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Profinite completions of orientable Poincaré duality groups of
dimension four and Euler characteristic zero

Dessislava H. Kochloukova�

Abstract. Let p be a prime number, T a class of finite groups closed under extensions,
subgroups and quotients, and suppose that the cyclic group of order p is in T .

We find some sufficient and necessary conditions for the pro-T completion of an abstract
orientable Poincaré duality group G of dimension 4 and Euler characteristic 0 to be a profinite
orientable Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic
0. In particular we show that the pro-p completion yGp of G is an orientable Poincaré duality
pro-p group of dimension 4 and Euler characteristic 0 if and only if G is p-good.
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Introduction

In this paper we study pro-T completions of abstract Poincaré duality groups of
dimension 4 with Euler characteristic 0, where T is a class of finite groups that is
subgroup, extension and quotient closed and the cyclic group of order p is in T for
a fixed prime p. This paper can be considered as a natural continuation of an earlier
paper where profinite and pro-p completions of an abstract orientable Poincaré duality
group G of dimension 3 were studied [6].

One of the results obtained in [6] is an algebraic proof of the Reznikov’s claim
that the pro-p completion of the fundamental group of a closed orientable hyperbolic
3-manifold that violates the Thurston Conjecture is an orientable pro-p Poincaré
duality group provided the pro-p completion is infinite [11]. A quite different proof
of the same claim was independently discovered by T. Weigel [16].

We call a profinite group a strong PDn group at p if it is a profinite Poincaré
duality group of dimension n at p according to the definition of [15] and keep the
name of profinite PDn group at p for groups satisfying the original Tate’s definition
[10], [14]. We discuss in details both definitions in the preliminaries.

�Partially supported by “bolsa de produtividade de pesquisa” from CNPq, Brazil.
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In the case of pro-p groups both definitions are equivalent, but it is not known
whether they are equivalent in general.

Theorem 1. Let p be a prime number and G be an abstract orientable Poincaré
duality group of dimension 4 and Euler characteristic �.G/ D 0.

Let T be a class of finite groups closed under subgroups, extensions and quotients,
let the cyclic group of order p be in T and let C be a directed set of normal subgroups
of finite index in G such that C induces the pro-T topology of G.

Then
yGC D lim �U2C

G=U

is an orientable profinite Poincaré duality group of dimension 4 at the prime p with
Euler p-characteristic �p. yGC / D 0 if and only if all of the following conditions hold:

a) cdp. yGC / is finite and the Sylow p-subgroups of yGC are not free or trivial, i.e.,
2 � cdp. yGC / <1;

b) for every U 2 C we have
P

0�i�4.�1/i dimFp
Hi . yUC ; Fp/ D 0;

c) for every U 2 C we have 2 dimFp
H1. yUC ; Fp/ � dimFp

H2. yUC ; Fp/ D 2.

Furthermore, if the conditions a), b) and c) hold, then yGC is a strong profinite
orientable Poincaré duality group of dimension 4 at p.

Remarks. 1. Since1 > cdp. yGC / � 1 every Sylow p-subgroup of yGC is infinite.
2. If condition a) is substituted with 2 � cdp. yGC / � 4 condition b) can be sub-

stituted with �p. yGC / D 0, since 0 D �p. yUC / DP
0�i�4.�1/i dimFp

Hi . yUC ; Fp/.
3. Theorem 1 implies that if conditions a), b) and c) hold then the only possibility

for cdp. yGp/ is 4.

An abstract group G is said to be good if the natural map between continuous and
abstract cohomology H i . yG; M/ ! H i .G; M/ is an isomorphism for every finite
discrete G-module M , where yG is the profinite completion of G. The group G is
p-good if H i . yGp; M/ ! H i .G; M/ is an isomorphism for every p-primary finite
discrete yGp- module M , where yGp is the pro-p completion of G.

Theorem 1 easily implies that the pro-p completion yGp of an abstract orientable
PD4 group G of Euler characteristic 0 is an orientable pro-p PD4 group of Euler
characteristic 0 if and only if G is p-good (see Corollary 2 c)).

It would be interesting to find out whether this generalizes to any dimension, i.e.,
whether for G an abstract orientable PDn group of Euler characteristic 0 the pro-p
completion yGp is an orientable pro-p PDn group of Euler characteristic 0 if and only
if G is p-good.

In section 4 we show that when pro-p completions are considered the first of the
conditions of Theorem 1 can be substituted with yGp is not virtually procyclic. The new
ingredient in the proofs of the following theorems is the application of some results
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about virtually Poincaré duality pro-p groups and the number of higher dimensional
ends of a pro-p group [7], [8].

Theorem 2. Let p be a prime number and G be an abstract orientable Poincaré du-
ality group of dimension 4 and Euler characteristic �.G/ D 0 with pro-p completion
yGp . Let C be a directed set of normal subgroups of p-power index in G such that C

induces the pro-p topology of G.
Then yGp is an orientable pro-p Poincaré duality group of dimension 4 with Euler

characteristic �. yGp/ D 0 if and only if all of the following conditions hold:

a) yGp is not virtually procyclic;

b) for every U 2 C we have
P

0�i�4.�1/i dimFp
Hi . yUp; Fp/ D 0;

c) for every U 2 C we have 2 dimFp
H1. yUp; Fp/ � dimFp

H2. yUp; Fp/ D 2.

Finally we show that if condition c) from Theorem 1 is slightly modified then the
only possibility for the pro-p completion of G that is not an orientable PD4 pro-p
group is to be virtually Zp-by-Zp .

