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Words and mixing times in finite simple groups
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Abstract. Let w ¤ 1 be a non-trivial group word, let G be a finite simple group, and let w.G/

be the set of values of w in G. We show that if G is large, then the random walk on G with
respect to w.G/ as a generating set has mixing time 2.

This strengthens various known results, for example the fact that w.G/2 covers almost all
of G.
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1. Introduction

Let w D w.x1; : : : ; xd / be a non-trivial group word, namely a non-identity element
of the free group Fd on x1; : : : ; xd : Then we may write w D x

n1

i1
x

n2

i2
: : : x

nk

ik
where

ij 2 f1; : : : ; dg and nj are integers. Let G be a group. For g1; : : : ; gd 2 G we
write w.g1; : : : ; gd / D g

n1

i1
g

n2

i2
: : : g

nk

ik
2 G. Denote w.G/ D fw.g1; : : : ; gd / j

g1; : : : ; gd 2 Gg, the set of values of w in G. Also, for every subset A � G we write
Ak D fa1 : : : ak j ai 2 Gg.

An interesting much studied question is how large w.G/ is for G a (nonabelian)
finite simple group. In [La] it is shown that if G1, G2, … is an infinite sequence of
finite simple groups, no two of which are isomorphic, then

limi!1
log jw.Gi /j

log jGi j D 1:

Stronger results were subsequently obtained in [LaSh1] and in [NiPy].
Related Waring type problems were also widely studied, where the goal is to

express each group element as a short product of values of w; see [LiSh1], [Sh],
[Sh1], [LaSh1], [LaSh2], [NiPy]. In [Sh] it is shown that for every group word
w ¤ 1, there exists a positive integer N D N.w/ such that for every finite simple
group G with jGj � N.w/ we have w.G/3 D G.



510 G. Schul and A. Shalev

In [LaSh1] and [LaSh2] a better result for alternating groups is proved. It is shown
that if w1, w2 are non-trivial group words, then there exists N D N.w1; w2/ such
that for all integers n � N we have w1.An/w2.An/ D An.

In this paper we focus on random walks on finite simple groups G with respect
to w.G/ as a generating set. Our goal is to determine the mixing time of the random
walk, namely the time required until we reach an almost uniform distribution on G.
Our main theorem states that (when jGj is large) this mixing time is the smallest
possible, namely 2.

To make this precise, denote by UG the uniform distribution on G, i.e., UG.g/ D
1

jGj for all g 2 G. For W � G, denote by PW the uniform distribution on W; i.e.,

PW .g/ D 1
jW j if g 2 W and 0 otherwise.

Denote by PW � PW the convolution of the probability PW with itself. Then
.PW � PW /.g/ is the probability that xy D g where x; y 2 W are chosen randomly,
uniformly and independently.

For two distributions P , Q on G we let

kP � Qk1 D
X
g2G

jP.g/ � Q.g/j

denote the L1-distance between P and Q.

Theorem 1.1. Fix a word w ¤ 1, and let G be a finite simple group. Then
kPw.G/ � Pw.G/ � UGk1 ! 0 as jGj ! 1.

In fact the same method establishes a similar result for

kPw1.G/ � Pw2.G/ � UGk1;

where w1, w2 are two non-trivial group words.
This result for alternating groups has recently been obtained in [LaSh2]. It remains

to prove it for groups of Lie type, which is what we do here.
From Theorem 1.1 one can deduce that w.G/2 covers almost all of G for G a

finite simple group and w a non-trivial group word. This has already been proved in
Corollary 1.4 of [Sh1].

In fact we prove a more general result of independent interest. Recall that a
normal subset of a group G is a subset closed under conjugation (namely a union of
conjugacy classes).

If G is a simple group of Lie type then the rank r of G is defined to be the rank of
the ambient simple algebraic group, unless we deal with Lie types 2B2, 2G2 or 2F4,
in which case r D 1, 1, 2, respectively.

Theorem 1.2. Let G be a finite simple group of Lie type of rank r over a field with
q elements. Let W � G be a normal subset. Then for any " > 0 there exists a
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number R."/ depending only on " such that if r > R."/ and jW j=jGj � q�r.1�"/,
or if r � R."/ and jW j=jGj � q�.1�"/, then

kPW � PW � UGk1 ! 0 as jGj ! 1:

Combining this result with known estimates on the size of w.G/ we then deduce
Theorem 1.1.

In fact we prove a more general result on k normal subsets W1; : : : ; Wk and give
sufficient conditions for

kPW1
� � � � � PWk

� UGk1 ! 0:

See Theorems 3.3 and 3.5 bellow.
In our proofs we use character theory. To understand the relevance, let G be a

finite group, g 2 G, and let Ci D xG
i .i D 1; : : : ; k/ be conjugacy classes. Let

PC1;:::;Ck
.g/ denote the probability that y1 : : : yk D g where yi 2 Ci are chosen

randomly and uniformly. Notice that PC1;:::;Ck
D PC1

� � � � � PCk
. Let Irr G denote

the set of complex irreducible characters of G. It follows from a classical result that

PC1;:::;Ck
.g/ D jGj�1

X
�2Irr G

�.x1/ : : : �.xk/�.g�1/

�.1/k�1
:

For a proof of this result see for instance Theorem 30.4 of [JaLi].
We also use the Witten zeta function �G encoding the character degrees of a finite

group G. For a real number s define

�G.s/ D
X

�2Irr G

�.1/�s:

We use the fact established in [LiSh2] that for a finite simple group G, �G.2/ ! 1 as
jGj ! 1.

