suppose that FL.g/\T ˙1 D ; and LL.g/\�
� [star.�/

�˙1 D
;. We assert that in this case

gh�ig�1 \ hT i D S
s2�

.gh� n fsgig�1 \ hT i/: (6.2)

Indeed, if (6.2) is false, then there exist x 2 h�i and y 2 hT i such that supp.x/ D �

and gxg�1 D y in G.
Choose graphically reduced words W , X and Y representing in G the elements

g, x and y respectively, so that supp.X/ D � and supp.Y / � T . Let a be the
first letter of W , then a D v˙1 for some v 2 V . According to our assumptions,
v 2 supp.WXW �1/ n supp.Y / and WXW �1 D Y in G. Hence the left-hand side
of the latter equality cannot be graphically reduced.

Note that no letter a ofW can be cancelled with a letter ofX in the wordWXW �1,
because this would mean that a 2 supp.X/˙1 D �˙1 and a commutes with the suffix
ofW after it, hencea 2 LL.g/\�˙1 D ;. Similarly, no letter fromX can cancel with
a letter fromW �1, therefore a reduction inWXW �1 can occur only from the presence
of a subword cUc�1, where c is a letter from the initial copy of W and U contains
X as a subword. Thus, c D w˙1 for some w 2 V , supp.W / � supp.U / � star.w/.
Consequently, � � star.w/, and c is a last letter of g, because it commutes with the
suffix of W after it. This implies that c 2 LL.g/ \ star.�/˙1 ¤ ; contradicting to
our assumption.

Therefore (6.2) is true, implying that the group K ´ gh�ig�1 \ hT i � G is
covered by a finite union of its subgroups. A classical theorem of B. Neumann [46]
claims that in this case one of these subgroups must have finite index in K. Thus
there is s0 2 � such that jK W .gh� n fs0gig�1 \ hT i/j < 1. Using the induction
hypothesis, we can find P � T and h 2 hT i such that gh� n fs0gig�1 \ hT i D
hhP ih�1. Therefore hhP ih�1 � K and jK W hhP ih�1j < 1. Hence Lemma 6.4
can be applied to achieve the required equality K D hhP ih�1.

Let us recall a few more facts about right-angled Artin groups.
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An element g 2 G is said to be A-cyclically reduced if it cannot be written as
g D aha�1, where a 2 V˙1 and jhj D jgj�2 (we have added the letter “A” to avoid
confusion with a similar notion for special HNN-extensions introduced in Section 7).
In the paper [57] H. Servatius proved that for every element g of a right-angled Artin
group G there exists a unique A-cyclically reduced element h such that g D f hf �1
for some f 2 G with jgj D jhjC2jf j. In particular, supp.h/ � supp.g/. Therefore,
if g 2 G is not A-cyclically reduced then jg2j D jf h2f �1j � 2jhj C 2jf j < 2jgj.
Thus we obtain the following

Remark 6.6. If an elementg 2 G is notA-cyclically reduced, then for any graphically
reduced word W representing g in G, the word W 2 � WW cannot be graphically
reduced.

Another consequence of the above theorem of Servatius is that every given element
of G is conjugate to a unique (up to a cyclic permutation) A-cyclically reduced
element. In particular, we can make

Remark 6.7. If the elements g; h 2 G are A-cyclically reduced and conjugate in G,
then supp.g/ D supp.h/.

A special subgroup A of the right-angled Artin group G is said to be maximal if
A D h�i for some maximal proper subset � of V (i.e., if j� j D jV j � 1).

Lemma 6.8. For any non-trivial element g 2 G there is a maximal special subgroup
A in G such that g … AG .

Proof. Arguing by contradiction, suppose that there are f1; : : : ; fn 2 G such that g 2Tn
iD1 fiAif �1

i in G, where A1; : : : ; An is the list of all maximal special subgroups
of G. Then for each i 2 f1; : : : ; ng, there is an A-cyclically reduced element ai 2
Ai n f1g such that g is conjugate to ai in G. Choose any letter v 2 supp.a1/ and
take j 2 f1; : : : ; ng such that Aj D hV n fvgi. Then a1 must be conjugate to aj
in G, which is impossible by Remark 6.7, because v 2 supp.a1/ n supp.aj / (as
supp.aj / � V n fvg). This contradiction proves the lemma.

Recall that an automorphism � of a group G is called pointwise inner if for each
g 2 G there exists f D f .g/ 2 G, such that �.G/ D fgf �1 in G. Let Autpi .G/
denote the set of all pointwise inner automorphisms of G. It is easy to see that
Autpi .G/ is a normal subgroup of the full automorphism group Aut.G/, containing
the subgroup of all inner automorphisms Inn.G/.

We are now going to prove that the group of pointwise inner automorphisms of a
right-angled Artin group G coincides with the group of inner automorphisms of G.

Proposition 6.9. For any right-angled Artin group G we have Autpi .G/ D Inn.G/.
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Proof. Suppose there exists � 2 Autpi .G/ n Inn.G/. Since � maps every generator
ofG to its conjugate, we can replace� by its composition with an inner automorphism
of G to assume that �.v/ D v for some v 2 V .

Then there is an automorphism 
 lying in the right coset Inn.G/� � Autpi .G/
such that the set Fix.
/ is maximal, where Fix.
/ denotes the subset of all elements
in V fixed by 
. Note that Fix.
/ ¤ V because 
 ¤ idG (the identity map idG of
G does not belong to the coset Inn.G/� by our assumption). And Fix.
/ ¤ ; since
v 2 Fix.�/ ¤ ;.

Let Fix.
/ D fv1; : : : ; vkg � V and pick any w 2 V n Fix.
/. By the assump-
tions, there is f 2 G such that 
.w/ D f wf �1. Choose a shortest element f with
this property.

First suppose that there exists a 2 FL.f / \ .
Tk
iD1 star.vi //˙1. Then a 2Tk

iD1 CG.vi /, hence after defining a new automorphism � 2 Inn.G/� by �.g/ ´
a�1
.g/a for allg 2 G, we have Fix.
/ � Fix.�/, �.w/ D .a�1f /w.a�1f /�1 and
ja�1f j < jf j. Note that a�1f ¤ 1 because, otherwise, we would have w 2 Fix.�/
contradicting to the maximality of Fix.
/. Thus we can replace 
 with �, making f
shorter. We can continue doing the same for �, and so on. Eventually we will end up
with an automorphism 
 2 Inn.G/� (we keep the same notation for it, although the
actual automorphism may be different) such that 
.w/ D f wf �1, f is a shortest
element with this Property, f ¤ 1, and

FL.f / \ star.Fix.
//˙1 D FL.f / \ � kT
iD1

star.vi /
�˙1 D ;: (6.3)

Put � ´ Fix.
/\ FL.f /˙1 � V . Using (6.3), we see that for every s 2 � there
is v.s/ 2 Fix.
/ such that v.s/ … star.s/. Note that in this case v.s/ … FL.f /˙1
because s 2 FL.f /˙1 and any two elements of FL.f /˙1 commute. Set T ´
fv.s/ j s 2 �g � Fix.
/ n FL.f /˙1, and write Fix.
/ D ft1; : : : ; tlg t fs1; : : : ; smg,
where T D ft1; : : : ; tlg (consequently, � � fs1; : : : ; smg). Finally, define the words
T ´ t1 : : : tl , S ´ s1 : : : sm and let g be the element represented by the word by
TSTw in G.

Since 
 2 Autpi .G/, there exists x 2 G such that 
.g/ D xgx�1. On the
other hand, 
.g/ D TST UwU�1, for some graphically reduced non-empty wordU
representing f in G. Note that the word UwU�1 is graphically reduced (otherwise,
we could make U , and hence f , shorter) and w … supp.TST / D Fix.
/. Therefore
the only possible reduction which could occur in the wordW � TST UwU�1 would
arise from cancellation of a letter from TST with a letter from U or U�1. However,
no letter t from the first copy of T could cancel with a letter from U or U�1 in W ,
because supp.S/ 6� star.t/ (as t D v.s/ for some s 2 � and s 2 supp.S/nstar.v.s//).
On the other hand, if some letter t from the second copy of T in W cancelled with
some letter a from U , then a 2 FL.f /, but this would contradict to t 2 T and
T \ FL.f /˙1 D ;. If this letter t cancelled with a letter a from U�1 in W ,
then we would have supp.U / � star.t/, which is impossible as t D v.s/ for some
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s 2 supp.U / and s … star.v.s//. Therefore, if W is not graphically reduced, then
a letter s from S must cancel with a letter a D s�1 from U or U�1, in particular,
T D supp.T / � star.s/, implying that s … � . However, if s cancels with a letter
from U , we see that a 2 FL.f /, hence s 2 � , which is false. And if s cancelled with
a letter a from U�1, then we would get a contradiction with the fact that UwU�1 is
graphically reduced, because a�1 D s is a letter of U lying between s and a in W .

Therefore W � TST UwU�1 is a graphically reduced word representing 
.g/
in G. Consequently, j
.g/j D 2kT k C kSk C 2kU k C 1 > 2kT k C kSk C 1 D jgj
since kU k > 0 (kU k denotes the length of the word U ). But 
.g/ D xgx�1, hence

.g/ is notA-cyclically reduced. By Remark 6.6, a reduction can be made in the word
W 2 � TST UwU�1TST UwU�1. But an argument similar to the above shows that
this is impossible.

Thus we have arrived to a contradiction, which proves that Autpi .G/ D Inn.G/,
as needed.

Remark 6.10. The reader could have noticed that in the proof of Proposition 6.9 we
have actually shown more than it claims. In fact, we have proved that any endomor-
phism � of a right-angled Artin groupG, which maps each conjugacy class ofG into
itself, is an inner automorphism of G.

7. Special HNN-extensions

The purpose of this section is to develop necessary tools for dealing with special
HNN-extensions.

Let A be a group and let H � A be a subgroup.

Definition 7.1. The special HNN-extension of A with respect to H is the group G
given by the presentation

G D hA; t j tht�1 D h for every h 2 H i: (7.1)

In other words, the special HNN-extension G is a particularly simple HNN-
extension of A, where both of the associated subgroups are equal to H and the
isomorphism between these subgroups is the identity map on H .

Let � be a finite graph with the set of vertices V of cardinality n 2 N . The reason
why we are interested in special HNN-extensions is the the observation below.

