Profinite completions of orientable Poincaré duality groups of dimension four and Euler characteristic zero

Dessislava H. Kochloukova*

Abstract

Let p be a prime number, \mathcal{T} a class of finite groups closed under extensions, subgroups and quotients, and suppose that the cyclic group of order p is in \mathcal{T}.

We find some sufficient and necessary conditions for the pro- \mathcal{T} completion of an abstract orientable Poincaré duality group G of dimension 4 and Euler characteristic 0 to be a profinite orientable Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic 0 . In particular we show that the pro- p completion \widehat{G}_{p} of G is an orientable Poincaré duality pro- p group of dimension 4 and Euler characteristic 0 if and only if G is p-good.

Mathematics Subject Classification (2000). 20E18, 20 J05.
Keywords. Poincaré duality group, profinite completion, p-good group.

Introduction

In this paper we study pro- \mathcal{T} completions of abstract Poincaré duality groups of dimension 4 with Euler characteristic 0 , where \mathcal{T} is a class of finite groups that is subgroup, extension and quotient closed and the cyclic group of order p is in \mathcal{T} for a fixed prime p. This paper can be considered as a natural continuation of an earlier paper where profinite and pro- p completions of an abstract orientable Poincaré duality group G of dimension 3 were studied [6].

One of the results obtained in [6] is an algebraic proof of the Reznikov's claim that the pro- p completion of the fundamental group of a closed orientable hyperbolic 3-manifold that violates the Thurston Conjecture is an orientable pro- p Poincaré duality group provided the pro- p completion is infinite [11]. A quite different proof of the same claim was independently discovered by T. Weigel [16].

We call a profinite group a strong PD_{n} group at p if it is a profinite Poincaré duality group of dimension n at p according to the definition of [15] and keep the name of profinite PD_{n} group at p for groups satisfying the original Tate's definition [10], [14]. We discuss in details both definitions in the preliminaries.

[^0]In the case of pro- p groups both definitions are equivalent, but it is not known whether they are equivalent in general.

Theorem 1. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G)=0$.

Let \mathcal{T} be a class of finite groups closed under subgroups, extensions and quotients, let the cyclic group of order p be in \mathcal{T} and let \mathcal{C} be a directed set of normal subgroups of finite index in G such that \mathcal{C} induces the pro- \mathcal{T} topology of G.

Then

$$
\widehat{G}_{e}=\lim _{\longleftarrow U \in \mathcal{C}} G / U
$$

is an orientable profinite Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic $\chi_{p}\left(\widehat{G}_{\smile}\right)=0$ if and only if all of the following conditions hold:
a) $\operatorname{cd}_{p}\left(\widehat{G}_{e}\right)$ is finite and the Sylow p-subgroups of \hat{G}_{φ} are not free or trivial, i.e., $2 \leq \operatorname{cd}_{p}\left(\widehat{G}_{e}\right)<\infty$;
b) for every $U \in \mathscr{C}$ we have $\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)=0$;
c) for every $U \in \mathcal{C}$ we have $2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(\hat{U}_{\mathcal{C}}, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(\hat{U}_{\mathcal{C}}, \mathbb{F}_{p}\right)=2$.

Furthermore, if the conditions a), b) and c) hold, then \hat{G}_{φ} is a strong profinite orientable Poincaré duality group of dimension 4 at p.

Remarks. 1. Since $\infty>\operatorname{cd}_{p}\left(\widehat{G}_{\bigodot}\right) \geq 1$ every Sylow p-subgroup of $\widehat{G}_{\mathscr{C}}$ is infinite.
2. If condition a) is substituted with $2 \leq \operatorname{cd}_{p}\left(\widehat{G}_{e}\right) \leq 4$ condition b) can be substituted with $\chi_{p}\left(\widehat{G}_{\bigodot}\right)=0$, since $0=\chi_{p}\left(\hat{U}_{\mathscr{C}}\right)=\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)$.
3. Theorem 1 implies that if conditions a), b) and c) hold then the only possibility for $\operatorname{cd}_{p}\left(\widehat{G}_{p}\right)$ is 4 .

An abstract group G is said to be good if the natural map between continuous and abstract cohomology $H^{i}(\widehat{G}, M) \rightarrow H^{i}(G, M)$ is an isomorphism for every finite discrete G-module M, where \widehat{G} is the profinite completion of G. The group G is p-good if $H^{i}\left(\widehat{G}_{p}, M\right) \rightarrow H^{i}(G, M)$ is an isomorphism for every p-primary finite discrete $\widehat{G}_{p^{-}}$module M, where \widehat{G}_{p} is the pro- p completion of G.

Theorem 1 easily implies that the pro- p completion \widehat{G}_{p} of an abstract orientable PD_{4} group G of Euler characteristic 0 is an orientable pro- $p \mathrm{PD}_{4}$ group of Euler characteristic 0 if and only if G is p-good (see Corollary 2 c)).

It would be interesting to find out whether this generalizes to any dimension, i.e., whether for G an abstract orientable PD_{n} group of Euler characteristic 0 the pro- p completion \widehat{G}_{p} is an orientable pro- $p \mathrm{PD}_{n}$ group of Euler characteristic 0 if and only if G is p-good.

In section 4 we show that when pro- p completions are considered the first of the conditions of Theorem 1 can be substituted with \widehat{G}_{p} is not virtually procyclic. The new ingredient in the proofs of the following theorems is the application of some results
about virtually Poincaré duality pro- p groups and the number of higher dimensional ends of a pro- p group [7], [8].

Theorem 2. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G)=0$ with pro-p completion \widehat{G}_{p}. Let \mathcal{C} be a directed set of normal subgroups of p-power index in G such that \mathcal{C} induces the pro- p topology of G.

Then \widehat{G}_{p} is an orientable pro- p Poincaré duality group of dimension 4 with Euler characteristic $\chi\left(\widehat{G}_{p}\right)=0$ if and only if all of the following conditions hold:
a) \widehat{G}_{p} is not virtually procyclic;
b) for every $U \in \mathcal{C}$ we have $\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)=0$;
c) for every $U \in \mathcal{C}$ we have $2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)=2$.

Finally we show that if condition c) from Theorem 1 is slightly modified then the only possibility for the pro- p completion of G that is not an orientable PD_{4} pro- p group is to be virtually \mathbb{Z}_{p}-by- \mathbb{Z}_{p}.

Theorem 3. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G)=0$ with pro-p completion \widehat{G}_{p}. Let \mathcal{C} be a directed set of normal subgroups of p-power index in G such that \mathcal{C} induces the pro-p topology of G. Suppose that:
a) \widehat{G}_{p} is not virtually procyclic and is not an orientable pro-p Poincaré duality group of dimension 4;
b) for every $U \in \mathcal{C}$ we have $\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)=0$;
c) $\sup _{U \in \mathscr{C}}\left(2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)\right)=m<\infty$.

Then \widehat{G}_{p} is virtually \mathbb{Z}_{p}-by- \mathbb{Z}_{p}.
In [5], examples of orientable PD_{3} groups M with pro- p completion \widehat{M}_{p} procyclic (both cases of finite or infinite occur) were constructed. Then the group $G=\mathbb{Z} \times M$ is an orientable PD_{4} group with $\chi(G)=0$ and the pro- p completion \widehat{G}_{p} is either virtually \mathbb{Z}_{p} or \mathbb{Z}_{p}-by- \mathbb{Z}_{p}. The group M is a double of a knot group and so M and G are not soluble, though in both cases \widehat{G}_{p} is soluble.

1. Preliminaries on abstract and profinite Poincaré duality groups

1.1. Basic definitions and properties. Let G be an abstract group and S be a commutative ring. A $S[G]$-module V is of type FP_{m} for some $0 \leq m \leq \infty$ if there exists a projective $S[G]$-resolution of V

$$
\mathfrak{R}: \cdots \rightarrow R_{i} \rightarrow R_{i-1} \rightarrow \cdots \rightarrow R_{0} \rightarrow V \rightarrow 0
$$

with R_{i} finitely generated for $i \leq m$. The group G is said to be of type FP_{m} if the trivial $\mathbb{Z}[G]$-module \mathbb{Z} is of type FP_{m}.

For a profinite group H, a profinite ring R and a profinite $R[[H]]$-module W we say that W is of type FP_{m} over R if there is a profinite projective $R[[H]]$ - resolution of W

$$
Q: \cdots \rightarrow Q_{i} \rightarrow Q_{i-1} \rightarrow \cdots \rightarrow Q_{0} \rightarrow W \rightarrow 0
$$

with Q_{i} finitely generated for $i \leq m$. The profinite group H is of homological type FP_{m} over R if the trivial $R[[H]]$-module R is of type FP_{m}.

An abstract group G is a Poincaré duality group of dimension n, provided that G is a group of cohomological dimension $\operatorname{cd}(G)=n$ of type FP_{∞} and $H^{*}(G, \mathbb{Z}[G])=$ $\operatorname{Ext}_{\mathbb{Z}[G]}^{*}(\mathbb{Z}, \mathbb{Z}[G])$ is concentrated in dimension n, where it is \mathbb{Z}. If the G-action on $H^{n}(G, \mathbb{Z}[G])$ is the trivial one, G is orientable; otherwise G is called non-orientable. There is an equivalent definition of abstract Poincaré duality group of dimension n, i.e., there is an isomorphism $H^{i}(G, M) \simeq H_{n-i}\left(G, D \otimes_{\mathbb{Z}} M\right)$ for all G-modules M and all i, where the dualizing module D is $H^{n}(G, \mathbb{Z}[G]) \simeq \mathbb{Z}$ [2], Ch. 8, Prop. 10.1.

There are two definitions of a profinite Poincaré duality group H of dimension n at a prime p [10], 3.4.6, [15]. The definitions differ at the point whether H should be of type FP_{∞} over \mathbb{Z}_{p}. As mentioned in the introduction, we call the groups satisfying the definition of [15] strong profinite PD_{n} groups at p and the groups satisfying the original Tate's definition [10], 3.4.6, [14] we call profinite PD_{n} groups at p. A strong PD_{n} group at p has cohomological p-dimension $\operatorname{cd}_{p}(H)=n$, has type FP_{∞} over \mathbb{Z}_{p} and $H^{k}\left(H, \mathbb{Z}_{p}[[H]]\right)=\operatorname{Ext}_{\mathbb{Z}_{p}[[H]]}^{k}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}[[H]]\right)$ is 0 for $k \neq n$ and is \mathbb{Z}_{p} for $k=n$. If the action of H on $H^{n}\left(H, \mathbb{Z}_{p}[[H]]\right)$ is trivial H is called orientable.

