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Introduction

The goal of this article is to produce new examples of aspherical polyhedra. The
construction we have in mind is the following: let P be an aspherical simplicial
complex and Q a subcomplex of P . We define xP by attaching to P a cone of base
Q. We are looking for conditions under which xP remains aspherical. This kind of
situation was already studied by J. H. C. Whitehead in the 1940s. In [21] and [22],
he studied the second homotopy group of a space xP , obtained by attaching 2-cells
to a cell complex P . He proved that �2. xP / exactly describes the identities between
the relators that define the projection �1.P / ! �1. xP /. In this paper we try to attach
higher-dimensional cells.

Our main example is the following. Let Hn.C/ be the complex n-dimensional
hyperbolic space. We consider SO.n; 1/ as the stabilizer of the real hyperbolic space
Hn.R/ in Hn.C/. Let G � SU.n; 1/ be a real lattice, i.e., a lattice of SU.n; 1/ such
that H D G \ SO.n; 1/ is still a lattice of SO.n; 1/. We want to study the quotient
G=hhH ii, where hhH ii is the normal subgroup of G generated by H .

Theorem. There exists a finite index subgroup G0 of G with the following property.
Let H 0 be the group G0 \ SO.n; 1/. Let xP be the space obtained by attaching to
Hn.C/=G0 a cone of base Hn.R/=H 0. The complex xP is a classifying space for the
group xG0 D G0=hhH 0ii.
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This situation is similar to a result of N. Bergeron in [3] who proved that the map
from the homology associated with Hn.R/=G \ SO.n; 1/ to the one of Hn.C/=G
is one to one. We also establish some analogue statements to our theorem for the
following pairs .SO.n; 1/;SO.k; 1//, .SU.n; 1/;SU.k; 1// and .Sp.n; 1/; Sp.k; 1//.

Our strategy is as follows. We endow the space xP with a local hyperbolic geometry
and apply a version of the Cartan–Hadamard Theorem. This will prove that the
universal cover xX of xP is globally hyperbolic. We then deduce the asphericity from a
kind of Rips’ theorem (cf. Theorem 1.3.4): if xX is a hyperbolic simplicial complex, it
is sufficient to prove that xX is locally contractible. This last local assumption follows
from the property of the developing map.

The hyperbolic structure on xP is constructed as follows. Given a subcomplex Q
of P , we endow the cone of base Q with a metric modelled on the hyperbolic disc.
An argument of Berestovskii tells us that if Q is CAT.1/ then the cone is CAT.�1/
(see [5]). In particular it is hyperbolic. The problem is then to find some conditions
so that the complex xP remains locally hyperbolic.

With this aim in mind, we explore an idea of M. Gromov (see [15]) to extend the
small cancellation theory to a so-called “rotation family” of groups. If X is a metric
space andG a group acting onX by isometries, a rotation family is a pairwise distinct
collection .Yi ;Hi /i2I such that

� Hi is a subgroup of G stabilizing Yi � X ,
� there is an action of G on I compatible with the one on X (i.e., Ygi D gYi and
Hg i D gHig

�1 for all g 2 G and all i 2 I ).

In order to study such a family, we define two quantities that respectively play the
role of the largest piece and the smallest relator in the usual small cancellation theory.
The constant � measures the overlap between two Yi ’s whereas � is the minimal
translation length of a non-trivial element that belongs to an Hi .

Given a rotation family, we define the cone-off overX , denoted by PX , by attaching
toX cones of base Yi . We consider the space xP D PX=G whose fundamental group is
xG D G=hhHi ii. The small cancellation provides us a framework where it is possible
to endow xP with a local hyperbolic geometry. Moreover, this theory recovers the
usual small cancellation (see [17] or [19]) and the small cancellation with graphs as
well (see [15] or [18]).

We describe the space xP as an orbifold using two kind of charts: the cones and the
cone-off. Section 2 is dedicated to the study of the geometry of the cones. Adapting
an argument of Berestovskii, we prove that the cone over a hyperbolic space remains
hyperbolic (cf. Theorem 2.3.2). Section 3 deals with the cone-off PX . In particular we
prove the following fact. Under small cancellation assumptions, the cone-off over a
hyperbolic space is still hyperbolic (cf. Theorem 3.5.2). We choose for this proof an
asymptotical point of view that involves ultra-limits as in [10]. The goal of the main
technical lemma is to switch the cone-off construction and the ultra-limit: given a
sequence of metric spacesXn, we prove (see Corollary 3.5.9) that there exists a local
isometry between the cone-off over the ultra-limit of Xn and the ultra-limit of PXn.
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Section 4 mixes all the previous ingredients to obtain the following theorems.

Theorem (cf. Theorem 4.2.2). There exist two positive numbers ı0 and�0 satisfying
the following property.

LetX be a geodesic, simply connected, ı-hyperbolic space andG a group acting
properly by isometries on X . Let .Yi ;Hi /i2I be a rotation family such that each Yi

is strongly-quasi-convex.
Let N be the normal subgroup of G generated by the Hi ’s and xG the quotient

group G=N . Assume also that

ı
� 6 ı0 and �

� 6 �0:

Then the universal cover of xP , xX is hyperbolic and xG acts properly by isometries
on xX .

Moreover if G (resp. Hi ) acts co-compactly on X (resp. Yi ) and I=G is finite,
then xX= xG is compact. In particular xG is hyperbolic.

Theorem (cf. Theorem 4.3.7). Under the same hypotheses, if X is a n-dimensional
simplicial complex such that every closed ball of X and of each Yi is contractible in
its appropriate neighbourhood, then xX is contractible.

Remark. In some cases, the space xP D xX= xG may be endowed with a sharper geom-
etry than the hyperbolic one. For instance, M. Gromov constructed in a similar way
CAT.�1/ polyhedra in order to produce infinite torsion groups (see [12], Chap. 12). In
[14] M. Gromov introduced the notion of CAT(-1,") spaces, an "-perturbated version
of CAT.�1/-spaces. This provides another framework to study small cancellation
constructions which is not asymptotic.

In Section 5, we explain how to construct examples of rotation families that satisfy
the small cancellation assumptions. To that end, we use the geometry of lattices and a
result of N. Bergeron about the profinite topology of finitely generated linear groups
[2]. This leads to these new examples of aspherical polyhedra.

Question. The small cancellation for rotating families provides a framework to study
quotient groups which looks very similar to the usual small cancellation. However the
groups obtained in this way may have very different properties. For instance, a usual
C 0.1

6
/ small cancellation group acts properly discontinuously and co-compactly on a

CAT.0/-cubical complex (see [23], Th. 1.2). In particular it cannot have Kazhdan’s
property (T) unless it is finite and cyclic. On the other hand, M. Gromov used in [15]
(see also [1]) the small cancellation theory with graphs in order to construct Kazhdan
groups. To that end he embedded expanding graphs in the Cayley graph of the group.
We wonder if it is possible to construct other examples of Kazhdan groups using the
small cancellation theory with rotation families. In particular we are interested in the
following example. As above, letG be a real lattice of SU.n; 1/ andH the subgroup
G \ SO.n; 1/. Does xG D G=hhH ii have the Kazhdan property (T)?
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1. Hyperbolic spaces

Let X be a metric space. If x and x0 are two points of X , we denote by jx0 � xjX
(or simply jx0 � xj) the distance between them. Although it may not be unique, we
denote by Œx; x0� a geodesic joining x and x0. Given a base point x, the Gromov
product of two points y and z is defined by

hy; zix D 1
2
.jy � xj C jz � xj � jz � yj/:

Let ı be a non-negative number. The space X is ı-hyperbolic if for all x; y; z; t 2 X
we have hx; zit > minfhx; yit ; hy; zitg � ı. R-trees are very special examples of
hyperbolic spaces.

Proposition-Definition 1.0.1 ([12], Chap. 2., Prop. 6, or [6], Chap. 3, Th. 4.1). An
R-tree is a geodesic space such that every two points are connected by a unique
topological arc. A metric space is an R-tree if and only if it is geodesic and 0-
hyperbolic.

Definition 1.0.2 (Quasi-isometry). Let � be a non-negative number. A .1; �/-quasi-
isometry is a map f W X ! Y between two metric spaces such that for all x; x0 2 X ,
we have

jx0 � xj � � 6 jf .x0/ � f .x/j 6 jx0 � xj C �:

The next result is a very easy case of the stability of quasi-geodesics. An asymp-
totic proof of this fact for a general .�; k/-quasi-isometry can be found in [7].

Proposition 1.0.3. Let ı be a non-negative number. For all ı0 > ı, there exists � > 0
satisfying the following property. Let X be a metric space and Y a ı-hyperbolic
space. If there exists a .1; �/-quasi-isometry from X to Y , then X is ı0-hyperbolic.

Proof. Let f W X ! Y be a .1; �/-quasi-isometry. For all x; y; z 2 X we have

hf .x/; f .y/if .z/ � 3
2
� 6 hx; yiz 6 hf .x/; f .y/if .z/ C 3

2
�:

It follows that for all x; y; z; t 2 X ,

hx; zit > hf .x/; f .z/if .t/ � 3
2
�

> minfhf .x/; f .y/if .t/; hf .y/; f .z/if .t/g � ı � 3
2
�

> minfhx; yit ; hy; zitg � .ı C 3�/:

Hence X is .ı C 3�/-hyperbolic.
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1.1. Ultra-limits of hyperbolic spaces. Let us recall the definition of the ultra-
limit of a sequence of pointed metric spaces and its link with hyperbolicity. For more
details about this point of view see [9], [10] or [11].

A non-principal ultra-filter is a finite additive map ! W P .N/ ! f0; 1g that van-
ishes on every finite subset of N and is such that !.N/ D 1. A property Pn is true
!-almost surely (!-as) if !.fn 2 N=Pn is trueg/ D 1: A real sequence .un/ is !-
essentially bounded (!-eb) if there exists M 2 R such that junj 6 M !-as. If l is a
real number, we say that the !-limit of .un/ is l and write lim! un D l if jl�unj 6 "

!-as for all " > 0. In particular, any !-eb sequence admits an !-limit (cf. [4]).
Let .Xn; x

0
n/ be a sequence of pointed metric spaces. We considerQ

! Xn D f.xn/ j xn 2 Xn for all n 2 N and .jxn � x0
nj/ is !-ebg:

We endow this space with a pseudo-metric defined as follows:

j.yn/ � .xn/j D lim! jyn � xnj:

Definition 1.1.1 (Ultra-limit of metric spaces). Let .Xn; x
0
n/ be a sequence of pointed

metric spaces and ! a non-principal ultra-filter. The !-limit of .Xn; x
0
n/, denoted by

lim!.Xn; x
0
n/ (or simply lim! Xn), is the quotient of

Q
! Xn by the equivalence

relation which identifies the points at distance zero.

The pseudo-distance on
Q

! Xn induces a distance on lim! Xn.

Notation. (i) If .xn/ is an element of
Q

! Xn, its image in lim! Xn is denoted by
lim! xn.

(ii) For all n 2 N, let Yn be a subset of Xn. The set lim! Yn is defined by

lim! Yn D flim! yn j .jyn � x0
nj/ is !-eb and yn 2 Yn !-asg:

Proposition 1.1.2. Let ! be a non-principal ultra-filter. Let .ın/ be a sequence of
non-negative numbers which admits an !-limit ı. Let .Xn; x

0
n/ be a sequence of

pointed metric spaces. If for all n 2 N, Xn is ın-hyperbolic, then the limit space
lim! Xn is ı-hyperbolic.

Proof. Let x D lim! xn, y D lim! yn, z D lim! zn and t D lim! tn be four
points of lim! Xn. Since Xn is ın-hyperbolic, we have, for all n 2 N, hxn; znitn >
minfhxn; ynitn ; hyn; znitng � ın: By taking the !-limit, it follows that hx; zit >
minfhx; yit ; hy; zitg � ı. Thus lim! Xn is ı-hyperbolic.