Throughout, ci denote suitable positive absolute constants.

Acknowledgement. We would like to thank the Israel Science Foundation for sup-
porting this research via Grant 754/08.

2. Preliminaries

In proving our results we use known estimates for the size of w.G/.
The first result in this direction is Proposition 7 of [La]:

Theorem 2.1. For any non-trivial word w and any root system ˆ, there exists a
constant c D c.w; ˆ/ > 0 such that

jw.G/j > cjGj
for all simple groups G of Lie type associated to the root system ˆ.
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Theorem 1.11 of [LaSh1] states:

Theorem 2.2. Let G be a finite simple group of Lie type and of rank r . Let w ¤ 1

be a word. Then if G is not of type Ar or 2Ar , we have

jw.G/j � cr�1jGj
for some absolute constant c > 0, provided jGj � N.w/.

For groups of type Ar we use Proposition 1.7 of [NiPy]:

Theorem 2.3. Given w there is a constant c D c.w/ > 0, depending only in w, such
that if G D SL.n; q/ then

jw.G/j >
cjGj

n3q24Cn=4
:

For groups of type 2Ar we use Proposition 1.8 of [NiPy]:

Theorem 2.4. Let L D SU.d; q/. There is a constant e > 0 such that

jw.L/j >
ejLj

d 3q49Cd=4
:

Using these three results it is easy to deduce the following:

Theorem 2.5. Let G D Gr.q/ be a finite simple group of Lie type of rank r over the
field with q elements. Let w be a group word. There are integers N D N.w/ and
R D R.w/ such that if jGj � N and r � R, then jw.G/j

jGj � q� r
3 .

All these theorems suggest that w.G/ is a large normal subset, and we would like
to evaluate

kPW � � � � � PW � UGk2
1 ;

for large normal subsets W . We can split W into conjugacy classes Ci D xG
i . A

classical result states

PC1;:::;Ck
.g/ D jGj�1

X
�2Irr G

�.x1/ : : : �.xk/�.g�1/

�.1/k�1
:

From this we deduce the following lemma, which is probably well known. For
completeness we insert a proof.

Lemma 2.6. Let G be a finite group, and let Ci D xG
i be conjugacy classes. Then

kPC1
� � � � � PCk

� UGk2
1 �

X
�2Irr G

�¤1

j�.x1/j2 : : : j�.xk/j2
�.1/2k�2

:



Words and mixing times in finite simple groups 513

Proof.

kPC1
� � � � � PCk

� UGk2
1 D

� X
g2G

jPC1
� � � � � PCk

.g/ � jGj�1j
�2

D
� X

g2G

ˇ̌ˇjGj�1
X

�2Irr G

�.x1/ : : : �.xk/�.g�1/

�.1/k�1
� jGj�1

ˇ̌ˇ
�2

D jGj�2

� X
g2G

ˇ̌ˇ X
1¤�2Irr G

�.x1/ : : : �.xk/�.g�1/

�.1/k�1

ˇ̌ˇ
�2

:

By the Cauchy–Schwarz inequality we have,

jGj�2

� X
g2G

ˇ̌ˇ X
1¤�2Irr G

�.x1/ : : : �.xk/�.g�1/

�.1/k�1

ˇ̌ˇ
�2

� jGj�1
X
g2G

ˇ̌ˇ X
1¤�2Irr G

�.x1/ : : : �.xk/�.g�1/

�.1/k�1

ˇ̌ˇ2

D jGj�1
X
g2G

� X
1¤�2Irr G

�.x1/ : : : �.xk/�.g�1/

�.1/k�1

�� X
1¤�2Irr G

�.x1/ : : : �.xk/�.g�1/

�.1/k�1

�

D jGj�1
X
g2G

X
�¤1

X
�¤1

�.x1/�.x1/ : : : �.xk/�.xk/�.g�1/�.g�1/

�.1/k�1�.1/k�1

D jGj�1
X
�¤1

X
�¤1

�.x1/�.x1/ : : : �.xk/�.xk/

�.1/k�1�.1/k�1

� X
g2G

�.g�1/�.g�1/

�

D
X

1¤�2Irr G

j�.x1/j2 : : : j�.xk/j2
�.1/2k�2

:

The last equality is by the orthogonality relations (see e.g. [Ser]).

Now we use known results on the irreducible representations of finite simple
groups of Lie type. By [LiSh3] Section 6 (see also Lemma 4.6 of [Sh]) we have:

Lemma 2.7. Let G D Gr.q/ be a finite simple classical group. Then Irr G has a
subset W of so called Weil characters with the following properties:

(i) jW j � q C 1.

(ii) Let � 2 W and x 2 G. If jCG.x/j � qm for some integer m, then j�.x/j �
q

p
mCb where b is some absolute constant.

(iii) If 1 ¤ � 2 Irr G n W and r > 5 then �.1/ � cq2r�3 where c > 0 is some
absolute constant.
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We also use the following:

Lemma 2.8. Let G D Gr.q/ be a finite simple group of Lie type of rank r over the
field with q elements, and let k.G/ denote the number of conjugacy classes of G.

