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Adrian Ioana, Alexander S. Kechris and Todor Tsankov

Abstract. We study a positive-definite function associated with a countable, measure-preser-
ving equivalence relation, which can be used to measure quantitatively the proximity of sube-
quivalence relations. Combined with a co-inducing construction introduced by Epstein and
earlier work of Ioana, this can be used to construct many mixing actions of countable groups
and establish the non-classifiability, in a strong sense, of orbit equivalence of actions of non-
amenable groups. We also discuss connections with percolation on Cayley graphs and the
theory of costs.
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Consider a standard probability space .X;�/, i.e., a space isomorphic to the unit
interval with Lebesgue measure. We denote by Aut.X;�/ the automorphism group
of .X;�/, i.e., the group of all Borel automorphisms of X which preserve � (where
two such automorphisms are identified if they are equal �-a.e.). A Borel equivalence
relationE � X2 is called countable if everyE-class Œx�E is countable, and measure-
preserving if every Borel automorphism T of X for which T .x/Ex, is measure-
preserving. Equivalently, E is countable, measure-preserving iff it is induced by a
measure-preserving action of a countable (discrete) group on .X;�/ (see Feldman–
Moore [FM]).

To each countable, measure-preserving equivalence relationE one can assign the
positive-definite function 'E .S/ on Aut.X;�/ given by 'E .S/ D �.fx W S.x/Exg/;
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see Section 1. Intuitively, 'E .S/measures the amount by whichS is “captured” byE.
This positive-definite function completely determines E.

We use this function to measure the proximity of a pair E � F of countable,
measure-preserving equivalence relations. In Section 2, we show, among other things,
the next result, where we use the following notation: if a countable group� acts onX ,
we also write � for the automorphism x 7! � � x; if A � X and E is an equivalence
relation on X , then EjA D E \ A2 is the restriction of E to A; if E � F are
equivalence relations, then ŒF W E� D m means that every F -class contains exactly
m classes; if F is a countable, measure-preserving equivalence relation on .X;�/,
then ŒF � is the full group of F , i.e., ŒF � D fT 2 Aut.X;�/ W T .x/F x; �-a.e. .x/g.

Theorem 1. Let � be a countable group and consider a measure-preserving action
of � on .X;�/ with induced equivalence relation F D EX� .

i) IfE � F is a subequivalence relation and inf�2� 'E .�/ D '0E > 0, then there
is an E-invariant Borel set A � X of positive measure such that ŒF jA W EjA� D
m � 1

'0
E

, so that if '0E >
1
2

, F jA D EjA.

ii) If E is any countable, measure-preserving equivalence relation and " > 0,
then 8� 2 �.'E .�/ � 1 � "/ implies 8S 2 ŒF �.'E .S/ � 1 � 4"/.
Remark. Popa pointed out that some version of part (i) of the preceding theorem
was known in the theory of operator algebras, see, for example, the appendix to
Popa [PO1]. Actually our initial proof of that theorem was inspired by Popa’s tech-
nique of conjugating subalgebras in a finite von Neumann algebra (see Section 2
in [PO2]) but, for consistency with the rest of the article, we give another self-
contained, ergodic-theoretic proof.

With some additional work, Theorem 1 has the following consequences:
a) In the context of i), if '0E > 0, the action of � is free (i.e., � � x ¤ x, 8� ¤ 1,

for almost all x) and E is induced by a free action of a countable group�, then �;�
are measure equivalent (ME).

b) Again in the context of i), if '0E > 1
2

and E is aperiodic (i.e., has no finite
classes), then C�.F / � C�.E/, where C�.R/ is the cost of an equivalence relation
R (see [G1] or [KM] for the theory of costs).

c) In i) if '0E >
3
4

, then we can find A so that �.A/ � 4'0E � 3.
In Section 3, we consider a recent co-inducing construction of Epstein [E]. Given

a measure-preserving, ergodic action b0 of a countable group � on .X;�/ with
associated equivalence relation F D EX� and a free, measure-preserving action a0
of a countable group � on .X;�/ with associated equivalence relation E D EX� �
F D EX� , Epstein’s construction gives for any measure-preserving action a of �
on a space .Y; �/, a measure-preserving action b of � on a space .Z; �/, called the
co-induced action of a modulo .a0; b0/, in symbols b D CInd.a0; b0/��.a/. This
construction has important applications in the study of orbit equivalence of actions –
see Epstein [E].
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For further potential applications of this method, it seems that one should have a
better understanding of the connection of ergodic properties between a, b as above.
We show, for example, that if b0 is free, mixing anda0 is ergodic, then: a is mixing H)
b is mixing. There are however interesting situations under which b is always mixing
for arbitrary a. It turns out that this phenomenon, for given .a0; b0/, is connected to
the positive-definite function discussed earlier. We show the following:

Theorem 2. If b0 is mixing, the following are equivalent:
(i) For all actions a of �, b D CInd.a0; b0/��.a/ is mixing.
(ii) 'E .�/ ! 0 as � ! 1.

The condition (ii) in Theorem 2 somehow asserts that E is “small” relative to F .
In the opposite case we have the following fact. If '0E D inf�2� 'E .�/ > 0, then
b is ergodic H) a is ergodic.

It is well known that for any ergodic b0 as above one can find a free, mixing action
a0 of � D Z with E � F (see, e.g., Zimmer [Z], 9.3.2). We show that when b0 is
mixing, one can find such an a0 so that (ii) of Theorem 2 holds. This gives a method
of producing, starting with arbitrary measure-preserving Z actions, apparently new
types of measure-preserving, mixing actions of any infinite group � .

Theorem 3. Let � be an infinite countable group, and let b0 be a free, measure-
preserving, mixing action of � on .X;�/. Then there is a free, measure-preserving,
mixing action a0 of Z on .X;�/ such that E D EXZ � F D EX� and 'E .�/ ! 0 as
� ! 1.

When the group � is non-amenable, then by work of Gaboriau–Lyons [GL] one
can find a free, mixing action b0 of � on .X;�/ and a free ergodic action a0 of F2
on .X;�/ with E D EXF2

� F D EX� . We show again that such a0 can be found so
that (ii) of Theorem 2 holds. This is joint work with I. Epstein.

Theorem 4 (with I. Epstein). Let � be a non-amenable countable group. Then there
is a free, measure-preserving, mixing action b0 of � on .X;�/ and a free, measure-
preserving, ergodic action a0 of F2 on .X;�/ such that E D EXF2

� F D EX� and
'E .�/ ! 0 as � ! 1.

Remark. Our proof of Theorem 4 uses the Gaboriau–Lyons [GL] result and addi-
tionally the co-inducing construction to produce a pair of actions satisfying Theo-
rem 4. In [GL] the authors actually produce two different pairs of actions as above.
After seeing a preliminary version of our article, Lyons pointed out that their first
construction can be shown to satisfy Theorem 4, using results of Benjamini–Lyons–
Peres–Schramm [BLPS], in particular formula (13.8) in that paper. Subsequently,
we realized that the second construction of [GL] also may give a pair of equivalence
relations satisfying Theorem 4. More precisely, if one chooses a Cayley graph of
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� with sufficiently many generators and p 2 .pc ; pu/ close enough to pc , then the
subequivalence relation one obtains using the method of [GL] and our Lemma 4.2
will, in fact, satisfy Theorem 4. See [GL], Pak–Smirnova-Nagnibeda [PS] and the
proof of Benjamini–Schramm [BS], Theorem 4, for more details. We also note that
sometimes the cluster subequivalence relationE for Bernoulli percolation in the non-
uniqueness phase does not satisfy 'E .�/ ! 0 as � ! 1 (see Lyons–Schramm [LS],
Remark 1.3).

We use Theorem 4 to study the complexity of the classification problem of free,
measure-preserving, ergodic actions of a countable group � under orbit equivalence
(OE). After a series of earlier results that dealt with various important classes of
non-amenable groups (see Gaboriau–Popa [GP], Hjorth [H3], Ioana [I], Kida [KI],
Monod–Shalom [MS], Popa [PO2]), Epstein [E] finally showed that in general any
non-amenable group admits uncountably many non-orbit equivalent free, measure-
preserving, ergodic actions. This was proved earlier by Ioana [I] in the case where
F2 � � , and his main lemma in that proof could be also used to derive, in this
case, the stronger fact that the equivalence relation E0 (on 2N , where xE0y (
) 9n8m � n.x.m/ D y.m/) can be Borel reduced to OE on the space of free,
measure-preserving, ergodic actions of � . Moreover OE on that space cannot be
classified by countable structures (see [K], Section 17, (B)). However, it was not
known whether this non-classification result extends to all non-amenable groups and
whether every non-amenable group admits uncountably many non-orbit equivalent
free, measure-preserving, mixing actions. Putting together Theorems 2, 4 and the
work of Epstein [E] leads now to the following positive answer. This is again a joint
result with I. Epstein.

Theorem 5 (with I. Epstein). Let � be a non-amenable countable group. Then E0
can be Borel reduced to OE on the space of free, measure-preserving, mixing actions
of � and OE in this space cannot be classified by countable structures.

Thus we have the following strong dichotomy concerning orbit equivalence: If �
is (infinite) amenable, there is exactly one free, measure-preserving, ergodic action
of � up to OE, while if � is non-amenable, OE of free, measure-preserving, mixing
actions of � is unclassifiable in a very strong sense.

The proof of Theorem 5 shows that the conclusion in that theorem also holds if OE
is replaced by conjugacy (isomorphism) of actions. This fact is also known to be true
for abelian � (see [K], 5.7, where the proof is presented for Z but easily generalizes
to any abelian �).

In Section 4, we review some basic facts concerning invariant bond percolation
on Cayley graphs of finitely generated groups (see Lyons–Schramm [LS] or Lyons-
Peres [LP]). We also give in Section 5 (C) an alternative proof of Theorem 4:1 (for
Cayley graphs) in Lyons–Schramm [LS], using our Theorem 1.

In Section 5, we apply the preceding results to property (T) groups. Recall that a
Kazhdan pair .Q; "/ for such a group consists of a finite generating set Q � � and
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a positive " such that for any unitary representation 	 of � on a Hilbert space H , if
there is a vector 
 2 H with k	.�/.
/ � 
k < "k
k, 8� 2 Q, then there is a non-0
invariant vector. We state below some sample results.

Theorem 6. Let � be an infinite group with property (T), .Q; "/ a Kazhdan pair and
P an invariant, ergodic, insertion-tolerant bond percolation on the Cayley graph GQ
of � (with respect toQ). If the survival probability P.f! W !.e/ D 1g/ of each edge
e is> 1� "2

2
, then! has a unique infinite cluster, P-a.s. In particular, if pu.Q/ is the

critical probability for existence of unique infinite clusters in Bernoulli percolation
on this Cayley graph, then pu.Q/ � 1 � "2

2
:

Theorem 7. For each � > 0 and every infinite group � with property (T), there is a
finite set of generatorsQ for� such that for any invariant, ergodic, insertion-tolerant
bond percolation P on GQ, if the survival probability of each edge is � �, then !
has a unique infinite cluster, P-a.s.

Remark. Lyons–Schramm [LS] had earlier shown that, in the notation of Theorem 6,
pu.Q/ < 1. Lyons pointed out that one could also easily deduce a version of
Theorem 6 from the results of their paper (with perhaps a different constant instead
of 1 � "2

2
/. Similarly for Theorem 5:9 below. Finally, Lyons mentions that for the

special case P D Pp , Bernoulli percolation, Theorem 7 was known even for groups
� for which there existsQ such that pu.Q/ < 1 but which do not necessarily satisfy
property (T).

Denote below byC.�/ the cost of a countable group� . If� is an infinite countable
group with property (T) and n is the smallest cardinality of a set of generators for � ,
then we have 1 � C.�/ < n (the strict inequality follows from Gaboriau [G1], since
no free, measure-preserving action of � is treeable, see Adams–Spatzier [AS]). At
this time no example of a property (T) group with C.�/ > 1 is known. We obtain
here some upper bounds for C.�/ in terms of n; ", where n D card.Q/ and .Q; "/ is
a Kazhdan pair. One such result is the following:

Theorem 8. Let � be an infinite group with property (T) and .Q; "/ a Kazhdan pair
for � . If card.Q/ D n, then

C.�/ � n

�
1 � "2

2

�
C n � 1
2n � 1:

Another example is the following.

Theorem 9. Let � be an infinite group with property (T) and let .Q; "/ be a Kazhdan
pair, where Q contains an element of infinite order. Then if card.Q/ D n,

C.�/ � n � "2

2
:
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In particular, if � is torsion-free and 2-generated, then C.�/ � 2 � ."2/
2

2
, where "2

is the sup of the " such that .Q; "/ is a Kazhdan pair with card.Q/ D 2.

Remark. Since in this article we work completely in a measure theoretic context, we
neglect null sets if there is no danger of confusion. So given a measure space .X;�/,
we do not often distinguish between a statement being true for all x 2 X or for all
x 2 X , �-a.e.

Acknowledgements. The research of A. S. K. and T. T. was partially supported by
NSF Grant DMS-0455285. We would like to thank I. Epstein for allowing us to
include here our joint results. We would also like to thank R. Lyons, S. Popa,Y. Shalom
and an anonymous referee for many valuable comments.

1. Equivalence relations and positive-definite functions on Aut.X; �/

First we recall the standard definitions of positive-definite and negative-definite func-
tions. Given a set Y , a function  W Y � Y ! C is positive-definite if for ev-
ery finite subset fy1; : : : ; yng � Y and every ˛i 2 C, 1 � i � n, we haveP
1�i;j�n N̨ i j̨ .yi ; yj / � 0. Such a function is (conditionally) negative-definite

if  .y; z/ D  .z; y/ and for every finite subset fy1; : : : ; yng � Y and every
˛i 2 C; 1 � i � n, with

Pn
iD1 ˛i D 0, we have

P
1�i;j�n N̨ i j̨ .yi ; yj / � 0.

A function ' W G ! C on a group G is positive-definite (resp., negative-definite)
if the function  W G � G ! C defined by  .g; h/ D '.g�1h/ is positive-definite
(resp., negative-definite).