Corollary 1.1.3. Let ! be a non-principal ultra-filter and .ın/ a sequence of non-
negative numbers such that lim! ın D 0. Let .Xn; x

0
n/ be a sequence of pointed

geodesic spaces. If Xn is ın-hyperbolic for all n 2 N, then the limit space lim! Xn

is an R-tree.
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Proof. The !-limit of a sequence of geodesic spaces is still geodesic (cf. [20]). It
follows that lim! Xn is a geodesic, 0-hyperbolic metric space. Hence lim! Xn is an
R-tree.

Proposition 1.1.4. Let! be a non-principal ultra-filter and ı a non-negative number.
Let .Xn; x

0
n/ be a sequence of pointed metric spaces whose diameters are bounded. If

lim! Xn is ı-hyperbolic, then Xn is ı0-hyperbolic !-as for all ı0 > ı. In particular
there exists n 2 N such that Xn is ı0-hyperbolic.

Proof. Assume that the proposition is false. Then lim! Xn is ı-hyperbolic and nev-
ertheless there exists ı0 > ı such thatXn is !-as not ı0-hyperbolic. Thus we can find
four sequences .xn/, .yn/, .zn/ and .tn/ satisfying the following properties:

(i) xn; yn; zn; tn 2 Xn for all n 2 N,
(ii) hxn; znitn < minfhxn; ynitn ; hyn; znitng � ı0 !-as.

Since .diam.Xn// is bounded, these four sequences define four points of lim! Xn,
respectively x, y, z and t . After taking the !-limit in the previous inequality we
obtain

hx; zit 6 minfhx; yit ; hy; zitg � ı0 < minfhx; yit ; hy; zitg � ı:
Hence lim! Xn is not ı-hyperbolic. Contradiction.

1.2. Quasi-convexity. IfX is a geodesic space, there is another way to characterize
the hyperbolicity using geodesic triangles. Let ı be a non-negative number. A
geodesic triangle is ı-thin if each one of its sides is contained in the ı-neighbourhood
of the union of the two others.

Proposition 1.2.1 (cf. [6], Chap. 1, Prop. 3.6, or [12], Chap. 3 §2). Let ı be a non-
negative number. Consider a geodesic space X .

(i) If X is ı-hyperbolic, then every geodesic triangle of X is 4ı-thin.
(ii) If every geodesic triangle of X is ı-thin, then X is 8ı-hyperbolic.

Corollary 1.2.2. Let x, x0, y and y0 be four points of a geodesic, ı-hyperbolic space
X . Ifu is a point of Œx; x0� such that ju�xj > jy�xjC8ı and ju�x0j > jy0�x0jC8ı,
then u lies in the 8ı-neighbourhood of Œy; y0�.

Proof. Since the triangles Œx; y; y0� and Œx; x0; y0� are 4ı-thin, we can find a point v
in Œx; y� [ Œy; y0� [ Œy0; x0� such that jv � uj 6 8ı. We will show that v 2 Œy; y0�.
Suppose that v 2 Œx; y� (the case v 2 Œx0; y0� is symmetric). The triangle inequality
gives

ju � xj 6 ju � vj C jv � xj 6 jy � xj C 8ı;

a contradiction. Consequently, u lies in the 8ı-neighourhood of Œy; y0�.
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Definition 1.2.3 (Quasi-convexity). Let ˛ be a non-negative number. A subset Y of
a geodesic metric space X is ˛-quasi-convex if every geodesic between two points
of Y is contained in the ˛-neighbourhood of Y .

Notation. We denote by Y C˛ the ˛-neighbourhood of Y .

Proposition 1.2.4 (Cf. [8], Lemma 2.2.2). Let ı; ˛ > 0. Let X be a geodesic,
ı-hyperbolic space. If Y and Z are two ˛-quasi-convex subsets of X , then we have

diam.Y CA \ZCA/ 6 diam.Y C˛C10ı \ZC˛C10ı/C 2AC 20ı

for all A > 0.

Proof. Let x and x0 be two points of Y CA \ ZCA such that jx0 � xj > 2AC 20ı.
We choose

(i) two points t and t 0 of Œx; x0� such that jt � xj D jt 0 � x0j D AC 10ı,
(ii) two points y and y0 of Y such that jy � xj; jy0 � x0j 6 AC ı.

Applying Corollary 1.2.2, t belongs to the 8ı-neighbourhood of Œy; y0�. Since Y is ˛-
quasi-convex, Œy; y0� lies in the ˛-neighbourhood of Y . Hence t belongs to Y C˛C10ı .
We prove in the same way that t belongs to ZC˛C10ı . The same fact holds for t 0.
Thus

jx0 � xj � 2A � 20ı D jt 0 � t j 6 diam.Y C˛C10ı \ZC˛C10ı/:

The above inequality is true for all x; x0 2 Y CA \ZCA, hence

diam.Y CA \ZCA/ 6 diam.Y C˛C10ı \ZC˛C10ı/C 2AC 20ı:

Corollary 1.2.5. Let ! be a non-principal ultra-filter and .ın/ a sequence of real
numbers such that lim! ın D 0. For all n 2 N, let .Xn; x

0
n/ be a pointed, geodesic,

ın-hyperbolic space and let Yn, Zn be two 10ın-quasi-convex subsets of Xn. Let
X D lim!.Xn; x

0
n/ and Y D lim! Yn, Z D lim! Zn. We have

diam.Y \Z/ 6 lim! diam.Y C20ın
n \ZC20ın

n /:

Proof. Let x and x0 be two points of Y \ Z. Since x; x0 2 Y , we can find two
sequences .xn/ and .x0

n/ such that x D lim! xn, x0 D lim! x
0
n and xn; x

0
n 2 Yn !-as.

Moreover, x and x0 belong to Z, thus if A > 0 is given, xn and x0
n belong to ZCA

n

!-as. Using Proposition 1.2.4, we have

jx0
n � xnj 6 diam.Y CA

n \ZCA
n / 6 diam.Y C20ın

n \ZC20ın
n /C 2AC 20ın:

By taking the !-limit, we obtain

jx0 � xj 6 lim! diam.Y C20ın
n \ZC20ın

n /C 2A:
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This inequality is true for all A > 0 and x; x0 2 Y \Z, thus

diam.Y \Z/ 6 lim! diam.Y C20ın
n \ZC20ın

n /:

We need in Section 3 a little stronger condition than quasi-convexity.

Definition 1.2.6. Let X be a ı-hyperbolic space. A subset Y of X is strongly quasi-
convex if for all x; x0 2 Y there exist p; p0 2 Y such that jx �pj 6 10ı, jx0 �p0j 6
10ı and the path Œx; p� [ Œp; p0� [ Œp0; x0� lies in Y .

Remark. Since any geodesic triangle of X is 4ı-thin, any strongly quasi-convex
space is 10ı-quasi-convex. Given a 10ı-quasi-convex subset Y of X , there is a way
to find a subset ofX , a little larger than Y , that is strongly quasi-convex. To that end,
we define the cylinder of a subset.

Definition 1.2.7. Let Y be a subset of a geodesic ı-hyperbolic spaceX . The cylinder
of Y , denoted by cyl.Y /, is the set of all points which are in the 10ı-neighbourhood
of a geodesic of X joining two points of Y .

Lemma 1.2.8. Let Y be a 10ı-quasi-convex subset of a geodesic, ı-hyperbolic space
X . The set cyl.Y / is contained in Y C20ı and is strongly quasi-convex.

Proof. By definition of quasi-convexity, any geodesic joining two points of Y lies
in Y C10ı . It follows that cyl.Y / � Y C20ı . Let x and x0 be two points of cyl.Y /.
By definition there exist two points of Y , y1 and y2 (resp. y0

1 and y0
2) such that x

(resp. x0) belongs to the 10ı-neighbourhood of Œy1; y2� (resp. Œy0
1; y

0
2�). We denote p

and p0 the respective projections of x and x0 on Œy1; y2� and Œy0
1; y

0
2�.

By construction, the geodesic segments Œx; p� and Œp0; x0� are contained in cyl.Y /
and shorter than 10ı.

Since the triangles Œy2; p; p
0� and Œy2; y

0
2; p

0� are 4ı-thin, Œp; p0� stays in the 8ı-
neighbourhood of Œp; y2�[ Œy2; y

0
2�[ Œy0

2; p
0�. However these segments are parts of

geodesics between two points of Y . Thus Œp; p0� lies in cyl.Y /.
Hence Œx; p� [ Œp; p0� [ Œp0; x0� lies in cyl.Y /.

1.3. Asphericity

Notation. If X is a simplicial complex, we denote by X .k/ its k-skeleton.

In this part we prove a version of the famous Rips’theorem: a hyperbolic simplicial
complex which is locally aspherical is globally aspherical. LetX be a metric space and
d a positive number. The Rips’ polyhedron of X denoted by Pd .X/ is a simplicial
complex defined as follows. The simplices of Pd .X/ are the finite subsets of X
of diameter less than d . It is known (see [13], Section 2.2) that if X is geodesic ı-
hyperbolic, then for alld > 4ı the polyhedronPd .X/ is contractible. More precisely,
we have the following proposition.
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Proposition 1.3.1 (cf. [6], Chap. 5, Prop. 1.1). Let X be a geodesic, ı-hyperbolic
space. Let d > 4ı and n 2 N. The polyhedron P .nC1/

d
.X/ is n-connected.

Before studying the case of an arbitrary simplicial complex, we prove the follow-
ing proposition.

Proposition 1.3.2. Let X be a n-dimensional simplicial complex. Let d > 1. As-
sume that for all r 6 2.n C 1/d and for all x 2 X the closed ball xB.x; r/ is
contractible inB.x; rCd/. Then there exist two maps: f W X ! P

.nC1/

d
.X .0// and

g W P .nC1/

d
.X .0// ! X such that g B f is homotopic to idX .

Proof. In this proof we denote by P the .n C 1/-skeleton of the Rips’ polyhedron
Pd .X

.0//. We define f W X .0/ ! P by f .x/ D fxg. Let k 6 n. If � is a k-simplex
of X , its diameter is less than d . Thus the set of its vertices defines a k-simplex of
P . Hence f induces a simplicial map from X to P . We now define by induction a
map g W P ! X .

First we define a map g.0/ W P .0/ ! X by g.0/.fxg/ D x. Assume now that
we have already defined a continuous map g.k/ W P .k/ ! X with the following
property: for each l-simplex � ofP .k/, for every vertex x of � , g.k/.�/ is contained in
B.g.k/.x/; 2ld/. Let � be a .kC1/-simplex ofP .kC1/ whose faces are �0; : : : ; �kC1.
Choose a vertex x of � . The function g.k/ maps the border @� D SkC1

iD0 �i onto a k-
sphere ofX contained inB.g.k/.x/; .2kC1/d/. However this sphere is contractible
in B.g.k/.x/; 2.k C 1/d/. We define g.kC1/.�/ by choosing a homotopy which
contracts g.k/.@�/ to a point. This defines a continuous map g.kC1/ W P .kC1/ ! X

which coincides with g.k/ on P .k/ and satisfies the following property: g.k/.�/ is
contained in B.g.k/.x/; 2ld/ for all l-simplex � of P .kC1/ and for every vertex x
of � . We choose for g the map g.nC1/.

Lemma 1.3.3. For all k 6 nC1 there is a continuous mapH .k/ W X .k/ � Œ0; 1� ! X

satisfying the following properties:

(i) H .k/jX.k/�f0g D idX.k/ and H .k/jX.k/�f1g D g B f jX.k/ .

(ii) H .k/.� � Œ0; 1�/ is contained in B.x; .2l C 1/d/ for each l-simplex � of X .k/

and for every vertex x of � .