Remark 7.2. Let G be the right-angled Artin group associated to � . Then G can
be obtained from the trivial group via a sequence of special HNN-extensions. More
precisely, there are right-angled Artin groups f1g D G0, G1, : : : , Gn D G such
that GiC1 is a special HNN-extension of Gi with respect to some special subgroup
Hi � Gi for every i D 0; : : : ; n � 1.
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The groups Gi can be constructed as follows. Let V D fv1; : : : ; vng and denote
�iC1 ´ fv1; : : : ; vig \ star.viC1/ � V for i D 1; : : : ; n � 1. Set G0 ´ f1g,
G1 ´ hv1i (the infinite cyclic group generated by v1), and

GiC1 ´ hGi ; viC1 j viC1sv�1
iC1 D s for every s 2 �iC1i; i D 1; : : : ; n � 1:

Clearly,G D Gn and for each i ,GiC1 is a special HNN-extension ofGi with respect
to the special subgroup h�iC1i of Gi , and Gi is a special subgroup of G generated
by fv1; : : : ; vig.

Remark 7.3. IfG is a right-angled Artin group associated to� , then for any maximal
special subgroupA � G,G splits as a special HNN-extension (7.1) ofAwith respect
to a certain special subgroup H of A.

Indeed, if A D h�i, where � � V and V D � t ftg, set U ´ star.t/ n ftg � � .
Then G D hA; t j tut�1 D u for all u 2 Ui is a special HNN-extension of A with
respect to the subgroup H ´ hUi � A.

Special HNN-extensions are usually much easier to deal with than general HNN-
extensions. Throughout this section we will limit ourselves to considering only the
former ones, even though most of the statements can be re-formulated in the general
situation.

Let G be the special HNN-extension given by (7.1). von Dyck’s Theorem yields
the following Universal Property of special HNN-extensions, which will be important
for us:

Remark 7.4. For any group B , every homomorphism  W A ! B can be natu-
rally extended to a homomorphism z W G ! P , where P ´ hB; s j sxs�1 D
x for all x 2  .H/i is the special HNN-extension of B with respect to  .H/, so
that z jA D  and z .t/ D s.

Lemma 7.5. In the notations of Remark 7.4, ker. z / D N , where N C G is the
normal closure of ker. / � A � G in G.

Proof. Obviously, N � ker. z /, and hence N \ A D ker. z / \ A D ker. /. Let
� W G ! Q ´ G=N be the natural epimorphism with ker.�/ D N . Consequently,
if we define � W Q ! P to be the natural epimorphism with the kernel �.ker. z //,
then we will have z D � B �.

Observe that �.t/�.x/�.t/�1 D �.txt�1/ D �.x/ in Q for every x 2 H ,
and the map 	 W  .A/ ! �.A/ defined by 	. .a// ´ �.a/ for all a 2 A, is an
isomorphism, since ker. / D ker.�/ \ A. Therefore, by von Dyck’s Theorem,
there is a homomorphism Q	 W P ! Q such that Q	. .a// D �.a/ for every a 2 A

and Q	.s/ D �.t/. It is easy to see that Q	 B � W Q ! Q is the identity map on
Q. Hence, � is injective, that is f1g D ker.�/ D �.ker. z // in Q, implying that
ker. z / � ker.�/ D N . Thus ker. z / D N .
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Lemma 7.6. Suppose that � 2 End.A/ is a retraction of A onto its subgroup B .
Then there are retractions Q�1; Q�2 2 End.G/ of G onto subgroups B � G and
C ´ hB; ti � G respectively, such that Q�i jA D � for i D 1, 2, Q�1.t/ D 1 and
Q�2.t/ D t .

Proof. Define the maps �i W A t ftg ! A t ftg by �i .a/ ´ �.a/ for each a 2 A,
i D 1; 2, and �1.t/ ´ 1 and �2.t/ ´ t .

The map �1 can be extended to an endomorphism Q�1 W G ! G by von Dyck’s
Theorem, and the map �2 can be extended to an endomorphism Q�2 W G ! G by
Remark 7.4. Obviously, Q�1 and Q�2 are retractions of G onto B and C respectively.

Every element of the special HNN-extension G, given by (7.1), is a product of
the form

x0t
"1x1t

"2 : : : t"nxn (7.2)

for some n 2 N [ f0g, xi 2 A, i D 0; : : : ; n, and "j 2 Z n f0g, j D 1; : : : ; n.
The product (7.2) is said to be reduced if xi … H for every i 2 f1; 2; : : : ; n� 1g.

Since t commutes with every element of H , it is easy to see that any g 2 G is equal
to some reduced product in G. By Britton’s Lemma (see [38, IV.2]) a non-empty
reduced product represents a non-trivial element inG. It follows, that if two reduced
products x0t"1x1t

"2 : : : t"nxn and y0t�1y1t
�2 : : : t�mym are equal in G, then m D n

and "i D i for every i D 1; : : : ; n (see [38], IV.2.3).
Suppose that an element g 2 G is equal to a product t"1x1t

"2 : : : t"nxn. Let us fix
this presentation for g. Any product t"kxkt

"kC1 : : : t"nxnt
"1x1 : : : t

"k�1xk�1 2 G,
for some k 2 f1; : : : ; ng, is said to be a cyclic permutation of g. The element
g D t"1x1t

"2 : : : t"nxn is called cyclically reduced if each of its cyclic permutations
is reduced. A prefix of g is an element of the form t"1x1t

"2 : : : t"kxk for some
k 2 f0; 1; : : : ; ng (if k D 0 then we have the empty prefix, corresponding to the
trivial element ofG). Similarly, a suffix of g is an element of the form t"lxl : : : t

"nxn
for some l 2 f1; 2; : : : ; nC 1g.

It is not difficult to see that every element f 2 G either belongs to AG in G or is
conjugate to some non-trivial cyclically reduced element in G.

Below is the statement of Collins’s Lemma (see [38], IV.2.5) in the case of special
HNN-extensions.

Lemma 7.7. Suppose that g D t"1x1t
"2 : : : t"nxn and f D t�1y1t

�2 : : : t�mym are
cyclically reduced in G, with n � 1. Then g … AG . And if f is conjugate to g in
G then m D n and there exist h 2 H and a cyclic permutation f 0 of f such that
f 0 D hgh�1 in G.

We will also use the following description of centralizers in special HNN-exten-
sions:
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Proposition 7.8. Let G be the special HNN-extension given by (7.1). Suppose that
the element g D t"1x1t

"2 : : : t"nxn 2 G is cyclically reduced and n � 1.
If xn 2 H then n D 1 and CG.g/ D hti � CH .x1/ D hti � CH .g/ � G.
If xn 2 A n H , let fp1; : : : ; pkg, 1 � k � n C 1, be the set all of prefixes of g

satisfying p�1
i gpi 2 gH in G. For each i D 1; : : : ; k, choose hi 2 H such that

hip
�1
i gpih

�1
i D g, and define the finite subset � � G by � ´ fhip�1

i j i D
1; : : : ; kg. Then CG.g/ D CH .g/hgi�.

In order to prove Proposition 7.8 we will need two lemmas below. The proof of
the next statement is similar to the proof of Collins’s Lemma.

Lemma 7.9. Let g D t"1x1t
"2 : : : t"nxn and f D t�1y1t

�2 : : : t�nyn be cyclically
reduced elements of G, with n � 1 and xn … H . Assume that cgc�1 D f in G,
where the element c is equal to the reduced product z0t�1z1t

�2 : : : t�mzm. Then there
are the following three mutually exclusive possibilities.

a) m D 0 and c 2 H ;
b) m � 1, zm 2 H and there is a prefix p of g such that c D hp�1gl in G for

some h 2 H and l 2 Z, l � 0;
c) m � 1, xnz�1

m 2 H and there is a suffix s of g such that c D hsgl in G for
some h 2 H and l 2 Z, l � 0.

Proof. First suppose that m D 0, i.e., c D z0 2 A. Then f �1cgc�1 D 1 in G,
yielding

y�1
n t��n : : : y�1

1 t��1z0t
"1x1t

"2 : : : t"nxnz
�1
0 D 1:

Therefore the left-hand side is not reduced, hence c D z0 2 H .
Now assume thatm � 1. The equality cgc�1 D f inG gives rise to the equation

z0t
�1 : : : t�mzmt

"1x1t
"2 : : : t"nxnz

�1
m t��m : : : t��1z�1

0 D t�1y1 : : : t
�nyn:

The left-hand side cannot be reduced because it contains more t -letters than the right-
hand side. Hence either zm 2 H or xnz�1

m 2 H (note that both of these inclusions
cannot happen simultaneously sincexn … H ). Let us consider the case when zm 2 H ,
as the second case is similar. Then t�mzmt

"1 D zmt
�mC"1 , and thus we get

z0t
�1 : : : t�m�1.zm�1zm/t�mC"1x1t

"2 : : : t"nxnz
�1
m t��mz�1

m�1 : : : t��1z�1
0

D t�1y1 : : : t
�nyn:

(7.3)

Once again we see that the left-hand side of the above equation cannot be reduced. In
the case whenm D 1, this implies that �mC"1 D 0. On the other hand, ifm > 1, then
zm�1 2 AnH , hence zm�1zm … H , and again, in order for a reduction to be possible,
we must have �mC"1 D 0. Hence "1 D ��m and z�1

m t��mz�1
m�1 D t"1x1h

�1
1 , where

h1 ´ zm�1zmx1 2 A. Now (7.3) becomes

.z0t
�1 : : : zm�2t�m�1h1/.t

"2x2 : : : t
"nxnt

"1x1/.z0t
�1 : : : t�m�1h1/

�1

D t�1y1 : : : t
�nyn:

(7.4)
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If m D 1, i.e., c D z0t
�"1z1 D z0z1t

�"1 , then we have

1 D f �1cgc�1 D .y�1
n t��n : : : y�1

1 t��1/h1.t
"2x2 : : : t

"nxnt
"1x1/h

�1
1 :

Hence h1 2 H and c D h1.t
"1x1/

�1, where t"1x1 is a prefix of g.
Otherwise, if m D M � 2 we will use induction on m to prove the claim b) of

the lemma. Thus, we will assume that b) has been established for all elements c with
1 � m � M � 1.

Note that x1h�1
1 D z�1

m z�1
m�1 … H since zm 2 H and zm�1 2 A n H (because

m � 2 and the product z0t�1 : : : t�m�1zm�1t�mzm was assumed to be reduced).
Let us look at the equation (7.4). Since m � 1 � 1, the left-hand side cannot be

reduced. And a reduction in it can only occur if h1 2 H because x1h�1
1 … H . Hence

we are in the case b) of the lemma, and can apply the induction hypothesis to (7.4).
Thus there is a prefix p of the element g1 ´ t"2x2 : : : t

"nxnt
"1x1, h 2 H and l 2 Z,

l � 0, such that z0t�1 : : : zm�2t�m�1h1 D hp�1gl1. Consequently,

c D z0t
�1 : : : t�m�1zm�1t�mzm

D z0t
�1 : : : t�m�1h1x

�1
1 t�"1 D hp�1gl1x�1

1 t�"1 D hq�1gl ;

where q D t"1x1p. It is easy to see that either q is a prefix of g, or q D gt"1x1.
In the latter case, c D h.t"1x1/

�1gl�1 and t"1x1 is a prefix of g. Thus the step of
induction is established, and the proof of the lemma is finished.