By [15], strong profinite PD_{n} groups at p are profinite PD_{n} groups at p. For a profinite PD_{n} group H at p and A an arbitrary p-primary finite discrete H-module the groups $H^{i}(H, A)$ are finite for all $i[10], 3.4 .6,[14]$. The precise definition of a profinite PD_{n} group H at p can be found in [10], Chapter 3. Some important properties of such a group H are $\operatorname{cd}_{p}(H)=n$ and $\operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(H, \mathbb{F}_{p}\right)=\operatorname{dim}_{\mathbb{F}_{p}} H^{n-i}\left(H, \mathbb{F}_{p}\right)$ for all $0 \leq i \leq n$. A profinite PD_{n} group H at p is a strong profinite PD_{n} group at p if it is of type FP_{∞} over \mathbb{Z}_{p}. In [6] the definition of strong profinite PD_{n} groups at p was adopted (though the name strong was not used). Note that pro- $p \mathrm{PD}_{n}$ groups are always of type FP_{∞} over \mathbb{Z}_{p} and over \mathbb{F}_{p}, hence are strong pro- $p \mathrm{PD}_{n}$ groups.

Let G be an abstract group of finite cohomological dimension and of type FP_{∞}. The Euler characteristic $\chi(G)$ as defined in [2], Ch. IX, Sec. 6, is

$$
\begin{aligned}
\sum_{i}(-1)^{i} \mathrm{rk}_{\mathbb{Z}} H_{i}(G, \mathbb{Z}) & =\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(G, \mathbb{F}_{p}\right) \\
& =\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(G, \mathbb{F}_{p}\right)
\end{aligned}
$$

If U is a subgroup of finite index in G by [2], Ch. 9, Thm. 6.3, $\chi(U)=(G: U) \chi(G)$.
For a profinite group H of finite cohomological p-dimension $\operatorname{cd}_{p}(H)$ and type
FP_{∞} over \mathbb{Z}_{p} the Euler p-characteristic $\chi_{p}(H)$ of H is

$$
\begin{aligned}
\sum_{i}(-1)^{i} \mathrm{rk}_{\mathbb{Z}_{p}} H_{i}\left(H, \mathbb{Z}_{p}\right) & =\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(H, \mathbb{F}_{p}\right) \\
& =\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(H, \mathbb{F}_{p}\right)
\end{aligned}
$$

where $H_{i}(H, \cdot)$ and $H^{i}(H, \cdot)$ are the continuous homology and cohomology.
1.2. Korenev's results. Recently more homological properties of pro- $p \mathrm{PD}_{n}$ groups were discovered in [7] and [8]. As shown in [8], if a pro- p group H of type FP_{n} over \mathbb{F}_{p} has the property that $H^{i}\left(H, \mathbb{F}_{p}[[H]]\right)=0$ for all $0 \leq i<n$ and $0<\operatorname{dim}_{\mathbb{F}_{p}} H^{n}\left(H, \mathbb{F}_{p}[[H]]\right)<\infty$, then H is virtually a pro- $p \mathrm{PD}_{n}$ group. In particular, $\operatorname{dim}_{\mathbb{F}_{p}} H^{n}\left(H, \mathbb{F}_{p}[[H]]\right)=1$ and H is of type FP_{∞}. An earlier version of the above result was proved in [7], where the case $n=1$ was considered.

Note that for pro- p groups it is still not known whether Stalling's type theorem holds, i.e., if H is a pro- p group with $\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(H, \mathbb{F}_{p}[[H]]\right)>0$, then H splits as a free product with amalgamation or an HNN extension over a finite subgroup.

2. Profinite completions of abstract Poincaré duality groups

Let G be an abstract group of type FP_{∞} and of finite cohomological dimension and let

$$
\begin{equation*}
\mathcal{R}: 0 \rightarrow R_{m} \xrightarrow{\partial_{m}} R_{m-1} \xrightarrow{\partial_{m-1}} \cdots \xrightarrow{\partial_{2}} R_{1} \xrightarrow{\partial_{1}} R_{0} \xrightarrow{\partial_{0}} \mathbb{Z} \rightarrow 0 \tag{1}
\end{equation*}
$$

be a projective resolution of the trivial (right) $\mathbb{Z}[G]$-module \mathbb{Z} with all projectives finitely generated. Let \mathcal{C} be a directed set of normal subgroups of finite index in G, i.e., for $U_{1}, U_{2} \in \mathscr{C}$ there is $U \in \mathscr{\zeta}$ such that $U \subseteq U_{1} \cap U_{2}$. Define

$$
\widehat{G}_{e}=\lim _{\longleftarrow \in \leftharpoonup} G / U
$$

and for $U \in \mathscr{C}$ we define $\hat{U}_{\mathscr{C}}$ as the inverse limit U / M over those $M \in \mathcal{C}$ such that $M \subseteq U$.

Consider the complex $\mathcal{R}_{U}=\mathcal{R} \otimes_{\mathbb{Z}[U]} \mathbb{F}_{p}$ for $U \in \mathcal{C}$. Let

$$
\begin{equation*}
\hat{\mathcal{R}}: 0 \rightarrow \hat{R}_{m} \xrightarrow{\hat{\partial}_{m}} \hat{R}_{m-1} \xrightarrow{\hat{\partial}_{m-1}} \cdots \xrightarrow{\hat{\partial}_{2}} \hat{R}_{1} \xrightarrow{\hat{\partial}_{1}} \hat{R}_{0} \xrightarrow{\hat{\partial}_{0}} \mathbb{Z} \rightarrow 0 \tag{2}
\end{equation*}
$$

be the inverse limit of the complexes \mathcal{R}_{U} over $U \in \mathcal{C}$. Thus by [6], (1),

$$
\widehat{\mathcal{R}} \simeq \mathscr{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_{p}\left[\left[\widehat{G}_{\ell}\right]\right]
$$

and by [6], Lemma 2.1,

$$
\begin{equation*}
H_{i}(\hat{\mathcal{R}}) \simeq \lim _{\overleftarrow{U \in \mathscr{C}}} H_{i}\left(\mathcal{R}_{U}\right) \simeq \lim _{\overleftarrow{U \in \mathscr{C}}} H_{i}\left(U, \mathbb{F}_{p}\right) \tag{3}
\end{equation*}
$$

In the following lemma Tor denotes the left derived functor of \otimes in the category of abstract modules.

Lemma 1 ([6], Thm. 2.5). Suppose that G is an abstract group of type FP_{∞} and finite cohomological dimension, \smile a directed set of normal subgroups U of finite index in G. Suppose further that for a fixed prime p and for all $i \geq 1$,

$$
\lim _{\longleftarrow}^{\leftrightarrows \in \mathscr{C}} 1 H_{i}\left(U, \mathbb{F}_{p}\right)=0
$$

Then

$$
\operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{Z},\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)\left[\left[\hat{G}_{\subsetneq}\right]\right]\right)=0 \quad \text { and } \quad \operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \mathbb{Z}_{p}\left[\left[\widehat{G}_{\subsetneq}\right]\right]\right)=0
$$

for all $m \geq 1$ and $i \geq 1$. In particular \widehat{G}_{e} is of type FP_{∞} over \mathbb{Z}_{p}.
Lemma 2 ([6], Cor. 2.7). Suppose that G is an abstract group of finite cohomological dimension $\operatorname{cd}(G)=m$ and type FP_{∞}. Let $\mathcal{C}^{\text {C be a directed set of normal subgroups }}$ U of finite index in G. Suppose further that

$$
\lim _{\longleftarrow}^{\longleftarrow} H_{C} H_{i}\left(U, \mathbb{F}_{p}\right)=0
$$

for a fixed prime p and for all $1 \leq i \leq m$.
Then the profinite group $\widehat{G} \mathcal{Y}$ is of finite cohomological p-dimension $\operatorname{cd}_{p}\left(\widehat{G}_{\bullet}\right) \leq$ m. Further, it is of type FP_{∞} over \mathbb{F}_{p} and over \mathbb{Z}_{p}, and its Euler p-characteristic $\chi_{p}\left(\widehat{G}_{e}\right)=\chi(G)$.

Theorem 4. Let G be an abstract Poincaré duality group of dimension m and let \mathcal{C} be a directed set of normal subgroups of finite index in G. Suppose further that there is a subgroup G_{0} of finite index in G such that G_{0} is orientable, that there is some $U_{0} \in \mathscr{C}$ with $U_{0} \subseteq G_{0}$ and that, for all $i \geq 1$,

$$
\lim _{\leftrightarrows}^{\leftrightarrows} U \in \mathcal{C} \text { Hi }\left(U, \mathbb{F}_{p}\right)=0
$$

Then \widehat{G}_{\succ} is a strong profinite Poincaré duality group of dimension m at $p,\left(\widehat{G_{0}}\right)_{e}$ is a strong orientable profinite Poincaré duality group of dimension m at p and $\chi_{p}\left(\widehat{G}_{e}\right)=\chi(G)$.

Proof. Let

$$
\begin{equation*}
\mathcal{R}: 0 \rightarrow R_{m} \xrightarrow{\partial_{m}} R_{m-1} \xrightarrow{\partial_{m-1}} \cdots \xrightarrow{\partial_{2}} R_{1} \xrightarrow{\partial_{1}} R_{0} \xrightarrow{\partial_{0}} \mathbb{Z} \rightarrow 0 \tag{4}
\end{equation*}
$$

be a projective resolution of the trivial $\mathbb{Z}\left[G_{0}\right]$-module \mathbb{Z} with all projectives finitely generated.