Proof. We prove this result by induction on k. The restriction of g B f to X .0/ is
the identity, thus the proposition is obvious for the 0-skeleton. Assume now that the
lemma is true for k 6 n. Consider a .k C 1/-simplex � of X .kC1/. We choose a
vertex x of � . By definition of g the set g B f .�/ is contained in B.x; .2k C 2/d/.
Moreover, the induction assumption gives thatH .k/.@� � Œ0; 1�/ � B.x; .2kC2/d/.
Thus the subset � [H .k/.@� � Œ0; 1�/[g Bf .�/ is a .kC 1/-sphere ofX contained
in B.x; .2k C 2/d/. This sphere is therefore contractible in B.x; .2k C 3/d/. By
choosing a homotopy that contracts it to a point, we define a mapH .kC1/ W ��Œ0; 1� !
X such that
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(i) H .kC1/j��f0g D id� and H .kC1/j��f1g D g B f j� ,

(ii) H .kC1/j@��Œ0;1� D H .k/j@��Œ0;1�,

(iii) H .kC1/.� � Œ0; 1�/ � B.x; .2k C 3/d/.

This defines a map H .kC1/ W X .kC1/ � Œ0; 1� ! X which satisfies the properties of
the lemma.

End of the proof of Proposition 1.3.2. The map H .nC1/ W X � Œ0; 1� ! X is a
homotopy between g B f and idX .

Theorem 1.3.4. LetX be a ı-hyperbolic, n-dimensional, simplicial complex. Assume
that the ball B.x; r/ is homotopic to zero in B.x; r C 4ı/ for all r 6 8.nC 1/ı and
all x 2 X . Then all homotopy groups of X are trivial. Hence X is contractible.

Proof. We fix d D 4ı. From Proposition 1.3.1 it follows that the Rips polyhedron
P D P

.nC1/

d
.X .0// is n-connected. Moreover, the fact that the small balls are

contractible gives two maps f W X ! P and g W P ! X such that gBf is homotopic
to idX . It follows that X is n-connected as well. Since X is n-dimensional, all the
higher homotopy groups of X are trivial by Hurewicz’s theorem.

2. Cone over a metric space

In this section we prove an asymptotic version of the Berestovskii’s theorem con-
cerning the hyperbolicity of a cone with a locally hyperbolic base. From now on, we
fix a positive number r0 whose value will be made precise in Section 4.

2.1. Definition

Definition 2.1.1. Let Y be a metric space. The cone over Y , denoted by C.Y / is
the quotient of Y � Œ0; r0� by the equivalence relation defined as follows. Two points
.y1; r1/ and .y2; r2/ are equivalent if r1 D r2 D 0 or .y1; r1/ D .y2; r2/.

Notation. The equivalence class of .y; 0/, called the vertex of the cone, is denoted
vY (or simply v). The equivalence class of any other point .y; r/ is still denoted by
.y; r/.

Hyperbolic metric on a cone. We define a metric on C.Y / as M. Bridson and
A. Haefliger do in [5], Chap. I.5. If y and y0 are two points of Y , we consider the
angle 	.y; y0/ defined by 	.y; y0/ D min

˚
�; jy0�yj

sinh r0

�
.

Proposition 2.1.2 ([5], Chap. I.5, Prop. 5.9). The following formula defines a distance
on the cone C.Y; r0/.

j.y0; r 0/ � .y; r/j D arccosh.cosh r cosh r 0 � sinh r sinh r 0 cos 	.y; y0//: (1)
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Remarks. The distance on the cone has the following interpretation. Given two
points .y; r/ and .y0; r 0/ of C.Y /, the distance between them is the distance between
two points of the hyperbolic disc respectively distant from the centre of r and r 0, such
that the central angle between them is 	.y; y0/.

It is important to notice that j.y0; r 0/� .y; r/j is a continuous function of y, y0, r
and r 0.

The cone C.Y / is the ball of centre v and of radius r0 of the space C�1.
Y

sinh r0
/

defined in [5], Chap. I.5.

Proposition 2.1.3 ([5], Chap. I.5, Prop. 5.10). Let .y; r/ and .y0; r 0/ be two points
of C.Y; r0/.

(i) If r; r 0 > 0 and 	.y; y0/ < � , then there is a bijection between the set of
geodesics joining y and y0 in Y and the set of geodesics joining .y; r/ and .y0; r 0/ in
C.Y /.

(ii) In all other cases, there is a unique geodesic joining .y; r/ and .y0; r 0/.

Examples. (i) If Y is a circle, endowed with its length metric, whose perimeter is
2� sinh r0, then the cone C.Y / is the hyperbolic disc of radius r0.

(ii) If Y is isometric to a line, then C.Y / n fvg is the universal cover of the
punctured hyperbolic disc of radius r0.

Relation between the cone and its base. In order to compare the cone C.Y / and
its base Y we consider two maps:


 W Y ! C.Y /; p W C.Y / n fvg ! Y;

y 7! .y; r0/; .y; r/ 7! y:

Proposition 2.1.4. Let .y; r/ and .y0; r 0/ be two points of C.Y /. Then

2minfr; r 0g	.y; y
0/

�
6 j.y0; r 0/ � .y; r/j 6 jr 0 � r j C p

sinh r sinh r 0	.y; y0/:

In particular, let x be a point of C.Y / whose distance to v is at least r0

2
. Then for

every point x0 in the ball B.x; r0

3
/ we have jp.x0/�p.x/jY 6 3� sinh r0

r0
jx0 � xjC.Y /.

Proof. The inequalities follow from the facts that

� the map t ! arccosh.1C a.1 � cos t // is concave,
� for all t > 0, arccosh.aC t / 6 arccosh.a/C p

2t .

Consider now a point x D .y; r/ of C.Y / whose distance to v is at least r0

2
. If

x0 D .y0; r 0/ belongs to the ball B.x; r0

3
/, then jx0 � xj < r0

3
< r < r C r 0. It

follows that 	.y; y0/ < � . Moreover r 0 > r0

6
. Using the previous inequality, we

obtain r0

3� sinh r0
jy0 � yj 6 2 minfr;r 0g

� sinh r0
jy0 � yj 6 jx0 � xj.
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Proposition 2.1.5. Let � W RC ! RC be the map defined by j
.y0/ � 
.y/j D
�.jy0 � yj/ for all y; y0 2 Y . Then � is a non-decreasing, continuous, concave
map satisfying the following properties:

(i) �.t C t 0/ 6 �.t/C �.t 0/ for all t; t 0 > 0 (subadditivity),
(ii) 2r0

� sinh r0
minf� sinh r0; tg 6 �.t/ 6 t for all t > 0.

Proof. By construction, the map � is defined by

�.t/ D arccosh.cosh2 r0 � sinh2 r0 cos.minf�; t
sinh r0

g//:
The properties of � follow from its concavity (cf. Fig. 1).

� sinh.r0/.0; 0/

�.t/

2r0

t

Figure 1. Graph of �.

2.2. Cone and hyperbolicity

Lemma 2.2.1. Let ! be a non-principal ultra-filter. Let .Yn; y
0
n/ be a sequence of

pointed metric spaces. We assume that the sequence .diam.Yn// is bounded. The
spaces C.lim!.Yn; y

0
n// and lim!.C.Yn/; 
n.y

0
n// are isometric.

Proof. Denote by Y the limit space lim!.Yn; y
0
n/. We define a map f W C.Y / !

lim! C.Yn/ by f .lim! yn; r/ D lim!.yn; r/. Since Formula (1), giving the distance
in a cone, is continuous, the map f preserves the distances. Consider now a point
x D lim!.yn; rn/ of lim! C.Yn/. By assumption, the sequences .rn/ and .jyn �y0

nj/
are bounded. Thus we may consider the real number r D lim! rn and the point
y D lim! yn of Y . Furthermore,

jf .y; r/ � xj D lim! j.yn; r/ � .yn; rn/j D lim! jr � rnj D 0:

It follows that f .y; r/ D x. Hence f is onto.

Lemma 2.2.2. Let Y be a metric space. If every ball of radius � sinh r0 of Y is an
R-tree, then the cone C.Y / is CAT.�1/. In particular this cone is ln 3-hyperbolic.

Proof. Let T be a geodesic triangle of Y whose perimeter is smaller than 2� sinh r0.
It is contained in a ball of radius � sinh r0. It follows that T is 0-thin. Consequently
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the rescaled space Y
sinh r0

is CAT.1/ (cf. [5]). Using a Berestovskii’s theorem (cf. [5],
Chap. II.3, Th. 3.14), the cone C.Y / is CAT.�1/. In particular it is ln 3-hyperbolic.

Proposition 2.2.3. Let " > 0. There exists ı > 0 satisfying the following property.
LetX be a geodesic space such that each ball of radius� sinh r0 of X is ı-hyperbolic.
Let Y be a 10ı-quasi-convex subset of X . The cone C.Y / is .ln 3C "/-hyperbolic.

Proof. Assume that the proposition is false. For all n 2 N, we can find

� a geodesic space Xn whose balls of radius � sinh r0 are ın-hyperbolic, with
ın D o.1/,

� a 10ın-quasi-convex subset Yn of Xn,

such that the cone C.Yn/ is not .ln 3 C "/-hyperbolic. We denote by zXn the space
Xn endowed with the metric

jx0 � xj zXn
D minf� sinh r0; jx0 � xjXn

g:

The set Yn viewed as a subspace of zXn is denoted by zYn. We choose a non-principal
ultra-filter!, the limit space zX D lim!

zXn and the subspace zY D lim!
zYn. Each ball

of radius � sinh r0 of zYn is ın-hyperbolic. Hence each ball of radius � sinh r0 of zY is
0-hyperbolic. Moreover Yn is 10ın-quasi-convex. It follows that, for all y 2 zY , the
set zY \ B.y; � sinh r0/ is an R-tree. Using Lemma 2.2.2, C. zY / is ln 3-hyperbolic.
Moreover, the diameter of zYn is uniformly bounded. Hence Lemma 2.2.1 tells us
that C. zY / and lim! C. zYn/ are isometric. Thus there exists n 2 N such that C. zYn/

is .ln 3 C "/-hyperbolic. However C.Yn/ and C. zYn/ are isometric. Contradiction.

2.3. Group acting on a cone

Definition 2.3.1. Let X be a metric space and G a group acting on X by isometries.
For all g 2 G the translation length of g, denoted by Œg�X (or simply Œg�) is

Œg�X D inf
x2X

jgx � xj:

The injectivity radius of G on X is rinj.G;X/ D infg2Gnf1gŒg�X .

Let Y be a metric space. We fix a groupH acting by isometries on Y . We assume
that this action is proper, that is for all y 2 Y there exists r > 0 such that the set
fh 2 H j h � B.y; r/ \ B.y; r/ ¤ ;g is finite. We denote by xY the quotient Y=H
and by Ny the image in xY of a point y 2 Y . Since H acts properly on Y , the quotient
xY may be endowed with a metric defined by j xy0 � xyj xY D infh2H jhy0 � yjY .

We extend the action of H to the cone C.Y / by homogeneity: If x D .y; r/ is
a point of C.Y / and h an element of H , then hx is defined by hx D .hy; r/. The
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groupH acts by isometries on C.Y /. Note that if Y is not compact, this action is no
more proper. However the relation j Nx0 � Nxj D infh2H jhx0 � xjC.Y / still defines a
metric on the quotient C.Y /=H . Moreover C.Y=H/ and C.Y /=H are isometric.

Theorem 2.3.2 (First hyperbolicity theorem). Let " > 0. There exists ı > 0 satisfying
the following property. Let X be a ı-hyperbolic, geodesic space and Y a 10ı-quasi-
convex subset of X . Assume that H is a group acting by isometries on X such that
H stabilizes Y . If rinj.H; Y / > 2� sinh r0, then the space C.Y /=H is .ln 3 C "/-
hyperbolic.

Proof. We consider the constant ı > 0 given by Proposition 2.2.3. Let X be a ı-
hyperbolic, geodesic space andY a 10ı-quasi-convex subset ofX . Assume thatH is a
group acting by isometries onX such thatH stabilizesY and rinj.H; Y / > 2� sinh r0.
The spaces X=H and Y=H satisfy the assumptions of Proposition 2.2.3. It follows
that C.Y=H/, which is isometric to C.Y /=H , is .ln 3C "/-hyperbolic.