The next lemma treats the case which was not covered by Lemma 7.9.

Lemma 7.10. Suppose that g D t"x 2 G, where " 2 Z n f0g and x 2 H . Then
CG.g/ D hti � CH .x/ D hti � CH .g/. In particular, CG.t"/ D hti �H � G.

Proof. For any c 2 CG.g/ we have cgc�1 D g. Let z0t�1z1t
�2 : : : t�mzm be a

reduced product representing c in G. Then we have

z0t
�1z1t

�2 : : : t�mzmt
"xz�1

m t��m : : : t��2z�1
1 t��1z�1

0 D t"x: (7.5)

Arguing as in the proof of Lemma 7.9, we see that if m D 0 then c D z0 2 H and
t"x D z0t

"xz�1
0 D t"z0xz

�1
0 , thus 1 D z0xz

�1
0 , i.e., c D z0 2 CH .x/.

So, assume now that m � 1. Then the equation (7.5) implies that either zm 2 H
or xz�1

m 2 H . But either of these inclusions leads to zm 2 H because x 2 H by the
assumptions. Therefore t�mzmt

"xz�1
m t��m D zmxz

�1
m t" in G and (7.5) becomes

z0t
�1 : : : zm�2t�m�1.zm�1zmxz�1

m /t"z�1
m�1t�m�1z�1

m�2 : : : t��1z�1
0 D t"x:

If m � 2, then zm�1 2 A n H , hence zm�1zmxz�1
m … H , and the above equation

contradicts to Britton’s Lemma: the left-hand side is reduced, but contains more
t -letters than the right-hand side.
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Therefore m D 1, i.e., c D z0t
�1z1 and z1 2 H . Consequently,

1 D g�1cgc�1 D x�1t�"z0t�1z1t
"xz�1

1 t��1z�1
0 D x�1t�".z0z1xz�1

1 /t"z�1
0 :

Applying Britton’s Lemma again, we achieve z0z1xz�1
1 2 H , implying that z0 2 H

and 1 D x�1z0z1xz�1
1 z�1

0 in G. That is, z0z1 2 CH .x/, and c D z0t
�1z1 D

t�1z0z1 2 htiCH .x/.
Thus we proved that CG.g/ � htiCH .x/. Finally, since t commutes with every

element from H , it is clear that t 2 CG.g/ and CH .x/ � CH .g/ � CG.g/. Hence
CG.g/ D htiCH .x/ D hti � CH .x/ � G. The equality CH .g/ D CH .x/ is
immediate.

Proof of Proposition 7.8. If xn 2 H , g can be cyclically reduced only when n D 1,
and the claim follows from Lemma 7.10.

So, we can assume that xn 2 A nH . Therefore we are able to apply Lemma 7.9
to g and f ´ g, which tells us that for any c 2 CG.g/ there exist h 2 H and l 2 Z
such that either there is a prefix p of g with c D hp�1gl , or there is a suffix s of g
with c D hsgl . Note that in the latter case there is a prefixp of g such that s D p�1g.
Hence we can assume that c D hp�1gl for some prefix p of g, h 2 H and l 2 Z.

But then g D cgc�1 D hp�1gph�1, hence p D pi for some i 2 f1; : : : ; kg.
The equalities hp�1

i gpih
�1 D g D hip

�1
i gpih

�1
i yield h�1gh D p�1

i gpi D
h�1
i ghi . Consequently hh�1

i 2 CH .g/ and h 2 CH .g/hi . Thus c D hp�1
i gl 2

CH .g/hip
�1
i gl � CH .g/�hgi.

We have shown that CG.g/ � CH .g/�hgi. Observe that � � CG.g/ by defini-
tion, hence CG.g/ D CH .g/�hgi D CH .g/hgi�.

Now we formulate a criterion for conjugacy in special HNN-extensions.

Lemma 7.11. Denote by G be the special HNN-extension (7.1). Moreover suppose
that B � A is a subgroup and g; f 2 G are elements represented by reduced
products x0t"1x1t

"2 : : : t"nxn and y0t�1y1t
�2 : : : t�mym, respectively, with n � 1.

Then f 2 gB in G if and only if all of the following conditions hold:

(i) m D n and "i D i for all i D 1; : : : ; n;
(ii) y0y1 : : : yn 2 .x0x1 : : : xn/B in A;

(iii) for every b0 2 B with y0y1 : : : yn D b0.x0x1 : : : xn/b
�1
0 in A, the intersection

I � A is non-empty, where

I ´ b0CB.x0 : : : xn/ \ y0Hx�1
0 \ .y0y1/H.x0x1/�1 \ � � �

� � � \ .y0 : : : yn�1/H.x0 : : : xn�1/�1:

Proof. First we establish the sufficiency. Assume that the conditions (i), (ii) and (iii)
hold. Take any b0 2 B satisfying (iii) (it exists by (ii)) and let I be the corresponding
intersection. Then there exists an element b 2 I . The inclusion b 2 b0CB.x0 : : : xn/
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implies that y0y1 : : : yn D b.x0x1 : : : xn/b
�1. We will show that f �1bgb�1 D 1,

which is equivalent (in view of (i)) to

y�1
n t�"n : : : t�"2y�1

1 t�"1y�1
0 bx0t

"1x1t
"2 : : : t"nxnb

�1 D 1: (7.6)

Note thaty�1
0 bx0 2 H sinceb 2 I , hencey�1

1 t�"1y�1
0 bx0t

"1x1 D y�1
1 y�1

0 bx0x1 2
H . Therefore we can continue reducing the left-hand side of (7.6), until it becomes
y�1
n : : : y�1

1 y�1
0 bx0x1 : : : xnb

�1, which is equal to 1 in G. Thus the sufficiency is
proved.

To obtain the necessity, assume that f D bgb�1 for some b 2 B , that is,

bx0t
"1x1t

"2 : : : t"nxnb
�1 D y0t

�1y1t
�2 : : : t�mym:

Since both of the sides of the above equality are reduced, applying Britton’s Lemma
we obtain (i). Therefore the equation (7.6) holds in G.

Note that there is a canonical retraction �A 2 End.G/ of G onto A, such that
�A.t/ D 1 (apply Lemma 7.6 to the identity map onA). Hence, y0 : : : yn D �A.f / D
�A.bgb

�1/ D b.x0 : : : xn/b
�1, yielding (ii).

To achieve (iii), take any b0 2 B satisfying y0y1 : : : yn D b0.x0x1 : : : xn/b
�1
0 .

Then b�1
0 b 2 CB.x0 : : : xn/, i.e., b 2 b0CB.x0 : : : xn/. By Britton’s Lemma the

left-hand side of (7.6) cannot be reduced, therefore y�1
0 bx0 2 H and b 2 y0Hx�1

0 .
Consequently, if n � 2, y�1

1 t�"1y�1
0 bx0t

"1x1 D y�1
1 y�1

0 bx0x1 and (7.6) becomes

y�1
n t�"n : : : t�"2.y�1

1 y�1
0 bx0x1/t

"2 : : : t"nxnb
�1 D 1:

Applying Britton’s Lemma to the above equation, we see again that y�1
1 y�1

0 bx0x1 2
H , hence b 2 .y0y1/H.x0x1/

�1. Clearly, we can continue this process, showing
that b 2 .y0 : : : yi /H.x0 : : : xi /

�1 for every i 2 f0; : : : ; n � 1g. Thus, b 2 I ¤ ;
and the condition (iii) is satisfied.

Next comes a similar statement about centralizers.

Lemma 7.12. Denote by G be the special HNN-extension (7.1). Moreover suppose
that B � A is a subgroup and an element g 2 G is represented by a reduced product
x0t

"1x1t
"2 : : : t"nxn in G, with n � 1. Then the equality CB.g/ D I holds in G,

where

I ´ CB.x0 : : : xn/ \ x0Hx�1
0 \ .x0x1/H.x0x1/�1 \ � � �

� � � \ .x0 : : : xn�1/H.x0 : : : xn�1/�1:

Proof. Basically, we have already shown this while proving Lemma 7.11. Indeed,
denote f ´ g. For any b 2 I , if we take b0 D 1, the proof of sufficiency
in Lemma 7.11 asserts that bgb�1 D g, i.e., b 2 CB.g/. On the other hand, if
bgb�1 D g for some b 2 B , then the proof of necessity in Lemma 7.11 shows that
b 2 I . Therefore CB.g/ D I .
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8. Proof of the main result

Throughout this section we assume thatG is a right-angled Artin group associated to
some fixed finite graph � with the set of vertices V . The rank rank.G/ of G is, by
definition, the number of elements in V .

Our proof of the main result will make use of the following two statements below.
The next Lemma 8.1 was proved by Green in [29]. It can be easily demonstrated by
induction on the number of vertices in the graph associated to a right-angled Artin
group using Remark 7.2 and Britton’s Lemma. On the other hand, it also follows
from the linearity of such groups, which was established by S. Humphries in [36].

Lemma 8.1. Right-angled Artin groups are residually finite.

We are also going to use the following important fact proved by Dyer in [24].

Lemma 8.2. Virtually free groups are conjugacy separable.

The main result, Theorem 1.1, will be proved by induction on the rank of the right
Artin group G. The lemma below is used to establish the inductive step.

Lemma 8.3. Assume that every special subgroupB ofG satisfies the condition CCG
from Definition 3.3, and that, for each g 2 G, theB-conjugacy class gB is separable
in G.

Suppose that A1; : : : ; An are special subgroups of G, A0 is a conjugate of a
special subgroup of G, and b, x0, …, xn, y1, …, yn 2 G are arbitrary elements.
Then for any finite-index normal subgroup K C G there exists a finite-index normal
subgroup L C G such that L � K and

NbC xA0
. Nx0/ \

nT
iD1

Nxi xAi Nyi �  .ŒbCA0
.x0/ \

nT
iD1

xiAiyi �K/ (8.1)

inG=L, where W G ! G=L is the natural epimorphism, Nb ´  .b/, xAi ´  .Ai /,
Nxi ´  .xi /, i D 0; : : : ; n, and Nyj ´  .yj /, j D 1; : : : ; n.

Proof. By the assumptions, A0 D hAh�1 for some special subgroup A of G and
some h 2 G. The proof will proceed by induction on n.