Then $H^{i}(\mathcal{S})=H^{i}\left(G_{0}, \mathbb{Z}\left[G_{0}\right]\right)$ is 0 for $i \neq m$ and \mathbb{Z} for $i=m$, where $S=$ $\operatorname{Hom}_{\mathbb{Z}\left[G_{0}\right]}\left(\mathcal{R}^{\text {del }}, \mathbb{Z}\left[G_{0}\right]\right)$ is the dual complex. Thus S is a complex of left $\mathbb{Z}\left[G_{0}\right]$ modules. Define \mathcal{T} the complex obtained from ς by adding its unique non-trivial cohomology

$$
\mathcal{T}: 0 \rightarrow S^{0} \rightarrow S^{1} \rightarrow S^{2} \rightarrow \cdots \rightarrow S^{m} \rightarrow H^{m}(\S)=\mathbb{Z} \rightarrow 0
$$

In particular, the complex \mathcal{T} is a projective resolution of the trivial left $\mathbb{Z}\left[G_{0}\right]$ module \mathbb{Z}. By Lemma $1, \operatorname{Tor}_{i}^{\mathbb{Z}\left[G_{0}\right]}\left(\mathbb{Z}, \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{\ell}\right]\right]\right)=0$ and similarly we get that $\operatorname{Tor}_{i}^{\mathbb{Z}\left[G_{0}\right]}\left(\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right) e\right]\right], \mathbb{Z}\right)=0$ for $i \geq 1$. Thus

$$
\hat{\mathcal{T}}=\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{\mathcal{C}}\right]\right] \otimes_{\mathbb{Z}\left[G_{0}\right]} \mathcal{T}: 0 \rightarrow T^{0} \rightarrow T^{1} \rightarrow T^{2} \rightarrow \cdots \rightarrow T^{m} \rightarrow \mathbb{Z}_{p} \rightarrow 0
$$

is a projective resolution of the trivial abstract left $\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right) \ell\right]\right]$-module \mathbb{Z}_{p} with all projectives finitely generated, and hence is a profinite projective resolution of \mathbb{Z}_{p} over $\mathbb{Z}_{p}\left[\left[\left(\widehat{G}_{0}\right) \subset\right]\right]$.

Let $\widehat{\mathcal{J}}$ del be the complex obtained from $\hat{\mathcal{T}}$ by deleting the term \mathbb{Z}_{p}.
Note that $\hat{\mathcal{T}}^{\text {del }}$ is obtained from the complex $\mathcal{R}^{\text {del }}$ of projective finitely generated $\mathbb{Z}\left[G_{0}\right]$-modules by applying first the functor $\operatorname{Hom}_{\mathbb{Z}\left[G_{0}\right]}\left(\cdot, \mathbb{Z}\left[G_{0}\right]\right)$ and then the functor $\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right) と\right]\right] \otimes_{\mathbb{Z}\left[G_{0}\right]}$. The composition of these functors is the same as the composition of the functor $\otimes_{\mathbb{Z}}\left[G_{0}\right] \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{\succ}\right]\right]$ and the functor $\operatorname{Hom}_{\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right) \subset\right]\right]}\left(\cdot, \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{\ell}\right]\right]\right)$ if applied on a complex of finitely generated, projective $\mathbb{Z}\left[G_{0}\right]$-modules. Thus

$$
\hat{\mathcal{T}}^{\mathrm{del}} \simeq \operatorname{Hom}_{\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{e}\right]\right]}\left(\mathscr{P}^{\mathrm{del}}, \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right) \succcurlyeq\right]\right]\right)
$$

where $\mathcal{P}=\mathcal{R} \otimes_{\mathbb{Z}\left[G_{0}\right]} \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{\ell}\right]\right] \simeq \widehat{\mathcal{R}}$ is an exact complex of right $\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{\ell}\right]\right]-$ modules by Lemma 1. Then

$$
\begin{aligned}
& H^{i}\left(\left(\widehat{G_{0}}\right)^{\prime}, \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{\succ}\right]\right]\right)=\operatorname{Ext}_{\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)^{\prime}\right]\right]}^{i}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)^{\prime}\right]\right]\right) \\
& \simeq H^{i}\left(\operatorname{Hom}_{\mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right) \subset\right]\right]}\left(\mathcal{P}^{\text {del }}, \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right) \subset\right]\right]\right)\right) \simeq H^{i}\left(\widehat{\mathcal{T}}^{\text {del }}\right)
\end{aligned}
$$

is 0 for $i \neq m$ and is \mathbb{Z}_{p} otherwise. Thus $\left(\widehat{G_{0}}\right) \subset$ is a strong profinite PD_{m} group at p and is orientable since in the complex $\widehat{\mathcal{T}}$ the module \mathbb{Z}_{p} is the trivial one, i.e., $\left(\widehat{G_{0}}\right)_{\ell}$ acts trivially on \mathbb{Z}_{p}.

Note that $\left(\widehat{G_{0}}\right)_{e}$ is a subgroup of finite index in $\widehat{G} \varphi$ and, by Lemma $2, \widehat{G} \leftharpoonup$ is FP_{∞} over \mathbb{Z}_{p} and $\operatorname{cd}_{p}\left(\widehat{G}_{\subsetneq}\right) \leq m$. By [15], 4.2.9,

$$
H^{i}\left(\left(\widehat{G_{0}}\right)_{\bullet}, \mathbb{Z}_{p}\left[\left[\left(\widehat{G_{0}}\right)_{e}\right]\right]\right) \simeq H^{i}\left(\widehat{G_{e}}, \mathbb{Z}_{p}\left[\left[\widehat{G}_{\bullet}\right]\right]\right)
$$

Then $H^{*}\left(\widehat{G}_{\mathscr{C}}, \mathbb{Z}_{p}\left[\left[\widehat{G}_{\bullet}\right]\right]\right)$ is concentrated in dimension m, where it is \mathbb{Z}_{p}, so $\hat{G}_{\mathscr{C}}$ is a strong profinite PD_{m} group at p.

3. Profinite completions of Poincaré duality groups of dimension 4 and Euler characteristic 0

Lemma 3. Let G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G)=0$. Then

$$
\begin{aligned}
& 2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(G, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(G, \mathbb{F}_{p}\right) \\
& \quad=2=2 \operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(G, \mathbb{F}_{p}\right)
\end{aligned}
$$

Proof. Indeed $\chi(G)=0$ together with $H_{4-i}\left(G, \mathbb{F}_{p}\right) \simeq H^{i}\left(G, \mathbb{F}_{p}\right) \simeq H_{i}\left(G, \mathbb{F}_{p}\right)$ for $i=0$ and $i=1$ gives

$$
\begin{aligned}
0=\chi(G)= & \sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(G, \mathbb{F}_{p}\right) \\
= & 1-\operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(G, \mathbb{F}_{p}\right)+\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(G, \mathbb{F}_{p}\right) \\
& -\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G, \mathbb{F}_{p}\right)+\operatorname{dim}_{\mathbb{F}_{p}} H^{0}\left(G, \mathbb{F}_{p}\right) \\
= & 2-2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(G, \mathbb{F}_{p}\right)+\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(G, \mathbb{F}_{p}\right)
\end{aligned}
$$

The proof is completed by the isomorphisms $H^{1}\left(G, \mathbb{F}_{p}\right) \simeq G /[G, G] G^{p} \simeq$ $H_{1}\left(G, \mathbb{F}_{p}\right)$ and $H^{2}\left(G, \mathbb{F}_{p}\right) \simeq H_{2}\left(G, \mathbb{F}_{p}\right)$.

Lemma 4. Let H be a profinite orientable Poincaré duality group of dimension 4 at p with Euler p-characteristic $\chi_{p}(H)=0$.

Then

$$
\begin{aligned}
& 2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(H, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(H, \mathbb{F}_{p}\right) \\
& \quad=2=2 \operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(H, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(H, \mathbb{F}_{p}\right)
\end{aligned}
$$

Proof. Note that for $0 \leq i \leq 4$ we have $\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(H, \mathbb{F}_{p}\right)=\operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(H, \mathbb{F}_{p}\right)$ by Pontryagin duality and $\operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(H, \mathbb{F}_{p}\right)=\operatorname{dim}_{\mathbb{F}_{p}} H^{4-i}\left(H, \mathbb{F}_{p}\right)$ by Tate's definition of Poincaré duality. Then the proof is completed as the proof of Lemma 3.

Proof of Theorem 1. Suppose now that the conditions a), b) and c) hold.
Since G is an abstract orientable PD_{4} group every subgroup of finite index in G is an abstract orientable PD_{4} group. In particular this holds for any $U \in \mathscr{C}$ and we have $H_{4}\left(U, \mathbb{F}_{p}\right) \simeq H^{0}\left(U, \mathbb{F}_{p}\right) \simeq \mathbb{F}_{p}$. Then the inverse limit of $H_{4}\left(U, \mathbb{F}_{p}\right)$ over $U \in \mathcal{C}$ is either \mathbb{F}_{p} or 0 . It cannot be \mathbb{F}_{p} otherwise there exists an ideal in $\mathbb{F}_{p}\left[\left[\widehat{G}_{\ell}\right]\right]$ isomorphic to \mathbb{F}_{p} and this easily contradicts the fact that $\widehat{G} e$ has an infinite Sylow p-subgroup (note that $\operatorname{cd}_{p}(H)=\operatorname{cd}_{p}\left(\widehat{G}_{\bigodot}\right) \leq 4<\infty$ for H a Sylow p-subgroup of \hat{G}_{\bullet}). Indeed if the inverse limit is \mathbb{F}_{p} by (3) $H_{4}(\hat{\mathcal{R}}) \simeq \mathbb{F}_{p}$ and by going down to a subgroup of finite index if necessary, we can assume that $\widehat{G} e$ acts trivially on $H_{4}(\widehat{\mathcal{R}}) \subseteq \widehat{R}_{4}$. Note that \widehat{R}_{4} is a finite rank projective $\mathbb{F}_{p}\left[\left[\widehat{G}_{\subsetneq}\right]\right]$-module, hence a direct summand of the finite rank free $\mathbb{F}_{p}\left[\left[\widehat{G}_{C}\right]\right]$-module F. Thus the trivial $\mathbb{F}_{p}\left[\left[\widehat{G}_{C}\right]\right]$-module \mathbb{F}_{p} is a submodule of F and projecting to one of the free factors $\mathbb{F}_{p}\left[\left[\widehat{G}_{e}\right]\right]$ of F, we see that $\mathbb{F}_{p}\left[\left[\widehat{G}_{e}\right]\right]$ contains the trivial $\mathbb{F}_{p}\left[\left[\widehat{G}_{\mathscr{C}}\right]\right]$-module \mathbb{F}_{p} as a submodule, a contradiction. A different argument using restriction and corestriction can be used as in the proof of [6], Prop. 3.1.