2.4. Contracting balls in a cone. In this section we assume that Y is a proper
metric space. The cone over Y is contractible, nevertheless it is not necessarily
locally contractible. To avoid this problem, we consider the following geometric
assumption.

Condition H(l): For all y 2 Y and all r 2 RC there exists a homotopy h W xB.y; r/�
Œ0; 1� ! Y contracting the closed ball xB.y; r/ to fyg with the following property:
jh.y0; t / � yj 6 jy0 � yj C l for all y0 2 xB.y; r/ and all t 2 Œ0; 1�.

Proposition 2.4.1. Let x be a point of the cone C.Y / and r1 2 RC. If Y satisfies
the condition H(l), then the closed ball xB.x; r1/ is contractible in B.x; r1 C l/.

Proof. We denote by .y; r/ the point x and by xB the closed ball xB.x; r1/. We
distinguish two cases.

Case 1. If r1 > r , then the vertex of the cone v belongs to xB . We consider the
following homotopy.

H W xB � Œ0; 1� ! C.Y /; ..y0; r 0/; t/ 7! .y0; .1 � t /r 0/:

It contracts the ball xB to the vertex v. Let x0 D .y0; r 0/ be a point of xB . The
metric in H2 is convex. Since the metric on the cone is modelled on the one on H2,
we have for all t 2 Œ0; 1�,

jH.x0; t / � xj D j.y0; .1 � t /r 0/ � xj 6 maxfjx0 � xj; jv � xjg 6 r1:

Thus H maps to xB .
Case 2. We assume now that r1 < r . It follows that jy0 � yj 6 � sinh r0 for

all .y0; r 0/ 2 xB . By assumption, there exists a homotopy map h W xB.y; � sinh r0/ �
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Œ0; 1� ! Y contracting xB.y; � sinh r0/ to fyg such that jh.y0; t /� yj 6 jy0 � yj C l

for all y0 2 xB.y; � sinh r0/ and all t 2 Œ0; 1�. We consider the map

H W xB � Œ0; 1� ! C.Y /; ..y0; r 0/; t/ 7! .h.y0; t /; r 0/:

It contracts xB to fyg � Œr � r1;minfr0; r C r1g�. Let x0 D .y0; r 0/ be a point of
xB and t 2 Œ0; 1�. By assumption, we have 	.y; h.y0; t // 6 	.y; y0/ C ˛, where
˛ D minf l

sinh r0
; � � 	.y; y0/g. The distances between x, x0 and H.x0; t / may be

viewed in H2. Due to the triangle inequality, we have

jH.x0; t / � xj D arccosh.cosh r cosh r 0 � sinh r sinh r 0 cos 	.y; h.y0; t ///
6 arccosh.cosh r cosh r 0 � sinh r sinh r 0 cos 	.y; y//

C arccosh.cosh2 r 0 � sinh2 r 0 cos˛/

6 jx0 � xj C ˛ sinh r 0 6 r1 C l:

Consequently, H maps to B.x; r1 C l/. We conclude by noticing that fyg � Œr � r1;
minfr0; r C r1g� is contractible in B.x; r1 C l/.

The next lemma explains how to deformation retract a ball of the cone onto its
base.

Proposition 2.4.2. Let x D .y; r/ be a point of the cone C.Y / and let
r1 2�r0 � r; rŒ. Assume that Y satisfies the condition H(l). Then there exists a homo-
topy H W xB.x; r1/ � Œ0; 1� ! xB.x; r1 C 2l/ which contracts xB.x; r1/ to a subset of

.Y / and such that H.x0; t / D x0 for all x0 2 xB.x; r1/ \ 
.Y / and all t 2 Œ0; 1�.

xB.x; r1/

jy 0 yj.0; 0/

r0

r 0

Figure 2. Shape of the ball xB.x; r1/. The points .y0; r 0/ that belong to xB.x; r1/ lie in the gray
part.

Remark. The first idea to prove this proposition is to project the cone onto its base,
using the map p. Nevertheless, this homotopy does not stay in a neighbourhood of
xB.x; r1/. This problem can be observed on Figure 2 which represents the shape of
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xB.x; r1/. In order to get around this difficulty, we have to proceed in two steps. At
first, we contract the ball horizontally, using a homotopy of Y , then we project it onto
the base.

Proof. Denote by xB the closed ball xB.x; r1/. Since r1 < r , we have jy0 � yj 6
� sinh r0 for all points x0 D .y0; r 0/ of xB . By assumption there exists a homo-
topy h W xB.y; � sinh r0/ � Œ0; 1� ! Y contracting xB.y; � sinh r0/ to fyg such that
jh.y0; t / � yj 6 jy0 � yj C l for all y0 2 xB.y; � sinh r0/ and all t 2 Œ0; 1�.

Let x0 D .y0; r 0/ be a point of C.Y /. There exists a continuous function L.r 0/ D
arccos. cosh r 0 cosh r�cosh r1

sinh r 0 sinh r
/ such that x0 belongs to xB if and only if jy0 � yj 6 L.r 0/.

Since r1 > r0 � r , L.r0/ is positive. By continuity, there exists r2 < r0 such that
L.r 0/ 6 L.r0/C l for all r 0 2�r2; r0Œ. Since h is continuous on a compact set, there
exists t0 such that jh.y0; t0/ � yj 6 L.r0/ for all y0 2 xB.y; � sinh r0/. We consider
now the map

H W xB � Œ0; 1� ! C.Y /; ..y0; r 0/; t/ !
´
.h.y0; t t0/; r 0/ if r 0 6 r2;

.h.y0; r0�r 0

r0�r2
t t0/; r

0/ if r 0 > r2:

The mapH is continuous. Furthermore, H.x0; t / D x0 for all x0 2 xB \ 
.Y / and all
t 2 Œ0; 1�. As in the previous proposition, we prove thatH maps to B.x; r1 C l/. We
denote by E the image of xB � f1g by H .

Lemma 2.4.3. The set E, the image by H of xB � f1g, has the following property.
For all x0 D .y0; r 0/ 2 C.Y /, if x0 belongs to E, then jy0 � yj 6 L.r0/C 2l .

Proof. Let x0 D .y0; r 0/ be a point of xB . If r 0 6 r2, then H.x0; 1/ D .h.y0; t0/; r 0/.
By construction of t0, we have jh.y0; t0/ � yj 6 L.r0/. If r 0 > r2, then H.x0; 1/ D
.h.y0; r0�r 0

r0�r2
t0/; r

0/. By definition of r2 and h, we have

jh.y0; r0�r 0

r0�r2
t0/ � yj 6 jy0 � yj C l 6 L.r0/C 2l:

End of the proof of Proposition 2.4.2. We now consider a second homotopy

H 0 W E � Œ0; 1� ! C.Y /; ..y0; r 0/; t/ 7! .y0; .1 � t /r 0 C t r0/:

The map H 0 contracts E to a subset of 
.Y /. Let x0 D .y0; r 0/ be a point of E �
B.x; r1 C l/. By Lemma 2.4.3, jy0 �yj 6 L.r0/C2l . Thus x0 and 
.y0/ are points of
B.x; r1 C 2l/. The metric in H2 is convex. Since the metric on the cone is modelled
on the one on H2, we have for all t 2 Œ0; 1�,
jH 0.x0; t /� xj D j.y0; .1� t /r 0 C t r0/� xj 6 maxfjx0 � xj; j
.y0/� xjg 6 r1 C 2l:

Thus H 0 maps to B.x; r1 C 2l/. Applying successively H and H 0 provides the
homotopy of the proposition.
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3. Cone-off over a metric space

The goal of this part is to study the large scale geometry of the cone-off. We give
a detailed proof that under some small cancellation assumptions, the cone-off of a
hyperbolic space is locally hyperbolic. We recall that r0 is a fixed positive number
whose value will be made precise in Section 4.

3.1. Definition. Let X be a metric space and Y D .Yi /i2I a collection of subsets
of X . For each i 2 I , we consider the following objects: Ci is the cone C.Yi / and
vi its vertex; 
i W Yi ! Ci and pi W Ci n fvig ! Yi are the maps between the cone
and its base defined in the previous part.

Definition 3.1.1 (Cone-off over a metric space). The cone-off over X relatively to
Y is the space obtained by gluing each cone Ci on X along Yi according to 
i . We
denote it by PX.Y / (or simply PX ).

Metric on the cone-off. In this paragraph we define a metric on the cone-off such
that its restriction to a cone is the metric previously defined. To this end, one defines
the metric as the lower bound of the length of chains joining two points. In this way,
we obtain a pseudo-metric. The goal here is to prove that it is also positive.

We endow X t .Fi2I Ci / with the metric induced by j � jX and j � jCi
. Let x and

x0 be two points of PX . The quantity kx0 � xk is the minimal distance between two
points of X t .Fi2I Ci / whose image in PX are respectively x and x0. The value of
kx0 � xk is different whether x and x0 both belong to a cone Ci or not. The three
possible cases are presented in the next lemma.

Recall that � is the function defined in Proposition 2.1.5 by

�.t/ D arccosh.cosh2 r0 � sinh2 r0 cos.minf�; t
sinh r0

g//:

It has the following interpretation. If y and y0 are two points of Yi , then the distance
between .y; r0/ and .y0; r0/ in Ci is �.jy0 � yjX /.

Lemma 3.1.2. Let x and x0 be two points of PX .
(i) If there is i 2 I such that x; x0 2 Ci , then kx0 �xk D jx0 �xjCi

. In particular,
if x; x0 2 Yi , then kx0 � xk D �.jx0 � xjX /.

(ii) If x; x0 2 X , but there is no i 2 I such that x; x0 2 Yi , then kx0 � xk D
jx0 � xjX .

(iii) In all other cases, we have kx0 � xk D C1.
In particular, for all x; x0 2 X , kx0 � xk > �.jx0 � xjX /.

The quantity kx0 � xk does not define a metric. It does not indeed satisfy the
triangle inequality. That is why we consider chains of points.
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Definition 3.1.3. Let x and x0 be two points of PX .
A chain between x and x0 is a finite sequence C D .z1; : : : ; zn/ of points of PX ,

such that z1 D x and zm D x0. Its length is l.C / D Pm�1
j D1 kzj C1 � zj k.

Furthermore we define

jx0 � xj PX D inffl.C / j C a chain between x and x0g:
Obviously, j � j PX is a pseudo-metric.

Lemma 3.1.4. Let x and x0 be two points of PX . For all " > 0 there is a chain
C D .z1; : : : ; zm/ between x and x0 satisfying the following.

(i) l.C / 6 jx0 � xj PX C ".

(ii) zj 2 X for all j 2 f2; : : : ; m � 1g.
Proof. Let " > 0. By definition there exists C D .z1; : : : zm/ a chain between x and
x0 such that l.C / 6 jx0 � xjX C ". Assume that there is j 2 f2; : : : ; m � 1g such
that zj does not belong to X . It follows that zj is strictly contained in a cone, that
is there exists i 2 I such that zj 2 Ci n 
i .Yi /. In particular there is only one point
of .

F
i2I Ci / t X whose image in PX is zj . Using the triangle inequality in Ci , we

have kzj C1 � zj �1k 6 kzj C1 � zj k C kzj � zj �1k. Thus the sequence C 0 obtained
by removing the point zj from C is a chain between x and x0 shorter than C . Hence
after removing all points of C which are not in X , we obtain a chain satisfying the
properties of the lemma.

Lemma 3.1.5. For all i 2 I , j � jCi
and j � j PX locally coincide: Let x D .y; r/ be

a point of Ci n 
i .Yi /. If x0 is a point of PX such that jx0 � xj PX 6 1
4
jr0 � r j, then

x0 2 Ci and jx0 � xj PX D jx0 � xjCi
.