Theorem 3. Let p be a prime number and G be an abstract orientable Poincaré du-
ality group of dimension 4 and Euler characteristic �.G/ D 0 with pro-p completion
yGp . Let C be a directed set of normal subgroups of p-power index in G such that C

induces the pro-p topology of G. Suppose that:

a) yGp is not virtually procyclic and is not an orientable pro-p Poincaré duality
group of dimension 4;

b) for every U 2 C we have
P

0�i�4.�1/i dimFp
Hi . yUp; Fp/ D 0;

c) supU2C .2 dimFp
H1. yUp; Fp/ � dimFp

H2. yUp; Fp// D m <1.

Then yGp is virtually Zp-by-Zp .

In [5], examples of orientable PD3 groups M with pro-p completion yMp procyclic
(both cases of finite or infinite occur) were constructed. Then the group G D Z�M

is an orientable PD4 group with �.G/ D 0 and the pro-p completion yGp is either
virtually Zp or Zp-by-Zp . The group M is a double of a knot group and so M and
G are not soluble, though in both cases yGp is soluble.

1. Preliminaries on abstract and profinite Poincaré duality groups

1.1. Basic definitions and properties. Let G be an abstract group and S be a
commutative ring. A SŒG�-module V is of type FPm for some 0 � m � 1 if there
exists a projective SŒG�-resolution of V

R W � � � ! Ri ! Ri�1 ! � � � ! R0 ! V ! 0;
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with Ri finitely generated for i � m. The group G is said to be of type FPm if the
trivial ZŒG�-module Z is of type FPm.

For a profinite group H , a profinite ring R and a profinite RŒŒH��-module W we
say that W is of type FPm over R if there is a profinite projective RŒŒH��- resolution
of W

Q W � � � ! Qi ! Qi�1 ! � � � ! Q0 ! W ! 0;

with Qi finitely generated for i � m. The profinite group H is of homological type
FPm over R if the trivial RŒŒH��-module R is of type FPm.

An abstract group G is a Poincaré duality group of dimension n, provided that G

is a group of cohomological dimension cd.G/ D n of type FP1 and H�.G; ZŒG�/ D
Ext�ZŒG�.Z; ZŒG�/ is concentrated in dimension n, where it is Z. If the G-action on
H n.G; ZŒG�/ is the trivial one, G is orientable; otherwise G is called non-orientable.
There is an equivalent definition of abstract Poincaré duality group of dimension n,
i.e., there is an isomorphism H i .G; M/ ' Hn�i .G; D˝Z M/ for all G-modules M

and all i , where the dualizing module D is H n.G; ZŒG�/ ' Z [2], Ch. 8, Prop. 10.1.
There are two definitions of a profinite Poincaré duality group H of dimension n

at a prime p [10], 3.4.6, [15]. The definitions differ at the point whether H should be
of type FP1 over Zp . As mentioned in the introduction, we call the groups satisfying
the definition of [15] strong profinite PDn groups at p and the groups satisfying the
original Tate’s definition [10], 3.4.6, [14] we call profinite PDn groups at p . A strong
PDn group at p has cohomological p-dimension cdp.H/ D n, has type FP1 over
Zp and H k.H; ZpŒŒH ��/ D Extk

ZpŒŒH��.Zp; ZpŒŒH ��/ is 0 for k ¤ n and is Zp for
k D n. If the action of H on H n.H; ZpŒŒH ��/ is trivial H is called orientable.

By [15], strong profinite PDn groups at p are profinite PDn groups at p. For a
profinite PDn group H at p and A an arbitrary p-primary finite discrete H -module the
groups H i .H; A/ are finite for all i [10], 3.4.6, [14]. The precise definition of a profi-
nite PDn group H at p can be found in [10], Chapter 3. Some important properties
of such a group H are cdp.H/ D n and dimFp

H i .H; Fp/ D dimFp
H n�i .H; Fp/

for all 0 � i � n. A profinite PDn group H at p is a strong profinite PDn group at
p if it is of type FP1 over Zp . In [6] the definition of strong profinite PDn groups at
p was adopted (though the name strong was not used). Note that pro-p PDn groups
are always of type FP1 over Zp and over Fp , hence are strong pro-p PDn groups.

Let G be an abstract group of finite cohomological dimension and of type FP1.
The Euler characteristic �.G/ as defined in [2], Ch. IX, Sec. 6, is

P
i

.�1/i rkZ Hi .G; Z/ DP
i

.�1/i dimFp
Hi .G; Fp/

DP
i

.�1/i dimFp
H i .G; Fp/:

If U is a subgroup of finite index in G by [2], Ch. 9, Thm. 6.3, �.U / D .G W U /�.G/.
For a profinite group H of finite cohomological p-dimension cdp.H/ and type
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FP1 over Zp the Euler p-characteristic �p.H/ of H is
P
i

.�1/i rkZp
Hi .H; Zp/ DP

i

.�1/i dimFp
Hi .H; Fp/

DP
i

.�1/i dimFp
H i .H; Fp/;

where Hi .H; � / and H i .H; � / are the continuous homology and cohomology.

1.2. Korenev’s results. Recently more homological properties of pro-p PDn groups
were discovered in [7] and [8]. As shown in [8], if a pro-p group H of type
FPn over Fp has the property that H i .H; FpŒŒH ��/ D 0 for all 0 � i < n and
0 < dimFp

H n.H; FpŒŒH ��/ <1, then H is virtually a pro-p PDn group. In partic-
ular, dimFp

H n.H; FpŒŒH ��/ D 1 and H is of type FP1. An earlier version of the
above result was proved in [7], where the case n D 1 was considered.