If n D 0, then the existence of a finite-index normal subgroup L C G, L � K,
enjoying (8.1), follows from the fact that the pair .A0; x0/ satisfies the Centralizer
Condition CCG , because the pair .A; g/ has CCG , where g ´ h�1x0h 2 G, and
bCA0

.x0/ D bhCA.g/h
�1 in G.

Base of induction: Assume n D 1.
Case 1: Suppose that bCA0

.x0/\x1A1y1 D ;, which is equivalent to the condi-
tion x1 … bCA0

.x0/y
�1
1 A1 D bhŒCA.g/D�h

�1y�1
1 , where D ´ .y1h/

�1A1.y1h/.
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In this case, by Lemma 6.5, the intersections A \ A1 and A \D are conjugates
of special subgroups in G, hence for any f 2 G, the conjugacy classes f A\A1 and
f A\D are separable inG (A\D D cSc�1 for some special subgroup S ofG, hence
f A\D D cŒ.c�1fc/S �c�1), and the pair .A \ A1; f / satisfies CCG . Therefore,
Lemma 5.7 allows us to conclude that the double coset CA.g/D is separable in G.
Thus the double coset bCA0

.x0/y
�1
1 A1 is separable as well, implying that there is

a finite-index normal subgroup N C G such that x1 … bCA0
.x0/y

�1
1 A1N . After

replacing N with N \K we can assume that N � K.
Now, since the pair .A0; x0/ has CCG , there exists a finite-index normal subgroup

L C G such thatL � N � K and �1.C xA0
. Nx0// � CA0

.x0/N inG (using the same

notations as in the formulation of the lemma). Therefore,  �1. NbC xA0
. Nx0/ Ny�1

1
xA1/ �

bCA0
.x0/y

�1
1 A1N , yielding that x1 …  �1. NbC xA0

. Nx0/ Ny�1
1

xA1/. Hence NbC xA0
. Nx0/ \

Nx1 xA1 Ny1 D ; in G=L, implying that (8.1) holds in this first case.
Case 2: bCA0

.x0/ \ x1A1y1 ¤ ; in G.
Let us make the following general observation.

Remark 8.4. Let H;F be subgroups of a group G such that bH \ xFy ¤ ; in G
for some elements b; x; y 2 G. Then for any a 2 bH \ xFy we have bH \ xFy D
a.H \ y�1Fy/.

Thus we can pick any a 2 bCA0
.x0/\x1A1y1, and according to Remark 8.4, we

will have bCA0
.x0/ \ x1A1y1 D a.CA0

.x0/ \ y�1
1 A1y1/ D aCE .x0/ in G, where

E ´ A0 \ y�1
1 A1y1 � G. By Lemma 6.5, E D cSc�1 for some special subgroup

S of G and some c 2 A0.
As we saw in the beginning of the proof, it follows from our assumptions that the

pair .E; x0/ satisfies CCG . Hence there must exist a finite-index normal subgroup
M C G such that M � K and C'.E/.'.x0// � '.CE .x0/K/ in G, where ' W G !
G=M denotes the natural epimorphism. On the other hand, by Lemma 5.6, there is
L C G such that jG W Lj < 1, L � M � K and  .A/ \  

�
.y1h/

�1A1y1h1
� �

 
�
A \ .y1h/�1A1y1h1

�
 .M/ in G=L. Therefore

xA0 \ Ny�1
1

xA1 Ny1 D  .h/Œ .A/ \  ..y1h/�1A1y1h1/� .h�1/
�  .h/Œ 

�
A \ .y1h/�1A1y1h1

�
 .M/� .h�1/

D  .A0 \ y�1
1 A1y1/ .M/

D  .E/ .M/

(8.2)

(in the notations from the formulation of the lemma). Observe that Na ´  .a/ 2
NbC xA0

. Nx0/ \ Nx1 xA1 Ny1, hence, by Remark 8.4, NbC xA0
. Nx0/ \ Nx1 xA1 Ny1 D Na.C xA0

. Nx0/ \
Ny�1
1

xA1 Ny1/, and applying (8.2) we achieve

NbC xA0
. Nx0/ \ Nx1 xA1 Ny1 � NaC .EM/. Nx0/: (8.3)
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Since L � M , there is an epimorphism 	 W G=L ! G=M such that ker.	/ D
 .M/ and ' D 	 B  . Note that 	. .EM// D 	. .E/ .M// D '.E/ and
	. Nx0/ D '.x0/. Consider any z 2 C .EM/. Nx0/ in G=L. Then

	.z/ 2 C'.E/.'.x0// � '.CE .x0/K/ D 	. .CE .x0/K//:

Hence z 2  .CE .x0/K/ ker.	/ D  .CE .x0/K/ because ker.	/ D  .M/ �
 .K/. Thus we have shown that C .EM/. Nx0/ �  .CE .x0/K/ in G=L. Finally,
combining this with (8.3), we obtain

NbC xA0
. Nx0/ \ Nx1 xA1 Ny1 � Na .CE .x0/K/ D  .aCE .x0/K/

D  .ŒbCA0
.x0/ \ x1A1y1�K/;

therefore (8.1) holds in Case 2.
Thus we have established the base of induction.
Step of induction: Suppose that n � 2 and the statement of the lemma has been

proved for n � 1.
If bCA0

.x0/ \ Tn�1
iD1 xiAiyi D ; in G, then, by the induction hypothesis, there

is a finite-index normal subgroup L C G such that L � K and

NbC xA0
. Nx0/ \

n�1T
iD1

Nxi xAi Nyi �  
�
ŒbCA0

.x0/ \
n�1T
iD1

xiAiyi �K
� D ;

in G=L. Hence the left-hand side of (8.1) will also be empty, and thus (8.1) will be
true.

Therefore, we can assume that bCA0
.x0/ \ Tn�1

iD1 xiAiyi ¤ ; in G. But in
this case we can apply Remark 8.4 .n � 1/ times to find some a 2 G such that
bCA0

.x0/ \ Tn�1
iD1 xiAiyi D a.CA0

.x0/ \ Tn�1
iD1 y�1

i Aiyi / D aCE .x0/, where
E ´ A0 \ Tn�1

iD1 y�1
i Aiyi is a conjugate of a special subgroup inG by Lemma 6.5.

Now we can use the base of induction n D 1, to find a finite-index normal subgroup
M C G such that M � K and for the natural epimorphism ' W G ! G=M we have

'�1.'.a/C'.E/.'.x0// \ '.xnAnyn// � ŒaCE .x0/ \ xnAnyn�K (8.4)

inG. By the induction hypothesis, there exists a finite-index normal subgroupL C G

such that L � M � K and

 �1� NbC xA0
. Nx0/ \

n�1T
iD1

Nxi xAi Nyi
� � �

bCA0
.x0/ \

n�1T
iD1

xiAiyi
�
M (8.5)

in G. Combining (8.5) with (8.4) and recalling that ker. / D L � M D ker.'/ we
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obtain the following in G:

 �1� NbC xA0
. Nx0/ \

nT
iD1

Nxi xAi Nyi
�

D  �1� NbC xA0
. Nx0/ \

n�1T
iD1

Nxi xAi Nyi
� \  �1. Nxn xAn Nyn/

� �
bCA0

.x0/ \
n�1T
iD1

xiAiyi
�
M \ xnAnynL � aCE .x0/M \ xnAnynM

� '�1.'.a/C'.E/.'.x0/// \ '�1.'.xnAnyn//
D '�1.'.a/C'.E/.'.x0// \ '.xnAnyn//
� ŒaCE .x0/ \ xnAnyn�K D �

bCA0
.x0/ \

nT
iD1

xiAiyi
�
K:

Hence (8.1) holds in G=L and we have verified the inductive step, finishing the
proof of the lemma.

The next two statements basically establish the main result. These Lemmas 8.5
and 8.6 will be proved by simultaneous induction on rank.G/. The proofs of each
of these two lemmas when rank.G/ D r will use both of their conclusions about
right-angled Artin groups of ranks strictly less than r .

Lemma 8.5. IfG is a right-angled Artin group of rank r , then theB-conjugacy class
gB is separable in G for any special subgroup B of G and any element g 2 G.

Lemma 8.6. Let G be a right-angled Artin group of rank r . Then every special
subgroup B of G satisfies the Centralizer Condition CCG from Definition 3.3.

The base of induction for both lemmas is r D 0, that is, whenG is the trivial group.
In this case the two statements are trivial. Therefore the proofs of Lemmas 8.5 and 8.6
start with assuming that both of their claims have been established for all right-angled
Artin groups of rank < r , and will aim to prove the inductive step by considering the
case when rank.G/ D r � 1.

The proofs of Lemmas 8.5 and 8.6 make use of the four auxiliary statements
below. These statements – Lemmas 8.7 through 8.10 – start with a right-angled Artin
group G of rank r (presented as a special HNN-extension

G D hA; t j tht�1 D h for all h 2 H i (8.6)

of a maximal special subgroupA � G with respect to some special subgroupH � A,
see Remark 7.3), and assume that Lemmas 8.5 and 8.6 have already been established
for A since rank.A/ D r � 1 < r D rank.G/.
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Lemma 8.7. Suppose that B is a special subgroup of G contained in A, g 2 G nA
and f 2 G n gB . Then there exists an epimorphism  from A onto a finite group
Q such that for the corresponding extension z W G ! P from G onto the special
HNN-extension P of Q (with respect to  .H/), obtained according to Remark 7.4,
we have z .f / … z .g/ z .B/ in P .

Proof. Let x0t"1x1t
"2 : : : t"nxn and y0t�1y1t

�2 : : : t�mym be reduced products rep-
resenting g and f in G respectively. Since g … A we have n � 1.

Case 1: First suppose that condition (i) from Lemma 7.11 does not hold. By
Corollary 5.4 and Lemma 8.1, the special subgroup H D HH of A is closed in
PT .A/, hence there is a finite-index normal subgroupL C A and the corresponding
epimorphism  W A ! Q ´ A=L such that such that  .xi / …  .H/, i D 1, …,
n � 1, and  .yj / …  .H/, j D 1, …, m � 1. Let

P ´ hQ; s j sqs�1 D q for all q 2  .H/i (8.7)

be the special HNN-extension of Q with respect to  .H/. By Remark 7.4,  can
be extended to a homomorphism z W G ! P such that z jA D  and z .t/ D s.
Therefore, z .g/ D Nx0s"1 Nx1s"2 : : : s"n Nxn, z .f / D Ny0s�1 Ny1s�2 : : : s�m Nym and these
products are reduced in P , where Nxi ´  .xi / and Nyj ´  .yj / for all i D 0; : : : ; n,
j D 0; : : : ; m. And since the condition (i) did not hold for g and f , this condition
will not hold for z .g/ and z .f /. Therefore, z .f / … z .g/ z .B/ by Lemma 7.11.