Proof. Let i 2 I and x D .y; r/ be a point ofCi n
i .Yi /. Since x … 
i .Yi /, r0�r > 0.
Let x0 be a point of PX such that jx0 � xj PX 6 1

4
.r0 � r/. Let � 2�0; 1

4
.r0 � r/Œ. Using

the previous lemma, there is a chain C D .z1; : : : ; zm/ between x and x0 such that
l.C / 6 jx0 � xj PX C � and for all j 2 f2; : : : ; m � 1g, zj 2 X . Assume that m > 3.
Since x 2 Ci n 
i .Yi /, we have

r0 � r 6 kz2 � z1k 6 l.C / 6 jx0 � xj PX C � 6 1
2
.r0 � r/:

Contradiction. Thus m D 2 and kx0 � xk D l.C / 6 1
2
.r0 � r/. Consequently x0

belongs to Ci and kx0 � xk D jx0 � xjCi
. Hence for all � 2�0; 1

4
.r0 � r/Œ, we have

jx0 � xj PX 6 jx0 � xjCi
6 jx0 � xj PX C �:

It follows that jx0 � xj PX D jx0 � xjCi
.

Lemma 3.1.6. For all x; x0 2 X , we have jx0 � xj PX > �.jx0 � xjX /.
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Proof. Let " > 0. Using Lemma 3.1.4, there exists a chain C D .z1; : : : ; zm/

between x and x0 such that l.C / 6 jx0 �xj PX C " and for all j 2 f1; : : : ; mg, zj 2 X .
The subadditivity of � gives

�.jx0 � xjX / 6
m�1P
j D1

�.jzj C1 � zj j/ 6
m�1P
j D1

kzj C1 � zj k D l.C /:

Thus for all " > 0, we have�.jx0 �xjX / 6 jx0 �xj PX C". It follows that jx0 �xj PX >
�.jx0 � xjX /.

Proposition 3.1.7. j � j PX defines a metric on PX .

Proof. The only point to prove is the positivity of j � j PX . Consider two points x and
x0 of PX such that jx0 � xj PX D 0. There are two cases.

(i) If there is i 2 I such that x 2 Ci n 
i .Yi / or x0 2 Ci n 
i .Yi /, then, using
Lemma 3.1.5, x and x0 both belong to Ci . Moreover jx0 � xjCi

D jx0 � xj PX D 0.
Thus x D x0.

(ii) If x and x0 are both elements of X , then, due to Lemma 3.1.6, we have
�.jx0 � xjX / 6 jx0 � xj PX D 0. Hence jx0 � xjX D 0. It follows that x D x0.

Projection of the cone-off on its base. We consider a map p from PX n fvi ; i 2 I g
onto X whose restriction to a cone Ci n fvig is pi and whose restriction to X is the
identity.

Proposition 3.1.8. Consider a point x of PX such that the distance between x and
any vertex of PX is at least r0

2
. For all x0 2 B.x; r0

3
/, we have jp.x0/ � p.x/jX 6

3� sinh r0

r0
jx0 � xj PX .

Proof. Let " 2�0; r0

2
Œ. Consider a point x0 of B.x; r0

3
/. Using Lemma 3.1.4, there

exists a chainC D .z1; : : : ; zm/ such that for all j belonging to f2; : : : ; m�1g, zj 2 X
and l.C / 6 jx0 � xj PX C " 6 r0. We choose j 2 f2; : : : ; m� 1g. Lemma 2.1.5 gives

r0 > l.C / > kzj C1 � zj k > �.jzj C1 � zj jX /
> 2r0

� sinh r0
minf� sinh r0; jzj C1 � zj jXg:

Thus jp.zj C1/ � p.zj /jX D jzj C1 � zj jX 6 3� sinh r0

r0
kzj C1 � zj k.

If x D z1 is a point of X , by same proof we obtain jp.z2/ � p.z1/jX 6
3� sinh r0

r0
kz2 � z1k. On the other hand, if x belongs to a cone Ci , then Lemma 2.1.4

gives the same inequality. In the same way, we obtain

jp.zm/ � p.zm�1/jX 6 3� sinh r0
r0

kzm � zm�1k:
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Consequently, we have

jp0.x/ � p.x/jX 6
m�1X
j D1

jp.zj C1/ � p.zj /jX 6 3� sinh r0
r0

m�1X
j D1

kzj C1 � zj k

D 3� sinh r0
r0

l.C /

6 3� sinh r0
r0

.jx0 � xj PX C "/:

Hence jp0.x/ � p.x/jX 6 3� sinh r0

r0
jx0 � xj PX .

3.2. Uniform approximation of the distance on the cone-off. In order to study
the ultra limit of a sequence of cone-off spaces, we need to approximate the distance
between two points of PX by a chain such that the number of points involved in the
chain only depends on the error and not on the base space X . This point was already
noted by M. Gromov in [14]. More precisely, in this section we prove the following
result:

Proposition 3.2.1. Let A > 1. There exists a constant M , depending only on A
and not on r0, with the following property. Let " 2�0; 1Œ, X be a metric space and
Y D .Yi /i2I a collection of subsets of X . Let x and x0 be two points of the cone-off
PX.Y / such that jx0 � xj PX 6 A. There exists a chain C between x and x0 with less

than Mp
"

points and such that l.C / 6 jx0 � xj PX C ".

Proof. Let " 2�0; 1Œ. Let x and x0 be two points of PX such that jx0 � xj PX 6 A.
Using Lemma 3.1.4, there is a chain C D .z1; : : : ; zn/ between x and x0 such that
l.C / 6 jx0 � xj PX C 1

2
" and for all j 2 f2; : : : ; n � 1g, zj 2 X . We fix � 2�0; 1Œ,

and construct a subchain of C between x and x0, denoted by C� D .zj1
; : : : ; zjm

/, as
follows.

(i) Put j1 D 1 and j2 D 2.
(ii) Let k > 2. We construct jkC1 from jk .
If jk < n � 1 and jzjkC1 � zjk

jX > �, then jkC1 D jk C 1.
If jk < n�1 and jzjkC1�zjk

jX 6 �, then jkC1 is the largest j 2 fjk C1; : : : ; n�
1g such that jzj � zjk

jX 6 �.
If jk D n � 1, then jkC1 D n and the process stops.
This construction removes from C the small parts of the chain which may be

contained in a cone. We prove now that it hardly changes the length of the chain.

Lemma 3.2.2 (Comparison between the two chains). The chains C� and C satisfy
the inequality l.C�/ 6 l.C /Cm�3, where m is the number of points in C� .

Proof. We consider an integer k 2 f1; : : : ; m � 2g. There are two cases.
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First case: Assume that jzjkC1
� zjk

jX 6 �. The function � given by Proposi-
tion 2.1.5 has the following property: �.t/ > t � t3 for all t 2 Œ0; � sinh r0�. Thus
using the subadditivity of � we obtain

jkC1�1P
j Djk

kzj C1 � zj k >
jkC1�1P
j Djk

�.jzj C1 � zj jX /

> �.jzjkC1
� zjk

jX / > jzjkC1
� zjk

jX � jzjkC1
� zjk

j3X :

Thus we have
PjkC1�1

j Djk
kzj C1 � zj k > kzjkC1

� zjk
k � �3.

Second case: Assume that jzjkC1
� zjk

jX > �. By construction, we have jkC1 D
jk C 1. Hence the last inequality remains true.

After summing over k these inequalities, we finally obtain l.C / > l.C�/�m�3.

Lemma 3.2.3 (Estimation ofm). If � 6 1
4
, thenm, the number of points in the chain

C� , is less than 100A
�

.

Proof. Let k 2 f2; : : : ; m � 3g. The two inequalities jzjkC1
� zjk

jX 6 1
2
� and

jzjkC2
� zjkC1

jX 6 1
2
� cannot be both true. Indeed, if it was the case, jkC1 will

not be the largest j 2 fjk C 1; : : : ; n � 1g such that jzj � zjk
jX 6 �. Assume that

jzjkC1
� zjk

jX > 1
2
� (the other case is symmetric). Using the same estimation of �

as the one in the previous lemma, we obtain

kzjkC1
� zjk

k > �.jzjkC1
� zjk

jX / > �.1
2
�/ > 1

2
� � 1

8
�3:

Thus kzjkC1
� zjk

k C kzjkC2
� zjkC1

k > 1
2
� � 1

8
�3. After summing over k, the

previous lemma gives�
m�4

2

˘
.1

2
� � 1

8
�3/ 6 l.C�/ 6 l.C /Cm�3 6 jx0 � xj PX C 1

2
"Cm�3:

We have the inequality

m.4 � 17�2/ 6 50A
�
:

Hence if � 6 1
4

, then 4�17�2 > 1
2

. It follows thatmmust be bounded by 100A
�

.

End of the proof of Proposition 3.2.1. Combining the two previous lemmas, we
obtain

l.C�/ 6 l.C /Cm�3 6 jx0 � xj PX C 1
2
"C 100A�2:

If we choose � D 1
10

q
"

2A
, then we have l.C�/ 6 jx0 � xj PX C ". Moreover the

number m of points of C� is less than 1000A
q

2A
"

.
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3.3. Contracting balls of the cone-off. In this section X is a proper, geodesic,
ı-hyperbolic space. We consider a collection Y D .Yi /i2I of closed strongly quasi-
convex subsets of X . We assume that X satisfies the condition H(l), i.e.,

Condition H(l): For all x 2 X and r 2 RC, there exists a homotopy h W xB.x; r/ �
Œ0; 1� ! X which contracts the closed ball xB.x; r/ to fxg such that jh.x0; t / � xj 6
jx0 � xj C l for all x0 2 xB.x; r/ and all t 2 Œ0; 1�.

We also assume that the Yi ’s satisfy the same condition.

Proposition 3.3.1. Let x be a point of PX and r 2 RC. We assume that jvi � xj > r
for all i 2 I . Then the closed ball xB.x; r/ is contractible in B.x; r C 3l/.

Proof. If there exists i 2 I such that xB.x; r/ is contained in a cone C.Yi /, then we
apply Proposition 2.4.1. Otherwise we proceed as follows. Let i 2 I . Assume that
xB.x; r/\C.Yi / ¤ ;. By Proposition 2.4.2, there exists a homotopyHi W xB.x; r/\
C.Yi / � Œ0; 1� ! B.x; r C 2l/ satisfying the following properties.

(i) Hi contracts xB.x; r/ \ C.Yi / to a subset of Yi .
(ii) Hi .x

0; t / D x0 for all x0 2 xB.x; r/ \ Yi and all t 2 Œ0; 1�.
Thus we may define a mapH W xB.x; r/�Œ0; 1� ! B.x; rC2l/ such that its restriction
to xB.x; r/\C.Yi /� Œ0; 1� isHi , andH.x0; t / D x0 for all x0 2 xB.x; r/\X and all
t 2 Œ0; 1�. It follows that H contracts xB.x; r/ to a subset of B.x; r C 2l/ \ X . By
condition H(l), this set is contractible in B.x; r C 3l/.

3.4. Hyperbolicity of the cone-off over an R-tree

Proposition 3.4.1. Let X be an R-tree and Y D .Yi /i2I a collection of subtrees of
X such that two distinct elements of Y share no more than one point. The cone-off
PX.Y / is ln 3-hyperbolic.

Remark. In fact PX.Y / is a CAT.�1/ space, but we shall not use this point.

This result is a consequence of the more particular case where X is a finite sim-
plicial tree.

Lemma 3.4.2. Consider a finite simplicial treeX and a finite collectionY D .Yi /i2I

of subtrees of X such that two distinct elements of Y share no more than one point.
The cone-off PX.Y / is CAT.�1/. In particular it is ln 3-hyperbolic.

Proof. Each Yi is a tree, thus all the cones C.Yi / are CAT.�1/ (cf. Lemma 2.2.2).
Consequently the cone-off PX is obtained by gluing a finite number of CAT.�1/-spaces
that share no more than one point. These spaces are the cones and the remaining parts
of X on which no cone is glued. It follows that PX is CAT.�1/ (cf [5], Chap. II.11,
Th. 11.1).
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Proof of Proposition 3.4.1. Let x, y, z and t be four points of PX . For all n 2 N, we
can find a finite simplicial subtree Xn of X and a finite collection Y n of subtrees of
Xn such that

� two distinct elements of Y n share no more than one point,
� x, y, z, t belong to PXn.Y

n/,
� for all u; v 2 fx; y; z; tg, we have limn!C1 jv � uj PXn.Yn/ D jv � uj PX.Y /.