(i) There is a positive constant c1 such that �.1/ � c1qr for all 1 ¤ � 2 Irr G.
(ii) There is a positive constant c2 such that k.G/ � c2qr .

Proof. Part (i) follows from [LanSe] and (ii) from [FuGu].

Theorem 1.1 of [LiSh2] states:

Theorem 2.9. Let G be a finite simple group, and for a real number s let

�G.s/ D
X

�2Irr G

�.1/�s:

If s > 1 then �G.s/ ! 1 as jGj ! 1.

We also use known estimates for the number of regular semisimple elements.
Recall that an element x of a finite group G of Lie type is called regular if its centralizer
in the corresponding algebraic group xG has minimal dimension, namely rank. xG/.

We say that x is semisimple if its order is not divisible by p, where p is the
defining characteristic of G. The next result is of Guralnick and Lübeck in [GuLu]:

Theorem 2.10. Let G be a finite simple group of Lie type over the field with q

elements. Denote by r.G/ the proportion of regular semisimple elements in G. Then

1 � r.G/ <
3

q � 1
C 2

.q � 1/2
:

From this theorem, using elementary computations, we easily obtain:

Corollary 2.11. Let G be a finite simple group of Lie type over the field with q

elements. Denote by r.G/ the proportion of regular semisimple elements in G. Then

1 � r.G/ <
5

q
:

So we can see that there are many regular semisimple elements, and we use the
next lemma when dealing with these elements in groups of bounded rank:

Lemma 2.12. Let G D Gr.q/ be a finite simple group of Lie type of rank r over the
field with q elements, and let x 2 G be a regular semisimple element. Then there
is a number c D c.r/, depending on r but not on q, such that j�.x/j � c for all
� 2 Irr G.

Proof. This follows from the Deligne–Lusztig theory; see [Lus], and formula 4.26.1
in particular.
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3. Proofs

Lemma 3.1. Let G be a finite group, k � 2 an integer, and let x1; x2; : : : ; xk 2 G

be elements of G. Then
X

�2Irr G

j�.x1/�.x2/ : : : �.xk/j � jCG.x1/j 1
2 jCG.x2/j 1

2 : : : jCG.xk/j 1
2 :

Proof. By the orthogonality relations (see e.g. [Ser]) we have
X

�2Irr G

j�.xi /j2 D jCG.xi /j:

In particular j�.xi /j � jCG.xi /j 1
2 for all 1 � i � k and all � 2 Irr G.

Clearly
X

�2Irr G

j�.x1/�.x2/ : : : �.xk/j � jCG.x3/j 1
2 : : : jCG.xk/j 1

2

X
�2Irr G

j�.x1/�.x2/j:

By the Cauchy–Schwarz inequality we have

X
�2Irr G

j�.x1/�.x2/j �
� X

�2Irr G

j�.x1/j2
� 1

2
� X

�2Irr G

j�.x2/j2
� 1

2

D jCG.x1/j 1
2 jCG.x2/j 1

2 :

The result now follows from the two inequalities above.

Theorem 3.2. Let G D Gr.q/ be a finite simple group of Lie type of rank r over the
field with q elements. Let k � 2 be an integer. Let " > 0 and let x1; x2; : : : ; xk 2 G

such that
kY

iD1

jCG.xi /j � q.4k�4�.3� 4
k

/"/r :

(i) If r > 5 and G is a classical group, then

X
�2Irr G

�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

� 2c1�k
1 qk

p
.4k�4/rCb�r.k�1/C1 C c1�k

2 q3k�3�.1:5� 2
k

/r";

where c1, c2 and b are absolute constants.
(ii) There exists a real number r1 D r1.k; "/ such that if r � r1 then

X
�2Irr G

�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

! 0 as jGj ! 1:
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Proof. We first prove (i).
Let W be the set of Weil characters of G (see 2.7). Set

X
�2Irr G

�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

D
X
�2W

j�.x1/ : : : �.xk/j
�.1/k�1

C
X
�…W
�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

:

We will handle each summand separately.

The first summand:
From our assumptions jCG.xi /j � q.4k�4/r and so (ii) of Lemma 2.7 yields

j�.xi /j � q
p

.4k�4/rCb for i D 1; : : : ; k and � 2 W . We also have �.1/ � c1qr for
all non-trivial � 2 Irr G (i) of Lemma 2.8. Therefore

X
�2W

j�.x1/ : : : �.xk/j
�.1/k�1

�
X
�2W

qk
p

.4k�4/rCb

�.1/k�1
� jW jqk

p
.4k�4/rCb

ck�1
1 q.k�1/r

:

From (i) of Lemma 2.7 we have jW j � q C 1 and so

X
�2W

j�.x1/ : : : �.xk/j
�.1/k�1

� .q C 1/qk
p

.4k�4/rCb

ck�1
1 q.k�1/r

� 2q � qk
p

.4k�4/rCb

ck�1
1 q.k�1/r

D 2c1�k
1 qk

p
.4k�4/rCb�.k�1/rC1:

The second summand:
If 1 ¤ � … W and r > 5, (iii) of Lemma 2.7 yields �.1/ � c2q2r�3. Hence