Thus we can now assume that n D m and "i D i for i D 1; : : : ; n. Set
x ´ x0 : : : xn 2 A and y ´ y0 : : : yn 2 A.

Case 2: Suppose that y … xB in A. Then, by the induction hypothesis, xB is
separable in A, hence there is a finite group Q and an epimorphism  W A ! Q

such that  .y/ …  .x/ .B/. Let P be the special HNN-extension of Q defined by
(8.7), and let z W G ! P be the corresponding extension of  with z .t/ D s. By
Lemma 7.6, there is a retraction Q�Q 2 End.P / of P onto Q (extending the identity
map on Q) satisfying Q�Q.s/ D 1. Therefore, using the above notations, we have

Q�Q. z .f // D Q�Q. Ny0s"1 Ny1s"2 : : : s"n Nyn/ D Ny0 Ny1 : : : Nyn D  .y/ 2 Q;
similarly, Q�Q. z .g// D  .x/ 2 Q. And since Q�Q. z .B// D  .B/ and  .y/ …
 .x/ .B/ we can conclude that z .f / … z .x/ z .B/.

Case 3: We can now assume that both of the conditions (i) and (ii) of Lemma 7.11
are satisfied. Choose any b0 2 B such that y D b0xb

�1
0 . As f … gB inG, according

to Lemma 7.11 we must have I D ; in A, where

I ´ b0CB.x/\y0Hx�1
0 \.y0y1/H.x0x1/�1\� � �\.y0 : : : yn�1/H.x0 : : : xn�1/�1:

As we saw earlier, H is separable in A, therefore there is a finite-index normal
subgroup K C A such that xi … HK and yi … HK for 1 � i � n � 1. Now,
since rank.A/ D r � 1 < r , the right-angled Artin group A satisfies the claims



Hereditary conjugacy separability of right-angled Artin groups 371

of Lemmas 8.5 and 8.6 by the induction hypothesis. Consequently, we can apply
Lemma 8.3 to A and K, finding a finite-index normal subgroup L C A such that
L � K and

Nb0C xB. Nx/ \
nT
iD1

Nxi xH Nyi �  .IK/ D ; (8.8)

inQ ´ A=L, where Nb0, xB , Nx, Nx_i, xH , Nyi denote the -images of b0,B , x, xi ,H , yi
inQ respectively. As before we can extend to a homomorphism z W G ! P , where
P is given by (8.7), and z .t/ D s. Since L � K we have Nxi ; Nyi …  .H/ for i D
1; : : : ; n, and so Nx0s"1 Nx1s"2 : : : s"n Nxn and Ny0s"1 Ny1s"2 : : : s"n Nyn are reduced products
in P representing the elements z .g/ and z .f / respectively. Thus, Lemma 7.11, in
view of (8.8), implies that z .f / … z .g/ z .B/ in P . And Lemma 8.7 is proved.

Lemma 8.8. Suppose that g0; f0; f1; : : : ; fm 2 G, and that the elements g0 D
t"1x1 : : : t

"nxn, f0 D t�1y1 : : : t
�kyk are cyclically reduced in G, with n � 1. If

fj … gH0 for every j D 1; : : : ; m, then there is a finite groupQ and an epimorphism
 W A ! Q such that for the corresponding epimorphism z W G ! P , extending  ,
with z .t/ D s (where P is the special HNN-extension given by (8.7)), the following
holds:

� z .fj / … z .g0/ z .H/ in P for each j 2 f1; : : : ; mg;
� the elements z .g0/ D s"1 Nx1 : : : s"n Nxn and z .f0/ D s�1 Ny1 : : : s�k Nyk are cycli-

cally reduced in P , where Nxi ´ z .xi /, i D 1; : : : ; n, Nyl ´ z .yl/, l D
1; : : : ; k.

Proof. For every j D 1; : : : ; m, since fj … gH0 in G, we can apply Lemma 8.7 (as
H � A is a special subgroup of G), to find a finite-index normal subgroup Lj C A,

such that z j .fj / … z j .g0/ z j .H/ in Pj , where z j W G ! Pj is the homomorphism
(obtained according to Remark 7.4) extending the natural epimorphism  j W A !
A=Lj , and Pj is the special HNN-extension of A=Lj with respect to  j .H/.

Now, since H is separable in A (by Lemma 8.1 and Corollary 5.4), there is a
finite-index normal subgroup K C A such that xi … HK whenever xi … H , for
all i D 1; : : : ; n, and yl … HK whenever yl … H , for all l D 1; : : : ; k. Define
the finite-index normal subgroup L of A by L ´ L1 \ � � � \ Lm \ K, and let
 W A ! Q ´ A=L be the natural epimorphism. Observe that for each j , the map
 j factors through the map  . Hence, once we let z W G ! P be the extension
of  as in the formulation of Lemma 8.8, the Universal Property of special HNN-
extensions (Remark 7.4) will imply that z j factors through z for every j D 1; : : : ; m.

Consequently, z .fj / … z .g0/ z .H/ in P for each j 2 f1; : : : ; mg. The second
assertion of Claim B holds due to the choice of K and because L � K. Thus
Lemma 8.8 is proved.

Lemma 8.9. Let K C G be a normal subgroup of finite index, let B be a special
subgroup of G with B � A, and let an element g 2 G n A be represented by a
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reduced product x0t"1x1t
"2 : : : t"nxn in G, with n � 1. Then there is a finite group

Q and an epimorphism  W A ! Q such that for the corresponding homomorphism
z W G ! P , extending  and obtained according to Remark 7.4, with z .t/ D s

(where P is the special HNN-extension given by (8.7)), the following holds:

� C z .B/. z .g// � z .CB.g/K/ in P ;

� ker. / � A \K and ker. z / � K.

Proof. Since A is residually finite (Lemma 8.1), the special subgroup H D HH

is closed in PT .A/ by Corollary 5.4. Therefore there exists a finite-index normal
subgroup M1 C A such that xi … HM1 in A for all i D 1; : : : ; n � 1. As usual, we
can replace M1 with M1 \K1, to make sure that M1 � K1, where K1 ´ A \K.

Note that, according to Lemma 7.12, CB.g/ D I in G, where

I ´ CB.x/\x0Hx�1
0 \ .x0x1/H.x0x1/�1\� � �\ .x0 : : : xn�1/H.x0 : : : xn�1/�1;

and x ´ x0 : : : xn 2 A.
Since rank.A/ D r�1 < r , by the induction hypothesis the claims of Lemmas 8.5

and 8.6 hold for A. Hence, we can use Lemma 8.3 to find a finite-index normal
subgroupL1 C A such thatL1 � M1 � K1 and, for the corresponding epimorphism
 W A ! Q ´ A=L1, we have

J ´ C xB. Nx/ \ Nx0 xH Nx�1
0 \ . Nx0 Nx1/ xH. Nx0 Nx1/�1 \ � � �

� � � \ . Nx0 : : : Nxn�1/ xH. Nx0 : : : Nxn�1/�1 �  .IM1/

in Q, where xB , Nx, xH and Nxi denote the  -images of B , x, H and xi in Q, i D 0,
…, n.

Let P be the special HNN-extension of Q given by (8.7), and let z W G ! P

be the extension of  provided by Remark 7.4, with z .t/ D s. Since xi … HL1 in
A for i D 1; : : : ; n � 1, the product Nx0s"1 Nx1 : : : s"n Nxn is reduced and represents the
element z .g/ in P . Consequently, Lemma 7.12 tells us that C z .B/. z .g// D J in

P . And noting that  .M1/ �  .K1/ D z .K1/ � z .K/, we arrive at

C z .B/. z .g// D J �  .I / .M1/ � z .I / z .K/ D z .CB.g/K/
in P .

Finally, observe that ker. / D L1 � K1 D A \ K and ker. z / is the normal
closure ofL1 inG (by Lemma 7.5). And sinceL1 � K C G, we see that ker. z / � K

in G. Thus Lemma 8.9 has been established.

Lemma 8.10. Let g0 D t"1x1 : : : t
"nxn be a cyclically reduced element in G, with

n � 1. Then there exists an epimorphism  from A onto a finite group Q such that
for the corresponding extension z W G ! P fromG onto the special HNN-extension
P ofQ (given by (8.7)), with z jA D  and z .t/ D s, we have

ker. / � A \K; ker. z / � K in G, and CP . z .g0// � z .CG.g0/K/ in P:
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Proof. Clearly there exists m 2 f0; 1; : : : ; ng such that we can enumerate all the
prefixes p1; : : : ; pnC1 of g0 so that p�1

j g0pj … gH0 in G whenever 1 � j � m,

and p�1
j g0pj 2 gH0 in G whenever m C 1 � j � n C 1. For each j 2 fm C

1;mC 2; : : : ; nC 1g, choose hj 2 H such that hjp�1
j g0pjh

�1
j D g0 in G, and set

� ´ fhjp�1
j j mC 1 � j � nC 1g � G.

Let f0 ´ g0 D t"1x1 : : : t
"nxn and fj ´ p�1

j g0pj for j D 1; : : : ; m. Apply-
ing Lemma 8.8 to g0; f0; : : : ; fm 2 G we find a finite group Q1, an epimorphism
 1 W A ! Q1, the special HNN-extension P1 of Q1 with respect to  1.H/, and the
corresponding extension z 1 W G ! P1 of  1 (obtained by Remark 7.4), such that
z 1.fj / … z 1.g0/ z 1.H/ in P1, for each j 2 f1; : : : ; mg, and the element z 1.g0/ is
cyclically reduced in P1.

On the other hand, by Lemma 8.9, there exist a finite group Q2, an epimorphism
 2 W A ! Q2, the special HNN-extension P2 of Q2 with respect to  2.H/, and
the corresponding extension z 2 W G ! P2 of  2, such that C z 2.H/

. z 2.g0// �
z 2.CH .g0/K/ in P2, ker. 2/ � A \K and ker. z 2/ � K.