This can be done in the following way. Let n 2 N. For all pair of points in
fx; y; z; tg we consider a chain which approximates the distance between them, with
an error smaller than 1

n
. These chains contain a finite number of points. Thus we

choose Xn and Y n such that the chains have the same length in PX.Y / and PXn.Y
n/.

Since PXn is ln 3-hyperbolic (see Lemma 3.4.2), x, y, z, t satisfy in these spaces
the hyperbolicity condition. After taking the limit, we obtain in PX the inequality
hx; zit > minfhx; yit ; hy; zitg � ln 3.

3.5. Hyperbolicity of the cone-off over a hyperbolic space. In this section, we
generalize the previous proposition when the base X is a hyperbolic space. Let ı be
a positive number. We consider a geodesic, ı-hyperbolic space X and a collection
Y D .Yi /i2I of closed 10ı-quasi-convex subsets of X . In order to estimate the
hyperbolicity of PX.Y /, we define a constant which controls how much two elements
of Y overlap.

Definition 3.5.1. The largest piece of Y , denoted by �.Y /, is the quantity

�.Y / D sup
i¤j

diam.Y C20ı
i \ Y C20ı

j /:

Assume that X is an R-tree, so that ı D 0. Then �.Y / is zero if and only if two
distinct elements of Y share no more than one point.

Theorem 3.5.2 (Second hyperbolicity theorem). Let " > 0. There exist ı;� > 0

satisfying the following properties. Consider a geodesic, ı-hyperbolic spaceX and a
collection Y D .Yi /i2I of closed, 10ı-quasi-convex subsets of X such that �.Y / 6
�. If x0 is a point of the cone-off PX.Y / whose distance to any vertex is greater than
r0

2
, then the ball B.x0;

r0

9
/ is .ln 3C "/-hyperbolic.

Remark. This theorem is an extension of Proposition 3.4.1 for spaces that may be
viewed as ı-perturbed R-trees. Thus it is possible to prove that PX.Y / satisfies the
CAT.�1/-condition with a small error depending only on ı and �. M. Gromov
introduced in [14] the notion of CAT.�1; "/-spaces which formalizes this idea. It
was also developed in [8]. Since we are only interested in the hyperbolicity of PX.Y /,
we will not use it.

In [14], M. Gromov gave a quantitative statement (Hyperbolic Coning Lemma)
of this result. We propose here a detailed proof which provides a qualitative version
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of the theorem. The strategy is as follows. Assuming that this theorem is false gives
a family Xn of ın-hyperbolic counter-examples with ın tending to zero. Taking the
limit gives the cone off over an R-tree which we already know to be ln 3-hyperbolic.
This is a contradiction according to Corollary 1.1.4. The point is to construct a local
isometry between the cone-off over the ultra-limit of .Xn/ and the ultra-limit of the
cones-off over Xn.

Proof. Assume that the theorem is false. Then for all n 2 N, we can find

(i) a geodesic, ın-hyperbolic space Xn, with ın D o.1/,
(ii) a collection Yn D .Yn;in/in2In

of closed, 10ın-quasi-convex subsets ofXn, with
�.Yn/ D o.1/,

(iii) a point x0
n 2 PXn.Yn/ whose distance to any vertex is greater than r0

2
and such

that the ball B.x0
n;

r0

9
/ is not .ln 3C "/-hyperbolic.

We fix a non-principal ultra-filter! in order to study the limit space lim!. PXn; x
0
n/.

First we consider several objects.

� x0 D lim! x
0
n;

� X D lim!.Xn; pn.x
0
n// (recall that pn is the projection from PXn onto Xn);

� I D Q
n2N In=� where � is the equivalence relation defined by i � j if

in D jn !-as;
� if i is a sequence of

Q
n2N In, we define Yi D lim! Yn;in .

Lemma 3.5.3. Let i D .in/ and j D .jn/ be two sequences of
Q

n2N In. If in D jn

!-as, then Yi D Yj ; otherwise, diam.Yi \ Yj / D 0.

Proof. If in D jn !-as, the equality Yi D Yj follows from the definition of the
!-limit of a sequence of subsets. In the other case, we have in ¤ jn !-as. Hence
diam.Y C20ın

n;in
\ Y

C20ın

n;jn
/ 6 �n !-as. Thus Corollary 1.2.5 gives diam.Yi \ Yj / 6

lim! diam.Y C20ın

n;in
\ Y C20ın

n;jn
/ D 0.

Due to the previous lemma, we may consider the collection Y D .Yi /i2I .

Lemma 3.5.4. The cone-off PX.Y / is ln 3-hyperbolic.

Proof. Since for all n 2 N,Xn is geodesic and ın-hyperbolic with ın D o.1/,X is an
R-tree. Furthermore, any Yn;in is a 10ın-quasi-convex subset ofXn. By the previous
lemma, Y is a collection of subtrees such that two distinct elements of Y share no
more than one point. Applying Proposition 3.4.1, PX.Y / is ln 3-hyperbolic.

The next step is to produce a local isometry between PX.Y /, the cone-off over
lim! Xn, and lim!. PXn; x

0
n/. For this purpose we consider the maps

 W X ! lim!
PXn; lim! xn 7! lim! xn;

 i W C.Yi / ! lim!
PXn; .lim! yn; r/ 7! lim!.yn; r/:
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These maps induce a function P from PX to lim!
PXn such that its restriction to X

(resp. C.Yi /) is  (resp.  i ). At first we prove that this map is 1-Lipschitz, then we
show that it induces a local isometry.

Lemma 3.5.5. Let x and x0 be two points of PX . We have kx0 �xk > j P .x0/� P .x/j.

Proof. We distinguish three cases.
(i) Assume that there is i 2 I such that x; x0 2 C.Yi /. Then we can write

x D .y; r/ and x0 D .y0; r 0/, where y D lim! yn and y0 D lim! y
0
n are two points

of Yi . In this situation we have

kx0 � xk D jx0 � xjC.Yi / D arccosh.cosh r cosh r 0 � sinh r sinh r 0 cos 	.y; y0//:

By continuity, This gives

kx0 � xk D lim! arccosh.cosh r cosh r 0 � sinh r sinh r 0 cos 	.yn; y
0
n//

D lim! j.y0
n; r

0/ � .yn; r/jC.Yn;in /

> lim! j.y0
n; r

0/ � .yn; r/j PXn

D j P .x0/ � P .x/j:
(ii) Assume that x D lim! xn and x0 D lim! x

0
n belong to X , but there is no

i 2 I such that x; x0 2 Yi . In this case kx0 � xk D jx0 � xjX D lim! jx0
n � xnjXn

.
However, for all n 2 N, we have jx0

n � xnjXn
> jx0

n � xnj PXn
. Thus kx0 � xk >

lim! jx0
n � xnj PXn

D j P .x0/ � P .x/j.
(iii) In all other cases, kx0 � xk D C1. There is nothing to prove.

Corollary 3.5.6. The map P W PX ! lim!
PXn is 1-Lipschitz, where PX is the cone-off

over lim! Xn.

Proof. Let x and x0 be two points of PX . Consider a chain C D .z1; : : : zm/ of points
of PX between x and x0. Using the previous lemma, we have

j P .x0/ � P .x/j 6
m�1P
j D1

j P .zj C1/ � P .zj /j 6
m�1P
j D1

k P .zj C1/ � P .zj /k D l.C /:

After taking the infimum over all chains betweenx andx0, we obtain j P .x0/� P .x/j 6
jx0 � xj PX .

We now construct a partial inverse function of P .

Lemma 3.5.7. There is a map P' W B.x0; r0

3
/ � lim!

PXn ! PX such that P' induces a
bijection onto the ball B. P'.x0/; r0

3
/, whose inverse is P .
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Proof. Let x D lim! xn be a point of B.x0; r0

3
/. By construction, the distance

between x0
n and any vertex of PXn is greater than r0

2
. Thus applying Lemma 3.1.8, we

have

jpn.xn/ � pn.x
0
n/jXn

6 3� sinh r0
r0

jxn � x0
nj PXn

:

It follows that .jpn.xn/�pn.x
0
n/jXn

/ is !-eb. Hence lim! pn.xn/ defines a point in
X . We now distinguish two cases.

(i) If there is i 2 I such that xn belongs to C.Yn;in/ !-as, then xn can be written
xn D .pn.xn/; rn/ !-as. Since .rn/ is bounded, we may consider r D lim! rn. We
define P'.x/ as the point .lim! pn.xn/; r/ of C.Yi /.

(ii) If xn belongs toXn !-as, then we define P'.x/ as the point lim! pn.xn/ ofX .
The properties of P' are satisfied.

Lemma 3.5.8. Let x D lim! xn and x0 D lim! x
0
n be two points of B.x0; r0

3
/ such

that .kx0
n � xnk/ is !-eb. We have lim! kx0

n � xnk > k P'.x0/ � P'.x/k.

Proof. We distinguish two cases.
(i) If there is i 2 I such that xn and x0

n belong toC.Yn;in/ !-as, then kx0
n �xnk D

jx0
n � xnjC.Yn;in / !-as. By continuity we have

lim! jx0
n � xnjC.Yn;in / D j P'.x0/ � P'.x/jC.Yi / > k P'.x0/ � P'.x/k:

Thus lim! kx0
n � xnk > k P'.x0/ � P'.x/k.

(ii) If xn; x
0
n 2 Xn !-as, but there is no i 2 I such that xn and x0

n belongs to
C.Yn;in/ !-as, then kx0

n � xnk D jx0
n � xnjXn

!-as. In this case we have

lim! jx0
n � xnjXn

D j P'.x0/ � P'.x/jX > k P'.x0/ � P'.x/k:
Thus lim! kx0

n � xnk > k P'.x0/ � P'.x/k.

The proof of the next corollary uses the uniform approximation of the distance on
the cone-off. Indeed, if x D lim! xn and x0 D lim! x

0
n are two points of B.x0; r0

9
/,

we can find for each n a chainCn of PXn that approximates jx0
n �xnj with a given error.

However it is difficult to give a sense to the !-limit of Cn if the number of points of
Cn is not uniformly bounded. That is why we previously proved Proposition 3.2.1.

Corollary 3.5.9. The restriction of P' to the ball B.x0; r0

9
/ is 1-Lipschitz.

Proof. Consider two points x D lim! xn and x0 D lim! x
0
n of B.x0; r0

9
/. Let " > 0

such that jx0 � xj C " < r0

9
. By Proposition 3.2.1, there is a number m depending

only of r0 and " such that for all n 2 N there is a chain Cn D .z1
n; : : : ; z

m
n / between

xn and x0
n with l.Cn/ 6 jx0

n � xnj PXn
C " < r0

9
. Notice that for all 1 6 j 6 m,
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jzj
n � x0

nj PXn
6 jxn � x0

nj PXn
C l.Cn/ <

r0

3
. Thus we can consider the points zj D

lim! z
j
n . The previous lemma gives

j P'.x0/� P'.x/j PX 6
m�1P
j D1

k P'.zj C1/� P'.zj /k 6 lim! l.Cn/ 6 lim! jx0
n � xnj PXn

C ":

Hence we have j P'.x0/� P'.x/j PX 6 jx0 � xj C " for all " > 0. Thus P' is 1-Lipschitz.

Corollary 3.5.10. The map P' induces an isometry from the ball B.x0; r0

9
/ onto its

image.

Proof. We already know that P' is a 1-Lipschitz bijection from B.x0; r0

9
/ onto its

image. However its inverse function P is also 1-Lipschitz. Hence P' preserves the
distances.

End of the proof of the theorem. We have just proved that B.x0; r0

9
/ is isomet-

ric to a subset of PX.Y; r0/. Since PX.Y; r0/ is ln 3-hyperbolic, so is B.x0; r0

9
/ D

lim! B.x
0
n;

r0

9
/. Consequently there exists n 2 N such that B.x0

n;
r0

9
/ is .ln 3C "/-

hyperbolic. Contradiction.