X
�…W
�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

� c1�k
2 q.1�k/.2r�3/

X
�…W
�¤1

j�.x1/ : : : �.xk/j

� c1�k
2 q.1�k/.2r�3/

X
�2Irr G

j�.x1/ : : : �.xk/j:

Using Lemma 3.1 we obtain
X
�…W
�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

� c1�k
2 q.1�k/.2r�3/jCG.x1/j 1

2 : : : jCG.xk/j 1
2 :

Using our assumption on jCG.x1/j : : : jCG.xk/j we obtain
X
�…W
�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

� c1�k
2 q.1�k/.2r�3/q.2k�2�.1:5� 2

k
/"/r

D c1�k
2 q3k�3�.1:5� 2

k
/r":
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The sum:
We conclude that for r > 5 and for G a classical group,

X
�2Irr G

�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

� 2c1�k
1 qk

p
.4k�4/rCb�.k�1/rC1 C c1�k

2 q3k�3�.1:5� 2
k

/r";

proving (i).
Since the simple groups of Lie type which are not classical are of rank at most 8,

we can use (i) by assuming also r > 8.
Hence, if r > 8 and also large enough so that

k
p

.4k � 4/r C b � .k � 1/r C 1 < 0

and

3k � 3 � .1:5 � 2
k

/r" < 0;

then X
�2Irr G

�¤1

j�.x1/ : : : �.xk/j
�.1/k�1

! 0 as jGj ! 1;

proving (ii).

Theorem 3.3. Let G be a finite simple group of Lie type of rank r over the field with
q elements. Let k � 2 be an integer. Let 0 < ". Let W1; : : : ; Wk be normal subsets
such that jWi j

jGj � q�.3� 4
k

/r.1�"/:

Then there exists a real number r1 D r1.k; "/ such that the following holds.
(i) If r � r1 and jGj � N D N.k; "/, where N is an integer that depends only

on k and ", then

kPW1
� � � � � PWk

� UGk1

�
q

2c1�k
1 qk

p
.4k�4/rCb�r.k�1/C1 C c1�k

2 q3k�3�.1:5� 2
k

/r"

C .2k � 1/2c3q�.3� 4
k

/ k�1
k

"r ;

where c1, c2, c3, b are absolute constants.
(ii) If r � r1 then

��PW1
� � � � � PWk

� UG

��
1

! 0 as jGj ! 1:

Proof. Partition Wi into two subsets Wi;1 and Wi;2 as follows:

Wi;1 D ˚
x 2 Wi W jCG.x/j � q

.4� 4
k

� .3k�4/"

k2 /r�
Wi;2 D ˚

x 2 Wi W jCG.x/j > q
.4� 4

k
� .3k�4/"

k2 /r�
:
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Then Wi;1 and Wi;2 are normal subsets, and

Wi D Wi;1 [ Wi;2; Wi;1 \ Wi;2 D �:

Hence,

PWi
D jWi;1j

jWi j PWi;1
C jWi;2j

jWi j PWi;2
:

It follows that

PW1
� � � � � PWk

D
� jW1;1j

jW1j PW1;1
C jW1;2j

jW1j PW1;2

�
� � � � �

� jWk;1j
jWkj PWk;1

C jWk;2j
jWkj PWk;2

�

D
X

.j1;:::;jk/2f1;2gk

� jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj

�
PW1;j1

� � � � � PWk;jk
:

Since

UG D
X

.j1;:::;jk/2f1;2gk

� jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj

�
UG ;

we have

kPW1
� � � � � PWk

� UGk1

�
X

.j1;:::;jk/2f1;2gk

jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj kPW1;j1

� � � � � PWk;jk
� UGk1: (1)

We will handle the first summand

jW1;1j
jW1j : : :

jWk;1j
jWkj kPW1;1

� � � � � PWk;1
� UGk1

differently from the other 2k � 1 summands.

The first summand:

jW1;1j
jW1j : : :

jWk;1j
jWkj kPW1;1

� � � � � PWk;1
� UGk1 � kPW1;1

� � � � � PWk;1
� UGk1:

Wi;1 is a normal subset, and hence is a union of conjugacy classes. Denote the
conjugacy classes of Wi;1 by Ci;1; : : : Ci;mi

. So Wi;1 D Smi

j D1 Ci;j .
Hence,

PW1;1
� � � � � PWk;1

D
� m1X

j1D1

jC1;j1
j

jW1;1j PC1;j1

�
� � � � �

� mkX
jkD1

jCk;jk
j

jWk;1j PCk;jk

�

D
X

1�j1�m1
:::

1�jk�mk

jC1;j1
j : : : jCk;jk

j
jW1;1j : : : jWk;1j PC1;j1

� � � � � PCk;jk
:
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Therefore,

kPW1;1
�� � ��PWk;1

�UGk1 �
X

1�j1�m1
:::

1�jk�mk

jC1;j1
j : : : jCk;jk

j
jW1;1j : : : jWk;1j kPC1;j1

�� � ��PCk;jk
�UGk1:

According to Lemma 2.6,

kPC1;j1
� � � � � PCk;jk

� UGk2
1 �

X
�2Irr G

�¤1

j�.x1;j1
/j2 : : : j�.xk;jk

/j2
�.1/2k�2

;

where Ci;ji
D xG

i;ji
.