Define a finite-index normal subgroup L0 C A by L0 ´ ker. 1/ \ ker. 2/ �
A \K, and let  W A ! Q ´ A=L0 be the natural epimorphism. By Remark 7.4,
there is an epimorphism z W G ! P , extending  so that z .t/ D s, where P is
the special HNN-extension of Q given by (8.7). Since ker. / D L0 � ker. i /, the
maps  i W A ! Qi factor through  for i D 1; 2. Consequently, according to the
Universal Property of special HNN-extensions (Remark 7.4), the maps z i W G ! Pi
factor through z W G ! P for i D 1; 2. Therefore we have

z .g0/ is cyclically reduced and z .fj / … z .g0/ z .H/ in P (8.9)

for all j 2 f1; : : : ; mg.
On the other hand, since ker. z / � ker. z 2/ � K in G, we also have

z �1.C z .H/. z .g0/// � z �1
2 .C z 2.H/

. z 2.g0/// � CH .g0/K

in G, which implies that

C z .H/. z .g0// � z .CH .g0/K/ (8.10)

in P .
Case 1: xn 2 H . Then, according to Proposition 7.8, n D 1, CG.g0/ D

htiCH .g0/ in G, and CP . z .g0// D hsiC z .H/. z .g0// in P . Recalling (8.10), we
see that

CP . z .g0// � h z .t/i z .CH .g0/K/ D z .CG.g0/K/
in P .

Case 2: xn 2 AnH . In this case (8.9) implies that z .pmC1/; : : : ; z .pnC1/ is the
list of all prefixes of z .g0/ satisfying z .pj /�1 z .g0/ z .pj / 2 z .g0/ z .H/, because
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if 1 � j � m, then z .pj /�1 z .g0/ z .pj / D z .p�1
j g0pj / D z .fj / … z .g0/ z .H/

in P .
Therefore, by Proposition 7.8, CP . z .g0// D C z .H/. z .g0//h z .g0/i N�, where

N� ´ f z .hj / z .pj /�1 j mC 1 � j � nC 1g D z .�/ � P . Thus, recalling (8.10),
we find

CP . z .g0// � z .CH .g0/Khg0i�/ D z .CG.g0/K/
in P . In either of the two cases we have shown that CP . z .g0// � z .CG.g0/K/ in
P . This completes the proof of Lemma 8.10.

We are finally ready to prove the two main Lemmas 8.5 and 8.6 announced above.

Proof of Lemma 8.5. There are two separate cases to consider.
Case 1: B ¤ G. Choose a maximal special subgroupA ofG containingB . Then

A is a right-angled Artin group of rank r � 1, and, according to Remark 7.3, G splits
as a special HNN-extension (8.6) ofAwith respect to some special subgroupH ofA.

If g 2 A, then gB is closed in PT .A/ by the induction hypothesis. Since G is
residually finite (Lemma 8.1), gB is separable in G by Lemma 5.5.

Thus we can suppose that g 2 G n A. Take any element f 2 G n gB . Let Q,
P ,  W A ! Q and z W G ! P be given by Lemma 8.7, so that z .f / … z .g/ z .B/
in P .

Observe that P is a virtually free group as an HNN-extension of the finite group
Q, hence P is residually finite. Since z .B/ D  .B/ � Q is finite, z .g/ z .B/ is a
finite subset of P . Hence there is a homomorphism 	 W P ! R from P to a finite
groupR such that 	. z .f // … 	. z .g/ z .B// inR. Consequently, the homomorphism
' W G ! R, defined by ' ´ 	 B z , satisfies the condition '.f / … '.gB/. Therefore
we have shown that gB is separable in G in Case 1.

Case 2: B D G. Ifg D 1 thengG D f1g is separable inG becauseG is residually
finite (Lemma 8.1). Hence we can suppose that g ¤ 1. But then, by Lemma 6.8,
there exists a maximal special subgroup A of G such that g … AG . The group G is a
special HNN-extension (8.6) of A with respect to a certain special subgroup H � A

(by Remark 7.3). Obviously, g is conjugate inG to some cyclically reduced element
g0 D t"1x1 : : : t

"nxn with n � 1, because g … AG . This implies that gG D gG0 inG.
To show that gG is closed in PT .G/, consider any element f 2 G n gG .
Subcase 2.1: First suppose that f … AG . Then we can find a cyclically reduced

element f0 D t�1y1 : : : t
�mym 2 f G . Let f1; f2; : : : ; fm be the list of all cyclic

permutations of f0 in G.
Observe that fj … gH0 � gG for every j D 1; : : : ; m, because f0 … gG .

Therefore we can apply Lemma 8.8 to findQ, P ,  W A ! Q and z W G ! P from
its claim.

Since z .f1/; : : : ; z .fm/ is the list of all cyclic permutations of z .f0/ in P ,
Lemma 8.8, together with Lemma 7.7, imply that z .f0/ … z .g0/P in P . Now,
according to Lemma 8.2, there is a homomorphism 	 W P ! R such that R is a
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finite group and 	. z .f0// … 	. z .g0//R. Therefore, defining the homomorphism
' W G ! R by ' ´ 	 B z we achieve '.f0/ … '.g0/

R in R. But since '.f /
is conjugate to '.f0/ and '.g0/ is conjugate to '.g/ in R, we can conclude that
'.f / … '.g/R D '.gG/ in R.

To finish proving Case 2, it remains to consider
Subcase 2.2: f 2 AG . Set m ´ 0 and denote f0 D g0 2 G. Applying

Lemma 8.8 to g0 and f0, we can find a homomorphism z from G to a special
HNN-extension P of a finite group Q such that z .g0/ D s"1 z .x1/ : : : s"n z .xn/ is
cyclically reduced in P . Since n � 1, by Lemma 7.7 we have z .g0/ … z .A/P D
z .AG/ in P , hence z .f / … z .g0/P D z .g/P in P . Arguing as above, we can find
a finite quotient R of P (and, hence, of G) such that the images of f and g are not
conjugate in R.

We can now conclude that the conjugacy class gG is closed in PT .G/. Thus
Case 2 is completed. This finishes the proof of Lemma 8.5.

Proof of Lemma 8.6. Take any element g 2 G and any finite-index normal subgroup
K C G. As in Lemma 8.5, the proof splits into two main cases.

Case 1: B ¤ G. Choose a maximal special subgroupA ofG containingB . Then
A is a right-angled Artin group of rank r�1 < r , andG is the special HNN-extension
(8.6) ofAwith respect to a certain special subgroupH � A (by Remark 7.3). Define
the finite-index normal subgroup K1 of A by K1 ´ K \ A.

Subcase 1.1: g 2 A. Then, according to the induction hypothesis, the pair .B; g/
satisfies the Centralizer Condition CCA in A, hence there exists L1 C A such that
jA W L1j < 1, L1 � K1, and the natural epimorphism  W A ! Q ´ A=L1
satisfies

C .B/. .g// �  .CB.g/K1/ (8.11)

in Q. Let �A W G ! A be the canonical retraction and set L ´ ��1
A .L1/ \ K.

Then L C G, jG W Lj < 1, L � K and �A.L/ D L1 � K1 (since K1 D
K \ A � �A.K/). Let ' W G ! R ´ G=L be the natural epimorphism. Observe
that ker. / D ker.'/ \ A in G. Indeed, ker. / D L1, ker.'/ D L, and L1 �
��1
A .L1/ \K \ A D L \ A, L \ A � �A.L/ D L1.

Therefore, without loss of generality, we can assume that Q � R, and the re-
striction of ' to A coincides with  . Then we have  .K1/ D '.K1/ � '.K/ in R.
Since g 2 A and B � A, (8.11) implies that

C'.B/.'.g// D C .B/. .g// �  .CB.g// .K1/ � '.CB.g//'.K/

in R, which shows that the pair .B; g/ has CCG in Subcase 1.1.
Subcase 1.2: g 2 G n A. Then the element g can be represented as a reduced

product x0t"1x1t
"2 : : : t"nxn in G, with n � 1. Therefore we can find the groupsQ,

P and the maps  W A ! Q, z W G ! P from the claim Lemma 8.9, so that all of
the assertions of that lemma hold.
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Note that the subgroup z .B/ \ z .K/ � Q � P is finite, therefore, since P is
residually finite (as a virtually free group), the finite set z .g/ z .B/\ z .K/ is separable
inP . Consequently, by Lemma 3.7, there exists a finite groupR and an epimorphism
	 W P ! R such that ker.	/ � z .K/ and

C�. z .B//.	. z .g/// � 	.C z .B/. z .g// z .K//
in R. Define the epimorphism ' W G ! R by ' ´ 	 B z , and observe that ker.'/ D
z �1.ker.	// � z �1. z .K// D K ker. z /. But ker. z / � K according to the second
assertion of Lemma 8.9, hence L ´ ker.'/ � K in G.

Finally, recalling the first assertion of Lemma 8.9, we see that

C'.B/.'.g// D C�. z .B//.	. z .g/// � 	.C z .B/. z .g// z .K//
� 	. z .CB.g/K/ z .K// D '.CB.g/K/

in R. Thus we have shown that the pair .B; g/ has CCG in Subcase 1.2. Therefore,
B has CCG in Case 1.

Case 2: B D G. The pair .G; 1/ evidently satisfies CCG , therefore we can assume
that g ¤ 1. In this case, by Lemma 6.8, there exists a maximal special subgroupA of
G such that g … AG . By Remark 7.3,G splits as a special HNN-extension (8.6) ofA
with respect to a certain special subgroupH � A. Obviously, there exists z 2 G such
that g D zg0z

�1 in G for some cyclically reduced element g0 D t"1x1 : : : t
"nxn,

where n � 1 because g … AG .
Now we apply Lemma 8.10 to find Q, P ,  W A ! Q and z W G ! P from its

claim, so that ker. z / � K and CP . z .g0// � z .CG.g0/K/ in P . Note that P is
virtually free (being an HNN-extension of a finite group Q), hence every subgroup
of P is virtually free as well. Therefore, by Lemma 8.2, P is hereditarily conjugacy
separable, and thus, by Proposition 3.2, P satisfies the Centralizer Condition CC.

Consequently, there exists a finite group R and an epimorphism 	 W P ! R such
that ker.	/ � z .K/ and

CR.	. z .g0/// � 	.CP . z .g0// z .K//
in R. Defining the epimorphism ' W G ! R by ' ´ 	 B z , and arguing in the same
manner as in Subcase 1.2, we can show that L ´ ker.'/ � K and CR.'.g0// �
'.CG.g0/K/ in R. Conjugating both sides of the latter inclusion by '.z/ (and
recalling that g D zg0z

�1 in G), we obtain CR.'.g// � '.CG.g/K/.
Hence B D G has CCG in Case 2, and Lemma 8.6 is proved.

Thus Lemmas 8.5 and 8.6 have been proved when rank.G/ D r . Therefore, by
induction they are true for all r 2 N [ f0g, and we are ready to prove the main result
of this paper.

Proof of Theorem 1.1. Let G be a right-angled Artin group associated to a finite
simplicial graph � . Then for every g 2 G, the conjugacy class gG is separable in
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G by Lemma 8.5. Lemma 8.6 tells us that G satisfies the Centralizer Condition CC.
Therefore, by Proposition 3.2, G is hereditarily conjugacy separable.