3.6. Length structure on the cone-off. In order to apply the Cartan–Hadamard
Theorem, we need a length structure on the cone-off. But the metric j � j PX is not
necessary a length metric. We study here the difference between j � j PX and the length
metric d PX induced by j � j PX . We will see that d PX hardly changes the geometry of PX .
Thus if . PX; j � j PX / is hyperbolic, then so is ( PX; d PX /.

From now on, X is a geodesic, ı-hyperbolic space, and Y D .Yi /i2I a collection
of strongly quasi-convex subsets of X . We recall that a strongly quasi-convex set Yi

satisfies the following property: for all x; x0 2 Yi there exist y; y0 2 Yi such that the
path Œx; y� [ Œy; y0� [ Œy0; x0� � Yi and jy � xj; jy0 � x0j 6 10ı. In particular this
condition is satisfied if Yi is a cylinder (see Proposition 1.2.8). PX.Y / is the cone-off
constructed as in Section 3.1.

Lemma 3.6.1. Let i 2 I . We have d PX .x; x
0/ 6 jx0 � xjC.Yi / C 40ı for all x; x0 2

C.Yi /.

Proof. We denote by x D .y; r/ and x0 D .y0; r 0/ two points of the cone C.Yi /.
We have assumed that Yi was strongly quasi-convex, thus we can find two points z
and z0 in Yi such that the geodesics Œy; z�, Œz; z0� and Œz0; y0� are contained in Yi and
jz � yjX ; jz0 � y0jX 6 10ı.

By Proposition 2.1.3, we can find a geodesic c0 (resp. c, c0) between .z; r/
and .z0; r 0/ (resp. between .y; r/ and .z; r/, between .y0; r 0/ and .z0; r 0/). Since
jz � yjX ; jz0 � y0jX 6 10ı, we have

j.z; r/ � .y; r/jC.Yi /; j.z0; r 0/ � .y0; r 0/jC.Yi / 6 10ı:
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It follows that j.z0; r 0/� .z; r/jC.Yi / 6 jx0 � xjC.Yi / C 20ı. Thus by composing the
geodesics c, c0 and c0, we obtain a path from x to x0 whose length is no more than
jx0 � xjC.Yi / C 40ı.

Corollary 3.6.2. For all x; x0 2 PX , we have d.x; x0/ 6 kx0 � xk C 40ı.

Proof. Let x and x0 be two points of X . We distinguish three cases.
If there exists i 2 I such that x; x0 2 C.Yi /, then kx0 �xk D jx0 �xjC.Yi /. Thus

the inequality is given by the previous lemma.
If x; x0 2 X , but there is no i 2 I such that x; x0 2 C.Yi /, then kx0 � xk D

jx0 � xjX . There is a geodesic of X between x and x0. It gives a path in PX , whose
length is no more than jx0 � xjX . It follows that d.x; y/ 6 kx0 � xk.

In all the other cases, kx0 � xk D C1. There is nothing to prove.

Proposition 3.6.3. Let A > 1 and � > 0. There exists a constant ı > 0 depending
only on A and � with the following property. Let X be a geodesic, ı-hyperbolic
space, and Y D .Yi /i2I a collection of strongly quasi-convex subsets of X . The
identity map from . PX; j � j/ onto . PX; d/ induces a .1; �/-quasi-isometry on any ball
of radius A.

Proof. Let x and x0 be two points of PX such that jx0 � xj PX 6 2A. Using Propo-

sition 3.2.1 there exists a constant M.A/, an integer m 6 M.A/p
ı

and a chain C D
.z1; : : : ; zm/ between x and x0 such that l.C / 6 jx0 � xj PX C ı. By Corollary 3.6.2
we have

d.x; x0/ 6
m�1P
j D1

d.zj ; zj C1/ 6 l.C /C 40mı 6 jx0 � xj PX C ı C 40M.A/
p
ı:

Thus we have

jx0 � xj PX 6 d.x; x0/ 6 jx0 � xj PX C ı C 40M.A/
p
ı:

Consequently, if ı is small enough, the identity map from . PX; j�j/ onto . PX; d/ induces
a .1; �/-quasi-isometry on any ball of radius A.

Remark. This last proposition combined with Proposition 1.0.3 tells us that if . PX; j�j/
is locally hyperbolic, then so is . PX; d/.

4. Small cancellation theory

4.1. Orbifold. In this section we introduce vocabulary concerning orbifolds. For
more details about these objects see [5], Part III.G .
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Definition and length structure

Definition 4.1.1 (Rigidity). The action of a groupG on a topological spaceX is rigid
if it satisfies the following property: if there is an open U � X such that gjU D idU ,
then g D 1 for all g 2 G.

Definition 4.1.2 (Orbifold). Let Q be a topological space. We say that Q is an
orbifold if there exists a collection .Ui ; 'i /i2I , where Ui is a topological space and
'i a continuous map from Ui into Q, satisfying the following properties.

(i) Q D S
i2I 'i .Ui /.

(ii) For all y 2 'i .Ui /, for all x 2 '�1
i .fyg/, there exists a finite, rigid group of

homeomorphisms of Ui , Gx , fixing x, such that 'i B g D 'i for all g 2 Gx

and the restriction of 'i to a neighbourhood Vx of x induces a homeomorphism
from Vx=Gx onto its image.

(iii) For all xi 2 Ui and xj 2 Uj such that 'i .xi / D 'j .xj /, there exists a home-
omorphism 	j;i from a neighbourhood of xi onto a neighbourhood of xj with
'i D 'j B 	j;i .

(iv) 'i lifts paths and homotopies for all i 2 I ; that is, if c W Œ0; 1� ! Q (resp.
H W Œ0; 1� � Œ0; 1� ! Q) is a continuous path (resp. a homotopy), there exists
a subdivision 0 D t0 < � � � < tp D 1 of Œ0; 1� (resp. subdivisions 0 D t0 <

� � � < tp D 1 and 0 D u0 < � � � < uq D 1 of Œ0; 1�) such that cjŒtr ;trC1�

(resp. H jŒtr ;trC1��Œus ;usC1�) lifts in one of the Ui .

.Ui ; 'i / is called a chart of Q. The set of charts is an atlas. The map 	j;i is a
transition map, and the group Gx is an isotropy group.

Definition 4.1.3 (Length structure). The orbifold defined as above is endowed with
a length structure if

(i) the spaces Ui are endowed with a length structure,
(ii) for allx 2 Ui , the isotropy groupGx is an isometry group for the length structure

in Ui ,
(iii) the transition maps 	j;i are isometries with respect to the length structures in Ui

and Uj .

In this case, we can measure the length of a path by measuring the length of its
lift.

Definition 4.1.4 (� -useful length structure). Let � be a positive number. The length
structure defined as above is said to be � -useful if for all y 2 Q there exists a chart
.Ui ; 'i / and a point x 2 '�1

i .fyg/ such that

(i) the restriction 'i W B.x; �/ ! B.y; �/ is onto,
(ii) this restriction lifts the paths starting in y whose lengths are less than �

2
,
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(iii) this restriction lifts the homotopiesH W Œ0; 1�� Œ0; 1� ! Q satisfyingH.0; 0/ D
y, and for all t0 2 Œ0; 1� (resp. u0 2 Œ0; 1�/ the length of the path u ! H.t0; u/

(resp. t ! H.t; u0/) is shorter than �
2

.

.Ui ; 'i ; x/ is called a � -useful chart.

Definition 4.1.5 (� -locally ı-hyperbolic length structure). Let � > 0 and ı > 0.
The � -useful length structure, defined as above, is said to be � -locally ı-hyperbolic
if for all y 2 Q there exists a � -useful chart .Ui ; 'i ; x/ such that the ball B.x; �/ is
ı-hyperbolic.

Topology of orbifolds. If Q is an orbifold, we can define the G -paths and the ho-
motopy of two G -paths (cf. [5] or [8]). This leads to the definition of the fundamental
group of the orbifold Q denoted by �orb

1 .Q/. We may also define the notion of
covering and universal covering of Q in the sense of orbifolds (cf. [5]).

Example. Let X be a geodesic space and G a group whose action on X is rigid
and proper. We denote by Q the quotient X=G, and by q W X ! Q the canonical
projection. Q may be endowed with an orbifold structure with one chart .X; q/.
Indeed, for all x 2 X , the isotropy group Gx is necessarily finite. Moreover q
induces a local isometry from X=Gx onto its image. If X is simply connected, the
map q W X ! Q is also the universal cover ofQ andG D �orb

1 .Q/. Such an orbifold
is said to be developable.

Cartan–Hadamard Theorem

Theorem 4.1.6 ([8], Th. 4.3.1). Let ı > 0 and � > 105ı. Consider an orbifold
Q with a � -locally ı-hyperbolic length structure. Then Q is developable and its
universal cover X is 200ı-hyperbolic. Let .U; '; x/ be a � -useful chart. If z is a
preimage in X of the point y D '.x/, then the developing map .U; x/ ! .X; z/

induces an isometry from B.x; �
10
/ onto its image.

4.2. Statement of the very small cancellation theorem

Notation. If G is a group acting on a space X and Y a subset of X , we denote by
Stab.Y / the subgroup of G that preserves Y , i.e.,

Stab.Y / D fg 2 G j gY D Y g:
We define the notion of rotation family introduced by M. Gromov in [15].

Definition 4.2.1 (Rotation family). Let .Hi /i2I be a family of subgroups of G and
.Yi /i2I a collection of pairwise distinct subspaces of X . We say that .Yi ;Hi /i2I is
a rotation family if

(i) Hi is a finite index normal subgroup of Stab.Yi / for all i 2 I ,
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(ii) there is an action of G on I which is compatible with the one on X , that is, we
have Yg i D gYi and Hgi D gHig

�1 for all g 2 G and i 2 I .

Theorem 4.2.2 (Very small cancellation theorem). There exist two positive numbers
ı0 and �0 satisfying the following property.

LetX be a geodesic, simply connected, ı-hyperbolic space andG a group acting
properly by isometries on X . Let .Yi ;Hi /i2I be a rotation family such that each Yi

is strongly-quasi-convex. Let � D mini2I rinj.Hi ; X/, N be the normal subgroup of
G generated by the Hi ’s and xG the quotient group G=N . Assume also that

ı
� 6 ı0 and �.Y /

� 6 �0:

Then there exists a simply connected, hyperbolic, metric space xX such that xG acts
properly by isometries on xX .

Moreover if G (resp. Hi ) acts co-compactly on X (resp. Yi ) and I=G is finite,
then xX= xG is compact. In particular xG is hyperbolic.

Remark. In this theorem, �.Y / and � respectively play the role of the length of the
largest piece and the length of the smallest relation in the usual small cancellation
theory.

It is important to notice that the constants ı0 and �0 are independent from the
space X . This is useful in order to construct by iteration a sequence of hyperbolic
groups, as it is done in [15], [8] or [1].

4.3. Proof of the very small cancellation theorem

Construction of an orbifold. First, we have to fix several constants in order to ap-
ply the Cartan–Hadamard Theorem 4.1.6 and the two hyperbolicity theorems (The-
orems 2.3.2 and 3.5.2).

Let us consider a positive number " and choose a radius r0 such that r0 >

106.ln 3 C "/. With such constants we can apply the Cartan–Hadamard Theorem
to a r0

10
-locally .ln 3 C "/-hyperbolic orbifold. By Proposition 1.0.3, there exists a

positive number � with the following property. Consider two metric spaces X and
X 0 and a .1; �/-quasi-isometry f W X ! X 0. If X 0 is .ln 3C "

2
/-hyperbolic then X

is .ln 3C "/-hyperbolic. From now on we will work with the rescaled metric space
X� D 2� sinh r0

�
X . Thus, rinj.Hi ; X�/ > 2� sinh r0 for all i 2 I .