Let .X;�/ be a standard measure space and Aut.X;�/ the group of meas-
ure-preserving automorphisms of .X;�/. Denote by u the uniform topology on
Aut.X;�/, induced by the metric

ıu.S; T / D �.fx W S.x/ ¤ T .x/g/:
Let E � X2 be a countable, measure-preserving equivalence relation on X . Define
on Aut.X;�/2:

 E .S; T / D �.fx W S�1.x/ET �1.x/g/:
(We use S�1, T �1 instead of S , T to make  E left-invariant – see below.) So if
E D �, the equality relation, then 1 �  E .X; T / D ıu.S; T /. We claim that  E
is a continuous, positive-definite function on .Aut.X;�/; u/. Continuity is straight-
forward. The proof that  E is positive-definite is similar to that in Aizenman–
Newman [AN]. Fix a finite set fS1; : : : ; Sng � Aut.X;�/ and ˛i 2 C, 1 � i � n,
in order to show that P

1�i;j�n
N̨ i j̨ E .Si ; Sj / � 0:
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For each x 2 X , define the equivalence relation �x on f1; : : : ; ng by

i �x j () S�1
i .x/ES�1

j .x/:

Let C x1 ; : : : ; C
x
mx

be the �x-classes. Then we have

P
1�i;j�n

N̨ i j̨ E .Si ; Sj / D
Z P

1�i;j�n
N̨ i j̨�fxWS�1

i
.x/ES�1

j
.x/gd�

D
Z

mxP
kD1

.
P

i;j2Cx
k

N̨ i j̨ / d�.x/

D
Z

mxP
kD1

j P
i2Cx

k

˛i j2 d�.x/ � 0:

Thus 1 �  E .S; T / is negative-definite. In particular, if E D �, then

ıu.S; T / D 1 �  �.S; T /;
so the metric ıu is negative-definite.

Note also that  E is left-invariant, so

'E .S/ D  E .1; S/

is a continuous, positive-definite function on .Aut.X;�/; u/. If AE .S/ D fx W
S.x/Exg, then 'E .S/ D �.AE .S//, and we view the quantity 'E .S/ as measur-
ing the amount by which S is “captured” by E. By the GNS construction (see,
e.g., [BHV], p. 355), there is a (unique) triple .	E ;HE ; 
E /, consisting of a cyclic
continuous representation of .Aut.X;�/; u/ on a Hilbert space HE with cyclic unit
vector 
E 2 HE such that

'E .S/ D h	E .S/.
E /; 
E i:
Now if ŒE� is the full group of E, then

S 2 ŒE� () 'E .S/ D 1;

so 'E completely determines ŒE� and thus E, i.e., E is encoded in 'E . Also note
that

S 2 ŒE� () 	E .S/.
E / D 
E ;

i.e., ŒE� is the stabilizer of 
E in 	E .
It is not clear how to characterize the continuous, positive-definite functions ' on

.Aut.X;�/; u/, which are of the form 'E for some E. Clearly any such ' satisfies
0 � ' � 1 and '.1/ D 1. Another necessary condition is that ker.'/ D fS 2
Aut.X;�/ W '.S/ D 1g (which is a closed subgroup of .Aut.X;�/; u/) is separable
in the uniform topology. The following observation may also be relevant here. Let
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� � ker.'/ be a countable dense subgroup of ker.'/. If ' is of the form 'E for
some E, then � is uniformly dense in ker.'/ D ker.'E / D ŒE�, so E D EX� D the
equivalence relation induced by � .

Next consider the negative-definite function

�E .S/ D 1 � 'E .S/
on Aut.X;�/. Put also

ıu.S; ŒE�/ D inffıu.S; T / W T 2 ŒE�g
for the distance (in ıu) of S to ŒE�. Then we have

Proposition 1.1. �E .S/ D ıu.S; ŒE�/ D inffıu.S; T / W T 2 ŒE�g and moreover
this inf is attained.

The proof of Proposition 1.1 uses the following well-known fact:

Lemma 1.2. Let S 2 Aut.X;�/ and let E be a countable, measure-preserving
equivalence relation on X . Then there is T 2 ŒE� such that S.x/ D T .x/ whenever
S.x/Ex.

Proof of Proposition 1.1. Given any S , find T as in Lemma 1.2 and note that

ıu.S; T / D �.fx W :S.x/Exg/ D �E .S/:

On the other hand, for any R 2 ŒE�, fx W :S.x/Exg � fx W S.x/ ¤ R.x/g, so
�E .S/ � ıu.S;R/, thus �E .S/ D ıu.S; T / D ıu.S; ŒE�/.

Proof of Lemma 1.2. Let A D fx W S.x/Exg and B D S.A/. It is enough to find
a Borel bijection (modulo null sets) S 0 W A [ B ! A [ B with S 0.x/ D S.x/ for
x 2 A and S 0.x/Ex, for x 2 A[B . Then we can take T D S 0 [ idj.X n .A[B//.

Put Y D A [ B and consider the equivalence relation F on Y induced by S jA.
SomeF -classesC will consist of a cycle fx; S.x/; : : : ; Sn.x/g, whereSnC1.x/ D x.
For such C , we have C � A, so we can let S 0.x/ D S.x/, 8x 2 C . In every other
F -class C , we can define the ordering

x <C y () 9n > 0.Sn.x/ D y/:

The union of the infinite C in which there is a largest or smallest element in <C has
clearly measure 0. So we can assume that <C is either a finite ordering, with largest
and smallest elements bC , aC , respectively, in which case A\C D C n fbC g or else
<C looks like a copy of the order on Z, in which case C � A. In the first case, we
define S 0 on C by S 0.x/ D S.x/ if x ¤ bC and S 0.bC / D aC . In the second case,
we put S 0.x/ D S.x/, 8x 2 C . This clearly works.
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Note that if ıu also denotes the metric induced by ıu on the homogeneous space
Aut.X;�/=ŒE�, i.e.,

ıu.SŒE�; T ŒE�/ D inffıu.S 0; T 0/ W S 0 2 SŒE�; T 0 2 T ŒE�g
D ıu.S; T ŒE�/ D ıu.T; SŒE�/;

then

ıu.SŒE�; T ŒE�/ D ıu.S
�1T; ŒE�/ D �E .S

�1T / D 1 �  E .S; T /;
so ıu on Aut.X;�/=ŒE�, with the quotient topology of u, is a continuous, negative-
definite function.

And we conclude with some further observations on metrics on Aut.X;�/ and
certain subgroups of it.

The weak topology w on Aut.X;�/ is induced by the metric

ıw.S; T / D
1P
nD1

2�n�.S.An/�T .An//;

where fAng is dense in the measure algebra MALG� of .X;�/. Now for each fixed
Borel set A � X ,

�A.S; T / D �.S.A/�T .A//

is negative-definite, since

�A.S; T / D
Z

j�S.A/ � �T.A/j2 d� D k�S.A/ � �T.A/k22;

and the function .
; / 7! k
 � k22 is negative-definite on L2.X;�/. It follows that
the left-invariant metric ıw is negative-definite. In particular, the complete metric
Nıw.S; T / D ıw.S; T /C ıw.S

�1; T �1/ on Aut.X;�/ is also negative-definite.
Now consider an aperiodic (i.e., having infinite classes) E and the normalizer

NŒE� of its full group. ThenNŒE� has a canonical topology induced by the complete
metric

NıNŒE�.S; T / D Nıw.S; T /C
1P
nD1

2�nıu.S�nS�1; T �nT �1/;

where f�ng is a countable subgroup of Aut.X;�/ inducingE (see, e.g., Kechris [K]).
Since for each n, the function .S; T / 7! ıu.S�nS

�1; T �nT �1/ is negative-definite,
so is NıNŒE�.S; T / on NŒE�.

2. Proximity of subequivalence relations

(A) We view the quantity 'E .S/ D �.fx W S.x/Exg/ as measuring the amount by
which S is captured by E. We will next see that if a countable group � acts in a
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measure-preserving way on .X;�/ inducing an equivalence relation F D EX� , and
every element of � (viewed as an element of Aut.X;�/ via x 7! � � x, � 2 �) is
“substantially captured” by E, then E, F are somehow “close” to each other.

Towards this goal we will study a canonical representation associated to a pair
E � F of countable measure-preserving equivalence relations on .X;�/.

Let such E, F be given and decompose X D F
N2f1;2;:::;@0gXN , where XN D

fx W there are exactly N E-classes in Œx�F g, so that XN is F -invariant. Therefore
ŒF jXN W EjXN � D N . If F is ergodic, clearly X D XN for some N . Fix now for
each N a sequence of Borel functions fC .N/n gn2N , C .N/n W XN ! XN , where we
identify N here with f0; : : : ; N � 1g if N is finite, and with N if N D @0 such that
C
.N/
0 D idjXN for each x 2 XN , C .N/n .x/ ¤ C

.N/
m .x/, if m ¤ n, and fC .N/n .x/g is

a transversal for the E-classes contained in Œx�F . These are called choice functions.

Remark 2.1. For further reference, notice that if E is ergodic, so that X D XN for
some N , in which case we can write C .N/n D Cn if there is no danger of confusion,
then we can take the choice functions C .N/n D Cn to be 1-1, i.e., to be in Aut.X;�/.
To see this, start with arbitrary fC .N/n g D fCng. Fix n 2 N and consider Cn. As it is
countable-to-1, letX D F1

kD1 Yk be a Borel partition such thatCnjYk is 1-1. Let then
Zk D Cn.Yk/, so that �.Zk/ D �.Yk/. Since E is ergodic, there is Tk 2 ŒE� with
Tk.Zk/ D Yk . Let then Dn.x/ D Tk.Cn.x//, if x 2 Yk . We have Dn.x/ECn.x/,
8x, and Dn is 1-1. So fDng are choice functions and each Dn is 1-1.

Define now the index cocycle 	N W F jXN ! SN (D the symmetric group of N )
by the formula

	N .x; y/.k/ D n () ŒCk.x/�E D ŒCn.y/�E

(see Feldman–Sutherland–Zimmer [FSZ]). Finally, we can define �N W ŒF jXN � �
XN ! SN by

�N .S; x/ D 	N .x; S.x//:

Since S 2 ŒF jXN � is not a function but an equivalence class of functions iden-
tified �-a.e., �N again is to be understood as an equivalence class of functions
.�N /S .x/ D �N .S; x/ identified �-a.e. We again have the cocycle identity: For
each S; T 2 ŒF jXN �,

�N .ST; x/ D �N .S; T .x//�N .T; x/

for almost all x 2 XN .
Consider now the Hilbert space

H D L
N

L2.XN �N/;
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where XN � N has the � -finite measure .�jXn/ � �N , with �N D the counting
measure on N , and the unitary representation � of ŒF � on H given by

�.S/.
L
N

fN / D L
N

gN ; gN .x; n/ D fN .S
�1.x/; �N .S�1; x/.n//;

for .x; n/ 2 XN �N , fN 2 L2.XN �N/. Clearly each L2.XN �N/ is invariant.
Notice that the representation � is independent of the choice functions fC .N/n g,

up to unitary equivalence.
Consider the unit vector


0 D L
N

�XN �f0g

in H . Then for S 2 ŒF �,
h�.S/.
0/; 
0i D P

N

Z
XN �N 
0.S

�1.x/; �N .S�1; x/.n//
0.x; n/ d�.x/d�N .n/

D P
N

�.fx 2 XN W �N .S�1; x/.0/ D 0g/
D P

N

�.fx 2 XN W S�1.x/Exg/
D P

N

�.fx 2 XN W xES.x/g/ D �.fx W S.x/Exg/ D 'E .S/:

Thus the representation � restricted to the closed span of f�.S/.
0/ W S 2 ŒF �g is the
GNS representation of ŒF � associated with 'E .

If now � is a countable group acting in a Borel way on .X;�/ so that EX� D F ,
then, denoting by � also the map x 7! � � x, the cocycle �N restricts to a cocycle,
also denoted by �N , from � � XN to SN : �N .�; x/ D 	N .x; � � x/. Similarly, the
representation � restricts to a representation, also denoted by � , of � on H .

We now characterize the condition on E � F under which the representation �
has an invariant non-0 vector. First we note the following:

Proposition 2.2. A vector 
 is invariant under the �-representation iff 
 is invariant
under the ŒF �-representation.

Proof. Suppose 
 is invariant under the �-representation, i.e., for 
 D L
N 
N ,


N .x; n/ D 
N .�
�1 � x; �N .��1; x/.n//;

for all x 2 XN , for all � 2 � (neglecting as usual null sets). Let now S 2 ŒF �. Then
for each x 2 XN there is � D �x 2 � with S�1.x/ D ��1 � x. Thus

�.S/.
N /.x; n/ D 
N .S
�1.x/; �N .S�1; x/.n//

and �N .S�1; x/.n/ D k, where

ŒCn.x/�E D ŒCk.S
�1.x//�E D ŒCk.�

�1 � x/�E ;
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so �N .��1; x/.n/ D k D �N .S
�1; x/.n/, therefore

�.S/.
N /.x; n/ D 
N .�
�1 � x; �N .��1; x/.n// D 
N .x; n/;

i.e., 
N and thus 
 is also invariant under �.S/.

We now have:

Proposition 2.3. The representation � has an invariant non-0 vector iff there is a
Borel setA � X of positive measure which isE-invariant and 1 � m < 1 such that
ŒF jA W EjA� D m, i.e., on some E-invariant Borel set of positive measure A, there
are exactly m E-classes contained in each F jA-class. In particular, if E is ergodic,
ŒF W E� < 1.

Proof. If such an A exists, we can clearly assume that A � XN for some N . Then
let B � XN �N be defined by

.x; n/ 2 B () ŒCNn .x/�E � A:

Clearly for each x 2 XN , Bx D fn W .x; n/ 2 Bg has cardinality � m, so if 
 D �B ,
then 
 2 L2.XN � N/ and obviously 
 ¤ 0. Now we claim that 
 is �-invariant,
i.e., for � 2 � ,


.x; n/ D 
.��1 � x; �N .��1; x/.n//:
This is clear, since ŒCNn .x/�E D ŒCN

�N .��1;x/.n/
.��1 � x/� by the definition of �N .

Conversely, let 
 2 H be non-0 and �-invariant. Clearly we can assume that

 2 L2.X �N/ for some N . Now

0 <

Z
XN

P
n2N

j
.x; n/j2 d� < 1;

so
P
n2N j
.x; n/j2 < 1 for almost all x 2 XN . Let then Nx D fn 2 N W

j
.x; n/j is maximal among all j
.x; i/j; i 2 N g. Let ax be this maximum. Then
Nx is finite, provided that ax > 0. Since 
 is �-invariant, we have


.x; n/ D 
.��1 � x; �N .��1; x/.n//;

so n 2 Nx () �N .�
�1; x/.n/ 2 N��1�x , card.Nx/ D card.N��1�x/, and ax D

a��1�x , thus x 7! card.Nx/, x 7! ax , are F -invariant. Also asZ
XN

P
n2N

j
.x; n/j2 d� > 0;

fx 2 XN W ax > 0g has positive measure. So fixm > 0 and a set Y � XN of positive
measure, which is F -invariant, and for x 2 Y we have ax > 0 and m D card.Nx/.
Let then

A D SfŒCNn .x/�E W x 2 Y; n 2 Nxg:
Then A is E-invariant, has positive measure and ŒF jA W EjA� D m.
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Consider now the closed convex hull C of f� � 
0 W � 2 �g, where S � 
0 D
�.S/.
0/. Since 'E .�/ D h� � 
0; 
0i, we see that if inf�2� 'E .�/ D '0E > 0, then
h� � 
0; 
0i � '0E ;8� 2 � , so h; 
0i � '0E ;8 2 C . If then 
 is the unique element
of least norm in C , we have h
; 
0i � '0E , and thus 
 ¤ 0. Clearly 
 is invariant
(under � and thus ŒF �). Thus we have

Proposition 2.4. If inf�2� 'E .�/ D '0E > 0, then there is a non-0 invariant vector
for � .