Note that we have shown that

$$
H_{4}(\widehat{\mathcal{R}}) \simeq \lim _{\longleftarrow} H_{U \in \mathcal{C}} H_{4}\left(U, \mathbb{F}_{p}\right)=0
$$

As tensor product is a right exact functor $H_{0}(\hat{\mathcal{R}})=0$. The condition that \mathcal{T} is subgroup, extension and quotient closed and contains the cyclic group with p
elements implies that \mathcal{T} contains all finite p-groups. Then, since \mathscr{C} induces the pro\mathcal{T} topology of G, we obtain that for every $U \in \mathscr{C}$ there is a subgroup $U_{1} \in \mathscr{C}$ with $U_{1} \subseteq[U, U] U^{p}$. Hence the canonical map

$$
\varphi_{1, U}: H_{1}\left(U, \mathbb{F}_{p}\right) \rightarrow H_{1}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)
$$

is an isomorphism and

$$
\begin{aligned}
& H_{1}(\hat{\mathcal{R}}) \simeq \lim _{\longleftarrow} U_{\mathcal{C}} H_{1}\left(U, \mathbb{F}_{p}\right) \simeq \lim _{\longleftarrow} H_{U \in} H_{1}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
& =H_{1}\left(\lim _{U \in \mathcal{C}} \widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)=H_{1}\left(1, \mathbb{F}_{p}\right)=0 .
\end{aligned}
$$

We claim that the canonical map

$$
\begin{equation*}
\varphi_{2, U}: H_{2}\left(U, \mathbb{F}_{p}\right) \rightarrow H_{2}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \tag{5}
\end{equation*}
$$

is an isomorphism.
Indeed $H_{2}\left(U, \mathbb{F}_{p}\right) \simeq H_{2}\left(\mathcal{R} \otimes_{\mathbb{Z}[U]} \mathbb{F}_{p}\right) \simeq H_{2}\left(\widehat{\mathcal{R}} \otimes_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]} \mathbb{F}_{p}\right)$. The partial profinite projective $\mathbb{F}_{p}\left[\left[\hat{U}_{\bigodot}\right]\right]$-resolution $\hat{R}_{2} \xrightarrow{\widehat{\sigma_{2}}} \widehat{R}_{1} \xrightarrow{\hat{\sigma_{1}}} \hat{R}_{0} \rightarrow \mathbb{F}_{p} \rightarrow 0$ of \mathbb{F}_{p} can be extended to a partial profinite projective $\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]$-resolution

$$
S: S \xrightarrow{\nu} \hat{R}_{2} \xrightarrow{\hat{\partial_{2}}} \hat{R}_{1} \xrightarrow{{\hat{\sigma_{1}}}^{\prime}} \widehat{R}_{0} \rightarrow \mathbb{F}_{p} \rightarrow 0,
$$

where S contains \hat{R}_{3} as a closed submodule and v is an extension of $\hat{\partial}_{3}$ from (2). Thus $H_{2}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \simeq H_{2}\left(S \otimes_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]} \mathbb{F}_{p}\right)$ is a quotient of $H_{2}\left(\widehat{\mathcal{R}} \otimes_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]} \mathbb{F}_{p}\right)$, and $\varphi_{2, U}$ is surjective.

Then by Lemma 3, Lemma 4 and condition c) of the theorem, it follows that

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{ker}\left(\varphi_{2, U}\right) & =\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
& =\left(2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(U, \mathbb{F}_{p}\right)-2\right)-\left(2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)-2\right)=0 .
\end{aligned}
$$

In particular (5) holds and we have

$$
\begin{aligned}
& H_{2}(\widehat{\mathcal{R}}) \simeq \lim _{\longleftarrow} U_{C} H_{2}\left(U, \mathbb{F}_{p}\right) \simeq \lim _{\longleftarrow}{ }_{U \in \mathscr{C}} H_{2}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
& =H_{2}\left(\lim _{\longleftarrow} \hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)=H_{2}\left(1, \mathbb{F}_{p}\right)=0 .
\end{aligned}
$$

Note that we have proved by now that

$$
\begin{equation*}
H_{i}(\hat{\mathcal{R}})=0 \quad \text { for } i \neq 3 \tag{6}
\end{equation*}
$$

Let

$$
\mathcal{P}: P \xrightarrow{\mu} \hat{R}_{3} \xrightarrow{\hat{\partial}_{3}} \hat{R}_{2} \xrightarrow{\hat{\partial}_{2}} \hat{R}_{1} \xrightarrow{\hat{\partial}_{1}} \hat{R}_{0} \xrightarrow{\hat{\partial}_{0}} \mathbb{F}_{p} \rightarrow 0
$$

be a partial profinite projective resolution of the trivial $\mathbb{F}_{p}\left[\left[\widehat{G}_{C}\right]\right]$-module \mathbb{F}_{p} with \widehat{R}_{4} a closed submodule of P and μ an extension of $\hat{\partial}_{4}$. Hence \mathcal{P} is a partial profinite
projective resolution of the trivial $\mathbb{F}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]$-module \mathbb{F}_{p} for every $U \in \mathcal{C}$. Then the natural embedding of the 4 -skeleton $\widehat{\mathcal{R}}^{(4)}$ in \mathcal{P} induces an epimorphism

$$
H_{3}\left(U, \mathbb{F}_{p}\right) \simeq H_{3}\left(\widehat{\mathcal{R}} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]} \mathbb{F}_{p}\right) \rightarrow H_{3}\left(\mathcal{P} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{e}\right]\right]} \mathbb{F}_{p}\right) \simeq H_{3}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)
$$

Consequently the canonical map

$$
\varphi_{3, U}: H_{3}\left(U, \mathbb{F}_{p}\right) \rightarrow H_{3}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)
$$

is an epimorphism, hence

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \geq 0 \tag{7}
\end{equation*}
$$

Note that by condition b),

$$
\begin{align*}
& \sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\hat{U}_{e}, \mathbb{F}_{p}\right) \\
& \quad=0=\chi(G)=\chi(U)=\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(U, \mathbb{F}_{p}\right) \tag{8}
\end{align*}
$$

and since $\varphi_{i, U}$ is an isomorphism for $i=1,2$ it follows that $\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(U, \mathbb{F}_{p}\right)=$ $\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\widehat{U}_{\mathcal{C}}, \mathbb{F}_{p}\right)$ for $i=1,2$. Then by $H_{4}\left(U, \mathbb{F}_{p}\right) \simeq H^{0}\left(U, \mathbb{F}_{p}\right) \simeq \mathbb{F}_{p}$, (7) and (8) we get

$$
\begin{aligned}
0 & \leq \operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
& =\sum_{0 \leq i \neq 3 \leq 4}(-1)^{i}\left(\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)\right) \\
& =\operatorname{dim}_{\mathbb{F}_{p}} H_{4}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{4}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
& \leq \operatorname{dim}_{\mathbb{F}_{p}} H_{4}\left(U, \mathbb{F}_{p}\right)=1
\end{aligned}
$$

and so

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{ker}\left(\varphi_{3, U}\right)=\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \leq 1 \tag{9}
\end{equation*}
$$

Consider the short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\varphi_{3, U}\right) \rightarrow H_{3}\left(U, \mathbb{F}_{p}\right) \rightarrow H_{3}\left(\hat{U}_{e}, \mathbb{F}_{p}\right) \rightarrow 0
$$

and the corresponding exact sequence

$$
\begin{aligned}
& 0 \rightarrow \lim _{\leftarrow U \in C^{\prime}} \operatorname{ker}\left(\varphi_{3, U}\right) \rightarrow \lim _{\longleftarrow U \in \mathcal{C}} H_{3}\left(U, \mathbb{F}_{p}\right) \\
& \rightarrow \lim _{\longleftarrow \in \mathscr{C}} H_{3}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \simeq H_{3}\left(\lim _{\longleftarrow \in \mathscr{C}} \widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)=0 \rightarrow \cdots .
\end{aligned}
$$

Then by (9),

$$
H_{3}(\hat{\mathcal{R}}) \simeq \lim _{\longleftarrow}^{\longleftrightarrow} H_{C} H_{3}\left(U, \mathbb{F}_{p}\right) \simeq \lim _{\longleftarrow}^{\longleftrightarrow} \mathcal{C}^{\operatorname{ker}\left(\varphi_{3, U}\right)}
$$

is either zero or \mathbb{F}_{p}.
Define $V=H_{3}(\widehat{\mathcal{R}})$ and suppose that $V \neq 0$, consequently $V \simeq \mathbb{F}_{p}$. Let $U \in \mathscr{C}$ be such that U acts trivially on V. We claim that since $2 \leq \operatorname{cd}_{p}\left(\widehat{G}_{\mathscr{C}}\right)=t<\infty$, the projective dimension of V as a profinite $\mathbb{F}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]$-module is $\max \{t-4,0\}$.

Indeed if $0 \rightarrow W_{1} \rightarrow W \rightarrow W_{2} \rightarrow 0$ is a short exact sequence of profinite modules with W projective, then either the projective dimension of W_{1} is the projective dimension of W_{2} minus 1 or W_{1} and W_{2} are projective, i.e., both have projective dimension 0 (this follows from the fact that the projective dimension k of a profinite $\mathbb{F}_{p}\left[\left[\widehat{U}_{\mathscr{C}}\right]\right]$-module M is the minimal non-negative integer k such that $\widehat{\operatorname{Ext}}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{U}}\right]\right]}^{k+1}(M, S)=0$ for every discrete finite p-primary $\mathbb{F}_{p}\left[\left[\widehat{U}_{\mathscr{C}}\right]\right]$-module S, where $\widehat{\text { Ext }}$ is the derived functor of continuous Hom). Since the trivial $\mathbb{F}_{p}\left[\left[\widehat{G}_{e}\right]\right]$-module \mathbb{F}_{p} has profinite projective dimension t over $\mathbb{F}_{p}\left[\left[\widehat{G_{e}}\right]\right]$, by (6) we get that $\operatorname{ker}\left(\widehat{\partial_{3}}\right)$ has projective dimension $s=\max \{t-4,0\}$ as a profinite $\mathbb{F}_{p}\left[\left[\widehat{G}_{\subsetneq}\right]\right]$-module .

Hence $\operatorname{ker}\left(\hat{\partial_{3}}\right)$ has projective dimension $s=\max \{t-4,0\}$ as a profinite $\mathbb{F}_{p}\left[\left[\hat{U}_{e}\right]\right]-$ module.