We can find ı0; �0 > 0 depending on r0 and " only such that if ı
�

6 ı0 and
�.Y /

�
6 �0, then we have the following.

(i) Assume thatx0 is a point of PX�.Y /, whose distance to a vertex is at least r0

2
. Then

the ball B.x0;
r0

9
/ of . PX�; j � j PX�

/ is .ln 3C "
2
/-hyperbolic (see Theorem 3.5.2).

(ii) For all i 2 I the cone C.Yi /=Hi is .ln 3C "
2
/-hyperbolic (see Theorem 2.3.2).
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(iii) The identity map from . PX�; d / onto . PX�; j � j/ restricted to any ball of radius r0
is a .1; �/-quasi-isometry (see Proposition 3.6.3).

Thus if x0 is a point of PX�.Y / whose distance to a vertex is at least r0

2
, the ball

B.x0;
r0

10
/ of . PX�; d / is .ln 3C "/-hyperbolic and, for all i 2 I , the cones C.Yi /=Hi

with the length metric are .ln 3C "/-hyperbolic.

Lemma 4.3.1. The action ofG onX� extends to an action by isometries of G on PX�.

Proof. We define this action such that its restriction to X� is the action of G on X .
Let i 2 I . Consider a point x D .y; r/ of C.Yi / and an element g of G. We define
g � x as the point .gy; r/ of C.Yg:i /. We check that for all x; x0 2 PX� and for all
g 2 G we have kgx0 � gxk D kx0 � xk. It follows that the action of G preserves
the distances j � j PX�

and d .

From now on we denote by Q the quotient space PX�.Y /=G endowed with the
quotient topology. The canonical projection PX� ! Q is denoted by q. Then we
define two kind of charts.

The first one is .U; q/, where U is the cone-off PX�.Y / from which we have
removed the vertices.

Let i 2 I , we define Ui D .C.Yi / n 
i .Yi //=Hi . The composition C.Yi / !
PX� ! Q induces an map qi W Ui ! Q. The second type of charts is .Ui ; qi /.

Lemma 4.3.2. The charts defined previously endow Q with an orbifold structure.

Proof. The action of G on U is proper. Moreover the stabilizer of the vertex vi of
the cone Ui is exactly the finite group Stab.Yi /=Hi . We check that the atlas f.U; q/,
.Ui ; qi /g defines a structure of orbifold on Q.

Properties of the orbifold Q

Lemma 4.3.3. The structure of orbifold onQ defined as above is r0

10
-locally .ln 3C"/-

hyperbolic.

Proof. It is a consequence of the two hyperbolicity theorems: the constants ı0 and�0

have been chosen in such a way that the structure of orbifold is r0

10
-locally .ln 3C "/-

hyperbolic.

Corollary 4.3.4. The orbifold Q is developable and its universal cover xX is Nı-
hyperbolic, with Nı D 200.ln 3C "/.

Proof. This is an application of the Cartan–Hadamard Theorem (see Theorem 4.1.6)
to the orbifold Q with its r0

10
-locally .ln 3C "/-hyperbolic length structure.
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Proposition 4.3.5. The group xG acts properly by isometries on xX .

Proof. We prove that xG D �orb
1 .Q/. The charts U and Ui are simply connected.

This implies that �orb
1 .U=G/ D G and �orb

1 .Ui=.Stab.Yi /=Hi // D Stab.Yi /=Hi .
Applying to Q the van Kampen Theorem for orbifolds, it follows that �orb

1 .Q/ D
Stab.Yi /=Hi �Stab.Yi / G D xG (see [16]). Thus xG acts properly on xX .

Proposition 4.3.6. If G (resp. Hi ) acts co-compactly on X (resp. Yi ) and I=G is
finite, then xX= xG is compact. In particular xG is hyperbolic.

Proof. Since there are, up to a translation by an element of G, a finite number of
Yi , it follows that Q is obtained by gluing a finite number of compact cones on the
compact space X=G. Thus Q D xX= xG is compact. Hence the action of xG on xX is
proper, co-compact.

Theorem 4.3.7. LetX be ann-dimensional simplicial complex with 8.nC1/ Nı 6 r0

100
.

Suppose that, for all x 2 X and all r 2 RC, there exists a homotopy h W xB.x; r/ �
Œ0; 1� ! X contracting xB.x; r/ to fxg such that jh.x0; t /� xj 6 jx0 � xj C Nı�

2� sinh r0

for all x0 2 xB.x; r/. Moreover, suppose that the Yi ’s have the same property. Then
xX is contractible.

Proof. Let Nx be a point of xX and r 2 Œ0; 8.nC 1/ Nı�. We denote by xB the closed ball
xB. Nx; r/ of xX . We distinguish two cases.

Case 1. There exists i 2 I such that the vertex Nvi of the cone C.Yi /=Hi belongs
to xB . Then there is a homotopy H W xB � Œ0; 1� ! xB which contracts xB to f Nvig.

Case 2. The ball xB does not contain a vertex Nvi . Due to the Cartan–Hadamard
Theorem, there exists a chart .V; x/ such that the developing map .V; x/ ! . xX; Nx/
induces an isometry from B.x; r0

100
/ onto its image. In particular the ball xB lifts in

one of the charts. Assume that this chart isUi D C.Yi /=Hi . Since Nvi does not belong
to xB , the ball xB lifts in fact in the coneC.Yi /. By Proposition 2.4.1, xB is contractible
in B. Nx; r C Nı/. In the other hand, if the chart V is U , we apply Proposition 3.3.1.
Thus xB is contractible in B. Nx; r C 3 Nı/.

Consequently, every ball xB. Nx; r/ of xX , with r 6 8.n C 1/ Nı, is contractible in
B. Nx; r C 4ı/. By Proposition 1.3.4, xX is contractible.

5. Examples of aspherical complexes

In this section we explain how to construct examples of rotation families satisfying the
very small cancellation assumptions. LetX be a proper, geodesic, ı-hyperbolic space
and Y a closed convex subset of X . Let G be a group acting properly, co-compactly,
by isometries on X , such that Stab.Y / acts co-compactly on Y .
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We are interested in the rotation family .gY; gHg�1/g2G= Stab.Y /, where H is
a subgroup of Stab.Y /. In concrete situations, fdiam.gY C20ı \ Y C20ı/ j g 2
G n Stab.Y /g may not be bounded. Nevertheless, in many situations this assumption
can be achieved by replacing G with a finite index subgroup of G. This uses, as
explained in the next lemma, the profinite topology of groups.

Lemma 5.1. Assume that the subgroup Stab.Y / is closed in G under the profinite
topology. Let � be a non-negative number. There exists a finite index subgroup G0
of G containing Stab.Y / such that for all g in G0 we have g 2 Stab.Y / if and only
if diam.gY C20ı \ Y C20ı/ > �.

Proof. Let K be a compact fundamental domain for the action of Stab.Y / on Y .
Since the action of G is proper, the set

E D fg 2 G j diam.gKC�C30ı \KC�C30ı/ > �g
is finite. By assumption, Stab.Y / is closed inG under the profinite topology. In other
words,

Stab.Y / D T
N GG

ŒGWN �<C1
Stab.Y / �N:

Hence there exists a finite index normal subgroupN ofG such thatE\Stab.Y /�N �
Stab.Y /. We denote by G0 the set Stab.Y / � N . It is a finite index subgroup of G
containing Stab.Y /. Consider now g 2 G0 such that diam.gY C20ı \ Y C20ı/ > �.
SinceK is a fundamental domain ofY , there exist four points x, x0, y, y0 ofKC30ıC�

and two elements h, h0 of Stab.Y / with the following properties: hx D gh0x0,
hy D gh0y0 and jy � xj D jy0 � x0j > �. Thus h�1gh0 belongs to E \ G0. But h
and h0 both belong to Stab.Y /. Hence g 2 Stab.Y /.

In this context, the following result of N. Bergeron is useful.

Proposition 5.2 ([2], Lemme principal). Letƒ be an algebraic subgroup of GLn.R/
and G a finitely generated subgroup of GLn.R/. Then ƒ \ G is closed in G under
the profinite topology.

The second lemma explains how to find a subgroup H of Stab.Y / with an injec-
tivity radius as large as desired.

Lemma 5.3. Assume that the group G is residually finite. Then for all � > 0 there
exists a finite index normal subgroup H of Stab.Y / such that rinj.H;X/ > �.

Proof. LetK be a compact fundamental domain for the action ofG on X . Since the
action of G is proper, the set

E D fg 2 G j gKC� \KC� ¤ ;g
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is finite. Moreover, G is residually finite. Hence there exists a finite index normal
subgroup N of G such that E \ N D f1g. Consider g 2 N n f1g and x 2 X . By
definition there exists h 2 G such that hx 2 K. But hgh�1 belongs to N n f1g, thus
hgh�1KC� \KC� D ;. It follows that jgx � xj D j.hgh�1/hx � hxj > �. Hence
Œg� > �. Consequently, we take for H the group N \ Stab.Y /.

Theorem 5.4. Let Hn denote the real (resp. complex, quaternionic) hyperbolic space,
and ı its hyperbolicity constant. We consider ƒk D SO.k; 1/ (resp. SU.k; 1/,
Sp.k; 1/) as the stabilizer of Hk in Hn. LetG be a uniform lattice ofƒn D SO.n; 1/
(resp. SU.n; 1/, Sp.n; 1/). We assume that G \ƒk is a uniform lattice of ƒk .

(i) There exists a finite index subgroup G0 of G such that the set

fdiam.gHC20ı
k

\ HC20ı
k

/ j g 2 G0 nƒkg
is bounded.

(ii) Let xQ be the space obtained by gluing a cone of base Hk=G
0 \ ƒk over

Hn=G
0. There is a finite index subgroupH ofG0 \ƒk and a contractible hyperbolic

space xX such that xG0 D G0=hhH ii acts properly co-compactly on xX , and xQ D xX= xG0.

Proof. Applying Proposition 5.2,G\ƒk is closed inG under the profinite topology.
The first point follows from Lemma 5.1.

We denote by � the upper bound of

fdiam.gHC20ı
k

\ HC20ı
k

/ j g 2 G0 nƒkg:
It is known that a finitely generated subgroup of ƒn is residually finite. Using
Lemma 5.3 there exists a finite index normal subgroupH ofG0\ƒk , whose injectivity
radius is �, and such that ı 6 ı0� and � 6 �0�, where ı0 and �0 are the constants
given by the very small cancellation theorem (see Theorem 4.2.2). It follows that
the rotation family .gHk; gHg

�1/g2G0=G0\ƒk
satisfies the hypotheses of the very

small cancellation theorem. Thus there exists a hyperbolic space xX such that xG0 D
G0=hhH ii acts properly by isometries on xX and xQ D xX= xG0. Since G0 (resp. H ) is
a uniform lattice of ƒn (resp. ƒk) the action of G0 (resp. H ) on Hn (resp. Hk) is
co-compact. It follows that the action of xG0 on xX is co-compact. Moreover, every
ball in Hn or Hk is contractible. Thus Theorem 4.3.7 implies that xX is contractible.

The next result is proved in the same way, it only uses another kind of convex
subsets of Hn.

Theorem 5.5. Let Hn.C/ denote the complex hyperbolic space, and let ı be its
hyperbolicity constant. Consider SO.n; 1/ as the stabilizer of the n-dimensional real
hyperbolic space Hn.R/ in Hn.C/. LetG be a uniform lattice of SU.n; 1/ such that
G \ SO.n; 1/ is also a uniform lattice of SO.n; 1/.
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(i) There exists a finite index subgroup G0 of G such that the set

fdiam.gHn.R/
C20ı \ Hn.R/

C20ı/ j g 2 G0 n SO.n; 1/g
is bounded.

(ii) Denote by xQ the space obtained by attaching over Hn=G
0 a cone of base

Hn.R/=G0 \ SO.n; 1/. There is a finite index subgroup H of G0 \ SO.n; 1/ and a
contractible hyperbolic space xX such that xG0 D G0=hhH ii acts properly
co-compactly on xX , and xQ D xX= xG0.
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