9. Applications to separability properties

The first two applications that we mention do not directly follow from the statement
of Theorem 1.1, but are consequences of its proof.

Corollary 9.1. Let A and B be conjugates of special subgroups of a right-angled
Artin groupG. Then for any element x 2 G, the double cosetAxB is separable inG.

Proof. Evidently, it is enough to consider the case whenA andB are special subgroups
of G. Then A and B are retracts of G and the corresponding retractions commute
(Remark 6.1). By Remark 6.2,A\B is also a special subgroup ofG, hence Lemma 8.5
implies that the subset ˛A\B is separable in G for every ˛ 2 G. Therefore, AxB is
separable in G by Lemma 5.3.

In the case when x D 1 and A,B are special subgroups of G (not conjugates of
them), Corollary 9.1 was proved by Haglund and Wise in [34], Corollary 9.4, using
different arguments, based on Niblo’s criterion for separability of double cosets (see
[47]). Unfortunately, in general this criterion cannot be used to prove separability
of double cosets of the form AxB if x 2 G is an arbitrary element (because the
retractions onto A and xBx�1 may no longer commute).

Similarly, using Lemmas 8.5 and 8.6 together with Lemmas 6.5 and 5.7, we can
obtain the following.

Corollary 9.2. Suppose thatA andD are conjugates of special subgroups in a right-
angled Artin group G, and g 2 G is an arbitrary element. Then the double coset
CA.g/D is separable in G.

The rest of applications in this section discuss conjugacy separability of various
groups. Let us start with the following well-known observation.

Lemma 9.3. IfH is a retract of a conjugacy separable groupG, thenH is conjugacy
separable.

Proof. Indeed, let �H 2 End.G/ be a retraction ofG ontoH . Suppose that x; y 2 H
and y … xH inH . If there existed g 2 G such that y D gxg�1 inG, then we would
have y D �H .y/ D �H .g/�H .x/�H .g/

�1 D �H .g/x�H .g/
�1 in H , contradicting

to our assumption. Therefore, y … xG , and since G is conjugacy separable, there
is a finite group R and a homomorphism ' W G ! R such that '.y/ … '.x/R. Let
Q ´ '.H/ and  W H ! Q � R be the restriction of ' toH . By construction, we
have that  .y/ …  .x/Q in Q. Therefore H is conjugacy separable.
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Remark 9.4. If F is a finite-index subgroup in a virtual retractH of a groupG, then
F itself is a virtual retract of G.

Indeed, let K � G be a finite-index subgroup containing H , and let �H be a
retraction ofK ontoH . ThenM ´ ��1

H .F / � K has finite index inK, and, hence,
in G. Evidently the restriction of �H to M is a retraction of M onto F .

Combining Remark 9.4 with Lemma 9.3 we obtain the following statement
(cf. [12], Theorem 3.4):

Lemma 9.5. A virtual retract of a hereditarily conjugacy separable group is hered-
itarily conjugacy separable itself.

Next comes a classical fact about conjugacy separable groups:

Lemma 9.6. SupposeG is a group satisfying theUnique Root Property. IfG contains
a conjugacy separable subgroupH of finite index, then G is conjugacy separable.

Proof. Consider any element x 2 G. We need to show that the conjugacy class xG

is separable in G.
Assume, first, thatx 2 H . ThenxH is closed in PT .H/, and since jG W H j < 1,

it is also closed in PT .G/. Choose z1; : : : ; zk 2 G so that G D Fk
iD1 ziH . Then

xG D Sk
iD1 zixHz�1

i is a finite union of closed sets in PT .G/, hencexG is separable
in G.

Now, if x 2 G is an arbitrary element, then there is n 2 N such that g ´ xn 2 H ,
and, as we have shown above, gG is separable in G. Take any y 2 G n xG . Since
G has the Unique Root Property, we see that yn … gG . Hence, there exists a finite-
index normal subgroupN C G such that yn … gGN inG. Consequently, y … xGN
(because the inclusion y 2 xGN implies the inclusion yn 2 .xn/GN ). Thus G is
conjugacy separable.

It is easy to see that Lemma 9.6 can be generalized as follows:

Lemma 9.7. If a group G has the Unique Root Property and contains a hereditarily
conjugacy separable subgroup of finite index, then G is itself hereditarily conjugacy
separable.

Note that the assumption of Lemma 9.6 demanding G to satisfy the Unique Root
Property is important: in [28] A. Goryaga constructed an example of a finitely gener-
ated group G which is not conjugacy separable, but contains a conjugacy separable
subgroup of index 2.

Corollary 9.8. If a group G 2 AVR has the Unique Root Property, then G is
hereditarily conjugacy separable.
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Proof. Let K � G be a subgroup of finite index. By definition, G contains a finite-
index subgroupH which is a virtual retract of some right-angledArtin groupA. Since
jH W .K \H/j � jG W Kj � 1,K \H is a virtual retract of A by Remark 9.4. But
the index jK W .K \H/j is also finite, hence K 2 AVR.

Now Theorem 1.1 and Lemma 9.5 imply that K \ H is conjugacy separable.
Hence K is conjugacy separable by Lemma 9.6. Thus G is hereditarily conjugacy
separable.

Recall that two groups G1 and G2 are said to be commensurable, if there exist
finite-index subgroups H1 � G1 and H2 � G2 such that H1 is isomorphic to H2.
The proof of Corollary 9.8 allows to conclude that the class AVR is closed under
passing to subgroups of finite index. Therefore we can make

Remark 9.9. If G1 is commensurable to G2 and G1 2 AVR, then G2 2 AVR.

As we observed in Lemma 6.3, right-angled Artin groups have the Unique Root
Property. Another well-known class of groups with this property is the class of
torsion-free word hyperbolic groups.

Lemma 9.10. Torsion-free word hyperbolic groups have the Unique Root Property.

Proof. Let G be a torsion-free word hyperbolic group. Suppose that xn D yn in G
for some x; y 2 G and n 2 N. SinceG is torsion-free, we can assume that the orders
of x and y are infinite. It is well known that every element g 2 G, of infinite order,
belongs to a unique maximal virtually cyclic subgroup E.g/ � G (see, for instance,
[49], Lemma 1.16).

Note that the element g ´ xn 2 G has infinite order and g 2 E.x/ \ E.y/.
Therefore, E.x/ D E.y/, thus y 2 E.x/. But since G is torsion-free, the virtually
cyclic subgroup E.x/ � G must be cyclic. That is, there exists z 2 G such that
x D zk and y D zl for some k; l 2 Z. Obviously, the equality xn D yn implies that
k D l . Thus x D y, and hence G enjoys the Unique Root Property.

Combining Lemma 9.10 with Corollary 9.8 we obtain

Corollary 9.11. If G 2 AVR is a torsion-free word hyperbolic group, then G is
hereditarily conjugacy separable.

Using Osin’s results from [50], it is not difficult to generalize Lemma 9.10 as
follows: if a group G is torsion-free and hyperbolic relative to a collection of proper
subgroups, each of which has the Unique Root Property, thenG has the Unique Root
Property. As a result, Corollary 9.11 can also be restated for this kind of relatively
hyperbolic groups.

We can also establish Corollary 2.4, mentioned in Section 2.
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Proof of Corollary 2.4. Since H has finite index in G, it is also word hyperbolic
([30]), thus, according to Lemma 9.10, H enjoys the Unique Root Property.

By Corollary 2.3, G has a hereditarily conjugacy separable subgroup F � G of
finite index. Define K ´ H \ F � G. Then K will be hereditarily conjugacy
separable (because jF W Kj < 1). Since jH W Kj < 1, Lemma 9.7 implies that H
is hereditarily conjugacy separable.

10. Applications to outer automorphism groups

We have already discussed a few applications of Theorem 1.1 to outer automorphism
groups in Section 2. This aim in this section is to prove Theorem 2.6.

We refer the reader to Osin’s monograph [51] for the definition and basic properties
of relatively hyperbolic groups. All relatively hyperbolic groups that we consider here
are hyperbolic relative to families of proper subgroups. In the sense of B. Farb [26],
this would correspond to weak relative hyperbolicity together with the Bounded Coset
Penetration Condition (the equivalence of Osin’s and Farb’s definitions for finitely
generated groups is proved in [51], Theorem 6.10).

The following lemma is not difficult to prove but its statement is very useful (see,
for example, [32], Lemma 5.4).

Lemma 10.1. Suppose that G is a finitely generated group and N is a centerless
normal subgroup of finite index in G. Then some finite-index subgroup of Out.G/ is
isomorphic to a quotient of a subgroup of Out.N / by a finite normal subgroup. In
particular, if Out.N / is residually finite, then Out.G/ is residually finite.

Recall that a groupG is called elementary if it contains a cyclic subgroup of finite
index.

Lemma 10.2. If G is a non-elementary relatively hyperbolic group, then its center
Z.G/ is finite.

Proof. Suppose that G is hyperbolic relative to a family of proper non-trivial sub-
groups fH�g�2ƒ.

First, if jƒj D 1, thenG splits as a non-trivial free product by [51], Theorem 2.44,
and, thus,Z.G/ D f1g. If the setƒ is finite and each parabolic subgroupH�, � 2 ƒ,
is finite, thenG is word hyperbolic (in the sense of Gromov) by [51], Corollary 2.41.
And it is well known that the center of a non-elementary word hyperbolic group is
finite.

Therefore we can assume that there is some 
 2 ƒ such that jH�j D 1. A
theorem of Osin [51], Theorem 1.4, asserts that the intersection H� \ gH�g

�1 is
finite for every g 2 G n H�. If z 2 Z.G/, then H� D H� \ zH�z

�1 is infinite,
hence z 2 H�, i.e.,Z.G/ � H�. On the other hand, there exists g 2 GnH� because
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H� is a proper subgroup of G. By Osin’s theorem, H� \ gH�g
�1 is finite. And

since Z.G/ � gH�g
�1, we see that Z.G/ � H� \ gH�g�1 must be finite.

The proof of Theorem 2.6 will use the following fact, established in [44], Corol-
lary 1.4:

Lemma 10.3. If G is a torsion-free non-elementary relatively hyperbolic group, then
Autpi .G/ D Inn.G/.

Proof of Theorem 2.6. Let G be a relatively hyperbolic group from the class AVR.
If G is virtually cyclic, then Out.G/ is finite (cf. [44], Lemma 6.6). Hence we can
further suppose that G is non-elementary. By the assumptions, G contains a finite-
index subgroup N 2 VR, and, in view of Remark 9.4, we can assume that N C G.