(B) We can conclude from 2.3 and 2.4 that if '0E > 0, then there is anE-invariant set
of positive measure A such that ŒF jA W EjA� D m < 1. We can in fact obtain an
estimate for such m (and prove a somewhat stronger version).

Theorem 2.5. Let � be a countable group and consider a measure-preserving action
of � on .X;�/ with associated equivalence relation F D EX� . Let E � F be
a subequivalence relation. Let S; S 0 2 ŒF � and assume that inf�2� 'E .S�S 0/ D
c > 0. Then there is an E-invariant Borel set A of positive measure such that
ŒF jA W EjA� D m � 1

c
. In particular, if c > 1

2
; F jA D EjA.

Proof. Since S�S 0 D .SS 0/..S 0/�1�S 0/, by replacing the action � � x of � by the
conjugate action � 	 x D .S 0/�1.� � S 0.x//, which also induces F , we can assume
that S 0 D id. Thus we have inf�2� 'E .S�/ D c > 0. So hS� � 
0; 
0i � c, or
h� � 
0; S�1 � 
0i � c;8� 2 � , thus if C is the closed convex hull of f� � 
0 W � 2 �g,
and 
 the element of least norm inC , 
 is invariant for � and h
; S�1�
0i D hS �
; 
0i D
h
; 
0i � c.

Now fix " > 0 and let ˛1; : : : ; ˛k 2 Œ0; 1�, with
Pk
iD1 ˛i D 1, and �1; : : : ; �k 2 �

be such that if 
 0 D Pk
iD1 ˛i .�i � 
0/, then k
 0 � 
k � ". Then, as 
 is invariant, for

any T 2 ŒF � we have

hT � 
 0; 
0i D hT � .
 0 � 
/; 
0i C h
; 
0i � c � "
(note that hT � 
 0; 
0i is real). Thus for any T 2 ŒF �,

kP
iD1

˛i hT �i � 
0; 
0i � c � "
or

kP
iD1

˛i'E .T �i / � c � ": (1)

We will now use the following lemma.

Lemma 2.6. Assume E � F are countable, measure-preserving equivalence rela-
tions on .X;�/ and let n � 1. Then either there is anE-invariant Borel setA � X of
positive measure such that every F jA-class contains at most n EjA-classes or there
are T0; : : : ; Tn 2 ŒF � such that T0.x/ D x and ŒTi .x/�E ¤ ŒTj .x/�E if i 6D j .
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Assuming the lemma, take n D Œ1
c
�. If the first case of 2.6 occurs, then the

conclusion of the theorem immediately follows, so it is enough to show that no such
T0; : : : ; Tn exist. Otherwise, apply (1) to T0; : : : ; Tn to get

nP
jD0

kP
iD1

˛i'E .Tj �i / � .nC 1/.c � "/:

But notice that
nP

jD0
'E .TjT / � 1; 8T 2 ŒF �:

This holds since
nP

jD0
'E .TjT / D

nP
jD0

�.fx W TjT .x/Exg/

and the sets fx W TjT .x/Exg, j D 0, …, n, are pairwise disjoint. Thus

.nC 1/.c � "/ �
kP
iD1

˛i D 1;

so, as " is arbitrary, nC 1 � 1
c

, a contradiction.
So it only remains to give the proof of 2.6.

Proof of Lemma 2.6. Assume first that F is ergodic.
Consider then the ergodic decomposition of E (see, e.g., [KM], Theorem 3:3).

This is given by a Borel map † W X ! E , where E is the standard Borel space of
invariant, ergodic probability measures for E such that: (i) † is E-invariant; (ii)
if e 2 E and Xe D †�1.feg/, then e.Xe/ D 1 and e is the unique E-invariant
probability measure on Xe; (iii) if †�� D ��, then � D R

ed ��.e/, i.e., �.B/ DR
e.B/ d��.e/ for all Borel sets B � X .

Let E0 be the atomic part of ��, and put E1 D E n E0. Split X1 D S
e2E1

Xe
into E-invariant Borel sets X1 D A0 t � � � t An, where �.Ai / D �.Aj /;8i; j , and
let 'i;j 2 ŒF jX1� be such that 'i;j .Ai / D Aj , 0 � i; j � n. Now let  0; : : : ;  n:
f0; : : : ; ng ! f0; : : : ; ng be the bijections defined by

 i .m/ D .mC i/ mod .nC 1/:

Then define '.1/i 2 ŒF jX1� by

'
.1/
i jAm D 'm; i .m/

(so that '.1/i .Am/ D A i .m/). Note that :'.1/i .x/E'
.1/
j .x/ if i ¤ j . Thus we have

found '.1/0 ; : : : ; '
.1/
n 2 ŒF jX1� with '.1/0 .x/ D x, ¤ '

.1/
i .x/E'

.1/
j .x/ if i ¤ j .

Consider now e 2 E0, so that �.Xe/ > 0. If ŒF jXe W EjXe� � n, then
A D Xe satisfies the first alternative of the lemma. So we can assume that ŒF jXe W
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EjXe� � nC 1, 8e 2 E0. Since EjXe is ergodic, we can find 'e0 ; : : : ; '
e
n 2 ŒF jXe�

with 'e0.x/ D x and ¤ 'ei .x/E'
e
j .x/ if i ¤ j (see 2.1). Let '.0/i D S

e2E0
'ei .

Thus '.0/i 2 ŒF jX0�, where X0 D S
e2E0

Xe D X n X1, and '.0/0 .x/ D x,

¤ '
.0/
i .x/E'

.0/
j .x/ if i ¤ j . Finally let Ti D '

.0/
i [ '.1/i . This clearly works.

If F is not ergodic, consider its ergodic decomposition and apply the preceding
argument to each piece of the ergodic decomposition.

We also have the following result concerning the “proximity” of E to F .

Theorem 2.7. Let � be a countable group and consider a measure-preserving action
of � on .X;�/ with associated equivalence relation F D EX� . LetE be a countable
measure-preserving equivalence relation on .X;�/. If " > 0 is such that 'E .�/ �
1 � ", 8� 2 � , then 'E .S/ � 1 � 4", 8S 2 ŒF �.
Proof. Since 'E .S/ D 'E\F .S/ for S 2 ŒF �, we can assume that E � F .

In the earlier notation of Section 2 (A) concerning the representation � of ŒF �, we
have that h� � 
0; 
0i � 1 � ", 8� 2 � (where we put as before �.S/.
/ D S � 
). If

 is the element of least norm in the closed convex hull of f� � 
0 W � 2 �g, then 

is invariant for � and h
; 
0i � 1 � ", thus k
 � 
0k2 � 2.1 � h
; 
0i/ � 2". Thus
for any S 2 ŒF �; k
 � S � 
0k2 D kS � 
 � S � 
0k2 � 2", so kS � 
0 � 
0k � 2

p
2",

therefore 2.1 � 'E .S// � 8", and so 'E .S/ � 1 � 4".
(C) We will next derive some consequences of the preceding results. We refer to
Gaboriau [G3] for information about the concept of measure equivalence (ME) in-
troduced by Gromov.

Lemma 2.8. Let� ,�be two countable groups and consider free, measure-preserving
actions of � , � on .X;�/ with associated equivalence relations E D EX� � F D
EX� . If there is an E-invariant Borel set A � X such that every F jA-class contains
at most finitely many EjA-classes, then � , � are ME.

Proof. By shrinkingAwe can assume that there is n such that ŒF jA W EjA� D n. Fix
BorelT1; : : : ; Tn W A ! A such that theF jA-class ofx is the union of theEjA-classes
of Ti .x/, i D 1; : : : ; n.

Let � D f.x; y/ W x 2 A; y 2 X; xFyg � F and consider on � the � -
finite Borel measure �j�, where � is the � -finite Borel measure on F given by
�.B/ D R

X
card.B \ F x/ d�.x/ for every Borel B � F . Then � acts on � by

ı � .x; y/ D .ı � x; y/, since A is �-invariant, and � acts on � by � � .x; y/ D
.x; � � y/. These actions clearly preserve �j� and commute. So it is enough to
show that each of the �, � actions admits a transversal (fundamental domain) of
finite measure. Let T W ŒA�F ! A be a Borel map such that T .y/Fy. Then �1 D
f.TiT .y/; y/ W y 2 ŒA�F ; i D 1; : : : ; ng is a finite measure transversal for the �-
action and �2 D f.x; x/ W x 2 Ag is a finite measure transversal for the �-action.
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Corollary 2.9. In the context of Lemma 2.8, if there are S; S 0 2 ŒF � such that
inf�2� 'E .S�S 0/ > 0, then � , � are ME.

Corollary 2.10. Let � be a countable group and consider a free measure-preserving
action of � on .X;�/ with associated equivalence relation F D EX� . If E � F is
ergodic, treeable and there are S; S 0 2 ŒF � such that inf�2� 'E .S�S 0/ > 0, then �
has the Haagerup Approximation Property (HAP).

Proof. By Hjorth [H4], E is given by a free action of a group �. Then � has the
HAP (see, e.g., Gaboriau [G3]), and � , � are ME by 2.8, so � has the HAP (see
again Gaboriau [G3]).

Below, for an equivalence relation F , we denote by ŒŒF �� the set of measure-
preserving bijections � W dom.�/ ! rng.�/ wit h dom.�/; rng.�/ Borel sets and
�.x/F.x/, for almost all x 2 dom.�/.

Lemma 2.11. Let F be a countable, measure-preserving, ergodic equivalence rela-
tion on .X;�/ and let E � F . Let X1 D fx 2 X W Œx�E is infiniteg. Assume that
there is an E-invariant Borel set A of positive measure such that F jA D EjA (and
thus A � X1). Then for every " > 0, there is � 2 ŒŒF �� with �.dom.�// < "

such that if E _ � is the subequivalence relation generated by E and � , then
.E _ �/jX1 D F jX1 a.e. So if in addition E is aperiodic (i.e., X1 D X ),
then E _ � D F a.e.

Moreover, if F is given by an action of a finitely generated group � and
f�1; �2; : : : ; �ng is a set of generators for � , then there are Borel setsB1; : : : ; Bn with
�.Bi / < ", 8i � n, such that if E 0 D E_�1jB1_� � �_�njBn, thenE 0jX1 D F jX1.

Proof. Consider the ergodic decomposition of E, as in the proof of 2.6, whose nota-
tion we keep below.

Since�.A/ > 0 andEjA is ergodic, it follows that the measure�� has atoms, and
A D Xe0

, for some atom e0 of ��. Let E0 be the set of atoms of ��,
E1 D fe 2 EnE0 W e is non-atomicg and E2 D En.E0[E1/ D f� 2 E W e is atomicg.
Note that XE2

D S
e2E2

Xe D Xfin D X n X1. We can clearly assume that
��.E n .E2 [ fe0g// > 0, otherwise there is nothing to prove.

Fix now�.Xe0
/ > " > 0. If e 62 E2, then e is not atomic, so we can find Ye � Xe

a Borel set with e.Ye/ D "=2. Then, by ergodicity, Ye meets every EjXe-class.
Let Y D S

e 62E2;e¤e0
Ye , so that 0 < �.Y / < ". Then there is � 2 ŒŒF �� with

dom.�/ D Y , rng.�/ � Xe0
. We claim that if NE D E _ � , then NEjX1 D F jX1.

To see this note that if y 2 Xe for some e 62 E2, e 6D e0, then there is z 2 Ye with
yEz. Thus y NE�.z/ 2 Xe0

. So every y 2 X1 is NE-equivalent to an element of Xe0
.

Since EjXe0
D F jXe0

, we are done.
For the last assertion, decompose dom.�/ D Y into countably many Borel sets

of positive measure fYmg1
mD1, so that there are words fwmg1

mD1 in f�1; : : : ; �ng with
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� jYm D wmjYm. Say wm has length km. Then find a Borel set Zm � Ym such
that �.Zm/ < 1

km
�.Ym/ and for every e 62 E2, e ¤ e0, if e.Ym \ Xe/ > 0, then

e.Zm \ Xe/ > 0 (again ignoring null sets for ��). Let Z D S
mZm, so that

e.Z \ Xe/ > 0 for each e ¤ E2, e ¤ e0. Let � 0 D � jZ. Then, as before,
.E _ � 0/jX1 D F jX1. Note now that if wm D �˙1

i1
�˙1
i2
: : : �˙1

km
, then

� jZm D � 0jZm is a composition of �˙1
ikm

jZm, �˙1
ikm�1

j�˙1
ikm
.Zm/; : : : . Thus

graph.� jZm/ � �1jB.m/1 _ � � � _ �njB.m/n D the equivalence relation generated by

�i jB.m/i , 1 � i � n, where B.m/i are Borel sets with �.B.m/i / � km � 1
km

� �.Ym/ D
�.Ym/, 8i � n. Let Bi D S

mB
.m/
i . Then �.Bi / � P

m �.Ym/ < " and
E _ � 0 � E 0, so E 0jX1 D F jX1.

Remark 2.12. In the notation of 2.11, it is clear that, under the same hypothesis, if
E is also ergodic, then E D F .

Below we denote by C�.E/ the cost of the countable, measure-preserving equiv-
alence relation E on .X;�/ (see Gaboriau [G1] or Kechris–Miller [KM]).

Corollary 2.13. Let � be a countable group and consider a measure-preserving,
ergodic action of � on .X;�/ with associated equivalence relation F D E�X . Let
E � F be a subequivalence relation. If E is aperiodic and inf�2� 'E .S�S 0/ > 1

2

for some S; S 0 2 ŒF �, then C�.F / � C�.E/.

Proof. By 2.11 and 2.5.

The following gives a quantitative version of (part of) 2.5.

Lemma 2.14. LetF be a measure-preserving, ergodic equivalence relation on .X;�/
and E � F a subequivalence relation. Assume that 8S 2 ŒF � .'E .S/ > 0/. Then
there is an E-invariant Borel set A of positive measure such that EjA D F jA.
Moreover, for some S 2 ŒF �; fx W S.x/Exg � A, so that �.A/ � 'E .S/.

Proof. Consider the ergodic decomposition ofE as in the proof of 2.6, whose notation
we keep below.

Claim. �� has atoms, i.e., E0 6D ;.

Proof. If �� is non-atomic, fix A� � E with ��.A�/ D 1
2

. If †�1.A�/ D A, then
�.A/ D 1

2
and A is E-invariant. Let T 2 ŒF � be such that T .A/ D �A. Then

'E .T / D 0, a contradiction.