Note that for pro-p groups it is still not known whether Stalling’s type theorem
holds, i.e., if H is a pro-p group with dimFp

H 1.H; FpŒŒH ��/ > 0, then H splits as
a free product with amalgamation or an HNN extension over a finite subgroup.

2. Profinite completions of abstract Poincaré duality groups

Let G be an abstract group of type FP1 and of finite cohomological dimension and
let

R W 0! Rm

@m��! Rm�1

@m�1���! � � � @2�! R1

@1�! R0

@0�! Z! 0 (1)

be a projective resolution of the trivial (right) ZŒG�-module Z with all projectives
finitely generated. Let C be a directed set of normal subgroups of finite index in G,
i.e., for U1; U2 2 C there is U 2 C such that U � U1 \ U2. Define

yGC D lim �U2C
G=U

and for U 2 C we define yUC as the inverse limit U=M over those M 2 C such that
M � U .

Consider the complex RU D R˝ZŒU � Fp for U 2 C . Let

yR W 0! yRm

O@m��! yRm�1

O@m�1���! � � �
O@2�! yR1

O@1�! yR0

O@0�! Z! 0 (2)

be the inverse limit of the complexes RU over U 2 C . Thus by [6], (1),

yR ' R˝ZŒG� FpŒŒ yGC ��

and by [6], Lemma 2.1,

Hi . yR/ ' lim �
U 2C

Hi .RU / ' lim �
U 2C

Hi .U; Fp/: (3)

In the following lemma Tor denotes the left derived functor of ˝ in the category
of abstract modules.
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Lemma 1 ([6], Thm. 2.5). Suppose that G is an abstract group of type FP1 and
finite cohomological dimension, C a directed set of normal subgroups U of finite
index in G. Suppose further that for a fixed prime p and for all i � 1,

lim �U2C
Hi .U; Fp/ D 0:

Then

TorZŒG�
i .Z; .Z=pmZ/ŒŒ yGC ��/ D 0 and TorZŒG�

i .Z; ZpŒŒ yGC ��/ D 0

for all m � 1 and i � 1. In particular yGC is of type FP1 over Zp .

Lemma 2 ([6], Cor. 2.7). Suppose that G is an abstract group of finite cohomological
dimension cd.G/ D m and type FP1. Let C be a directed set of normal subgroups
U of finite index in G. Suppose further that

lim �U2C
Hi .U; Fp/ D 0

for a fixed prime p and for all 1 � i � m.
Then the profinite group yGC is of finite cohomological p-dimension cdp. yGC / �

m. Further, it is of type FP1 over Fp and over Zp , and its Euler p-characteristic
�p. yGC / D �.G/.

Theorem 4. Let G be an abstract Poincaré duality group of dimension m and let C

be a directed set of normal subgroups of finite index in G. Suppose further that there
is a subgroup G0 of finite index in G such that G0 is orientable, that there is some
U0 2 C with U0 � G0 and that, for all i � 1,

lim �U2C
Hi .U; Fp/ D 0:

Then yGC is a strong profinite Poincaré duality group of dimension m at p, .cG0/C

is a strong orientable profinite Poincaré duality group of dimension m at p and
�p. yGC / D �.G/.

Proof. Let

R W 0! Rm

@m��! Rm�1

@m�1���! � � � @2�! R1

@1�! R0

@0�! Z! 0 (4)

be a projective resolution of the trivial ZŒG0�-module Z with all projectives finitely
generated.

Then H i .�/ D H i .G0; ZŒG0�/ is 0 for i ¤ m and Z for i D m, where � D
HomZŒG0�.R

del; ZŒG0�/ is the dual complex. Thus � is a complex of left ZŒG0�-
modules. Define T the complex obtained from � by adding its unique non-trivial
cohomology

T W 0! S0 ! S1 ! S2 ! � � � ! Sm ! H m.�/ D Z! 0:
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In particular, the complex T is a projective resolution of the trivial left ZŒG0�-
module Z. By Lemma 1, TorZŒG0�

i .Z; ZpŒŒ.cG0/C ��/ D 0 and similarly we get that

TorZŒG0�
i .ZpŒŒ.cG0/C ��; Z/ D 0 for i � 1. Thus

yT D ZpŒŒ.cG0/C ��˝ZŒG0� T W 0! T 0 ! T 1 ! T 2 ! � � � ! T m ! Zp ! 0

is a projective resolution of the trivial abstract left ZpŒŒ.cG0/C ��-module Zp with all
projectives finitely generated, and hence is a profinite projective resolution of Zp over
ZpŒŒ. yG0/C ��.