Consider the short exact sequence of profinite $\mathbb{F}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]$-modules

$$
\begin{equation*}
\mathcal{A}: 0 \rightarrow A_{1}=\hat{R}_{4} \xrightarrow{\hat{\partial}_{4}} A_{0}=\operatorname{ker}\left(\hat{\partial}_{3}\right) \rightarrow V \rightarrow 0 \tag{10}
\end{equation*}
$$

where $V \simeq \mathbb{F}_{p}$ is the trivial module. Since A_{1} is projective, for every discrete finite p-primary $\mathbb{F}_{p}\left[\left[\hat{U}_{e}\right]\right]$-module S and $i \geq 2$, there is an isomorphism

$$
\widehat{\operatorname{Ext}}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{E}}\right]\right]}^{i}(V, S) \simeq \widehat{\operatorname{Ext}}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]}^{i}\left(A_{0}, S\right)
$$

In particular if $\widehat{\operatorname{Ext}}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]}(V, S) \neq 0$ for some $i \geq 2$ (i.e., $\operatorname{pd}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]}(V) \geq 2$) we get that $\operatorname{pd}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]}(V)=\operatorname{pd}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathcal{C}}\right]\right]}\left(A_{0}\right)$. Finally since

$$
\operatorname{pd}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]}(V)=\operatorname{pd}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]}\left(\mathbb{F}_{p}\right)=\operatorname{cd}_{p}\left(\hat{U}_{\mathscr{C}}\right)=\operatorname{cd}_{p}\left(\widehat{G}_{\mathscr{C}}\right)=t \geq 2
$$

we obtain that

$$
t=\operatorname{pd}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]}(V)=\operatorname{pd}_{\mathbb{F}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]}\left(A_{0}\right)=s=\max \{t-4,0\}<t
$$

a contradiction.
Thus

$$
H_{3}(\hat{\mathcal{R}})=0
$$

and we have shown that

$$
H_{i}(\widehat{R})=0 \quad \text { for all } i \geq 1
$$

Then by (3) we can apply Theorem 4 to deduce that \hat{G}_{\succ} is a strong profinite orientable PD_{4} group at p.

Finally we observe that if $\hat{G}_{\mathscr{C}}$ is a profinite orientable PD_{4} group at p, then obviously all conditions a), b) and c) hold.

Corollary 1. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G)=0$. Let \mathcal{T} be a class of finite groups closed under subgroups, extensions and quotients, let the cyclic group of order p be in \mathcal{T} and let \mathcal{C} be a directed set of normal subgroups of finite index in G such that \mathcal{C} induces the pro- \mathcal{T} topology of G.

Then the following conditions are equivalent:
a) \widehat{G}_{e} is an orientable profinite Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic $\chi_{p}\left(\widehat{G}_{e}\right)=0$;
b) $\widehat{G} e$ is a strong orientable profinite Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic $\chi_{p}\left(\widehat{G}_{e}\right)=0$;
c) $\operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \mathbb{F}_{p}\left[\left[\widehat{G}_{\ell}\right]\right]\right)=0$ for every $i \geq 1$;
d) $\operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \mathbb{Z}_{p}\left[\left[\widehat{G}_{ழ}\right]\right]\right)=0$ for every $i \geq 1$.

Proof. By Theorem 1 item a) is equivalent with item b). Using again Theorem 1, \widehat{G}_{e} is an orientable profinite PD_{4} group at p with $\chi_{p}\left(\widehat{G}_{\smile}\right)=0$ if and only if the conditions a), b) and c) from Theorem 1 hold. The proof of Theorem 1 shows that if these three conditions hold, then $\widehat{\mathcal{R}}$ is an exact complex.

Conversely, if $\widehat{\mathcal{R}}$ is an exact complex, that is,

$$
\begin{equation*}
0=H_{i}(\hat{\mathcal{R}}) \simeq \lim _{\longleftarrow}{ }_{U \in \zeta} H_{i}\left(U, \mathbb{F}_{p}\right) \tag{11}
\end{equation*}
$$

for $i \geq 1$, we get by Theorem 4 that \widehat{G}_{e} is a strong orientable profinite PD_{4} group at p with $\chi_{p}\left(\widehat{G}_{\succ}\right)=0$, hence is a profinite orientable PD_{4} group at p.

Thus item a) is equivalent with $H_{i}(\widehat{\mathcal{R}})=0$ for all $i \geq 1$.
Since $H_{i}(\widehat{\mathcal{R}}) \simeq \operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \mathbb{F}_{p}\left[\left[\widehat{G}_{e}\right]\right]\right)$ for $i \geq 1$ we see that a) and c) are equivalent. Furthermore, by Lemma 1, if (11) holds then d) holds, i.e., a) implies d).

If item d) holds then $S=\mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{Z}_{p}\left[\left[\widehat{G}_{e}\right]\right]$ is an abstract projective resolution of \mathbb{Z}_{p} over $\mathbb{Z}_{p}\left[\left[\widehat{G}_{\subsetneq}\right]\right]$ of finite length and finitely generated projectives in any dimension, so S is a profinite projective resolution of \mathbb{Z}_{p} as a profinite $\mathbb{Z}_{p}\left[\left[\widehat{G}_{\varphi}\right]\right]$-module, hence as a profinite \mathbb{Z}_{p}-module.

Since $S \otimes_{\mathbb{Z}_{p}} \mathbb{F}_{p} \simeq S \widehat{\otimes}_{\mathbb{Z}_{p}} \mathbb{F}_{p}$ we have

$$
\begin{aligned}
\operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \mathbb{F}_{p}[[\widehat{G} \ell]]\right) & =H_{i}\left(\mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_{p}\left[\left[\widehat{G}_{\ell}\right]\right]\right) \\
& \simeq H_{i}\left(\mathcal{S} \otimes_{\mathbb{Z}_{p}} \mathbb{F}_{p}\right) \\
& \simeq H_{i}\left(\mathcal{\otimes _ { \mathbb { Z } _ { p } } \mathbb { F } _ { p }) = \widehat { \operatorname { T o r } } _ { i } ^ { \mathbb { Z } _ { p } } (\mathbb { Z } _ { p } , \mathbb { F } _ { p }) = 0 \quad \text { for } i \geq 1}\right.
\end{aligned}
$$

where $\widehat{\text { Tor }}$ denotes the left derived functor of $\widehat{\otimes}$ in the category of profinite modules, i.e., d) implies c).

Corollary 2. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G)=0$. Let \mathcal{T} be a class of
finite groups closed under subgroups, extensions and quotients, let the cyclic group of order p be in \mathcal{T} and let \mathcal{C} be a directed set of normal subgroups U of finite index in G such that \mathcal{C} induces the pro- \mathcal{T} topology of G.

Then for the pro- \mathcal{T} completion $\widehat{G} \mathcal{e}$ of G the following results hold:
a) \widehat{G}_{e} is an orientable profinite Poincaré duality group of dimension 4 at p with Euler p-characteristic $\chi_{p}\left(\widehat{G}_{\ell}\right)=0$ if and only if, for every $U \in \mathcal{C}$, the canonical maps between abstract and continuous homology

$$
\varphi_{i, U}: H_{i}\left(U, \mathbb{F}_{p}\right) \rightarrow H_{i}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)
$$

are isomorphisms for all i;
b) \widehat{G}_{e} is an orientable Poincaré duality group of dimension 4 at p with Euler pcharacteristic $\chi_{p}\left(\widehat{G}_{\mathscr{C}}\right)=0$ if and only if, for every $U \in \mathcal{C}$, the canonical maps between continuous and abstract cohomology

$$
\mu_{i, U}: H^{i}\left(\hat{U}_{\smile}, \mathbb{F}_{p}\right) \rightarrow H^{i}\left(U, \mathbb{F}_{p}\right)
$$

are isomorphisms for all i;
c) the pro-p completion of G is an orientable Poincaré duality pro-p group of dimension 4 and Euler characteristic 0 if and only if G is p-good.

Proof. 1. If $\varphi_{i, U}$ is an isomorphism for every $U \in \mathscr{C}$

$$
\begin{aligned}
{\underset{U \in \mathscr{C}}{ }}_{\lim _{i}} H_{i}\left(U, \mathbb{F}_{p}\right) & \simeq \underset{U \in \mathscr{U}}{\lim _{U}} H_{i}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
& =H_{i}\left({\underset{\widehat{U} \in \mathscr{C}}{ }}_{\lim }^{U_{e}}, \mathbb{F}_{p}\right)=H_{i}\left(1, \mathbb{F}_{p}\right)=0 \quad \text { for } i \geq 1
\end{aligned}
$$

and by Theorem $4, \widehat{G}_{e}$ is an orientable profinite PD_{4} group at p.
2. Suppose now that \widehat{G}_{\bigodot} is an orientable profinite PD_{4} group at p with $\chi_{p}\left(\widehat{G}_{\bigodot}\right)=$ 0 and \mathcal{R} is the complex (1) for $m=4$.

By Corollary $1, \mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{Z}_{p}\left[\left[\widehat{G}_{\bullet}\right]\right]$ is exact and the same holds for G substituted with any $U \in \mathscr{C}$ and any projective resolution of finite type and length at most 4 of the trivial $\mathbb{Z}[U]$-module \mathbb{Z}. In particular, $\mathcal{Q}=\mathcal{R} \otimes_{\mathbb{Z}[U]} \mathbb{Z}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]$ is exact. We can use the exactness of \mathcal{Q} to show that the natural maps $H_{i}(U, M) \rightarrow H_{i}\left(\hat{U}_{\mathscr{C}}, M\right)$ and $H^{i}\left(\widehat{U}_{\mathscr{C}}, M\right) \rightarrow H^{i}(U, M)$ are isomorphisms for every p-primary finite discrete $\widehat{G}_{p^{-}}$ module M. In particular, $\varphi_{i, U}$ and $\mu_{i, U}$ are isomorphisms. Indeed

$$
H_{i}\left(\hat{U}_{\mathscr{C}}, M\right) \simeq H_{i}\left(\mathcal{Q} \hat{\otimes}_{\mathbb{Z}_{p}\left[\left[\hat{U}_{e}\right]\right]} M\right) \simeq H_{i}\left(\mathcal{R} \otimes_{\mathbb{Z}[U]} M\right) \simeq H_{i}(U, M)
$$

and

$$
\begin{equation*}
H^{i}\left(\widehat{U}_{\mathscr{C}}, M\right) \simeq H^{i}\left(\widehat{\operatorname{Hom}}_{\mathbb{Z}_{p}\left[\left[\hat{U}_{\mathscr{C}}\right]\right]}(\mathcal{Q}, M)\right) \simeq H^{i}\left(\operatorname{Hom}_{\mathbb{Z}[U]}(\mathcal{R}, M)\right) \simeq H^{i}(U, M) \tag{12}
\end{equation*}
$$

where $\widehat{\text { Hom }}$ denotes continuous homomorphisms. In particular, if \mathcal{T} is the class of all finite p-groups and $U=G$, then (12) implies that G is p-good.
3. Now suppose that $\mu_{i, U}$ is an isomorphism for all $i \geq 1$ and $U \in \mathcal{C}$.