Note that N is finitely generated (and even finitely presented) as a virtual retract
of a finitely presented group. SinceN has finite index inG, it is non-elementary and
relatively hyperbolic. The latter is an immediate consequence of Bowditch’s defini-
tion of relatively hyperbolic groups given in [6], Definition 2 (which is equivalent to
Osin’s definition, as shown in [51], Theorem 6.10); this also follows from the power-
ful result of C. Druţu [20], Theorem 1.2, which claims that relative hyperbolicity is
invariant under quasi-isometries.

By construction, N is a virtual retract of some right-angled Artin group A. And
since A is torsion-free, N � A is torsion-free as well. Therefore, according to
Lemma 10.2,Z.N/ D f1g. The groupN is finitely generated and conjugacy separa-
ble by Corollary 2.1, and Autpi .N / D Inn.N / by Lemma 10.3. Hence we can apply
Grossman’s theorem [31], Theorem 1, to conclude that Out.N / is residually finite.
Consequently, Out.G/ is residually finite by Lemma 10.1.

11. Applications to the conjugacy problem

As it was shown by Mal’cev [39] and Mostowskii [45], a finitely presented conjugacy
separable group has solvable conjugacy problem. This result can be generalized as
follows:

Lemma 11.1. Suppose thatH is a finitely generated subgroup of a finitely presented
group G, such that for every h 2 H the H -conjugacy class hH is separable in G.
Then the conjugacy problem forH is solvable.

Proof. Without loss of generality we can assume that G D hX j Ri, for some finite
set X and a finite set of words R over the alphabet X˙1, and H is generated by a
finite subset Y of X . Let F.X/ denote the free group on the set X and let F.Y /
be the subgroup of F.X/ generated by Y . Then the identity map on X gives rise to
the epimorphism � W F.X/ ! G, such that ker � D N is the normal closure of R in
F.X/.
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SinceN is the normal closure of only finitely many words inF.X/ and Y is finite,
a standard argument (cf. [45]) shows that there is a partial algorithm A, which, given
two reduced words U;W 2 F.Y /, terminates if and only if U 2 W F.Y /N (i.e., if
�.U / 2 �.W /H in G). The algorithm A lists every word from W F.Y /N in F.X/,
freely reduces it and compares it with U ; it stops once it finds a word in W F.Y /N

that is equal to U in F.X/.
On the other hand, as G Š F.X/=N is finitely presented, there is an effective

procedure listing all homomorphisms  from F.X/ to all finite groups Q, satis-
fying N � ker (see [45]). Given such a homomorphism  and any two re-
duced words U;W 2 F.Y /, one can decide in finitely many steps whether or not
 .U / 2  .W / .F .Y // in Q, because  .F.Y // D h .Y /i and Y is finite.

For any U;W 2 F.Y / denote u ´ �.U / and w ´ �.W /. If u … wH , the
separability ofwH inG implies the existence of a finite groupQ and a homomorphism
� W G ! Q such that �.u/ … �.wH / D �.w/�.H/ in Q. Thus the homomorphism
 ´ � B � W F.X/ ! Q satisfies N � ker and  .U / …  .W / .F .Y // in Q.
And, of course, the existence of such a homomorphism  tells us that u … wH in G.

Hence, there is a partial algorithm B, which takes on input two words U;W 2
F.Y / and terminates if and only if �.U / 2 �.W /H in G. This algorithm goes
through all the homomorphisms  from F.X/ to finite groups Q with N � ker ,
and stops when it finds one such that  .U / …  .W / .F .Y // in Q.

The solution of the conjugacy problem for H amounts to taking on input two
reduced words U; V 2 F.Y / and running the two partial algorithms A and B simul-
taneously. One (and only one) of these two algorithms will eventually terminate, thus
answering whether or not �.U / is conjugate to �.W / in H .

Corollary 11.2. Let G be a hereditarily conjugacy separable group. Suppose that
H is a subgroup ofG such that the double coset CG.h/H is separable inG for every
h 2 H . Then H is conjugacy separable. If, in addition, G is finitely presented and
H is finitely generated, thenH has solvable conjugacy problem.

Proof. The first claim is a direct consequence of Proposition 3.2 and Corollary 3.5.
They also imply that hH is separable in G for every h 2 H . Therefore, the second
claim follows from Lemma 11.1.

We are now in a position to prove Theorem 2.8, announced in Section 2.

Proof of Theorem 2.8. In [57] Servatius completely described centralizers of ele-
ments in right-angled Artin groups. In particular, it follows from his description that
CG.h/ is finitely generated for every h 2 G.

Let  W G ! G=N be the natural epimorphism and consider any h 2 N . Then
E ´  .CG.h// is a finitely generated subgroup of G=N , hence E is closed in
PT .G=N/ by the assumptions. Since the map  is continuous (when G and G=N
are considered as topological groups equipped with their profinite topologies), we
can conclude that CG.h/N D  �1.E/ is closed in PT .G/ for every h 2 N .
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So the claim of Theorem 2.8 follows from Theorem 1.1 and Corollary 11.2.

Corollary 11.3. Let N be a finitely generated normal subgroup of a right-angled
Artin group G such that the quotient G=N is virtually polycyclic. Then every finite-
index subgroupK ofN is conjugacy separable and has solvable conjugacy problem.

Proof. Since N is finitely generated, K contains a characteristic subgroup L of N
with jN W Lj < 1. And since N C G, we can conclude that L C G, and the group
G=L is an extension of the finite groupN=L by the virtually polycyclic groupG=N .
An easy induction on the length of the series with cyclic quotients shows that every
finite-by-polycyclic group is polycyclic-by-finite. Thus G=L is virtually polycyclic,
hence it is subgroup separable – see [56], Exercise 11 in Chapter 1.C.

Arguing as in the proof of Theorem 2.8, we see that the double coset CG.h/L
is separable in G for each h 2 G. But K D Sk

iD1Lxi for some k 2 N and

x1; : : : ; xk 2 K. Therefore CG.h/K D Sk
iD1 CG.h/Lxi is separable in G (as a

finite union of separable subsets) for all h 2 K.
Note that K is finitely generated as a finite-index subgroup of N , hence K is

conjugacy separable and has solvable conjugacy problem by Theorem 1.1 and Corol-
lary 11.2.

12. Appendix: the Centralizer Condition in profinite terms

Our intention here is to prove that for residually finite groups the condition CC from
the Definition 3.1 is equivalent to the condition (3.2) of Chagas and Zalesskii. We
refer the reader to the book [55] for the background on profinite completions.

Proposition 12.1. LetH be a subgroup of a residually finite groupG and let g 2 G.
The following are equivalent:

1) the pair .H; g/ satisfies the condition CCG from Definition 3.3;
2) CH .g/ D C xH .g/, where xH � yG is the closure ofH in the profinite completion

yG of G.

Proof. The profinite completion yG of G is the inverse limit of finite quotients of G.
There is a canonical embedding of yG into the Cartesian product

Q
N2N G=N , where

N is the set of all finite-index normal subgroups ofG. Thus yG can be equipped with
the product topology, making it a compact topological group (each finite groupG=N
is endowed with the discrete topology).

For each N 2 N let  N denote the natural epimorphism from G to G=N . Then
the map  W G ! yG, defined by  .x/ ´ . N .x//N2N for every x 2 G, is a
homomorphism. And since G is residually finite,  is injective. Therefore we can
assume thatG � yG, and so the condition 2) makes sense. Every homomorphism M ,
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M 2 N , can be uniquely extended to a continuous homomorphism O M W yG ! G=M

( O M can also be regarded as a restriction to yG of the canonical projection fromQ
N2N G=N to G=M ).
First, suppose that the pair .H; g/ satisfies CCG . Consider any h 2 xH such

that h … CH .g/. Then there exists K 2 N such that O K.h/ …  K.CH .g//.
Hence, by CCG , there is L 2 N satisfying L � K and  �1

L .C L.H/. L.g/// �
CH .g/K D  �1

K . K.CH .g///. Therefore y K factors through y L, hence y L.h/ …
 L.CH .g/K/. Consequently, y L.h/ … C L.H/. L.g//, and so h … C xH .g/. Thus
we established the inclusionC xH .g/ � CH .g/. Since the inverse inclusion is evident,
we have proved that 1) implies 2).

Now let us assume that the condition 2) holds. Choose any K 2 N and denote
L ´ fL 2 N j L � Kg. Arguing by contradiction, suppose that for each L 2 L

there is xL 2 H such that  L.xL/ 2 C L.H/. L.g// n . L.CH .g/K//. Note that
L is a directed set (if L1; L2 2 L then L1 	 L2 if and only if L2 � L1), hence
.xL/L2L is a net in yG. Since yG is compact, this net has a cluster point h 2 xH � yG.

Consider anyN 2 N and setL D N \K 2 L. Then, according to the definition
of the topology on yG, there is M 2 L such that M � L and  L.xM / D y L.h/. By
construction,  L.xM / 2 C L.H/. L.g//, hence y L.h/ 2 C L.H/. L.g//, imply-
ing that y N .h/ 2 C N .H/. N .g// because L � N . Since the latter holds for every
N 2 N , we can conclude that h 2 C xH .g/.

On the other hand, since h is a cluster point of the net .xL/L2L and K 2 L,
there exists M 2 L such that  K.xM / D O K.h/. But since M � K we have
xM … CH .g/KM D CH .g/K D  �1

K . K.CH .g///. Thus O K.h/ D  K.xM / …
 K.CH .g//, which implies that h … CH .g/.

Thus we found an element h 2 C xH .g/nCH .g/, contradicting to the condition 2).
Consequently, 2) implies 1).

Proposition 12.1 implies that for residually finite groups the Centralizer Condition
CC from Definition 3.1 is equivalent to the condition (3.2) introduced by Chagas and
Zalesskii in [12]:

Corollary 12.2. A is residually finite group G satisfies CC if and only if CG.g/ D
C yG.g/ for every g 2 G.

It is well known that conjugacy separability of a residually finite group G is
equivalent to the condition

g
yG \G D gG in yG for all g 2 G: (12.1)

In other words, condition (12.1) says that two elementsg andg0 ofG are conjugate
in yG if and only if they are conjugate in G.

We are now able to reformulate the hereditary conjugacy separability of G in
purely profinite terms:
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Corollary 12.3. Suppose that G is a residually finite group. Then G is hereditarily
conjugacy separable if and only if for every g 2 G both of the following hold in the
profinite completion yG of G:

� g
yG \G D gG ;

� CG.g/ D C yG.g/.

Proof. The necessity follows from Proposition 3.2 and Corollary 12.2.
The sufficiency is given by the result of Chagas and Zalesskii [12], Proposition 3.1.

It can also be deduced by first applying Corollary 12.2 and then Proposition 3.2.
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