Let yT del be the complex obtained from yT by deleting the term Zp .
Note that yT del is obtained from the complex Rdel of projective finitely generated

ZŒG0�-modules by applying first the functor HomZŒG0�.�; ZŒG0�/ and then the functor
ZpŒŒ.cG0/C ��˝ZŒG0�. The composition of these functors is the same as the composition
of the functor ˝ZŒG0�ZpŒŒ.cG0/C �� and the functor Hom

ZpŒŒ. bG0/C ��
. � ; ZpŒŒ.cG0/C ��/

if applied on a complex of finitely generated, projective ZŒG0�-modules. Thus

yT del ' Hom
ZpŒŒ. bG0/C ��

.P del; ZpŒŒ.cG0/C ��/;

where P D R˝ZŒG0� ZpŒŒ.cG0/C �� ' yR is an exact complex of right ZpŒŒ.cG0/C ��-
modules by Lemma 1. Then

H i ..cG0/C ; ZpŒŒ.cG0/C ��/ D Exti

ZpŒŒ. bG0/C ��
.Zp; ZpŒŒ.cG0/C ��/

' H i .Hom
ZpŒŒ. bG0/C ��

.P del; ZpŒŒ.cG0/C ��// ' H i . yT del/

is 0 for i ¤ m and is Zp otherwise. Thus .cG0/C is a strong profinite PDm group at p

and is orientable since in the complex yT the module Zp is the trivial one, i.e., .cG0/C

acts trivially on Zp .
Note that .cG0/C is a subgroup of finite index in yGC and, by Lemma 2, yGC is FP1

over Zp and cdp. yGC / � m. By [15], 4.2.9,

H i ..cG0/C ; ZpŒŒ.cG0/C ��/ ' H i . yGC ; ZpŒŒ yGC ��/:

Then H�. yGC ; ZpŒŒ yGC ��/ is concentrated in dimension m, where it is Zp , so yGC is a
strong profinite PDm group at p.

3. Profinite completions of Poincaré duality groups of dimension 4

and Euler characteristic 0

Lemma 3. Let G be an abstract orientable Poincaré duality group of dimension 4

and Euler characteristic �.G/ D 0. Then

2 dimFp
H1.G; Fp/ � dimFp

H2.G; Fp/

D 2 D 2 dimFp
H 1.G; Fp/ � dimFp

H 2.G; Fp/:
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Proof. Indeed �.G/ D 0 together with H4�i .G; Fp/ ' H i .G; Fp/ ' Hi .G; Fp/

for i D 0 and i D 1 gives

0 D �.G/ D P
0�i�4

.�1/i dimFp
Hi .G; Fp/

D 1 � dimFp
H1.G; Fp/C dimFp

H2.G; Fp/

� dimFp
H 1.G; Fp/C dimFp

H 0.G; Fp/

D 2 � 2 dimFp
H1.G; Fp/C dimFp

H2.G; Fp/:

The proof is completed by the isomorphisms H 1.G; Fp/ ' G=ŒG; G�Gp '
H1.G; Fp/ and H 2.G; Fp/ ' H2.G; Fp/.

Lemma 4. Let H be a profinite orientable Poincaré duality group of dimension 4 at
p with Euler p-characteristic �p.H/ D 0.

Then

2 dimFp
H1.H; Fp/ � dimFp

H2.H; Fp/

D 2 D 2 dimFp
H 1.H; Fp/ � dimFp

H 2.H; Fp/:

Proof. Note that for 0 � i � 4 we have dimFp
Hi .H; Fp/ D dimFp

H i .H; Fp/ by
Pontryagin duality and dimFp

H i .H; Fp/D dimFp
H 4�i .H; Fp/ by Tate’s definition

of Poincaré duality. Then the proof is completed as the proof of Lemma 3.

Proof of Theorem 1. Suppose now that the conditions a), b) and c) hold.
Since G is an abstract orientable PD4 group every subgroup of finite index in G is

an abstract orientable PD4 group. In particular this holds for any U 2 C and we have
H4.U; Fp/ ' H 0.U; Fp/ ' Fp . Then the inverse limit of H4.U; Fp/ over U 2 C is
either Fp or 0. It cannot be Fp otherwise there exists an ideal in FpŒŒ yGC �� isomorphic
to Fp and this easily contradicts the fact that yGC has an infinite Sylow p-subgroup
(note that cdp.H/ D cdp. yGC / � 4 <1 for H a Sylow p-subgroup of yGC ). Indeed
if the inverse limit is Fp by (3) H4. yR/ ' Fp and by going down to a subgroup
of finite index if necessary, we can assume that yGC acts trivially on H4. yR/ � yR4.
Note that yR4 is a finite rank projective FpŒŒ yGC ��-module, hence a direct summand
of the finite rank free FpŒŒ yGC ��-module F . Thus the trivial FpŒŒ yGC ��-module Fp is a
submodule of F and projecting to one of the free factors FpŒŒ yGC �� of F , we see that
FpŒŒ yGC �� contains the trivial FpŒŒ yGC ��-module Fp as a submodule, a contradiction. A
different argument using restriction and corestriction can be used as in the proof of
[6], Prop. 3.1.

Note that we have shown that

H4. yR/ ' lim �U2C
H4.U; Fp/ D 0:

As tensor product is a right exact functor H0. yR/ D 0. The condition that T

is subgroup, extension and quotient closed and contains the cyclic group with p
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elements implies that T contains all finite p-groups. Then, since C induces the pro-
T topology of G, we obtain that for every U 2 C there is a subgroup U1 2 C with
U1 � ŒU; U �U p . Hence the canonical map

'1;U W H1.U; Fp/! H1. yUC ; Fp/

is an isomorphism and

H1. yR/ ' lim �U2C
H1.U; Fp/ ' lim �U2C

H1. yUC ; Fp/

D H1.lim �U2C
yUC ; Fp/ D H1.1; Fp/ D 0:

We claim that the canonical map

'2;U W H2.U; Fp/! H2. yUC ; Fp/ (5)

is an isomorphism.
Indeed H2.U; Fp/ ' H2.R ˝ZŒU � Fp/ ' H2. yR ˝FpŒŒ yUC ��

Fp/. The partial

profinite projective FpŒŒ yUC ��-resolution yR2

y@2�! yR1

y@1�! yR0 ! Fp ! 0 of Fp can be
extended to a partial profinite projective FpŒŒ yUC ��-resolution