If e 2 E0, then �.Xe/ > 0. If for all e 2 E0, EjXe ¤ F jXe , then as EjXe is
ergodic, we can find 'e 2 ŒF jXe� such that ¤ 'e.x/Ex, 8x 2 Xe (see Remark 2.1).
If also ��.� E0/ > 0, then we can split � E0 into two pairwise disjoint sets of equal
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measure and thus split � XE0
D � S

e2E0
Xe into two sets of equal measureX1,X2

which are E-invariant. Then let T1 2 ŒF � be such that T1.X1/ D X2, T1.X2/ D X1.
Then : T1.x/Ex for x 62 XE0

. If T 2 ŒF � is defined by T D � S
e2E0

'e
� [ .T1j �

XE0
/, then clearly ¤ T .x/Ex, 8x, a contradiction.

Thus we see that there must be some atom e of �� with EjXe D F jXe .
Enumerate in a sequence (finite or infinite) fe0; e1; : : : g all elements e of E0 such

that EjXe D F jXe in such a way that �.Xei
/ � �.XeiC1

/. Put A D Xe0
. Let

Y D S
i Xei

; Z D �Y . We have seen that there is S1 2 ŒF jZ� with ¤ S1.z/Ez,
8z 2 Z. Let forn � 0, �nC1 2 ŒŒF �� be such that dom.�nC1/ D XenC1

, rng.�nC1/ �
Xen

, and let �� D S
n�0 �n so that �� W S

i>0Xei
! S

i Xei
, �� 2 ŒŒF �� and

¤ ��.x/Ex. Let ��� 2 ŒŒF �� be such that dom.���/ D Xe0
and rng.���/ DS

i Xei
n ��� S

i>0Xei

�
. Put S2 D �� [ ���, so that S2 2 ŒF jY � and ¤ S2.y/Ey

if y 62 Xe0
. Then if S D S1 [ S2; S 2 ŒF � and fx W S.x/Exg � Xe0

D A.

Corollary 2.15. Let � be a countable group and consider a measure-preserving,
ergodic action of � on .X;�/ with associated equivalence relation F D EX� . Let
E � F be a subequivalence relation. If '0E D inf�2� 'E .�/ > 3

4
, then there is an

E-invariant Borel set A with EjA D F jA such that �.A/ � 4'0E � 3.

Proof. By 2.14 and 2.7.

3. Epstein’s co-inducing construction

(A) We will next study some properties of a co-inducing construction of Epstein [E].
We first describe this construction. Fix a standard measure space .X;�/, a count-

able, measure-preserving equivalence relation F on .X;�/ and a subequivalence
relation E � F such that there is a fixed number N 2 f1; 2; 3; : : : ;@0g of E-classes
in each F -class. This is the case, for example, if F is ergodic. Fix choice functions
fCngn2N , where we identifyN here with f0; 1; : : : ; N � 1g ifN is finite and with N
if it is infinite, as in Section 2 (A), and let 	 W F ! SN (D the symmetric group of
N ) be the index cocycle given by the formula

	.x; y/.k/ D n () ŒCk.x/�E D ŒCn.y/�E :

Now assume that E as above is induced by a free action a0 of a countable group
�. Then we can define Nı W F ! �N by

Nı.x; y/n � C�.x;y/�1.n/.x/ D Cn.y/:

The group SN of permutations of N acts on �N by shift .	 � Nı/n D Nı��1.n/, so we
can consider the semi-direct product SN Ë�N , whose multiplication is defined by

.	1; Nı1/.	2; Nı2/ D .	1	2; Nı1.	1 � Nı2//:



Subequivalence relations and positive-definite functions 597

It is easy to check that
�.x; y/ D .	.x; y/; Nı.x; y//

is a Borel cocycle
� W F ! SN Ë�N :

Now given any measure-preserving action a of � on a standard measure space
.Y; �/, we can define a measure-preserving action of SN Ë�N on .Y N ; �N / by

..	; Nı/ � Ny/n D Nın � Ny��1.n/:

Then we can define a near-action of ŒF � on .X � Y N ; � � �N /, i.e., a continuous
homomorphism of ŒF �, with the uniform topology, into the automorphism group
Aut.X � Y N ; � � �N /, with the weak topology, by letting S 2 ŒF � act on X � Y N
as a skew product via �, namely

S � .x; Ny/ D .S.x/; �.x; S.x// � Ny/ D .S.x/; .n 7! Nı.x; S.x//n � Ny�.x;S.x//�1.n///:

(For information about near-actions, see Glasner–Tsirelson–Weiss [GTW], and con-
cerning the uniform and weak topologies, see Kechris [K].)

In particular, if c0 is a measure-preserving action of a countable groupƒ on .X;�/
with EXƒ � F , then � 2 ƒ gives rise to an element x 7! � � x of ŒF �, so we can
define

	.�; x/ D 	.x; � � x/; Nı.�; x/ D Nı.x; � � x/; �.�; x/ D .	.�; x/; Nı.�; x//;
and then � W ƒ � X ! SN Ë �N is a Borel cocycle. The restriction of the near-
action of ŒF � on .X � Y N ; �� �N / gives then a measure-preserving action of ƒ on
.X � Y N ; � � �N /, which is the skew product

c D c0 Ë	 .Y N ; �N /
defined by

� � .x; Ny/ D .� � x; �.�; x/ � Ny/ D .� � x; .n 7! Nı.�; x/n � Ny�.
;x/�1.n//:

Fix now a Borel action b0 of a countable group � on .X;�/with F D EX� . Then
applying the above to ƒ D � , c0 D b0, we associate to each measure-preserving
action a of � on .Y; �/ a measure-preserving action b of � on .X � Y N ; � � �N /,
relative to the fixed pair .a0; b0/ of the actions of � , �, respectively, on X (and the
choice of fCng – but it is not hard to check that this action is independent of the
choice of fCng, up to isomorphism). We call this the co-induced action of a, modulo
.a0; b0/, in symbols:

b D CInd.a0; b0/
�
�.a/:

We can view this as an operation from the space A.�; Y; �/ of measure-preserving
actions of � on .Y; �/ to the space A.�;X � Y N ; � � �N /; see, e.g., Kechris [K].
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By applying the preceding toƒ D �, c0 D a0, we also have a measure-preserving
action a0 of � on .X � Y N ; � � �N /. Clearly this action gives a subequivalence
relation of the equivalence relation given by b. We note that b0 is a factor of b via
.x; Ny/ 7! x, a is a factor of a0 via .x; Ny/ 7! Ny0 (recall here that C0.x/ D x, so
that 	.�; x/.0/ D 0 iff � � xEx) and finally a0 is a factor of a0 via .x; Ny/ 7! x. In
particular, if b0 is free, so is b, and a0 is always free.

Moreover, for further reference, we note that the map a 7! CInd.a0; b0/��.a/ is a
continuous map from A.�; Y; �/ to A.�;X � Y N ; �� �N /, where each is equipped
with the weak topology (see Kechris [K] for its definition).

(B) We will now study some connections between ergodicity properties of an action
and its co-induced action. In the notation of (A), if a0 is ergodic we can choose the
choice functions to be 1-1 and it will be assumed in this case that the co-inducing
construction is done with such choice functions.

Proposition 3.1. In the notation of (A) above, if b0 is free, mixing and a0 is ergodic,
then

a is mixing H) b D CInd.a0; b0/
�
�.a/ is mixing:

Proof. Assume that b0, a are mixing, b0 is free, and a0 is ergodic. Consider the action
b of � on .X �Y N ; ���N /. Then � acts onL2.X �Y N ; ���N / by � �f .x; Ny/ D
f .��1 � .x; Ny// and it is enough to show that for f; g 2 L2.X � Y N ; � � �N /,R
.��1 � f /g ! .

R
f /.

R
g/ as � ! 1. Without loss of generality, we can assume

that f .x; Ny/ D f0.x/F0. Ny0/ : : : Fm. Nym/, g.x; Ny/ D g0.x/G0. Ny0/ : : : Gm. Nym/ for
bounded f0; g0 W X ! C, Fi ; Gi W Y ! C. Note that

R
f0.� � x/g0.x/ d�.x/ !

.
R
f0/.

R
g0/ since b0 is mixing. Now we haveZ

.��1 � f /g D
Z
f0.� � x/g0.x/

� Z
mQ
iD0

Fi . Nı.�; x/i � Ny�.�;x/�1.i//Gi . Nyi / d Ny
�
dx:

Note that if fqng, qn W Z ! C, and frng, rn W Z ! C, are uniformly bounded,
where Z is a probability space, qn.z/ ! a, 8z, and

R
rn ! b, thenZ

qn.z/rn.z/ D
Z
.qn.z/ � a/rn.z/C a

Z
rn.z/ ! ab;

by Lebesgue Dominated Convergence. So it is enough to show that for each fixed
x 2 X ,Z � mQ

iD0
Fi . Nı.�; x/i � Ny�.�;x/�1.i//Gi . Nyi /

	
d Ny !

mQ
iD0

� Z
Fi

�� Z
Gi

�
; (	)

as � ! 1.
Fix then x 2 X and put

S� D f.i; 	.�; x/�1.i// W i � m; 	.�; x/�1.i/ � mg:
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For each S � f0; : : : ; mg2, let

�S D f� 2 � W S� D Sg:
Then � D F

S �S is a finite partition of � , so it is enough to show that for each fixed
S with �S infinite, .	/ holds as � ! 1, � 2 �S .

For such S and � 2 �S , let

I� D fi � m W 	.�; x/�1.i/ � mg
and let

�� .i/ D 	.�; x/�1.i/
for i 2 I� . Thus graph.�� / D S .

ThenZ �� mQ
iD0
Fi . Nı.�; x/i � Ny�.�;x/�1.i/

�
Gi . Nyi /

	
d Ny

D
Z � Q

i2I�

Fi . Nı.�; x/i � Ny	� .i//G	� .i/. Ny	� .i//
	

� � Q
i 62I�

Fi . Nı.�; x/i � Ny�.�;x/�1.i//
Q
i 62	� .I� /

Gi . Nyi /
	
d Ny:

Noticing that if i 62 I� ; i � m, then 	.�; x/�1.i/ > m, so that

�� .I� /; f	.�; x/�1.i/ W i 62 I�g; f0; : : : ; mg n �� .I� /
are pairwise disjoint, and applying independence, we see that the above integral is
equal to� Q

i 62I�

Z
Fi

�� Q
i 62	� .I� /

Z
Gi

�� Z Q
i2I�

Fi . Nı.�; x/i � Ny	� .i//G	� .i/. Ny	� .i/// d Ny
�
:

Thus for each i 2 I� , if j D �� .i/, it is enough, by independence again, to show that

lim
�2�S
�!1

Z
Fi . Nı.�; x/i � Nyj /Gj . Nyj / d Ny D

� Z
Fi

�� Z
Gj

�
;

or equivalently, Z
Fi . Nı.�; x/i � y/Gj .y/ dy !

� Z
Fi

�� Z
Gj

�

as � ! 1; � 2 �S . Using that the action a of � on Y is mixing, it is then enough
to show that for each i ,

� ! 1 H) Nı.�; x/i ! 1:
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Otherwise, there is a finiteK � � such that Nı.�; x/i 2 K for infinitely many � 2 � .
Now Nı.�; x/i � Cj .x/ D Ci .� � x/, so Ci .� � x/ takes only finitely many values for
infinitely many � 2 � , contradicting the fact that the �-action on X is free and Ci is
1-1.

There is another condition concerning the “smallness” of E in F that actually
guarantees that the co-induced action b is mixing for any a (mixing or not).

In the context of (A), let for each � 2 � , k; n 2 N ,

A
k;n
E .�/ D fx W 	.�; x/.k/ D ng D fx W Ck.x/ECn.� � x/g:

Thus A0;0E .�/ D fx W � � xExg. Put 'k;nE .�/ D �.A
k;n
E .�//. Clearly '0;0E D 'E .

Lemma 3.2. If 'E .�/ ! 0 as � ! 1, then 'k;nE .�/ ! 0 for any k, n, as � ! 1.

Proof. We have 'k;nE .�/ D �.fx W Ck.x/ECn.� � x/g/. Put S D Ck , T D Cn.
There is a partition X D F

i2N Ai and �i 2 � such that S D F
i �i jAi . Similarly

there is a partition X D F
j2N Bj and ıj 2 � such that T D F

j ıj jBj .
Assume that 'E .�/ ! 0 as � ! 1, and let " > 0. We will find a finite setF � �

such that 'k;nE .�/ < " for � 62 F . First find J0 such that
P
j�J0

�.Bj / < "=3. Then
fix I0 such that

P
i�I0

�.Ai / < "=3jJ0j. Since �i��1ıj ! 1 for each i , j , as
� ! 1, there is a finite set F � � such that

P
i<I0;j<J0

'E .�i�
�1ı�1

j / < "=3 for

� 62 F . We show that if � 62 F , then 'k;nE .�/ < ".
We have for any � :

'
k;n
E .�/ D �.fx W S.x/ET .� �x/g/

D P
i;j

�.fx W x 2 Ai ^ x 2 ��1 �Bj ^ �i �xEıj � �xg/

D P
i;j

�.fx W ��1ı�1
j �x 2 Ai ^ ��1ı�1

j �x 2 ��1 �Bj ^ �i��1ı�1
j �xExg/

D P
i;j

�.fx W ��1ı�1
j �x 2 Ai ^ ı�1

j �x 2 Bj ^ �i��1ı�1
j �xExg/:

Let
A
.�/
i;j D fx W ��1ı�1

j � x 2 Ai ^ ı�1
j � x 2 Bj g:

Then

�.A
.�/
i;j / D �.fx W ��1 � x 2 Ai ^ x 2 Bj g/ D �.fx W x 2 Ai ^ � � x 2 Bj g/;

so
P
j�J0

P
i �.A

.�/
i;j / D P

j�J0
�.Bj / < "=3. Also

P
j<J0

P
i�I0

�.A
.�/
i;j / �P

j<J0

P
i�I0

�.Ai / < "=3. So it follows that

'
k;n
E .�/ � � P

i<I0

P
j<J0

'E .�i�
�1ı�1

j /
	 C 2"=3:
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Thus, if � 62 F then

'
k;n
E .�/ < ":

We denote below by i the trivial action of� on .Y; �/ W ı � y D y. We now have:

Theorem 3.3. In the notation of (A) above, and assuming that b0 is mixing, the
following assertions are equivalent:

(i) 'E .�/ ! 0 as � ! 1;
(ii) CInd.a0; b0/��.i/ is mixing;

(iii) 9a 2 A.�; Y; �/ (a is not ergodic and CInd.a0; b0/��.a/ is mixing);
(iv) 8a 2 A.�; Y; �/.CInd.a0; b0/��.a/ is mixing).