We show that all three conditions a), b) and c) of Theorem 1 hold. Indeed, $H^{5}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \simeq H^{5}\left(U, \mathbb{F}_{p}\right)=0$ for all $U \in \mathscr{C}$ and consequently by [14], Prop. 21', $\operatorname{cd}_{p}\left(\widehat{G}_{e}\right) \leq 4$. Furthermore $H^{4}\left(\hat{U}_{e}, \mathbb{F}_{p}\right) \simeq H^{4}\left(U, \mathbb{F}_{p}\right) \simeq \mathbb{F}_{p} \neq 0$, in particular $\operatorname{cd}_{p}\left(\hat{U}_{\bigodot}\right) \geq 4$ and so $4 \leq \operatorname{cd}_{p}\left(\hat{U}_{\bigodot}\right) \leq \operatorname{cd}_{p}\left(\widehat{G}_{\bigodot}\right) \leq 4$. Finally $\operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(\widehat{U}_{\bigodot}, \mathbb{F}_{p}\right)=$ $\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\hat{U}_{\mathcal{C}}, \mathbb{F}_{p}\right)$ for all i by Pontryagin duality. Thus

$$
\begin{aligned}
\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) & =\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
& =\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H^{i}\left(U, \mathbb{F}_{p}\right)=\chi(U)=0
\end{aligned}
$$

and

$$
\begin{aligned}
2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
\quad=2 \operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(\widehat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(\hat{U}_{\mathscr{C}}, \mathbb{F}_{p}\right) \\
\quad=2 \operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(U, \mathbb{F}_{p}\right)=2
\end{aligned}
$$

4. Finally, if G is p-good, then $\mu_{i, U}$ is the composition of the maps

$$
H^{i}\left(\hat{U}_{e}, \mathbb{F}_{p}\right) \rightarrow H^{i}\left(\widehat{G}_{e}, \mathbb{F}_{p}[G / U]\right) \rightarrow H^{i}\left(G, \mathbb{F}_{p}[G / U]\right) \rightarrow H^{i}\left(U, \mathbb{F}_{p}\right)
$$

where \mathcal{T} is the class of all finite p-groups, the first and the last map are Shapiro's isomorphisms and the middle one is an isomorphism since G is p-good. Therefore, $\mu_{i, U}$ is an isomorphism.

4. More on pro-p completions

Our first result is a more general version of Theorem 1 in the case of pro- p completions. The new ingredient is the use of cohomology with coefficients in $\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]$ together with some results from [7] and [8].

Proof of Theorem 2. The conditions of Theorem 2 include the last two of the conditions of Theorem 1 but not the first one, i.e., we are not assuming that $2 \leq \operatorname{cd}\left(\widehat{G}_{p}\right)$. Note that the proof of Theorem 2 needed $2 \leq \operatorname{cd}\left(\widehat{G}_{p}\right)$ in order to show $H_{3}(\widehat{\mathcal{R}}) \nsucceq \mathbb{F}_{p}$ (the only other possibility for $H_{3}(\widehat{\mathcal{R}})$ is 0), where $\widehat{\mathcal{R}}$ is the complex (2) for $m=4$ and \widehat{G}_{p} is infinite (the last holds since \widehat{G}_{p} is not virtually procyclic, hence is not virtually trivial). Then $H_{i}(\widehat{\mathcal{R}})=0$ for $i \neq 3$ and $H_{i}(\widehat{\mathcal{R}})$ is either 0 or \mathbb{F}_{p}.

Let $\mathcal{R}^{\text {op }}$ be a resolution as in (1) for $m=4$ but of the trivial left $\mathbb{Z}[G]$-module \mathbb{Z} (recall that in (1) all modules are right $\mathbb{Z}[G]$ - modules). Then exchanging left with right modules we get similar results for the complex $\widehat{\mathscr{R}^{\mathrm{op}}} \simeq \mathbb{F}_{p}\left[\left[\widehat{G}_{e}\right]\right] \otimes_{\mathbb{Z}[G]} \mathbb{Z}$, i.e., $H_{i}\left(\widehat{\mathcal{R}^{\mathrm{op}}}\right)=0$ for $i \neq 3$ and $H_{i}\left(\widehat{\mathcal{R}^{\mathrm{op}}}\right)=0$ is either 0 or \mathbb{F}_{p}.

We claim that

$$
\begin{equation*}
H_{3}\left(\widehat{\overparen{R}^{\mathrm{op}}}\right) \simeq H^{1}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) \tag{13}
\end{equation*}
$$

Suppose that (13) holds and that $H_{3}\left(\widehat{\mathcal{R}^{\mathrm{op}}}\right) \simeq \mathbb{F}_{p}$. Then $\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)=1$ and by [7], Thm. $3, \widehat{G}_{p}$ is virtually \mathbb{Z}_{p}, a contradiction to condition a). Thus $\widehat{\mathcal{R}^{\mathrm{op}}}$ is an exact complex and the proof of the dual version of Theorem 4 (exchanging left with right modules) completes the proof of Theorem 2.

Finally we prove (13). Let

$$
\begin{equation*}
\mathcal{R}: 0 \rightarrow R_{4} \xrightarrow{\partial_{4}} R_{3} \xrightarrow{\partial_{3}} R_{2} \xrightarrow{\partial_{2}} R_{1} \xrightarrow{\partial_{1}} R_{0} \xrightarrow{\partial_{0}} \mathbb{Z} \rightarrow 0 \tag{14}
\end{equation*}
$$

be the complex (1) for $m=4$.
Then $H^{i}(S)=H^{i}(G, \mathbb{Z}[G])$ is 0 for $i \neq 4$ and \mathbb{Z} for $i=4$, where $S=$ $\operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathcal{R}^{\text {del }}, \mathbb{Z}[G]\right)$ is the dual complex, i.e., S is a complex of left $\mathbb{Z}[G]$-modules. Define \mathcal{T} the complex obtained from S by adding its unique non-trivial cohomology:

$$
\mathcal{T}: 0 \rightarrow S^{0} \rightarrow S^{1} \rightarrow S^{2} \rightarrow S^{3} \rightarrow S^{4} \rightarrow H^{4}(\varsigma)=\mathbb{Z} \rightarrow 0
$$

In particular the complex \mathcal{T} is a projective resolution of the trivial left $\mathbb{Z}[G]$-module \mathbb{Z}. Consequently for

$$
\hat{\mathcal{T}}=\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right] \otimes_{\mathbb{Z}[G]} \mathcal{T}: 0 \rightarrow T^{0} \rightarrow T^{1} \rightarrow T^{2} \rightarrow T^{3} \rightarrow T^{4} \rightarrow \mathbb{F}_{p} \rightarrow 0
$$

we have

$$
\begin{equation*}
H^{i}(\widehat{\mathcal{T}})=\operatorname{Tor}_{4-i}^{\mathbb{Z}[G]}\left(\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right], \mathbb{Z}\right) \text { for } i \neq 4 \quad \text { and } \quad H^{4}(\hat{\mathcal{T}})=0 \tag{15}
\end{equation*}
$$

By the proof of Theorem 1,

$$
\begin{equation*}
H_{i}(\widehat{\mathcal{R}})=0 \quad \text { for } i \neq 3 \tag{16}
\end{equation*}
$$

so $\hat{R}_{3} \rightarrow \hat{R}_{2} \rightarrow \hat{R}_{1} \rightarrow \hat{R}_{0} \rightarrow \mathbb{F}_{p} \rightarrow 0$ is exact, i.e., a partial projective resolution of the trivial $\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]$-module \mathbb{F}_{p}.

The deleted complex $\hat{\mathcal{T}}^{\text {del }}$ is the complex obtained from \mathcal{T} by deleting the term \mathbb{F}_{p}. As in the proof of Theorem 4, we have

$$
\hat{\mathcal{T}}^{\mathrm{del}} \simeq \operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\widehat{\mathcal{R}}^{\mathrm{del}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) .
$$

Then by (16),

$$
\begin{aligned}
H^{1}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) & =\operatorname{Ext}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}^{1}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) \\
& \simeq H^{1}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\widehat{\mathcal{R}}^{\mathrm{del}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \\
& \simeq H^{1}\left(\widehat{\mathcal{T}}^{\mathrm{del}}\right) \simeq \operatorname{Tor}_{3}^{\mathbb{Z}[G]}\left(\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right], \mathbb{Z}\right) \simeq H_{3}\left(\widehat{\mathcal{R}^{\mathrm{op}}}\right)
\end{aligned}
$$

as required.