� W S ��! yR2

y@2�! yR1

y@1�! yR0 ! Fp ! 0;

where S contains yR3 as a closed submodule and � is an extension of O@3 from (2).
Thus H2. yUC ; Fp/ ' H2.� ˝FpŒŒ yUC ��

Fp/ is a quotient of H2. yR˝FpŒŒ yUC ��
Fp/, and

'2;U is surjective.
Then by Lemma 3, Lemma 4 and condition c) of the theorem, it follows that

dimFp
ker.'2;U / D dimFp

H2.U; Fp/ � dimFp
H2. yUC ; Fp/

D .2 dimFp
H1.U; Fp/ � 2/ � .2 dimFp

H1. yUC ; Fp/ � 2/ D 0:

In particular (5) holds and we have

H2. yR/ ' lim �U2C
H2.U; Fp/ ' lim �U2C

H2. yUC ; Fp/

D H2.lim �U2C
yUC ; Fp/ D H2.1; Fp/ D 0:

Note that we have proved by now that

Hi . yR/ D 0 for i ¤ 3: (6)

Let

P W P ��! yR3

O@3�! yR2

O@2�! yR1

O@1�! yR0

O@0�! Fp ! 0

be a partial profinite projective resolution of the trivial FpŒŒ yGC ��-module Fp with yR4

a closed submodule of P and � an extension of O@4. Hence P is a partial profinite
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projective resolution of the trivial FpŒŒ yUC ��-module Fp for every U 2 C . Then the
natural embedding of the 4-skeleton yR.4/ in P induces an epimorphism

H3.U; Fp/ ' H3. yR y̋ FpŒŒ yUC ��
Fp/! H3.P y̋ FpŒŒ yUC ��

Fp/ ' H3. yUC ; Fp/:

Consequently the canonical map

'3;U W H3.U; Fp/! H3. yUC ; Fp/

is an epimorphism, hence

dimFp
H3.U; Fp/ � dimFp

H3. yUC ; Fp/ � 0: (7)

Note that by condition b),
P

0�i�4

.�1/i dimFp
Hi . yUC ; Fp/

D 0 D �.G/ D �.U / D P
0�i�4

.�1/i dimFp
Hi .U; Fp/

(8)

and since 'i;U is an isomorphism for i D 1; 2 it follows that dimFp
Hi .U; Fp/ D

dimFp
Hi . yUC ; Fp/ for i D 1; 2. Then by H4.U; Fp/ ' H 0.U; Fp/ ' Fp , (7) and

(8) we get

0 � dimFp
H3.U; Fp/ � dimFp

H3. yUC ; Fp/

D P
0�i¤3�4

.�1/i .dimFp
Hi .U; Fp/ � dimFp

Hi . yUC ; Fp//

D dimFp
H4.U; Fp/ � dimFp

H4. yUC ; Fp/

� dimFp
H4.U; Fp/ D 1

and so

dimFp
ker.'3;U / D dimFp

H3.U; Fp/ � dimFp
H3. yUC ; Fp/ � 1: (9)

Consider the short exact sequence

0! ker.'3;U /! H3.U; Fp/! H3. yUC ; Fp/! 0

and the corresponding exact sequence

0! lim �U2C
ker.'3;U /! lim �U2C

H3.U; Fp/

! lim �U2C
H3. yUC ; Fp/ ' H3.lim �U2C

yUC ; Fp/ D 0! � � � :
Then by (9),

H3. yR/ ' lim �U2C
H3.U; Fp/ ' lim �U2C

ker.'3;U /
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is either zero or Fp .
Define V D H3. yR/ and suppose that V ¤ 0, consequently V ' Fp . Let U 2 C

be such that U acts trivially on V . We claim that since 2 � cdp. yGC / D t <1, the
projective dimension of V as a profinite FpŒŒ yUC ��-module is maxft � 4; 0g.

Indeed if 0 ! W1 ! W ! W2 ! 0 is a short exact sequence of profi-
nite modules with W projective, then either the projective dimension of W1 is the
projective dimension of W2 minus 1 or W1 and W2 are projective, i.e., both have
projective dimension 0 (this follows from the fact that the projective dimension k

of a profinite FpŒŒ yUC ��-module M is the minimal non-negative integer k such that
bExtkC1

FpŒŒ yUC ��
.M; S/ D 0 for every discrete finite p-primary FpŒŒ yUC ��-module S , where

bExt is the derived functor of continuous Hom). Since the trivial FpŒŒ yGC ��-module

Fp has profinite projective dimension t over FpŒŒ yGC ��, by (6) we get that ker.b@3/ has
projective dimension s D maxft � 4; 0g as a profinite FpŒŒ yGC ��-module.

Hence ker. y@3/ has projective dimension s D maxft�4; 0g as a profinite FpŒŒ yUC ��-
module.