Proof. Clearly (ii) H) (iii) and (iv) H) (ii).
(i) H) (iv): By 3.2 we have that 'k;nE .�/ ! 0, 8k; n. Let

A
j;i
E .�/ D fx W 	.�; x/�1.i/ D j g

and

A
.m/
E .�/ D S

1�i;j�m
A
j;i
E .�/:

Then going over the proof of 3.1 and keeping its notation, we see that for x 62 A.m/E .�/,

Z � mQ
iD0

Fi . Nı.�; x/i � Ny�.�;x/�1.i//Gi . Nyi /
	
d Ny D

mQ
iD1

� Z
Fi

�� Z
Gi

�
;

by independence. Thus, for some bounded H.x/,Z
.��1 � f /g D

Z
A

.m/
E

.�/

H.x/ dx C
Z

�A.m/
E

.�/

f0.� � x/g0.x/
� mQ
iD0

� Z
Fi

�� Z
Gi

��
dx

!
� Z

f

�� Z
g

�

as � ! 1, since �.A.m/E .�// ! 0 and b0 is mixing.
(iii) H) (i): Fix such an action a and a set B � Y with 0 < p D �.B/ < 1,

which is invariant under this action. We will show that 'E .�/ ! 0. Put B.0/ D
f.x; Ny/ W Ny0 2 Bg. Since the co-induced action is mixing, we have that

.� � �N /.� � B.0/ \ B.0// ! .� � �N /.B.0// � .� � �N /.B.0// D p2:

Now
� � B.0/ D f� � .x; Ny/ W .x; Ny/ 2 B.0/g D f� � .x; Ny/ W Ny0 2 Bg;
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so

� � B.0/ \ B.0/ D f� � .x; Ny/ W Ny0 2 B ^ .�.�; x/ � Ny/0 2 Bg
D f� � .x; Ny/ W Ny0 2 B ^ Nı.� � x/0 � Ny�.�;x/�1.0/ 2 Bg
D f� � .x; Ny/ W Ny0 2 B ^ Ny�.�;x/�1.0/ 2 Bg
D f� � .x; Ny/ W 	.�; x/.0/ D 0 ^ Ny0 2 Bg

t f� � .x; Ny/ W 	.�; x/.0/ ¤ 0 ^ Ny0 2 B ^ Ny�.�;x/�1.0/ 2 Bg:
So, by Fubini,

.� � �N /.� � B.0/ \ B.0// D �.A
0;0
E .�// � �.B/C .1 � �.A0;0E .�// � �.B/2

D p�.A
0;0
E .�//C p2.1 � �.A0;0E .�///:

Since .�� �N /.� �B.0/\B.0// ! p2 and 0 < p < 1, it follows that �.A0;0E .�// D
'E .�/ ! 0.

Therefore, if 'k;nE .�/ 6! 0 for some k, n, as � ! 1, it follows that, for every
a 2 A.�; Y; �/, if CInd.a0; b0/��.a/ is mixing, then a is ergodic. By strengthening
the hypothesis, we can obtain the following stronger conclusion.

Proposition 3.4. With the notation of (A) above, if we have inf�2� 'k;nE .�/ > 0

for some k, n, it follows that, for any a 2 A.�; Y; �/, if b D CInd.a0; b0/��.a/ is
ergodic, then a is ergodic.

Proof. Assume that a is not ergodic, in order to show that b is not ergodic. Let
f 2 L20.Y / D ff 2 L2.Y / W R

f D 0g be real such that kf k2 D 1 and
ı � f D f , 8ı 2 �. Let f .k/; f .n/ 2 L20.X � Y N / be defined by f .k/.x; Ny/ D
f . Nyk/; f .n/.x; Ny/ D f . Nyn/. Then for the �-action on L20.X � Y N /,

h��1 � f .n/; f .k/i D
“

f .n/.� � .x; Ny//f .k/.x; Ny/ dxd Ny

D
“

f .n/.� � x; .n 7! Nı.�; x/n � Ny�.�;x/�1.n///f
.k/.x; Ny/ dxd Ny

D
“

f . Nı.�; x/n � Ny�.�;x/�1.n//f . Nyk/ dxd Ny

D
Z
A

k;n
E
.�/

� Z
f . Nı.�; x/n � Nyk/f . Nyk/ d Ny

�
dx

C
Z

�Ak;n
E
.�/

� Z
f . Nı.�; x/n � Ny�.�;x/�1.n//f . Nyk/d Ny

�
dx

D
Z
A

k;n
E
.�/

� Z
f 2

�
dx C

Z
�Ak;n

E
.�/

� Z
f

�2
dx

D �.A
k;n
E .�// D '

k;n
E .�/:
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Thus h��1 � f .n/; f .k/i � c > 0 for some c > 0. If K is the closed convex hull
of f� � f .n/ W � 2 �g, then h
; f .k/i � c, 8
 2 K, so 0 62 K. If 
1 is the unique
element of least norm inK, clearly 0 ¤ 
1 2 L20.X � Y N/, and 
1 is �-invariant, so
the action b is not ergodic.

Let b0 be a free action of a countable group � on .X;�/ and let a0 be a free
action of a countable group� on .X;�/, so thatE D EX� � F D EX� . If there exist
S; S 0 2 ŒF � with inf�2� 'E .S�S 0/ > 0, then, by 2.9, � , � are ME. In particular,
if a0 is ergodic, so that we can take the choice functions fCng to be in ŒF �, we
note that 'k;nE .�/ D �.fx W Ck.x/ECn.� � x/g/ D �.fx W Cn�C�1

k
.x/Exg/ D

'E .Cn�C
�1
k
/. Thus we have:

Corollary 3.5. Let b0 be a free measure-preserving action of � on .X;�/ and
let a0 be a free, ergodic action of � on .X;�/ with E D EX� � F D EX� . If

inf�2� 'k;nE .�/ > 0 for some k, n, then � , � are ME. In particular, � has property
(T) (resp. HAP) iff � has property (T) (resp. HAP).

Remark 3.6. In the context of 3.5, when b0 is also mixing and � does not have
the HAP, one can show that � does not have the HAP by the following alternative
argument, which may be of some independent interest.

We will use the following characterization of groups with HAP; see
Kechris [K], 12.7. Below ERG.�;X;�/ is the set of ergodic actions of � on .X;�/,
and MIX.�;X;�/ the set of mixing actions. We consider these as subspaces of the
space of actions A.�;X;�/ with the weak topology.

Theorem 3.7. Let � be an infinite countable group. Then the following conditions
are equivalent:

(i) � does not have the HAP.

(ii) MIX.�;X;�/ � ERG.�;X;�/.

Consider now the continuous map

a 2 A.�; Y; �/ 7! b.a/ 2 A.�;X � Y N ; � � �N /;
where b.a/ D CInd.a0; b0/��.a/. Then we have, by 3.1,

a is mixing H) b.a/ is mixing

and, by 3.4,

b.a/ is ergodic H) a is ergodic.

Let C D fa 2 A.�; Y; �/ W b.a/ 2 MIX.�;X � Y N ; � � �N /g. Then C is
closed and MIX.�; Y; �/ � C . So MIX.�; Y; �/ � C . If a 2 C , then b.a/ 2
MIX.�;X � Y N ; � � �N / � ERG.�;X � Y N ; � � �N /. So a 2 ERG.�; Y; �/,
i.e., MIX.�; Y; �/ � ERG.�; Y; �/, and thus � does not have the HAP.
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(C) Let � be an infinite countable group and let b0 be a free mixing action of � on
.X;�/. It is well known that there is a free, mixing action a0 of Z on .X;�/ such
that E D EXZ � F D EX� (see, e.g., Zimmer [Z], 9.3.2). We will construct below
a0 so that moreover 'E .�/ ! 0 as � ! 1. Then by 3.3, for every action a of Z
on .Y; �/, the action CInd.a0; b0/�Z.a/ is mixing, which produces a large supply of
seemingly new free, mixing actions of � .

Theorem 3.8. Let � be an infinite countable group and let b0 be a free, measure-
preserving, mixing action of � on .X;�/. Then there is a free, measure-preserving,
mixing action a0 of Z on .X;�/ with E D EXZ � F D EX� and 'E .�/ ! 0 as
� ! 1.

We will use the following two lemmas.

Lemma 3.9. Let � be an infinite countable group. Then there exists a positive,
symmetric (i.e., invariant under inverses) function f 2 c0.�/ n `1.�/ such that
whenever S � � and

P
�2S f .�/ < 1, then

P
�2S f .ı1�ı2/ < 1 for any

ı1; ı2 2 � (i.e., the summable ideal associated to f is two-sided invariant).

Proof. Fix a sequence fQngn�0 of finite, symmetric subsets of � with Q0 D f1g,
Qn � QnC1, QnC1 n .Qn/n ¤ ; and

S
nQn D � . Let j� j D minfn W � 2 .Qn/ng

(this is motivated by an idea in Struble [ST]). Note that j� j D j��1j and j�ıj �
j� j C jıj, so j�ıj � j j� j � jıj j for any �; ı 2 � . Put now f .�/ D 1

j� jC1 . Then

clearly f 2 c0.�/ and for every n, there is � 2 � with j� j D nC 1, so f 62 `1.�/.
Fix now S � � with

P
�2S f .�/ < 1. For ı 2 � , let jıj D c, and notice that

X
�2S

f .�ı/ D
X
�2S

1

j�ıj C 1
�

X
f� Wj� j�cg

1

j�ıj C 1
C

X
f�2S Wj� j>cg

1

j� j � c C 1

�
X

f� W j� j � cg 1

j�ıj C 1
C

X
�2S

c C 1

j� j C 1
< 1:

Similarly,
P
�2S f .ı�/ < 1 and we are done.

Consider now the given free, measure-preserving, mixing action b0 of� on .X;�/
with F D EX� the associated equivalence relation.

Lemma 3.10. Let f be as in Lemma 3.9. Let R � F be a finite subequivalence
relation with uniformly bounded size of its equivalence classes, and let A;B � X be
disjoint with�.A/ D �.B/ and such thatA[B is a section ofR (i.e., no two distinct
members of A [ B belong to the same R-class). Suppose also that 'R.�/ � f .�/,
8� 2 � . Then there exists � 2 ŒŒF �� with dom.�/ D A, rng.�/ D B such that

'R_� .�/ � f .�/; 8� 2 �: (2)
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Proof. Let T 2 ŒF � generate R and let N be such that T N D 1. Notice that for any
� 2 ŒŒF �� with dom.�/ � A; rng.�/ � B we have

'R_� .�/ � 'R.�/C
NX

i;jD1
�.fx W T i�T j .x/ D � � xg/

C
NX

i;jD1
�.fx W T i��1T j .x/ D � � xg/:

Let � 2 ŒŒF �� be maximal (under inclusion) with dom.�/ � A; rng.�/ � B satisfying
(2). We will show that this works, i.e., dom.�/ D A; rng.�/ D B . Otherwise,
A1 D A n dom.�/; B1 D B n dom.�/ have positive measure.

For � 2 ŒŒF ��; � 2 � let

s� .�/ D
NP

i;jD1
�.fx W T i�T j .x/ D � � xg/C

NP
i;jD1

�.fx W T i��1T j .x/ D � � xg/;
and put

S D f� W 'R.�/C s� .�/ � f .�/g:

Let thenK � � be finite, symmetric such that �
� S

ifx W T i .x/ 62 K �xg� < �.A1/
2

4
,

and put S 0 D KSK [KS�1K.

Claim.
P
�2S f .�/ < 1.

Proof. First notice that
P
�2� 'R.�/ D P

�2� �.fx W 9i � N.T i .x/ D � � x/g/ �P
i�N

P
�2� �.fx W T i .x/ D � �xg/ � N , as the sets fx W T i .x/ D � �xg, � 2 � , are

pairwise disjoint by the freeness of the action. Similarly
P
�2� s� .�/ � 2N 2, since

the sets fx W T i�T j .x/ D � � xg, � 2 � , are pairwise disjoint. Thus
P
�2S f .�/ �P

�2S 'R.�/C P
�2S s� .�/ < 1.

So by Lemma 3.9,
P
�2S 0 f .�/ < 1 and hence� nS 0 is infinite. Since the action

is mixing, there is �0 2 � n S 0 such that �.�0 � A1 \ B1/ � .3=4/�.A1/
2. Then

.K�0K [K��1
0 K/ \ S D ;:

Put

D D .A1 \ ��1
0 .B1// n .S

i

fx W T i .x/ 62 K � xg [ ��1
0 � S

i

fx W T i .x/ 62 K � xg/:

Then �.D/ � .3=4/�.A1/
2 � .2=4/�.A1/2 > 0. Also for any i , j ,

T i .�0jD/T j .x/ 2 K�0K � x
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if the left-hand side is defined. Indeed for such x, T j .x/ 2 D, so x D T N�jT j .x/ 2
K � T j .x/ and T i�0T j .x/ 2 K � �0T j .x/. Thus T j .x/ 2 K � x and T i�0T j .x/ 2
K�0K � x. Similarly T i .��1

0 j�0.D//T j .x/ 2 K��1
0 K � x, whenever the left-hand

side is defined. In particular,

T i .�0jD/T j .x/; T i .��1
0 j�0.D//T j .x/

are not in S � x, when they are defined. Take now D0 � D with

0 < �.D0/ � min
�2K�0K[K��1

0
K

.f .�/ � 'R.�/ � s� .�//=.2N 2/:

This makes sense because � 2 K�0K [ K��1
0 K implies that � 62 S , so

f .�/ � 'R.�/ � s� .�/ > 0. Let �0 D �0jD0 and � 0 D � [ �0. We claim that
this contradicts the maximality of � . We need to verify that � 0 satisfies (2). Now

'R_� 0.�/ � 'R_� .�/C
NP

i;jD1
�.fx W T i�0T j .x/ D � � xg

C
NP

i;jD1
�.fx W T i .�0/�1T j .x/ D � � xg/:

But if T i�0T j .x/ D T i .�0jD0/T j .x/ D � � x, then � 2 K�0K. Therefore,
if fx W T i�0T j .x/ D � � xg is not empty, then � 2 K�0K, and similarly if
fx W T i .�0/�1T j .x/ D � � xg is not empty, then � 2 K��1

0 K. Thus for any
� 62 K�0K[K��1

0 K, 'R_� 0.�/ � 'R_� .�/ � f .�/ and for � 2 K�0K[K��1
0 K,

'R_� 0.�/ � 'R.�/C s� .�/C 2
NP

i;jD1
�.D0/

� 'R.�/C s� .�/C 2N 2f .�/ � 'R.�/ � s� .�/
2N 2

� f .�/:

Hence the proof of the lemma is complete.