Any x1;j1
; : : : ; xk;jk

satisfy

jCG.x1;j1
/j : : : jCG.xk;jk

/j � �
q

.4� 4
k

� .3k�4/"

k2 /r�k D q.4k�4�.3� 4
k

/"/r :

Hence, according to Theorem 3.2, if r � r1 then

X
�2Irr G

�¤1

j�.x1;j1
/j : : : j�.xk;jk

/j
�.1/k�1

! 0

as jGj ! 1.
In particular there exists N D N.k; "/ such that if jGj � N then for any � ¤ 1

we have j�.x1;j1
/j : : : j�.xk;jk

/j
�.1/k�1

� 1:

Hence, if r � r1 and jGj � N then,

X
�2Irr G

�¤1

j�.x1;j1
/j2 : : : j�.xk;jk

/j2
�.1/2k�2

�
X

�2Irr G
�¤1

j�.x1;j1
/j : : : j�.xk;jk

/j
�.1/k�1

� 2c1�k
1 qk

p
.4k�4/rCb�r.k�1/C1

C c1�k
2 q3k�3�.1:5� 2

k
/r":

The last inequality is from Theorem 3.2.
Therefore,

kPC1;j1
� � � � � PCk;jk

� UGk1

�
q X

�2Irr G
�¤1

j�.x1;j1
/j2 : : : j�.xk;jk

/j2
�.1/2k�2

�
q

2c1�k
1 qk

p
.4k�4/rCb�r.k�1/C1 C c1�k

2 q3k�3�.1:5� 2
k

/r":
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Hence, when r � r1 and jGj � N then

kPW1;1
� � � � � PWk;1

� UGk1

�
X

1�j1�m1
:::

1�jk�mk

jC1;j1
j : : : jCk;jk

j
jW1;1j : : : jWk;1j kPC1;j1

� � � � � PCk;jk
� UGk1

�
q

2c1�k
1 qk

p
.4k�4/rCb�r.k�1/C1 C c1�k

2 q3k�3�.1:5� 2
k

/r":

The other 2k � 1 summands:
Each summand is of the form

jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj kPW1;j1

� � � � � PWk;jk
� UGk1;

where j1; : : : ; jk 2 f1; 2g and at least one of j1; : : : ; jk equals 2.
Since kP � Qk1 � 2 for distributions P and Q, we have

jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj kPW1;j1

� � � � � PWk;jk
� UGk1 � 2

jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj :

Denote
S D ˚

x 2 G W jCG.x/j � q
.4� 4

k
� .3k�4/"

k2 /r�
:

Denote by k.G/ the number of conjugacy classes in G. Then S is a normal subset,
which splits into at most k.G/ conjugacy classes, and each conjugacy class is of size
at most

jGjq.�4C 4
k

C .3k�4/"

k2 /r
:

Hence
jS j � k.G/jGjq.�4C 4

k
C .3k�4/"

k2 /r
:

According to (ii) of Lemma 2.8:

k.G/ � c3qr

where c3 is an absolute constant. So

jS j � c3jGjq.�3C 4
k

C .3k�4/"

k2 /r D c3jGjq�.3� 4
k

/r.1� "
k

/:

Since Wi;2 � S we obtain

jWi;2j
jGj � c3q�.3� 4

k
/r.1� "

k
/

for 1 � i � k.
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We are assuming jWi j
jGj � q�.3� 4

k
/r.1�"/.

Hence

jWi;2j
jWi j D

jWi;2j
jGj
jWi j
jGj

� c3q�.3� 4
k

/r.1� "
k

/C.3� 4
k

/r.1�"/ D c3q�.3� 4
k

/ k�1
k

"r :

Since at least one of j1; : : : ; jk equals 2,

jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj � c3q�.3� 4

k
/ k�1

k
"r ;

and so

jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj kPW1;j1

� � � � � PWk;jk
� UGk1 � 2

jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj

� 2c3q�.3� 4
k

/ k�1
k

"r :

The sum:
When r � r1 and jGj � N we obtain

kPW1
� � � � � PWk

� UGk1

�
X

.j1;:::;jk/2f1;2gk

jW1;j1
j

jW1j : : :
jWk;jk

j
jWkj

���PW1;j1
� � � � � PWk;jk

� UG

���
1

�
q

2c1�k
1 qk

p
.4k�4/rCb�r.k�1/C1 C c1�k

2 q3k�3�.1:5� 2
k

/r"

C .2k � 1/2c3q�.3� 4
k

/ k�1
k

"r ;

proving (i). Part (ii) is an immediate consequence.

We now draw conclusions for sets w.G/ of word values.

Theorem 3.4. Let w ¤ 1 be a non-trivial group word. Let G D Gr.q/ be a finite
simple group of Lie type of rank r over the field with q elements. Then there is an
integer r0.w/, depending only on w, such that the following holds.

(i) If r � r0.w/ and jGj � N.w/, where N.w/ depends only on w, then

kPw.G/ � Pw.G/ � UGk1 �
q

2c�1
1 q2

p
4rCb�rC1 C c�1

2 q3� r
3 C 6c3q� r

3 ;

where c1, c2, c3, b are absolute constants.
(ii) If r � r0.w/ then kPw.G/ � Pw.G/ � UGk1 ! 0 as jGj ! 1.
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Proof. We will deal separately with the different types of groups G to show that for
r large enough and jGj large enough we have jw.G/j

jGj � q� r
3 .