Consider the short exact sequence of profinite FpŒŒ yUC ��-modules

A W 0! A1 D yR4

O@4�! A0 D ker.O@3/! V ! 0; (10)

where V ' Fp is the trivial module. Since A1 is projective, for every discrete finite
p-primary FpŒŒ yUC ��-module S and i � 2, there is an isomorphism

bExti

FpŒŒ yUC ��
.V; S/ 'bExti

FpŒŒ yUC ��
.A0; S/:

In particular if bExti

FpŒŒ yUC ��
.V; S/ ¤ 0 for some i � 2 (i.e., pdFpŒŒ yUC ��

.V / � 2) we

get that pdFpŒŒ yUC ��
.V / D pdFpŒŒ yUC ��

.A0/. Finally since

pdFpŒŒ yUC ��
.V / D pdFpŒŒ yUC ��

.Fp/ D cdp. yUC / D cdp. yGC / D t � 2;

we obtain that

t D pdFpŒŒ yUC ��
.V / D pdFpŒŒ yUC ��

.A0/ D s D maxft � 4; 0g < t;

a contradiction.
Thus

H3. yR/ D 0

and we have shown that

Hi . yR/ D 0 for all i � 1:

Then by (3) we can apply Theorem 4 to deduce that yGC is a strong profinite orientable
PD4 group at p.

Finally we observe that if yGC is a profinite orientable PD4 group at p, then
obviously all conditions a), b) and c) hold.
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Corollary 1. Let p be a prime number and G be an abstract orientable Poincaré
duality group of dimension 4 and Euler characteristic �.G/ D 0. Let T be a class of
finite groups closed under subgroups, extensions and quotients, let the cyclic group
of order p be in T and let C be a directed set of normal subgroups of finite index in
G such that C induces the pro-T topology of G.

Then the following conditions are equivalent:

a) yGC is an orientable profinite Poincaré duality group of dimension 4 at the prime
p with Euler p-characteristic �p. yGC / D 0;

b) yGC is a strong orientable profinite Poincaré duality group of dimension 4 at the
prime p with Euler p-characteristic �p. yGC / D 0;

c) TorZŒG�
i .Z; FpŒŒ yGC ��/ D 0 for every i � 1;

d) TorZŒG�
i .Z; ZpŒŒ yGC ��/ D 0 for every i � 1.

Proof. By Theorem 1 item a) is equivalent with item b). Using again Theorem 1,
yGC is an orientable profinite PD4 group at p with �p. yGC / D 0 if and only if the
conditions a), b) and c) from Theorem 1 hold. The proof of Theorem 1 shows that if
these three conditions hold, then yR is an exact complex.

Conversely, if yR is an exact complex, that is,

0 D Hi . yR/ ' lim �U2C
Hi .U; Fp/ (11)

for i � 1, we get by Theorem 4 that yGC is a strong orientable profinite PD4 group at
p with �p. yGC / D 0, hence is a profinite orientable PD4 group at p.

Thus item a) is equivalent with Hi . yR/ D 0 for all i � 1.
Since Hi . yR/ ' TorZŒG�

i .Z; FpŒŒ yGC ��/ for i � 1 we see that a) and c) are equiv-
alent. Furthermore, by Lemma 1, if (11) holds then d) holds, i.e., a) implies d).

If item d) holds then � D R˝ZŒG� ZpŒŒ yGC �� is an abstract projective resolution of
Zp over ZpŒŒ yGC �� of finite length and finitely generated projectives in any dimension,
so � is a profinite projective resolution of Zp as a profinite ZpŒŒ yGC ��-module, hence
as a profinite Zp-module.

Since �˝Zp
Fp ' � y̋Zp

Fp we have

TorZŒG�
i .Z; FpŒŒ yGC ��/ D Hi .R˝ZŒG� FpŒŒ yGC ��/

' Hi .� ˝Zp
Fp/

' Hi .� y̋Zp
Fp/ D cTorZp

i .Zp; Fp/ D 0 for i � 1;

where cTor denotes the left derived functor of y̋ in the category of profinite modules,
i.e., d) implies c).

Corollary 2. Let p be a prime number and G be an abstract orientable Poincaré
duality group of dimension 4 and Euler characteristic �.G/ D 0. Let T be a class of
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finite groups closed under subgroups, extensions and quotients, let the cyclic group
of order p be in T and let C be a directed set of normal subgroups U of finite index
in G such that C induces the pro-T topology of G.

Then for the pro-T completion yGC of G the following results hold:

a) yGC is an orientable profinite Poincaré duality group of dimension 4 at p with Eu-
ler p-characteristic �p. yGC / D 0 if and only if, for every U 2 C , the canonical
maps between abstract and continuous homology

'i;U W Hi .U; Fp/! Hi . yUC ; Fp/

are isomorphisms for all i ;

b) yGC is an orientable Poincaré duality group of dimension 4 at p with Euler p-
characteristic �p. yGC / D 0 if and only if, for every U 2 C , the canonical maps
between continuous and abstract cohomology

�i;U W H i . yUC ; Fp/! H i .U; Fp/

are isomorphisms for all i ;

c) the pro-p completion of G is an orientable Poincaré duality pro-p group of
dimension 4 and Euler characteristic 0 if and only if G is p-good.

Proof. 1. If 'i;U is an isomorphism for every U 2 C

lim �
U2C

Hi .U; Fp/ ' lim �
U2C

Hi . yUC ; Fp/

D Hi . lim �yU2C

yUC ; Fp/ D Hi .1; Fp/ D 0 for i � 1;

and by Theorem 4, yGC is an orientable profinite PD4 group at p.
2. Suppose now that yGC is an orientable profinite PD4 group at p with �p. yGC / D

0 and R is the complex (1) for m D 4.
By Corollary 1, R˝ZŒG� ZpŒŒ yGC �� is exact and the same holds for G substituted

with any U 2 C and any projective resolution of finite type and length at most 4 of
the trivial ZŒU �-module Z. In particular, Q D R ˝ZŒU � ZpŒŒ yUC �� is exact. We can
use the exactness of Q to show that the natural maps Hi .U; M/! Hi . yUC ; M/ and
H i . yUC ; M/! H i .U; M/ are isomorphisms for every p-primary finite discrete yGp-
module M . In particular, 'i;U and �i;U are isomorphisms. Indeed

Hi . yUC ; M/ ' Hi .Q y̋ZpŒŒ yUC ��
M/ ' Hi .R˝ZŒU � M/ ' Hi .U; M/

and

H i . yUC ; M/ ' H i . bHomZpŒŒ yUC ��
.Q; M// ' H i .HomZŒU �.R; M// ' H i .U; M/;

(12)
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where bHom denotes continuous homomorphisms. In particular, if T is the class of
all finite p-groups and U D G, then (12) implies that G is p-good.