Proof of Theorem 3. As in the proof of Theorem 1, we have

$$
\begin{equation*}
H_{i}(\widehat{\mathcal{R}})=0 \quad \text { for } i=0,1,4 \tag{17}
\end{equation*}
$$

where $\hat{\mathcal{R}} \simeq \mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right], \mathcal{R}$ is the complex (1) for $m=4$ and again as in the proof of Theorem 1 for $U \in \mathscr{C}$ the map

$$
\varphi_{2, U}: H_{2}\left(U, \mathbb{F}_{p}\right) \rightarrow H_{2}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)
$$

is surjective.
Then by Lemma 3,

$$
\begin{align*}
0 & \leq \operatorname{dim}_{\mathbb{F}_{p}} \operatorname{ker}\left(\varphi_{2, U}\right)=\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right) \\
& \leq 2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(U, \mathbb{F}_{p}\right)-2+m-2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right) \tag{18}\\
& =m-2
\end{align*}
$$

and hence

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}_{p}} \lim _{\longleftarrow U \in \mathcal{C}} \operatorname{ker}\left(\varphi_{2, U}\right) \leq m-2 . \tag{19}
\end{equation*}
$$

Using the exact sequence
$0 \rightarrow \lim _{\longleftarrow}{ }_{U \in e} \operatorname{ker}\left(\varphi_{2}, U\right) \rightarrow \lim _{\longleftarrow}{ }_{U \in C} H_{2}\left(U, \mathbb{F}_{p}\right) \rightarrow\left(\lim _{\longleftarrow}{ }_{U \in C} H_{2}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)\right)=0 \rightarrow \cdots$,
(3) and (19) we obtain that

$$
\begin{align*}
\operatorname{dim}_{\mathbb{F}_{p}} H_{2}(\widehat{\mathcal{R}}) & =\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Tor}_{2}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \mathbb{F}_{p}\left[\left[\widehat{G}_{e}\right]\right]\right) \\
& =\operatorname{dim}_{\mathbb{F}_{p}} H_{2}(\hat{\mathcal{R}}) \\
& =\operatorname{dim}_{\mathbb{F}_{p}} \lim _{U \in C} H_{2}\left(U, \mathbb{F}_{p}\right) \tag{20}\\
& =\operatorname{dim}_{\mathbb{F}_{p}} \lim _{\longleftarrow}{ }_{U \in C} \operatorname{ker}\left(\varphi_{2, U}\right) \leq m-2<\infty
\end{align*}
$$

$\operatorname{By}(18), \sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(U, \mathbb{F}_{p}\right)=0=\sum_{0 \leq i \leq 4}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)$ and $H_{1}\left(U, \mathbb{F}_{p}\right) \simeq H_{1}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)$ we obtain that $\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)$ equals

$$
\begin{align*}
& \sum_{0 \leq i \leq 4, i \neq 3}(-1)^{i}\left(\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)\right) \\
& \quad=\sum_{i=2,4}\left(\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{i}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)\right) \\
& \quad \leq \operatorname{dim}_{\mathbb{F}_{p}} H_{4}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{4}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)+m-2 \tag{21}\\
& \quad=m-1-\operatorname{dim}_{\mathbb{F}_{p}} H_{4}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right) \\
& \quad \leq m-1<\infty .
\end{align*}
$$

Lemma 5. For $U \in \mathscr{C}$ and for the canonical map

$$
\varphi_{3, U}: H_{3}\left(U, \mathbb{F}_{p}\right) \rightarrow H_{3}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)
$$

we have

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{coker}\left(\varphi_{3, U}\right)=\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{im}\left(\varphi_{3, U}\right) \leq \operatorname{dim}_{\mathbb{F}_{p}} H_{2}(\hat{\mathcal{R}}) \tag{22}
\end{equation*}
$$

Proof. In order to prove (22) consider a short exact sequence of complexes of $\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]$ modules

$$
\begin{equation*}
0 \rightarrow \hat{\mathcal{R}} \rightarrow Q \rightarrow S \rightarrow 0 \tag{23}
\end{equation*}
$$

where all modules in S positioned in dimension ≤ 2 are $0, S$ is a shifted profinite deleted projective resolution of the $\mathbb{Z}_{p}\left[\left[\hat{U}_{p}\right]\right]$-module $H_{2}(\widehat{\mathcal{R}})$, i.e., the first non-zero projective in S is in dimension 3 and

$$
H_{i}(Q)=0 \quad \text { for } i \leq 2
$$

Furthermore there is a short exact sequence of profinite $\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]$ - complexes

$$
\begin{equation*}
0 \rightarrow \mathcal{Q} \rightarrow \mathcal{V} \rightarrow \mathcal{W} \rightarrow 0 \tag{24}
\end{equation*}
$$

where all modules in \mathcal{W} positioned in dimension ≤ 3 are zero, \mathcal{W} is a shifted profinite deleted projective resolution of $\mathrm{H}_{3}(\mathcal{Q})$, i.e., the first non-zero projective is in dimension 4 and

$$
H_{i}(\mathcal{V})=0 \quad \text { for } i \leq 3
$$

Since $\widehat{\mathcal{R}} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}=\mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right] \otimes_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p} \simeq \mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_{p}[G / U]$ we have $H_{3}\left(\widehat{\mathcal{R}} \widehat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right) \simeq H_{3}\left(G, \mathbb{F}_{p}[G / U]\right) \simeq H_{3}\left(U, \mathbb{F}_{p}\right)$, and since $\mathcal{V}^{(4)}$ is a partial profinite projective resolution of \mathbb{F}_{p} over $\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]$ there is an isomorphism $H_{3}\left(\mathcal{V} \widehat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right) \simeq H_{3}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)$. Under these isomorphisms the map $\varphi_{3, U}: H_{3}\left(U, \mathbb{F}_{p}\right) \rightarrow H_{3}\left(\hat{U}_{p}, \mathbb{F}_{p}\right)$ is the map

$$
f_{U}: H_{3}\left(\widehat{\mathcal{R}} \widehat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right) \rightarrow H_{3}\left(\mathcal{V} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right)
$$

induced by the inclusion of $\widehat{\mathcal{R}}$ in \mathcal{V}.
Since the complexes \Im and \mathcal{W} from (23) and (24) contain only projectives, we get exact sequences of complexes

$$
0 \rightarrow \hat{\mathcal{R}} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p} \rightarrow \mathcal{Q} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p} \rightarrow S \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p} \rightarrow 0
$$

and

$$
0 \rightarrow \mathcal{Q} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p} \rightarrow \mathcal{V} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p} \rightarrow \mathcal{W} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p} \rightarrow 0
$$

and the associated exact sequences in homology

$$
\begin{aligned}
\cdots & \rightarrow H_{3}\left(\widehat{\mathcal{R}} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right) \xrightarrow{f_{1, U}} H_{3}\left(Q \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right) \\
& \rightarrow H_{3}\left(\mathcal{S} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right)=\operatorname{Tor}_{0}^{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]}\left(H_{2}(\hat{\mathcal{R}}), \mathbb{F}_{p}\right) \simeq H_{2}(\widehat{\mathcal{R}}) \otimes_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p} \rightarrow \cdots
\end{aligned}
$$

and

$$
\begin{aligned}
& \cdots \rightarrow H_{3}\left(\mathcal{Q} \hat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right) \xrightarrow{f_{2, U}} H_{3}\left(\mathcal{V} \widehat{\otimes}_{\mathbb{F}_{p}\left[\left[\widehat{U}_{p}\right]\right]} \mathbb{F}_{p}\right) \\
& H_{3}\left(\mathcal{W} \widehat{\otimes}_{\mathbb{F}_{p}\left[\left[\hat{U}_{p}\right]\right]} \mathbb{F}_{p}\right)=0 \rightarrow \cdots
\end{aligned}
$$

Finally (22) follows from $f_{U}=f_{2, U} f_{1, U}, f_{2, U}$ is surjective and so

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{coker}\left(f_{U}\right) & \leq \operatorname{dim}_{\mathbb{F}_{p}} \operatorname{coker}\left(f_{1, U}\right) \\
& \leq \operatorname{dim}_{\mathbb{F}_{p}}\left(H_{2}(\widehat{\mathcal{R}}) \otimes_{\mathbb{F}_{p}\left[\left[\widehat{U}_{p}\right]\right]} \mathbb{F}_{p}\right) \\
& \leq \operatorname{dim}_{\mathbb{F}_{p}} H_{2}(\widehat{\mathcal{R}}) .
\end{aligned}
$$

Lemma 6. For all $i \geq 1$,

$$
\begin{equation*}
\operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) \simeq H_{i}(\widehat{\mathcal{R}})=H_{i}\left(\mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) \tag{25}
\end{equation*}
$$

is finite.
Proof. By (20), (21) and (22)

$$
\begin{align*}
\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{ker}\left(\varphi_{3, U}\right) & =\operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(U, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{im}\left(\varphi_{3, U}\right) \\
& \leq \operatorname{dim}_{\mathbb{F}_{p}} H_{3}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)+(m-1)-\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{im}\left(\varphi_{3, U}\right) \tag{26}\\
& \leq \operatorname{dim}_{\mathbb{F}_{p}} H_{2}(\widehat{\mathcal{R}})+(m-1)<\infty
\end{align*}
$$

Then using the exact sequences

$$
0 \rightarrow \lim _{\longleftarrow}{ }_{U \in \mathcal{C}} \operatorname{im}\left(\varphi_{3, U}\right) \rightarrow\left(\lim _{\longleftarrow \in \mathcal{C}} H_{3}\left(\widehat{U}_{p}, \mathbb{F}_{p}\right)\right)=0 \rightarrow \cdots
$$

and and by (26) we deduce that

$$
\begin{align*}
& \operatorname{dim}_{\mathbb{F}_{p}} H_{3}(\widehat{\mathcal{R}})=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Tor}_{3}^{\mathbb{Z}[G]}\left(\mathbb{Z}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) \\
&=\operatorname{dim}_{\mathbb{F}_{p}} H_{3}(\widehat{\mathcal{R}}) \\
&=\operatorname{dim}_{\mathbb{F}_{p}} \lim _{\longleftarrow}^{\leftarrow} U \in \mathcal{C} \tag{27}\\
&=\operatorname{dim}_{3}\left(U, \mathbb{F}_{p}\right) \\
& \leq \operatorname{dim}_{\mathbb{F}_{p}} H_{2}(\widehat{\mathcal{R}})+(m-1)<\infty \\
& \leftarrow \operatorname{ker}\left(\varphi_{3, U}\right)
\end{align*}
$$

Finally (17), (20) and (27) complete the proof.