G is not of type Ar or 2Ar :
According to Theorem 2.2, there is an absolute constant c > 0 and an integer

M.w/, such that if jGj � M.w/ then

jw.G/j
jGj � c � r�1:

There exists an absolute constant r2 (that depends only on the absolute constant c)
such that for r � r2, we have c � r�1 � 2� r

3 . So for r � r2 and jGj � M.w/ we
have jw.G/j

jGj � c � r�1 � 2� r
3 � q� r

3 :

G is of type Ar :
According to Theorem 2.3, if G D SL.r C 1; q/, and given w, there is an integer

d.w/ > 0, depending only on w, such that

jw.G/j
jGj >

d.w/

.r C 1/3q24C rC1
4

:

For G D PSL.r C 1; q/ we also have this inequality, since for a subset S � G

we have
j xS j
j xGj D j xS j

jGj=jN j � jS j=jN j
jGj=jN j D jS j

jGj ;

where N D Z.G/, xG D G=N and xS D SN=N .
So for r larger than a constant r3.w/ that depends only on d.w/ (and therefore

only on w) we have
jw.G/j

jGj > q� r
3 :

G is of type 2Ar :
In this case the argument is similar to the case of Ar using Theorem 2.4 in place

of Theorem 2.3. Hence there is a constant r4.w/ such that if r � r4.w/ then jw.G/j
jGj >

q� r
3 .

Conclusion:
If G D Gr.q/ is a finite simple group of Lie type, and w is a group word,

there are integers M.w/ and r2; r3.w/; r4.w/ such that if jGj � M.w/ and r �
maxfr2; r3.w/; r4.w/g, then jw.G/j

jGj � q� r
3 .

Now we can use Theorem 3.3 with " D 2
3

and k D 2 and obtain:
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If r � maxfr1.2; 2
3
/; r2; r3.w/; r4.w/g and jGj � maxfN.2

3
/; M.w/g then,

kPw.G/ � Pw.G/ � UGk1 �
q

2c�1
1 q2

p
4rCb�rC1 C c�1

2 q3� r
3 C 6c3q� r

3 ;

where c1, c2, c3, b are absolute constants.
Part (ii) is an immediate consequence.

Theorem 3.5. Let G be a finite simple group of Lie type of rank r over the field with
q elements. Let 0 < " < 1. Let W1, W2 be normal subsets such that

jWi j
jGj � q�.1�"/ for i D 1; 2:

Then:
(i) kPW1

� PW2
� UGk1 � p

d.r/ � .�G.2/ � 1/ C 30 � q�", where d.r/ depends
only on r .

(ii) If r is bounded, then kPW1
� PW2

� UGk1 ! 0 as jGj ! 1.

Proof. Partition Wi into two subsets Wi;1 and Wi;2: Wi;1 will be the set of all regular
semisimple elements in Wi , and Wi;2 will be the rest of the elements in Wi .

Then Wi;j are normal subsets, and Wi D Wi;1 [ Wi;2, Wi;1 \ Wi;2 D ;.
Using inequality (1) in the proof of Theorem 3.3 for k D 2 we obtain:

kPW1
� PW2

� UGk1 � jW1;1j
jW1j

jW2;1j
jW2j kPW1;1

� PW2;1
� UGk1

C jW1;1j
jW1j

jW2;2j
jW2j kPW1;1

� PW2;2
� UGk1

C jW1;2j
jW1j

jW2;1j
jW2j kPW1;2

� PW2;1
� UGk1

C jW1;2j
jW1j

jW2;2j
jW2j kPW1;2

� PW2;2
� UGk1:

We will handle the first summand differently from the other three summands.

The first summand:

jW1;1j
jW1j

jW2;1j
jW2j kPW1;1

� PW2;1
� UGk1 � kPW1;1

� PW2;1
� UGk1:

W1;1 and W2;1 are normal subsets, and hence are unions of conjugacy classes.
Denote these conjugacy classes of Wi;1 by Ci;1; : : : ; Ci;mi

. So Wi;1 D Smi

j D1 Ci;j .
Therefore, as in the proof of Theorem 3.3,

kPW1;1
� PW2;1

� UGk1 �
X

1�j �m1

1�k�m2

jC1;j jjC2;kj
jW1;1jjW2;1jkPC1;j

� PC2;k
� UGk1:
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By Lemma 2.12 there is a number c.r/, depending on r but not on q, such that
j�.x/j � c.r/ for all � 2 Irr G and all regular semisimple elements x 2 G. Using
Lemma 2.6 we obtain

kPC1;j
� PC2;k

� UGk2
1 �

X
�2Irr G

�¤1

j�.x1;j /j2j�.x2;k/j2
�.1/2

�
X

�2Irr G
�¤1

c.r/4

�.1/2
D c.r/4 � .�G.2/ � 1/;

where Ci;j D xG
i;j in the second expression.