3. Now suppose that �i;U is an isomorphism for all i � 1 and U 2 C .
We show that all three conditions a), b) and c) of Theorem 1 hold. Indeed,

H 5. yUC ; Fp/ ' H 5.U; Fp/ D 0 for all U 2 C and consequently by [14], Prop. 210,
cdp. yGC / � 4. Furthermore H 4. yUC ; Fp/ ' H 4.U; Fp/ ' Fp ¤ 0, in particular
cdp. yUC / � 4 and so 4 � cdp. yUC / � cdp. yGC / � 4. Finally dimFp

H i . yUC ; Fp/ D
dimFp

Hi . yUC ; Fp/ for all i by Pontryagin duality. Thus
P

0�i�4

.�1/i dimFp
Hi . yUC ; Fp/ D P

0�i�4

.�1/i dimFp
H i . yUC ; Fp/

D P
0�i�4

.�1/i dimFp
H i .U; Fp/ D �.U / D 0

and
2 dimFp

H1. yUC ; Fp/ � dimFp
H2. yUC ; Fp/

D 2 dimFp
H 1. yUC ; Fp/ � dimFp

H 2. yUC ; Fp/

D 2 dimFp
H 1.U; Fp/ � dimFp

H 2.U; Fp/ D 2:

4. Finally, if G is p-good, then �i;U is the composition of the maps

H i . yUC ; Fp/! H i . yGC ; FpŒG=U �/! H i .G; FpŒG=U �/! H i .U; Fp/;

where T is the class of all finite p-groups, the first and the last map are Shapiro’s
isomorphisms and the middle one is an isomorphism since G is p-good. Therefore,
�i;U is an isomorphism.

4. More on pro-p completions

Our first result is a more general version of Theorem 1 in the case of pro-p com-
pletions. The new ingredient is the use of cohomology with coefficients in FpŒŒ yGp��

together with some results from [7] and [8].

Proof of Theorem 2. The conditions of Theorem 2 include the last two of the condi-
tions of Theorem 1 but not the first one, i.e., we are not assuming that 2 � cd. yGp/.
Note that the proof of Theorem 2 needed 2 � cd. yGp/ in order to show H3. yR/ 6' Fp

(the only other possibility for H3. yR/ is 0), where yR is the complex (2) for m D 4 and
yGp is infinite (the last holds since yGp is not virtually procyclic, hence is not virtually
trivial). Then Hi . yR/ D 0 for i ¤ 3 and Hi . yR/ is either 0 or Fp .

Let Rop be a resolution as in (1) for m D 4 but of the trivial left ZŒG�-module Z
(recall that in (1) all modules are right ZŒG�- modules). Then exchanging left with
right modules we get similar results for the complex bRop ' FpŒŒ yGC ��˝ZŒG� Z, i.e.,

Hi .bR
op/ D 0 for i ¤ 3 and Hi .bR

op/ D 0 is either 0 or Fp .
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We claim that
H3.bRop/ ' H 1. yGp; FpŒŒ yGp��/: (13)

Suppose that (13) holds and that H3.bRop/ ' Fp . Then dimFp
H 1. yGp; FpŒŒ yGp��/ D 1

and by [7], Thm. 3, yGp is virtually Zp , a contradiction to condition a). Thus bRop is
an exact complex and the proof of the dual version of Theorem 4 (exchanging left
with right modules) completes the proof of Theorem 2.

Finally we prove (13). Let

R W 0! R4

@4�! R3

@3�! R2

@2�! R1

@1�! R0

@0�! Z! 0 (14)

be the complex (1) for m D 4.
Then H i .�/ D H i .G; ZŒG�/ is 0 for i ¤ 4 and Z for i D 4, where � D

HomZŒG�.R
del; ZŒG�/ is the dual complex, i.e., � is a complex of left ZŒG�-modules.

Define T the complex obtained from � by adding its unique non-trivial cohomology:

T W 0! S0 ! S1 ! S2 ! S3 ! S4 ! H 4.�/ D Z! 0:

In particular the complex T is a projective resolution of the trivial left ZŒG�-module
Z. Consequently for

yT D FpŒŒ yGp��˝ZŒG� T W 0! T 0 ! T 1 ! T 2 ! T 3 ! T 4 ! Fp ! 0

we have

H i . yT / D TorZŒG�
4�i .FpŒŒ yGp��; Z/ for i ¤ 4 and H 4. yT / D 0: (15)

By the proof of Theorem 1,

Hi . yR/ D 0 for i ¤ 3; (16)

so yR3 ! yR2 ! yR1 ! yR0 ! Fp ! 0 is exact, i.e., a partial projective resolution
of the trivial FpŒŒ yGp��-module Fp .