Proof of Theorem 3:8. We follow the argument of [Z], 9.3.2 (or [KM], 7.13), which
shows how to construct an ergodic, hyperfinite subequivalence relationE � F . That
proof proceeds by constructing a sequence of finite equivalence relationsE1 � E2 �
: : : each with classes of bounded size such thatE1 D equality andEnC1 D En_�n,
where �n is any � 2 ŒŒF ��, with dom.�/ D An, rng.�/ D Bn, where An, Bn are
some appropriately chosen Borel sets with �.An/ D �.Bn/ and An [ Bn a section
ofEn. Choose now f as in Lemma 3.9 and by Lemma 3.10 choose inductively �n so
that 'EnC1

.�/ D 'En_�n
.�/ � f .�/, 8� (we can of course assume that f .1/ D 1,

so that 'E1
.�/ � f .�/, 8� ). Then 'E .�/ D limn!1 'En

.�/ � f .�/, and thus
'E .�/ ! 0 as � ! 1.
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Finally note that, since by Dye’s Theorem all ergodic, hyperfinite equivalence
relations are isomorphic, we can find a free mixing action a0 of Z that induces E.

It is an old problem of Schmidt [S] to find out whether there exist infinite countable
groups � for which every ergodic action is mixing. One possible approach towards
showing the non-existence of such groups is the following. Fix a free, mixing action
b0 of a countable infinite group � on .X;�/. Then there is a free, mixing action a0 of
Z on .X;�/ such thatE D EXZ � F D EX� . There is a weakly mixing action a of Z
on .Y; �/ which is not mixing. One might hope that by constructing judiciously a0,
CInd.a0; b0/�Z.a/ might also be weakly mixing but not mixing.

Consider now the case of non-amenable groups � . Gaboriau and Lyons [GL]
have shown that if � is a non-amenable group, there is a free, measure-preserving,
mixing action b0 of � on .X;�/ and a free, measure-preserving, ergodic action of
F2 D ha; bi on .X;�/ such that E D EXF2

� F D EX� . We will show below that
one can find such a pair of actions so that moreover 'E .�/ ! 0 as � ! 1.

Theorem 3.11 (with I. Epstein). Let � be a non-amenable countable group. Then
there is a free, measure-preserving, mixing action b0 of � on .X;�/ and a free,
measure-preserving, ergodic action a0 of F2 on .X;�/ with E D EXF2

� F D EX�
and 'E .�/ ! 0 as � ! 1.

We will postpone the proof of this theorem until Section 4 (D), as it will require
some ideas from percolation on Cayley graphs.

(D) We will finally show how the combination of 3.11 and the work of Epstein [E],
who showed that any non-amenable countable group � has uncountably many non-
orbit equivalent free, measure-preserving, ergodic actions, provides the following
strengthening to a non-classification result and also sharpens it by restricting to mixing
actions. We refer the reader to [H2] for background information concerning Borel
reducibility and the theory of turbulence and classification by countable structures.

Theorem 3.12 (with I. Epstein). Let� be a non-amenable countable group. ThenE0
can be Borel reduced to OE on the space of free, measure-preserving, mixing actions
of � and OE on this space cannot be classified by countable structures.

Proof. We fix a free, measure-preserving, mixing action b0 of � on .X;�/ and a free,
measure-preserving, ergodic action a0 of F2 on .X;�/ with E D EXF2

� F D EX�
such that 'E .�/ ! 0. Then for any action a 2 A.F2; Y; �/ we have the co-induced
action b D CInd.a0; b0/�F2

.a/ 2 A.�;Z; �/, where Z D X � Y N , � D � � �N

and the action a0 2 A.F2; Z; �/, which gives a subequivalence relation of that given
by b. The action b is free and by 3.3 it is mixing. Also a0 is free.

From Epstein [E], and the fact that in our case b is ergodic, we also have the
following additional properties:
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(*) For any Borel homomorphismg W Y ! xY ofa to a free action Na 2 A.F2; xY ; N�/,
we have

�.fz 2 Z W 9� ¤ 1.g B f .� � z/ D g B f .z//g/ D 0;

where f W Z ! Y is defined by f .x; Ny/ D Ny0.
(**) For every a0-invariant Borel set A � Z of positive measure, if �A D 	jA

	.A/
is

the normalized restriction of � to A, then f��A D �, thus a is a factor of .a0jA; �A/.
Consider now the standard action of SL2.Z/ on .T2; �/ with the usual product

measure �, and fixing a copy of F2 of finite index in SL2.Z/ let Na0 be the restriction
of this action to F2. We will use the following basic lemma originally proved in
Ioana [I], when F2 � � , but realized to hold as well in the more general case stated
below in Epstein [E].

Lemma 3.13. Let � be a countable group and let fbigi2I be an uncountable family
of OE free, measure-preserving, ergodic actions of � on .Z; �/ such that for each
i 2 I there is a free, measure-preserving action a0

i of F2 on .Z; �/ with the following
two properties:

(i) Ea0
i

� Ebi
(where Ec is the equivalence relation induced by an action c).

(ii) There is a Borel homomorphism fi W Z ! T2 of a0
i to Na0 such that

�.fz W 9� ¤ 1.fi .� � z/ D fi .z//g/ D 0:

Then there is an uncountable J � I such that given any i; j 2 J , there are a0
i -,

a0
j -invariant Borel sets Ai , Aj of positive measure, so that the actions a0

i jAi , a0
j jAj

are isomorphic (with respect to the normalized measures �Ai
, �Aj

).

Denote by Irr.F2;H / the Polish space of irreducible unitary representation of F2
on a separable, infinite-dimensional Hilbert space H (see, e.g., [K], Appendix H).
By a result of Hjorth [H1] (see also [K], Appendix H) there is a conjugacy invariant
dense Gı set G.�;H / � Irr.F2;H / such that the conjugacy action of the unitary
groupU.H / onG is turbulent. As a consequence, if Š denotes isomorphism between
representations, then Š jG.�;H / is not classifiable by countable structures.

Finally for each unitary representation 	 of F2 on H denote by a� the corre-
sponding Gaussian action of F2 (on a space .�; �/; see [K], Appendix E). It has the
following two properties:

(1) 	 Š � H) a� Š a	;
(2) if �a�

0 is the Koopman representation on L20.�; �/ associated to a� , then
	 � �

a�

0 .
Given now any 	 2 G.�;H /, consider the (diagonal) product action a.	/ D

Na0�a� on .T2��;�� �/ D .Y; �/. Let then b.	/ 2 A.�;Z; �/ be the co-induced
action of a.	/ and a0.	/ the associated F2-action. Thus 	 7! b.	/ is a Borel
function fromG.�;H / into the space of free, measure-preserving, mixing actions of
� on .Z; �/. Put for 	; � 2 G.�;H /:

	R� () b.	/OEb.�/:
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Then R is an equivalence relation on G.�;H/ and 	 Š � H) 	R�.

Claim. R has countable index over Š.

Granting this, the proof is completed as follows. First, to see thatE0 can be Borel
reduced to OE on the space of free, measure-preserving, mixing actions of � it is of
course enough to show that it can be Borel reduced toR. The equivalence relationR
is analytic with meager classes (as each Š-class in G.�;H / is meager in G.�;H /,
and every R-class contains only countably many Š-classes), so R is meager and
contains the equivalence relation Š induced by the conjugacy action of U.H / on
G.�;H / which has dense orbits (being turbulent). Then E0 is Borel reducible to R
by the argument in Becker–Kechris [BK], 3.4.5.

To prove non-classification by countable structures, it is of course enough to show
that R has the same property. If this fails, towards a contradiction, there is Borel
F W G.�;H / ! XL, where XL is the standard Borel space of countable models of a
countable language L, such that

	R� () F.	/ Š F.�/;

so that, in particular,
	 Š � H) F.	/ Š F.�/:

But then, by turbulence, there is a comeager set A � G.�;H / and M0 2 XL with

F.	/ Š M0; 8	 2 A:
Because every R-class is meager, there are R-inequivalent 	; � 2 A, so that
F.	/ 6Š F.�/, a contradiction.

Proof of the Claim. Assume, towards a contradiction, that there is an uncountable
family f	igi2I � G.�;H / of pairwise non-isomorphic representations such that
if we put bi D b.	i /, then fbigi2I are OE. Let a0

i D a0.	i /, so that Ea0
i

� Ebi
.

Moreover iffi W Z ! T2 is given byfi D gBf , whereg W Y ! T2 is the projection,
then fi is a Borel homomorphism of a0

i to Na0 such that

�.fz W 9� ¤ 1.fi .� � z/ D fi .z//g/ D 0

(by property (*) of the co-induced action mentioned earlier). So, by Lemma 3.13,
there is an uncountable J � I such that given any i; j 2 J , there are a0

i -, a
0
j -

invariant Borel sets Ai , Aj of positive measure, so that the actions a0
i jAi , a0

j jAj are
isomorphic. Note that we also have, by property (**) of the co-induced action, that
a.	i / D Na0 � a�i

is a factor of a0
i jAi .

Fix any i0 2 J . Then for any j 2 J , fixing Ai0 , Aj as above, 	j � �
a�j

0 �
�
a0�a�j

0 � �
a0

j
jAj

0 Š �
a0

i0
jAi0 � �

a0
i0 . This produces an uncountable family f	j gj2J

of pairwise non-isomorphic irreducible subrepresentations of �
a0

i0 , which is impos-
sible.
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4. Percolation on Cayley graphs of groups

(A) Let � be a finitely generated group, Q D f�1; : : : ; �ng a set of generators for �
not containing 1, and let GQ D h�;EQi be the left Cayley graph of � , with respect to
Q, whose set of edges EQ consists of all f�; �i�g, 1 � i � n, � 2 � . Note that the
edges of our Cayley graphs are unordered pairs of vertices and that we do not require
the set Q to be symmetric. In fact, for most of our applications, the set Q \ Q�1
will only contain elements of order 2.

The group � acts on � and thus on the Cayley graph by right translations:
ı � f�; �i�g D f�ı�1; �i�ı�1g. So � acts also on the space �Q D 2EQ by shift:

.� � !/.fı; "g/ D !.��1 � fı; "g/ D !.fı�; "�g/:
Every! 2 �Q can be viewed as the subgraph of GQ with vertex set � and an edge set
! (here we identify, as usual, elements of 2EQ with subsets of EQ). The connected
components of ! are called the clusters of !.

An invariant bond percolation on this Cayley graph is a �-invariant probability
Borel measure P on �Q. The percolation P is ergodic if the action of � is ergodic
with respect to P .

Consider now a free measure-preserving action of � on .X;�/ and fix Borel
subsets A1; : : : ; An of X satisfying the condition:

if �i ; �j 2 Q and �j D ��1
i ; then �i � Ai D Aj :

Define ˆ W X ! �Q by

ˆ.x/.fı; �iıg/ D 1 () ı � x 2 Ai :
The condition above ensures that ˆ is well defined. It is also easy to check that ˆ is
�-equivariant and thus if P D ˆ��, then P is an invariant bond percolation on the
Cayley graph GQ.

Note that if E D �1jA1 _ � � � _ �njAn is the subequivalence relation of F D EX�
generated by �1jA1; : : : ; �njAn and if x 2 X is such that ˆ.x/ D !, then the map
� 7! � � x is a 1-1 correspondence of � with � � x D Œx�F D fy W yFxg, which
sends the clusters of ! to the E-classes contained in Œx�F . So the structure of the
E-classes in Œx�F is equivalent to the structure of clusters ofˆ.x/ D !. TheE-class
of x corresponds to the cluster of 1 in !. We let

X1 D fx 2 X W Œx�E is infiniteg:
For �; ı 2 � , put

C�;ı D f! 2 �Q W �; ı are in the same cluster of !g
and (as in Lyons–Schramm [LS]) let

�.�; ı/ D P.C�;ı/:
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Note that by invariance

�.�; ı/ D �.�"; ı"/; 8" 2 �;
so �.�; ı/ D �.1; ı��1/. If

C� D C1;�

and

A� D fx W ˆ.x/ 2 C�g;
then x 2 A� iff � � x 2 Œx�E iff x 2 AE .�/ and so

'E .�/ D �.AE .�// D P.C� / D �.1; �/;

where we identify here � with x 7! � � x.

(B) Conversely, let P be an invariant bond percolation on GQ. The action of � on
�Q might not be free P-a.e. So fix a free, measure-preserving action of � on some
space .Y; �/ and consider the product action of � on .X;�/ D .�Q � Y;P � �/,
which is clearly free. (If the action of � on �Q is already free, we can simply take
.X;�/ D .�Q;P/.) Let

Ci D f! 2 �Q W !.1; �i / D 1g;
Ai D Ci � Y � X:

Consider �1jA1; : : : ; �njAn andˆ W X ! �Q defined as before. Then if x D .!; y/,
we have

ˆ.x/.fı; �iıg/ D 1 () ı � x 2 Ai
() .ı � !; ı � y/ 2 Ai
() ı � ! 2 Ci
() ı � !.f1; �ig/ D 1

() !.fı; �iıg/ D 1;

i.e., ˆ.x/ D ˆ.!; y/ D !. We can also define F , E, and X1 the same way as
before.

(C) For further reference, we discuss some additional concepts and results concerning
percolation.

In the context of (B), and assuming that the �-action on .X;�/ is ergodic and
�.X1/ > 0, we say that P has indistinguishable infinite clusters ifEjX1 is ergodic
(this is not the standard definition but is justified by Gaboriau–Lyons [GL], Prop. 5).

For any invariant bond percolation P on GQ and edge e 2 EQ, define
	e W �Q ! �Q by 	e.!/ D ! [ feg. Then we say that P is insertion-tolerant
if P.A/ > 0 H) P.	e.A// > 0 for all e 2 EQ and A � �Q. An example of
insertion-tolerant, ergodic percolation is Bernoulli percolation.
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It is well known, see Newman–Schulman [NS] or Lyons–Schramm [LS], 3.8,
that if P is ergodic and insertion-tolerant, then exactly one of the following happens:
! has no infinite clusters, P-a.s.; ! has infinitely many infinite clusters, P-a.s.;
! has exactly one infinite cluster P-a.s. Thus in the context of (B), if P is insertion-
tolerant, then either theE-classes are finite,�-a.e., or there are infinitely many infinite
E-classes in each F -class, �-a.e., or there is exactly one infinite E-class in each F -
class, �-a.e.

Moreover, again in the context of (B), Lyons–Schramm [LS] and Gaboriau-
Lyons [GL], Prop. 6, show that if P is ergodic and insertion-tolerant, and has infinite
clusters, P-a.s., then P has indistinguishable infinite clusters.

Finally, Lyons–Schramm [LS], Theorem 4.1, show that for any ergodic, insertion-
tolerant, invariant bond percolation P ,

inf
�2� �.1; �/ > 0 H) ! has a unique infinite cluster, P-a.s.

This implies that in the context of (B), if P is ergodic and insertion-tolerant, then if
inf�2� 'E .�/ > 0, there is a unique infiniteE-class in each F -class, �-a.e., and thus
EjX1 D F jX1, �-a.e.