Thus

kPW1;1
� PW2;1

� UGk1 �
X

1�j �m1

1�k�m2

jC1;j jjC2;kj
jW1;1jjW2;1jkPC1;j

� PC2;k
� UGk1

�
p

c.r/4 � .�G.2/ � 1/:

The other three summands:
According to Corollary 2.11, if we denote by r.G/ the proportion of regular

semisimple elements in G, then jWi;2j
jGj � 1 � r.G/ � 5

q
.

We assume jWi j
jGj � q�.1�"/.

Hence
jWi;2j
jWi j D

jWi;2j
jGj
jWi j
jGj

� 5 � q�1C.1�"/ D 5 � q�":

Since kP � Qk � 2 for distributions P and Q, we have

jW1;1j
jW1j

jW2;2j
jW2j kPW1;1

� PW2;2
� UGk1 C jW1;2j

jW1j
jW2;1j
jW2j kPW1;2

� PW2;1
� UGk1

C jW1;2j
jW1j

jW2;2j
jW2j kPW1;2

� PW2;2
� UGk1 � 2

jW2;2j
jW2j C 2

jW1;2j
jW1j C 2

jW1;2j
jW1j

� 6 � 5 � q�":

The sum:

kPW1
� PW2

� UGk1 �
p

d.r/ � .�G.2/ � 1/ C 30 � q�";

proving (i).
In (ii) we assume that r is bounded, and so d.r/ is bounded. We also know from

Theorem 2.9 that �G.2/ ! 1 as jGj ! 1. If r is bounded and jGj ! 1 then
q ! 1, proving (ii).
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Notice that with these tools we cannot prove a better result for k normal subsets
instead of 2.

For sets of the form W D w.G/ we now obtain:

Theorem 3.6. Let w ¤ 1 be a non-trivial group word. Let G D Gr.q/ be a finite
simple group of Lie type of rank r over the field with q elements. Assume there exists
r0.w/, that may depend on w, such that r � r0.w/. Then:

(i) There exist constants N.w/; d.w/, depending only on w, such that if jGj �
N.w/; then

kPw.G/ � Pw.G/ � UGk1 �
p

d.w/ � .�G.2/ � 1/ C 30 � q� 1
2 :

(ii) kPw.G/ � Pw.G/ � UGk1 ! 0 as jGj ! 1.

Proof. We are assuming that r is bounded by r0.w/; so according to Theorem 2.1
there exists a constant c.w/ > 0 that depends only on w such that jw.G/j

jGj � c.w/.
Since we are assuming r is bounded, we have q ! 1 as jGj ! 1. So there
exists N.w/ such that if jGj � N.w/ then q� 1

2 � c.w/. So if jGj � N.w/ then
jw.G/j

jGj � c.w/ � q� 1
2 .

We now apply Theorem 3.5 with " D 1=2. Since r � r0.w/ and jGj � N.w/,
we have

kPw.G/ � Pw.G/ � UGk1 �
p

d.w/ � .�G.2/ � 1/ C 30 � q� 1
2 ;

where d.w/ depends only on w, proving (i).
Part (ii) also follows since �G.2/ ! 1 as jGj ! 1, and since q ! 1 as

jGj ! 1.

Theorem 3.7. Let w ¤ 1 be a non-trivial group word and let G be a finite simple
group. Then kPw.G/ � Pw.G/ � UGk1 ! 0 as jGj ! 1.

Proof. According to 1.17 of [LaSh2], kPw.G/ � Pw.G/ � UGk1 ! 0 as jGj ! 1 if
G is an alternating group.

For groups of Lie type use Theorems 3.4 and 3.6 to obtain the result.
Since jGj ! 1 we can omit the sporadic groups.
According to the classification of finite simple groups this covers all of the finite

simple group.

Corollary 3.8. Let k be a positive integer and let w D xk . Let G be a finite simple
group. Then kPw.G/ � Pw.G/ � UGk1 ! 0 as jGj ! 1.



526 G. Schul and A. Shalev

References

[Di1] P. Diaconis, Group representations in probability and statistics. IMS Lecture Notes—
Monograph Ser. 11, Institute of Mathematical Statistics, Hayward, CA, 1988.
Zbl 0695.60012 MR 0964069

[Di2] P. Diaconis, Random walks on groups: characters and geometry. In Groups St An-
drews 2001 in Oxford, Vol. I, London Math. Soc. Lecture Note Ser. 304, Cambridge
University Press, Cambridge 2003, 120–142. Zbl 1064.20071 MR 2051523

[DiS] P. Diaconis and M. Shahshahani, Generating a random permutation with random
transpositions. Z. Wahrsch. verw. Gebiete 57 (1981), 159–179. Zbl 0485.60006
MR 626813

[FuGu] J. Fulman and R. Guralnick, Bounds on the number and sizes of conjugacy
classes in finite Chevalley groups with applications to derangements. Preprint 2009.
arXiv:0902.22381

[GaSh] S. Garion and A. Shalev, Commutator maps, measure preservation, and T -systems.
Trans. Amer. Math. Soc. 361 (2009), 4631–4651. Zbl 1182.20015 MR 2506422

[Go] W. T. Gowers, Quasirandom groups. Combin. Probab. Comput. 17 (2008), 363–387.
Zbl 1191.20016 MR 2410393

[GuLu] R. M. Guralnick and F. Lübeck, On p-singular elements in Chevalley groups in
characteristic p. In Groups and computation III, Ohio State Univ. Math. Res. Inst.
Publ. 8, de Gruyter, Berlin 2001, 169–182. Zbl 1001.20045 MR 1829478