Consider the dual complex $\mathcal{M}=\operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathcal{R}^{\text {del }}, \mathbb{Z}[G]\right)$. Define \mathcal{T} the complex obtained from \mathcal{M} by adding its unique non-trivial cohomology:

$$
\mathcal{T}: 0 \rightarrow M^{0} \rightarrow M^{1} \rightarrow M^{2} \rightarrow M^{3} \rightarrow M^{4} \rightarrow H^{4}(\mathcal{M})=\mathbb{Z} \rightarrow 0 .
$$

In particular the complex \mathcal{T} is a projective resolution of the trivial left $\mathbb{Z}[G]$-module \mathbb{Z} and as before we define $\hat{\mathcal{T}}=\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right] \otimes_{\mathbb{Z}[G]} \mathcal{T}$. Then

$$
\begin{gather*}
\hat{\mathcal{T}}^{\mathrm{del}} \simeq \operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\widehat{\mathcal{R}}^{\mathrm{del}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right), \tag{28}\\
H^{i}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\widehat{\mathcal{R}}^{\mathrm{del}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \simeq H^{i}\left(\widehat{\mathcal{T}}^{\mathrm{del}}\right) \tag{29}
\end{gather*}
$$

As in the proof of Theorem 2, let $\widehat{\mathcal{R}^{\text {op }}}$ be the version of $\widehat{\mathcal{R}}$ exchanging right with left modules. Then by the dual version of (25) (i.e., exchanging left with right modules)

$$
H^{i}\left(\hat{\mathcal{T}}^{\text {del }}\right) \simeq \operatorname{Tor}_{4-i}^{\mathbb{Z}[G]}\left(\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right], \mathbb{Z}\right) \simeq H_{4-i}\left(\widehat{\mathcal{R}^{\text {opdel }}}\right)
$$

is finite for all $i \neq 4$ and

$$
\begin{equation*}
H^{4}\left(\widehat{\mathcal{T}}^{\mathrm{del}}\right)=0 \tag{30}
\end{equation*}
$$

Since the complex S in (23), considered for $U=G$, contains only projectives, we get a short exact sequence of complexes

$$
\begin{aligned}
\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\mathcal{S}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) & \rightarrow \operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\left(\mathcal{Q}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right. \\
& \rightarrow \operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\widehat{\mathcal{R}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)
\end{aligned}
$$

and the corresponding long exact sequence in cohomology

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\mathcal{S}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right)=0 \rightarrow H^{1}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\mathcal{Q}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \\
& \rightarrow H^{1}\left(\operatorname{Hom}_{\left.\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right]}\left(\widehat{\mathcal{R}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \rightarrow H^{2}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\mathcal{S}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right)=0 \\
& \rightarrow H^{2}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\mathcal{Q}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \rightarrow H^{2}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\widehat{\mathcal{R}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \\
& \rightarrow H^{3}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\mathcal{S}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \simeq \operatorname{Ext}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}^{0}\left(H_{2}(\widehat{\mathcal{R}}), \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) \rightarrow \cdots
\end{aligned}
$$

Note that $\operatorname{Ext}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}^{0}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) \simeq H^{0}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)=0$ since \widehat{G}_{p} is infinite (remember that \widehat{G}_{p} is not virtually procyclic, hence is not virtually trivial), where \mathbb{F}_{p} is the trivial $\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]$-module. Then since $H_{2}(\widehat{\mathcal{R}})$ is finite, it has a filtration of $\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]$-modules with simple quotients, and up to isomorphism there is a unique simple $\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]$-module that is the trivial $\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]$-module \mathbb{F}_{p}, we obtain that $\operatorname{Ext}_{\mathbb{F}_{p}\left[\left[\widehat{\boldsymbol{G}}_{p}\right]\right]}^{0}\left(H_{2}(\widehat{\mathcal{R}}), \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)=0$.

The inclusion map $\widehat{\mathcal{R}} \rightarrow \mathcal{Q}$ induces isomorphisms

$$
\begin{equation*}
H^{i}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(Q, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \rightarrow H^{i}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\widehat{\mathcal{R}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \quad \text { for } i=1,2, \tag{31}
\end{equation*}
$$

and by (29), (30), (31) and the fact that the 3 -skeleton $Q^{(3)}$ is a partial profinite projective resolution of \mathbb{F}_{p} over $\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]$ it follows that

$$
\begin{align*}
H^{i}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right) & \simeq H^{i}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\mathcal{Q}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \tag{32}\\
& \simeq H^{i}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]}\left(\widehat{\mathcal{R}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right)
\end{align*}
$$

is finite for $i=1,2$.
Furthermore by [7], Thm. 3, and (32) either $H^{1}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)=0$ or \widehat{G}_{p} is virtually \mathbb{Z}_{p}; the latter cannot hold by assumption. Thus $H^{1}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)=0$, and since \widehat{G}_{p} has type FP_{2} over \mathbb{F}_{p} (remember G is FP_{∞}) by [8], Thm. 1, Cor. 1, and (32) it follows that

$$
\begin{equation*}
\text { either } H^{2}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)=0 \quad \text { or } \quad \widehat{G}_{p} \text { is virtually a pro- } p \mathrm{PD}_{2} \text { group. } \tag{33}
\end{equation*}
$$

In the first case we obtain by (29), (32) and (30) that

$$
\begin{align*}
H_{i}\left(\widehat{\mathcal{R}^{\text {op }}}\right) & \simeq H^{4-i}(\widehat{\mathcal{T}}) \\
& \simeq H^{4-i}\left(\operatorname{Hom}_{\mathbb{F}_{p}\left[\left[\widehat{\widehat{G}}_{p}\right]\right]}\left(\widehat{\mathcal{R}}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)\right) \tag{34}\\
& \simeq H^{4-i}\left(\widehat{G}_{p}, \mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right]\right)=0
\end{align*}
$$

for $i=2,3$.
By the dual version of (17) obtained after exchanging left with right modules we have $H_{i}\left(\widehat{\mathcal{R}^{\mathrm{op}}}\right)=0$ for $i=0,1,4$. This combined with (34) implies that $\widehat{\mathbb{R}^{\mathrm{op}}}$ is exact, i.e., $\operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right], \mathbb{Z}\right)=0$ for all $i \geq 1$. After exchanging left with right modules in the proof of Corollary 1 we get that condition c) of Corollary 1 can be substituted with $\operatorname{Tor}_{i}^{\mathbb{Z}[G]}\left(\mathbb{F}_{p}\left[\left[\widehat{G}_{p}\right]\right], \mathbb{Z}\right)=0$ for all $i \geq 1$. Thus \widehat{G}_{p} is an orientable pro- $p \mathrm{PD}_{4}$ group, a contradiction, and by (33), \widehat{G}_{p} is virtually a pro- $p \mathrm{PD}_{2}$ group.

Finally for some $V \in \bigodot$ the pro- p group \widehat{V}_{p} is a pro- $p \mathrm{PD}_{2}$ group, hence a Demushkin group. For such a group, we have that $\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(\widehat{V}_{p}, \mathbb{F}_{p}\right)=1$. Since $2 \operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(\widehat{V}_{p}, \mathbb{F}_{p}\right)-\operatorname{dim}_{\mathbb{F}_{p}} H_{2}\left(\widehat{V}_{p}, \mathbb{F}_{p}\right) \leq m$ there is an upper bound on $\operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(\widehat{V}_{p}, \mathbb{F}_{p}\right)$, i.e., \widehat{V}_{p} is a finite rank Demushkin group. The classification of all infinite Demushkin groups can be found in [3], [4], [9] and [13] and this classification implies that \widehat{V}_{p} has infinite abelianization. In particular there is a normal closed subgroup N of \widehat{V}_{p} such that $\widehat{V}_{p} / N \simeq \mathbb{Z}_{p}$. Because every subgroup of infinite index in a Demushkin group is a free pro- p group, N is a free pro- p group and a pro- p group of finite rank, so $N=\mathbb{Z}_{p}$. Thus \hat{V}_{p} is \mathbb{Z}_{p}-by- \mathbb{Z}_{p}.

References

[1] R. Bieri, Homological dimension of discrete groups. 2nd ed., Queen Mary College Mathematical Notes, Queen Mary College, London 1981. Zbl 0357.20027 MR 0715779
[2] K. S. Brown, Cohomology of groups. Graduate Texts in Math. 87, Springer-Verlag, New York 1994. Zbl 0584.20036 MR 1324339
[3] S. P. Demuškin, The group of a maximal p-extension of a local field. Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 329-346. Zbl 0100. 03302 MR 0123565
[4] S. P. Demuškin, On 2-extensions of a local field. Sibirsk. Mat. Zh. 4 (1963), 951-955; English transl. Amer. Math. Soc. Transl. (2) 50 (1966), 178-182. Zbl 0131.27001 MR 0161854
[5] D. H. Kochloukova, Pro-C completions of orientable $P D^{3}$-pairs. Preprint, Campinas 2007.
[6] D. H. Kochloukova and P. A. Zalesskii, Profinite and pro- p completions of Poincaré duality groups of dimension 3. Trans. Amer. Math. Soc. 360 (2008), 1927-1949. Zbl 1143.20016 MR 2366969
[7] A. A. Korenev, Pro-p groups with a finite number of ends. Mat. Zametki 76 (2004), 531-538; English transl. Math. Notes 76 (2004), 490-496. Zbl 1080.20024 MR 2112069
[8] A. A. Korenev, Cohomology groups of pro- p-groups with coefficients in a group ring and the virtual Poincaré duality. Mat. Zametki 78 (2005), 853-863; English transl. Math. Notes 78 (2005), 791-800. Zbl 1129.20032 MR 2249035
[9] J. P. Labute, Classification of Demushkin groups. Canad. J. Math. 19 (1967), 106-132. Zbl 0153.04202 MR 0210788
[10] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields. Grundlehren Math. Wiss. 323, Springer-Verlag, Berlin 2000. Zbl 0948.11001 MR 1737196
[11] A. Reznikov, Three-manifolds class field theory (homology of coverings for a nonvirtually b_{1}-positive manifold). Selecta Math. (N.S.) 3 (1997), 361-399. Zbl 0892.57012 MR 1481134
[12] L. Ribes and P. Zalesskii, Profinite groups. Ergeb. Math. Grenzgeb. (3) 40, SpringerVerlag, Berlin 2000. Zbl 0949.20017 MR 1775104
[13] J.-P. Serre, Structure de certains pro- p-groupes (d'après Demuškin). Sém. Bourbaki 15 (1962/63), Exp. No. 252; Sém. Bourbaki, Vol. 8, Exp. No. 252, 145-155, Soc. Math. France, Paris 1995. Zbl 0121.04404 MR 1611538
[14] J.-P. Serre, Galois cohomology. Springer-Verlag, Berlin 1997. Zbl 0902.12004 MR 1466966
[15] P. Symonds and T. Weigel, Cohomology of p-adic analytic groups. In New horizons in pro-p groups, Progr. Math. 184, Birkhäuser, Boston 2000, 349-410. Zbl 0973.20043 MR 1765127
[16] T. Weigel, On profinite groups with finite abelianizations. Selecta Math. (N.S.) 13 (2007), 175-181. Zbl 2330590 MR 2330590

Received September 24, 2007; revised April 9, 2008
D. H. Kochloukova, Department of Mathematics, State University of Campinas
(UNICAMP), Cx. P. 6065, 13083-970 Campinas, SP, Brazil
E-mail: desi@ime.unicamp.br

[^0]: *Partially supported by "bolsa de produtividade de pesquisa" from CNPq, Brazil.