We note here that one can give an alternative proof of Theorem 4.1 in [LS] by us-
ing the results in the present article and the indistinguishability of infinite clusters for
insertion-tolerant percolations. Indeed assume that inf�2� �.1; �/ > 0. In the nota-
tion of (A), (B) above, since �.1; �/ D 'E .�/, this means that '0E D inf�2� 'E .�/ >
0, so by 2.5, there is an E-invariant Borel set A � X of positive measure such that
ŒF jA W EjA� < 1. By taking in (B) the action of � on .Y; �/ to be weakly mixing,
we have that F D EX� is ergodic and thus A meets every F -class. It follows that
A � X1 and thus, since P is insertion-tolerant, so that EjX1 is ergodic, we have
that A D X1. So ! has finitely many infinite clusters, P-a.s. and therefore exactly
one.

Remark 4.1. Note that for any free, measure-preserving action of an infinite group
� on .X;�/ and any subequivalence relation E � F D EX� , if E has finite classes,
then 'E .�/ ! 0, as � ! 1. Indeed, 'E .�/ D R

f .�; x/ d�.x/, where f .�; x/ D 1

if � � x 2 Œx�E and f .�; x/ D 0 if � � x 62 Œx�E . Since f .�; x/ ! 0 for each x, this
conclusion follows by the Lebesgue Dominated Convergence Theorem.

(D) The rest of this section is devoted to proving Theorem 3.11 whose statement we
recall below.

Theorem 3.11 (with I. Epstein). Let � be a non-amenable countable group. Then
there is a free, measure-preserving, mixing action b0 of � on .X;�/ and a free,
measure-preserving, ergodic action a0 of F2 on .X;�/ with E D EXF2

� F D EX�
and 'E .�/ ! 0 as � ! 1.

Proof. We start with the following lemma.
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Lemma 4.2. Consider a free, measure-preserving, ergodic action of a countable
group� on .X;�/, a Borel setA � X of positive measure andEA a Borel equivalence
relation on A satisfying EA � EX� and

lim
�!1�.fx 2 A W � � x 2 A and � � xEAxg/ D 0:

Then there exists a Borel equivalence relation E � EX� on X with EjA D EA such
that 'E .�/ ! 0 as � ! 1. Moreover, if EA is treeable (resp., ergodic), then E is
treeable (resp. ergodic).

Proof. Let X n A D F
�2� D� , with �.D� / � A, 8� 2 � . This exists since A is

complete section forEX� . LetE D EA_f� jD� W � 2 �g be the equivalence relation
generated by EA and f� jD� W � 2 �g. Clearly E has all the required properties
except perhaps that 'E .�/ ! 0 as � ! 1, which we now proceed to verify.

Define f W X ! � by

f .x/ D � () x 2 D� or .x 2 A and � D 1/:

Fix " > 0. Let K � � be finite, symmetric such that �.fx W f .x/ 62 Kg/ < ". Let
F � � be finite such that �.fx 2 A W � � x 2 A and � � xEAxg/ < "=jKj2 for � 62 F
(where jKj D card.K/). We will show that 'E .�/ < 3" if � 62 KFK. Indeed,
fix such � . Notice that for each x such that � � xEx, � can be uniquely written as
f .� � x/�1� 0

xf .x/ for some � 0
x . We have

�.fx W � � xExg/ < 2"C �.fx W � � xEx and f .x/ 2 K and f .� � x/�1 2 Kg/:
Now it only remains to notice that if x is in the second set above, � 0

x 62 F and
� 0
x 2 K�K. So, by the choice of F , the second summand is bounded by " and we

are done.

By Gaboriau–Lyons [GL], we fix a free, measure-preserving, mixing action Nb0 of
� on .Y; �/ and a free, measure-preserving, ergodic action Na0 of F2 on .Y; �/ with
E Na0

� E Nb0
and such that moreover if F2 D hg1; g2i then hg1i also acts ergodically

on .Y; �/ and thus, by Dye’s Theorem, we can in fact assume that the action of hg1i
is mixing. Let N D ŒE Nb0

W E Na0
�. We can of course assume that N > 1.

Let G D hF2;Ei be the Cayley graph ofF2 corresponding to the set of generators
Q D fg1; g2g. We consider on G Bernoulli p-percolation Pp with 1=3 < p < 1,
so that ! has infinitely many infinite clusters Pp-a.s., see [LP]. Consider the usual
shift action a of F2 on .�; �/, where � D 2E , � D Pp , and the co-induced action
b0 D CInd. Na0; Nb0/�F2

.a/ on .X;�/ D .Y ��N ; ���N /. This action is mixing by 3.1.

Consider also the associated action a0 ofF2 on .X;�/, so thatEa0 � Eb0
D EX� D F

anda is a factor ofa0 via'.y; N!/ D N!0, so, in particular, a0 is free. The same argument
as in the proof of 3.1 also shows that the action of hg1i on X is mixing, hence a0 is
ergodic as well.
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Recall that the action a0 of F2 on .X;�/ is given (in the notation of Section 3) by

ı � .y; N!/ D .ı � y; .n 7! Nı.ı; y/n � N!�.ı;y/�1.n//;

Here we have that 	.ı; y/.k/ D n () ŒCk.y/�E Na0
D ŒCn.ı � y/�E Na0

and
Nı.ı; y/n � C�.ı;y/�1.n/.y/ D Cn.ı � y/. Since C0.y/ D y, we have 	.ı; y/.0/ D 0.
Moreover Nı.ı; y/0 � y D ı � y, so Nı.ı; y/0 D ı. It follows that

ı � .y; N!/ D .ı � y; ı � N!0; .n > 0 7! Nı.ı; y/n � N!�.ı;y/�1.n///:

Therefore (up to an obvious isomorphism) X D � � .Y � �Nnf0g/, and the ac-
tion a0 is the product action of a and a free, measure-preserving action of F2 on
.Y � �Nnf0g; � � �Nnf0g/. The projection of X D Y � �N to the first factor �
in the above product is of course '.y; N!/ D N!0. Thus we are in the situation of
Section 4 (B).

We can then define the associated subequivalence relation E 0 � Ea0 by

x1E
0x2 () 9ı 2 F2.ı � x1 D x2 and 1; ı are in the same '.x1/ cluster),

i.e., E 0 D g1jAg1
_ g2jAg2

, where Agi
D fx W '.x/.f1; gig/ D 1g. Let

A D X1 D fx W Œx�E 0 is infiniteg
D fx W the cluster of 1 in '.x/ is infiniteg:

Since Pp has indistinguishable infinite clusters,EA D E 0jA is ergodic. It is also clear
that EA is treeable and non-hyperfinite, as the canonical treeing on it has infinitely
many ends, a.e. (see [LP], 7.29).

We next show that EA satisfies the hypothesis of 4.2. Indeed we have by Fubini

�.f.y; N!/ W � � .y; N!/EA.y; N!/g/ D
Z
�N .f N! W � � .y; N!/EA.y; N!/g/ d�.y/;

and it is enough to show that the function under the integral converges to 0 as � ! 1
for any y 2 Y . Fix y 2 Y and consider an arbitrary sequence �n ! 1. Notice that if
� �.y; N!/EA.y; N!/, then� �.y; N!/E 0.y; N!/, so there is ı 2 F2with� �.y; N!/ D ı�.y; N!/
and thus � � Ny D ı � Ny. Since we can clearly assume that f N! W �n �.y; N!/EA.y; N!/g ¤ ;
for each n, there is (unique) ın 2 F2 with �n � y D ın � y and �n � .y; N!/EA.y; N!/ H
) �n � .y; N!/ D ın � .y; N!/. Clearly ın ! 1. So

�N .f N! W �n � .y; N!/EA.y; N!/g/ D �N .f N! W ın � .y; N!/EA.y; N!/g/ � �.1; ın/ ! 0:

Thus by 4.2 there is a treeable, ergodic, non-hyperfinite equivalence relation
E1 � EX� with E1jA D EA such that 'E1

.�/ ! 0 as � ! 1. In particular,
the cost of E1 is > 1. Then by [GL], Proposition 13, one can find a free, measure-
preserving, ergodic action a0 of F2 on .X;�/ such that, letting E D EXF2

be its

associated equivalence relation, we have E � E1 � F D EX� . Clearly 'E .�/ ! 0

as � ! 1, and the proof of 3.11 is complete.
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5. Property (T) groups

(A) Let now � be an infinite group with Kazhdan’s property (T). A Kazhdan pair for
� is a pair .Q; "/, where Q is a finite generating set for � and " > 0 is such that for
any unitary representation 	 of � on a Hilbert space H , if there is a vector 
 2 H

with k	.�/.
/ � 
k < "k
k, 8� 2 Q, then there is a non-0 �-invariant vector. The
group � having property (T) is equivalent to the assertion that there is a Kazhdan pair
.Q; "/ and also equivalent to the assertion that for every finite generating setQ there
is " > 0 with .Q; "/ a Kazhdan pair. Let

"Q D maxf" W .Q; "/ is a Kazhdan pairg > 0
be the maximal Kazhdan constant associated to Q (this is sometimes denoted by
K.Q; �/). It is easy to see that "Q � p

2 and Shalom (private communication) has
shown that supQ "Q D p

2 (where the sup is over all finite generating sets). We state
below a more precise quantitative version.

Proposition 5.1 (Shalom). Let � be a countable group satisfying property (T). Let
.Q; "/ be a Kazhdan pair for � , with Q symmetric containing 1. Let card.Q/ D k.
Then for every n � 1,

�
Qn;

s
2

�
1 �

�
k � "2=2

k

�n��

is also a Kazhdan pair. In particular, supQ "Q D p
2, where the sup is over all the

finite generating sets.

Proof. Observe that . xQ; N"/ is a Kazhdan pair iff for any unitary representation
	 W � ! U.H / which has no non-0 invariant vectors, we have

max
�2Q k	.�/.
/ � 
k � N"

for every unit vector 
 2 H , or equivalently

min
�2QReh	.�/.
/; 
i � 1 � N"2

2
(	)

for any unit vector 
 2 H .

So fix Q0 D Qn, "0 D
q
2Œ1 � .k�"2=2

k
/n� in order to show that .	/ holds for

.Q0; "0/ and any 	 without invariant non-0 vectors. For this define the averaging
operator

T D 1

k

P
�2Q

	.�/:
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Since T is self-adjoint, we have

kT k D sup
k�kD1

jhT .
/; 
ij D sup
k�kD1

1

k

ˇ̌
1C P

�2Qnf1g
Reh	.�/.
/; 
iˇ̌

� sup
k�kD1

1

k

�
.k � 1/C

�
1 � "2

2

��
D k � "2

2

k

(by .	/ for .Q; "/).
Then for every n � 1 and every unit vector 
 2 H , we have

1

kn

P
�1;:::;�n2Q

Reh	.�1 � � � �n/.
/; 
i D hT n.
/; 
i

� kT nk � kT kn �
�
k � "2

2

k

�n
:

This gives

min
�2Qn

Reh	.�/.
/; 
i �
�
k � "2

2

k

�n
for every unit vector 
 2 H .

We can also see that restricting the number of generators to a fixed size n gives
an upper bound strictly less than

p
2. More precisely we have for each infinite group

� with property (T):

"n.�/ D supf"Q W Q generates �; card.Q/ � ng � p
2 �

r
2n � 1
2nC 1

:

To see this fix Q with card.Q/ � n and consider the left regular representation � of
� , let xQ D Q[f1g[Q�1, so that card. xQ/ D m � 2nC1, and let 
 2 `2.�/ be the
unit vector 
 D 1p

m
� xQ. Then, as � xQ \ xQ contains f1; �g for each � 2 Q, we have

h� � 
; 
i D 1
m

card.� xQ \ xQ/ � 2
m

� 2
2nC1 , so k� � 
 � 
k2 D 2.1 � h� � 
; 
i/ �

2.1� 2
2nC1 / D 2. 2n�1

2nC1 /. Since � has no non-0 invariant vectors, "Q � p
2 �

q
2n�1
2nC1 .

We do not know if the above upper bound for "n.�/ is best possible.
We see from 5.1 that if Q is a symmetric generating set with card.Q/ D k and

.Q; "/ is a Kazhdan pair for � , then

"kn.�/ � p
2 �

s
1 �

�
k � "2=2

k

�n
; 8n � 1:

In a preliminary version of this article, we raised the following question: Fix n � 2.
Is inff"n.�/ W � is an n-generated infinite group with property .T /g > 0? Shalom
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pointed out that this is false, with the counterexamples being products of two groups
with one factor a finite cyclic group. The question remains open whether there are
such counterexamples if one considers only property (T) groups which are perfect
(i.e., groups equal to their commutator subgroups).

The following fact is well known.

Proposition 5.2 (see [BHV], 1.1.9). Let .Q; "/ be a Kazhdan pair for � . Then for
any 1 � ı > 0, any unitary representation .	;H / of � and 
 2 H , if 8� 2 Q

.k	.�/.
/ � 
k < ı"k
k/, there is a �-invariant vector  with k
 � k � ık
k.

The next result is a consequence of Deutsch–Robertson [DR], but we will give
the short proof for the reader’s convenience.

Proposition 5.3. Let � be a group with property (T), .Q; "/ a Kazhdan pair for
�; ı > 0, and ' a positive-definite function on � with '.1/ D 1. Then 8� 2 Q

.Re '.�/ � 1 � ı2"2

2
/ implies that 8� 2 � .Re '.�/ � 1 � 2ı2/.

Proof. Let .	;H ; 
/ D .	' ;H' ; 
'/ be the GNS representation of � associated to
', so that h	.�/.
/; 
i D '.�/. In particular 
 is a unit vector as '.1/ D 1. Also
k	.�/.
/ � 
k2 D 2.1 � Re '.�//. So if Re '.�/ � 1 � ı2"2

2
for � 2 Q, then

k	.�/.
/ � 
k2 � ı2"2, so there is a �-invariant vector  with k
 � k � ı. Then
k	.�/.
/� k � ı, so k	.�/.
/� 
k � 2ı, thus 2.1� Re '.�// � 4ı2, 8� 2 � , or
Re '.�/ � 1 � 2ı2, 8� 2 � .

(B) Consider now a measure-preserving action of a group � with property (T) on
a standard measure space .X;�/ and let F D EX� be the associated equivalence
relation and E � F a subequivalence relation. Applying the preceding to 'E , we
obtain:

Corollary 5.4. Let� be an infinite group with property (T) and .Q; "/ a Kazhdan pair
for � . If � acts in a measure-preserving way on .X;�/ with associated equivalence
relation F D EX� and E � F is a subequivalence relation, then:

(i) For any ı > 0, min�2Q 'E .�/ � 1 � ı2"2

2
implies that '0E D inf�2� 'E .�/ �

1 � 2ı2.