[JaLi] G. James and M. Liebeck, Representations and characters of groups. Cambridge
Math. Textbooks, Cambridge University Press, Cambridge 1993. Zbl 0792.20006
MR 1237401

[LanSe] V. Landazuri and G. M. Seitz, On the minimal degrees of projective representa-
tions of the finite Chevalley groups. J. Algebra 32 (1974), 418–443. Zbl 0325.20008
MR 0360852

[La] M. Larsen, Word maps have large image. Israel J. Math. 139 (2004), 149–156.
Zbl 1130.20310 MR 2041227

[LaSh1] M. Larsen and A. Shalev, Word maps and Waring type problems. J. Amer. Math. Soc.
22 (2009), 437–466. MR 2476780

[LaSh2] M. Larsen and A. Shalev, Characters of symmetric groups: sharp bounds and appli-
cations. Invent. Math. 174 (2008), 645–687. Zbl 1166.20009 MR 2453603

[LiSh1] M. W. Liebeck and A. Shalev, Diameters of finite simple groups: sharp bounds and
applications. Ann. of Math. (2) 154 (2001), 383–406. Zbl 1003.20014 MR 1865975

[LiSh2] M.W. Liebeck andA. Shalev, Fuchsian groups, finite simple groups and representation
varieties. Invent. Math. 159 (2005), 317–367. Zbl 1134.20059 MR 2116277

[LiSh3] M. W. Liebeck and A. Shalev, Character degrees and random walks in finite
groups of Lie type. Proc. London Math. Soc. (3) 90 (2005), 61–86. Zbl 1077.20020
MR 2107038

[Lul] N. Lulov, Random walks on symmetric groups generated by conjugacy classes. Ph.D.
Thesis, Harvard University, Cambridge, MA, 1996.

http://www.emis.de/MATH-item?0695.60012
http://www.ams.org/mathscinet-getitem?mr=0964069
http://www.emis.de/MATH-item?1064.20071
http://www.ams.org/mathscinet-getitem?mr=2051523
http://www.emis.de/MATH-item?0485.60006
http://www.ams.org/mathscinet-getitem?mr=626813
http://arxiv.org/abs/0902.22381
http://www.emis.de/MATH-item?1182.20015
http://www.ams.org/mathscinet-getitem?mr=2506422
http://www.emis.de/MATH-item?1191.20016
http://www.ams.org/mathscinet-getitem?mr=2410393
http://www.emis.de/MATH-item?1001.20045
http://www.ams.org/mathscinet-getitem?mr=1829478
http://www.emis.de/MATH-item?0792.20006
http://www.ams.org/mathscinet-getitem?mr=1237401
http://www.emis.de/MATH-item?0325.20008
http://www.ams.org/mathscinet-getitem?mr=0360852
http://www.emis.de/MATH-item?1130.20310
http://www.ams.org/mathscinet-getitem?mr=2041227
http://www.ams.org/mathscinet-getitem?mr=2476780
http://www.emis.de/MATH-item?1166.20009
http://www.ams.org/mathscinet-getitem?mr=2453603
http://www.emis.de/MATH-item?1003.20014
http://www.ams.org/mathscinet-getitem?mr=1865975
http://www.emis.de/MATH-item?1134.20059
http://www.ams.org/mathscinet-getitem?mr=2116277
http://www.emis.de/MATH-item?1077.20020
http://www.ams.org/mathscinet-getitem?mr=2107038


Words and mixing times in finite simple groups 527

[Lus] G. Lusztig, Characters of reductive groups over a finite field. Ann. of Math. Studies,
Princeton University Press, Princeton 1984. Zbl 0556.20033 MR 0742472

[NiPy] N. Nikolov and L. Pyber, Product decompositions of quasirandom groups and a Jordan
type theorem. Europ. J. Math., to appear.

[Ser] J.-P. Serre, Linear representations of finite groups. Graduate Texts in Math. 42,
Springer-Verlag, New York 1977. Zbl 0355.20006 MR 0450380

[Sh1] A. Shalev, Mixing and generation in simple groups. J. Algebra 319 (2008), 3075–
3086. Zbl 1146.20057 MR 2397424

[Sh] A. Shalev, Word maps, conjugacy classes, and a noncommutative Waring-type theo-
rem. Ann. of Math. (2) 170 (2009), 1383–1416. Zbl 05710189 MR 2600876

Received April 30, 2009; revised August 25, 2009

G. Schul, A. Shalev, Institute of Mathematics, The Hebrew University, Jerusalem 91904,
Israel

E-mail: gili.schul@mail.huji.ac.il; shalev@math.huji.ac.il

http://www.emis.de/MATH-item?0556.20033
http://www.ams.org/mathscinet-getitem?mr=0742472
http://www.emis.de/MATH-item?0355.20006
http://www.ams.org/mathscinet-getitem?mr=0450380
http://www.emis.de/MATH-item?1146.20057
http://www.ams.org/mathscinet-getitem?mr=2397424
http://www.emis.de/MATH-item?05710189
http://www.ams.org/mathscinet-getitem?mr=2600876

	Introduction
	Preliminaries
	Proofs
	References