(ii) If min�2Q 'E .�/ > 1� "2

2
, then there is anE-invariant set of positive measure

A such that ŒF jA W EjA� < 1. If moreover min�2Q 'E .�/ > 1 � "2

4
, then

'0E > 0 and ŒF jA W EjA� � 1

'0
E

. If min�2Q 'E .�/ > 1� "2

8
, then '0E >

1
2

and

F jA D EjA. Finally, if min�2Q 'E .�/ > 1 � "2

16
, then '0E > 3

4
, and we can

find such an A with �.A/ � 4'0E � 3.

(iii) Let the action of � be free and let E be induced by a free action of �. Then
if min�2Q 'E .�/ > 1 � "2

2
, it follows that � and � are ME and so � has

property (T).
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Proof. (i) follows from 5.3. For (ii) first notice that if min�2Q 'E .�/ > 1� "2

2
, then

for the representation � discussed in Section 2 (A) and letting �.�/.
/ D � � 
 , we
have k� � 
0 � 
0k2 D 2.1� h� � 
0; 
0i/ D 2.1�'E .�// < "2 for all � 2 Q. Hence
� has an invariant non-0 vector, thus, by 2.3, there is an E-invariant set A � X of
positive measure for which ŒF jA W EjA� < 1. If min�2Q 'E .�/ > 1 � "2

4
, then,

by 5.3, '0E > 0, so by 2.5 we can find such an A with ŒF jA W EjA� � 1

'0
E

. If

min�2Q 'E .�/ > 1 � "2

8
, then again by 5.3, '0E > 1

2
, so such an A can be found

with EjA D F jA. Finally if min�2Q 'E .�/ > 1 � "2

16
, then '0E >

3
4

and such an A
can be found with �.A/ > 4'0E � 3, using 2.15. Clearly (iii) follows from the above
and 2.8.

We next note the following quantitative version of 3.4 for groups with property (T).

Proposition 5.5. In the notation of Section3 (A), let� have property (T) and let .Q; "/
be a Kazhdan pair for � . If min�2Q 'E .�/ > 1 � "2

2
, then for any a 2 A.�; Y; �/:

if b D CInd.a0; b0/��.a/, then

b is ergodic H) a is ergodic:

Proof. Assume that a is not ergodic and repeat the proof of 3.4, with k D n D 0.
Then for 
 D f .0/, h� � 
; 
i D 'E .�

�1/ D 'E .�/, 8� 2 Q. So k� � 
 � 
k2 D
2.1 � h� � 
; 
i/ < "2, 8� 2 Q, thus there is a non-0 �-invariant vector, so b is not
ergodic.

(C) We next consider some consequences concerning percolation on Cayley graphs
of property (T) groups.

Theorem 5.6. Let � be an infinite group with property (T), .Q; "/ a Kazhdan pair,
and P an invariant, ergodic, insertion-tolerant bond percolation on GQ. Then if the

survival probability P.f! W !.e/ D 1g/ of each edge e is > 1� "2

2
, it follows that !

has a unique infinite cluster, P-a.s.

Proof. In the context of Section 4, and keeping its notation, take the free action of �
on .Y; �/ to be weakly mixing, so that the �-action on .X;�/ D .�Q � Y;P � �/
is free and ergodic. If Q D f�1; : : : ; �ng, then we have P.f! W !.f1; �ig/ D 1g/ �
�.1; �i / D 'E .�i /, so min�2Q 'E .�/ > 1 � "2

2
, thus, by 5.4 (ii), there is an E-

invariant set A � X1 of positive measure with ŒF jA W EjA� < 1. Since P is
insertion-tolerant, by Section 4 (C), EjX1 is ergodic, so A D X1, which again by
Section 4 (C) implies that ŒF jA W EjA� D 1, i.e., F jX1 D EjX1. This means that
! has a unique infinite cluster, P-a.s.
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In the case of Bernoulli bond percolation Pp , p 2 .0; 1/, on GQ, let pu D pu.Q/

be the critical probability for uniqueness defined by

pu D inffp W there is a unique infinite cluster;Pp�a:s:g:
In Lyons–Schramm [LS] the authors show that for property (T) groups � and any
finite set of generators Q one has pu.Q/ < 1. From the preceding result one has a
quantitative version.

Corollary 5.7. Let � be an infinite group with property (T) and .Q; "/ a Kazhdan
pair. Then pu.Q/ � 1 � "2

2
.

We also have the following

Corollary 5.8. For each � > 0 and every infinite group� with property (T), there is a
finite set of generatorsQ for� such that for any invariant, ergodic, insertion-tolerant
bond percolation P on GQ the following holds: If the survival probability of each
edge is � �, then ! has a unique infinite cluster, P-a.s.

Proof. By 5.1, supQ "Q D p
2, where the sup is taken over all finite generating sets

Q for � .
So fix � > 0; � an infinite group with property (T) and Q a finite generating set

of � such that " D "Q >
p
2.1 � �/. Then for P as in the statement of the present

corollary, the survival probability of each edge is bigger than 1� "2

2
, so! has a unique

infinite cluster, P-a.s., by 5.6.

There is also a version of 5.8 for arbitrary invariant, ergodic bond percolations.

Corollary 5.9. Let � be an infinite group with property (T) and .Q; "/ a Kazhdan
pair. Then for any invariant, ergodic bond percolation P on GQ, if the probability

of survival of every edge is > 1 � "2

2
, there is n � 1 and a �-invariant Borel map

C0 W �Q ! Œ2� �n (D the space of n-element subsets of the power set of �) such that
C0.!/ is a set of n infinite clusters of !, P-a.s.

In particular, for every � > 0 and every infinite group � with property (T) there is
a finite set of generatorsQ for� such that for any invariant, ergodic bond percolation
P on GQ: If the survival probability of each edge is � �, then we can assign in a
�-invariant Borel way a finite set (of fixed size) of infinite clusters to each !, P-a.s.

Proof. We follow the proof of 5.6, whose notation and that of Section 4 we use below.
Let Q D f�1; : : : ; �ng. Then �.Ai / > 1 � "2

2
, so if E is the equivalence relation

induced by �1jA1; : : : ; �njAn, we have 'E .�i / > 1 � "2

2
. So, by 5.4, there is an

E-invariant set A � X1 of positive measure such that ŒF jA W EjA� D k < 1.
For each x D .!; y/, let f .x/ D f� W � � x 2 Ag 2 2� . Clearly for ı 2 � ,
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f .ı � x/ D f .x/ı�1 D ı � f .x/, where � acts on the set of subsets 2� of � by
right multiplication. Moreover f .x/ is the union of k infinite clusters of !. Thus the
map f! W Y ! ŒC.!/�k (D the set of k-element subsets of C.!// induces a measure
.f!/�� D �! on ŒC.!/�k . Here C.!/ D the set of infinite clusters of ! given by
f!.y/ D the set of clusters contained in f .!; y/. Moreover, � � �! D �� �! , where
� � �!.B/ D �!.�

�1 �B/ for B � ŒC.!/�k . But .f!/�� is a countably additive mea-
sure on the countable set ŒC.!/�k , thus can be viewed as given by a weight function
W.!; xC/, xC 2 ŒC.!/�k , where 0 � W.!; xC/ � 1 and

P
xC2ŒC.!/�k W.!; xC/ D 1.

Moreover, W.!; xC/ D W.� � !; � � xC/. Let f xC1.!/; : : : ; xCn.!/.!/g be the set of
k-element subsets of C.!/ of maximal weight. Again ! 7! f xC1.!/; : : : ; xCn.!/.!/g
is �-invariant. It follows from the ergodicity of P that n.!/ D n0, P-a.s. Let
C0.!/ D xC1.!/ [ � � � [ xCn0

.!/ 2 ŒC.!/�<N D the set of finite subsets of C.!/.
Again C0.!/ is �-invariant, so for some n, C0.!/ 2 ŒC.!/�n, P-a.s., and the proof
is complete.

(D) Next we derive some upper bounds for the cost of a group with property (T).
Below C.�/ denotes the cost of a group � . If � is infinite and has property (T)
and Q is a finite set of generators with card.Q/ D n, then it is well known that
1 � C.�/ < n (the strict inequality follows from Gaboriau [G1], since no free
measure-preserving action of � is treeable; see Adams–Spatzier [AS]). We prove
below some improvements on this upper bound. It should be pointed out however
that at this time no property (T) groups � with C.�/ > 1 are known to exist.

The next result is obtained by a combination of Lyons–Peres–Schramm [LPS]
and 5.7.

Theorem 5.10. Let � be an infinite group with property (T). Let .Q; "/ be a Kazhdan
pair for � . If n D card.Q/, then

C.�/ � n


1 � "2

2

�
C n � 1
2n � 1:

Proof. For the Bernoulli bond percolation Pp , p 2 .0; 1/ on GQ, let pc D pc.Q/ be
the critical probability for infinite clusters defined by

pc D supfp W all clusters are finite; Pp-a.s.g:
If d is the degree of GQ, so that d � 2n, it is well known that pc � 1

d�1 ; see
Lyons–Peres [LP]. Consider the probability space

z�Q D f z! 2 Œ0; 1�EQ W all edge labels are distinctg
equipped with the product measure of the Lebesgue measure on Œ0; 1�. Consider the
random variable =W z�Q ! 2EQ corresponding to the free minimal spanning forest
as defined in Lyons–Peres–Schramm [LPS].
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Then we have

C.�/ � 1

2
E.deg1 =/ � 1

2

�
2C d

Z pu

pc

�.p/2 dp

�
; (3)

where deg1 = is the degree of the identity of � in the forest. Here �.p/ is the proba-
bility that the cluster of 1 is infinite in Bernoulli p-percolation. The first inequality,
due to Lyons, follows from the following observation. Fix a positive number N" and
consider the probability space 2EQ equipped with the Bernoulli measure PN". Con-
sider also the diagonal action of � on z�Q �2EQ with associated product measure �.
Define the graphing G of the orbit equivalence relation as follows:

f. Q!1; !1/; . Q!2; !2/g 2 G () 9� 2 QŒ� � . Q!1; !1/ D . Q!2; !2/
and .f1; �g 2 =. Q!1/ or f1; �g 2 !1/�:

That G spans the equivalence relation follows from [LPS], Theorem 3:22 and for the
cost, we have

C�.G / � 1

2
.E.deg1=. Q!//C E.deg1!// D 1

2
.E.deg1=/C N"d/:

Since N" was arbitrary, we obtain the desired inequality. The second inequality in (3)
is [LPS], Corollary 3.24.

Thus we have, using 5.7,

C.�/ � 1C d

2
.pu � pc/

� 1C d

2

��
1 � "2

2

�
� 1

d � 1
�

D d

2

�
1 � "2

2

�
C d � 2
2.d � 1/ � n

�
1 � "2

2

�
C

�
n � 1
2n � 1

�
: �

The first inequality in this calculation comes from Gaboriau [G2] and is contained
in the proof of Proposition 8.7 (p. 40) attributed to Lyons.

When � is torsion-free we also obtain some additional estimates.

Theorem 5.11. Let � be an infinite group with property (T) and .Q; "/ a Kazhdan
pair for � . Let card.Q/ D n. If Q contains an element of infinite order, then

C.�/ � n � .n � 1/"
2

8
:

Proof. Consider a free, ergodic action of � on .X;�/ with associated equivalence
relation F D EX� . LetQ D f�1; : : : ; �ng, where �1 has infinite order. Fix ı < 1

2
and

let A � X have measure �.A/ D 1 � ı2"2

2
. Let E D �1 _ �2jA _ � � � _ �njA be the
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equivalence relation generated by �1, �2jA, …, �njA, so that E is aperiodic. Then
C�.E/ � 1C .n � 1/.1 � ı2"2

2
/. Also 'E .�/ � 1 � ı2"2

2
, 8� 2 Q, so, by 5.4 (i),

'0E � 1 � 2ı2 > 1
2

. Then, by 2.13, C�.F / � C�.E/ � 1 C .n � 1/.1 � ı2"2

2
/.

Taking ı ! 1
2

we are done.

Theorem 5.12. Let � be an infinite group with property (T) and let .Q; "/ be a
Kazhdan pair for � withQ containing an element of infinite order. Let card.Q/ D n.
Then

C.�/ � n � "2

2
:

Proof. Let b0 be a free, mixing action of � on .X;�/ and put F D EX� . Let
Q D f�1; : : : ; �ng, where �1 has infinite order. Consider the graphing of F given
by �1; : : : ; �n. Applying the argument in Kechris–Miller [KM], 28.11, and (indepen-
dently) Pichot [P], we obtain a treeing of a subequivalence relationE � F , generated
by �1, �2jA2, …, �njAn, for some Borel sets A2,…, An, such that C�.E/ � C�.F /.
Thus C�.F / � 1C Pn

iD2 �.Ai /. NowE is treeable and ergodic, so by Hjorth [H4],

E is induced by a free action a0 of a group �. If we had �.Ai / > 1 � "2

2
for all

i D 2; : : : ; n, then min�2Q 'E .�/ > 1 � "2

2
, so, by 5.4 (iii), � has property (T) a

contradiction (since by Adams–Spatzier [AS] no free, measure-preserving action of
an infinite group with property (T) can be treeable). So �.Ai / � 1 � "2

2
for some

i D 2; : : : ; n, therefore C�.E/ � 1C .n � 2/C .1 � "2

2
/ D n � "2

2
.

(E) Finally, we note that there is an analog of 5.4 (iii), when � does not have the HAP.

Proposition 5.13. Let� be an infinite group without the HAP. Then there exists " > 0
and a finite set Q � � with the following property:

Let � be a group and consider two free, measure-preserving actions of � and �
on .X;�/ such that E D EX� � F D EX� . If min�2Q 'E .�/ > 1 � ", then � does
not have the HAP.

Proof. Since � does not have the HAP, we can find " > 0 and Q � � finite such
that if ' W � ! C is a positive-definite function with '.1/ D 1 and ' 2 c0.�/, then
min�2Q '.�/ � 1 � ".

Now let � be as above and assume that it has the HAP. Let  n W � ! C be
positive-definite functions such that limn!1  n.ı/ D 1 for all ı 2 �, and  n 2
c0.�/ for all n. If A�;ı D fx 2 X W � � x D ı � xg, then the formula 'n.�/ DP
ı2�  n.ı/�.A�;ı ) defines a sequence of positive-definite functions on � .
Next we have that

lim
n!1'n.�/ D P

ı2�
�.A�;ı/ D �.fx 2 X W � � x 2 � � xg D 'E .�/; 8� 2 �:
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Thus, to get a contradiction to the non-HAP assumption, it suffices to show that
'n 2 c0.�/ for alln. This is clear, since for a fixednwe have that limı!1  n.ı/ D 0,
lim�!1 �.A�;ı/ D 0 for all ı 2 �, and

P
ı �.A�;ı/ � 1 for all � 2 � .
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