The deleted complex yT del is the complex obtained from T by deleting the term
Fp . As in the proof of Theorem 4, we have

yT del ' HomFpŒŒ yGp��
. yRdel; FpŒŒ yGp��/:

Then by (16),

H 1. yGp; FpŒŒ yGp��/ D Ext1

FpŒŒ yGp��
.Fp; FpŒŒ yGp��/

' H 1.HomFpŒŒ yGp��
. yRdel; FpŒŒ yGp��//

' H 1. yT del/ ' TorZŒG�
3 .FpŒŒ yGp��; Z/ ' H3.bRop/;

as required.
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Proof of Theorem 3. As in the proof of Theorem 1, we have

Hi . yR/ D 0 for i D 0; 1; 4; (17)

where yR ' R˝ZŒG� FpŒŒ yGp��, R is the complex (1) for m D 4 and again as in the
proof of Theorem 1 for U 2 C the map

'2;U W H2.U; Fp/! H2. yUp; Fp/

is surjective.
Then by Lemma 3,

0 � dimFp
ker.'2;U / D dimFp

H2.U; Fp/ � dimFp
H2. yUp; Fp/

� 2 dimFp
H1.U; Fp/ � 2Cm � 2 dimFp

H1. yUp; Fp/

D m � 2;

(18)

and hence
dimFp

lim �U2C
ker.'2;U / � m � 2: (19)

Using the exact sequence

0! lim �U2C
ker.'2;U /! lim �U2C

H2.U; Fp/! .lim �U2C
H2. yUp; Fp// D 0! � � � ;

(3) and (19) we obtain that

dimFp
H2. yR/ D dimFp

TorZŒG�
2 .Z; FpŒŒ yGC ��/

D dimFp
H2. yR/

D dimFp
lim �U2C

H2.U; Fp/

D dimFp
lim �U2C

ker.'2;U / � m � 2 <1:

(20)

By (18),
P

0�i�4.�1/i dimFp
Hi .U; Fp/ D 0 DP

0�i�4.�1/i dimFp
Hi . yUp; Fp/

and H1.U; Fp/ ' H1. yUp; Fp/ we obtain that dimFp
H3.U; Fp/�dimFp

H3. yUp; Fp/

equals

P
0�i�4;i¤3

.�1/i .dimFp
Hi .U; Fp/ � dimFp

Hi . yUp; Fp//

D P
iD2;4

.dimFp
Hi .U; Fp/ � dimFp

Hi . yUp; Fp//

� dimFp
H4.U; Fp/ � dimFp

H4. yUp; Fp/Cm � 2

D m � 1 � dimFp
H4. yUp; Fp/

� m � 1 <1:

(21)
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Lemma 5. For U 2 C and for the canonical map

'3;U W H3.U; Fp/! H3. yUp; Fp/

we have

dimFp
coker.'3;U / D dimFp

H3. yUp; Fp/ � dimFp
im.'3;U / � dimFp

H2. yR/

(22)

Proof. In order to prove (22) consider a short exact sequence of complexes of FpŒŒ yUp��-
modules

0! yR! Q! � ! 0; (23)

where all modules in � positioned in dimension � 2 are 0, � is a shifted profinite
deleted projective resolution of the ZpŒŒ yUp��-module H2. yR/, i.e., the first non-zero
projective in � is in dimension 3 and

Hi .Q/ D 0 for i � 2:

Furthermore there is a short exact sequence of profinite FpŒŒ yUp��- complexes

0! Q! V ! W ! 0; (24)

where all modules in W positioned in dimension � 3 are zero, W is a shifted pro-
finite deleted projective resolution of H3.Q/, i.e., the first non-zero projective is in
dimension 4 and

Hi .V/ D 0 for i � 3:

Since yR y̋ FpŒŒ yUp��
Fp D R ˝ZŒG� FpŒŒ yGp��˝FpŒŒ yUp��

Fp ' R ˝ZŒG� FpŒG=U �

we have H3. yR y̋ FpŒŒ yUp��
Fp/ ' H3.G; FpŒG=U �/ ' H3.U; Fp/, and since V .4/

is a partial profinite projective resolution of Fp over FpŒŒ yUp�� there is an isomor-
phism H3.V y̋ FpŒŒ yUp��

Fp/ ' H3. yUp; Fp/. Under these isomorphisms the map

'3;U W H3.U; Fp/! H3. yUp; Fp/ is the map

fU W H3. yR y̋ FpŒŒ yUp��
Fp/! H3.V y̋ FpŒŒ yUp��

Fp/;

induced by the inclusion of yR in V .
Since the complexes � and W from (23) and (24) contain only projectives, we get

exact sequences of complexes

0! yR y̋ FpŒŒ yUp��
Fp ! Q y̋ FpŒŒ yUp��

Fp ! � y̋ FpŒŒ yUp��
Fp ! 0

and

0! Q y̋ FpŒŒ yUp��
Fp ! V y̋ FpŒŒ yUp��

Fp ! W y̋
FpŒŒ yUp��

Fp ! 0
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and the associated exact sequences in homology

� � � ! H3. yR y̋ FpŒŒ yUp��
Fp/

f1;U���! H3.Q y̋ FpŒŒ yUp��
Fp/

! H3.� y̋ FpŒŒ yUp��
Fp/ D TorFpŒŒ yUp��

0 .H2. yR/; Fp/ ' H2. yR/˝FpŒŒ yUp��
Fp ! � � �

and

� � � ! H3.Q y̋ FpŒŒ yUp��
Fp/

f2;U���! H3.V y̋ FpŒŒ yUp��
Fp/

���! H3.W y̋
FpŒŒ yUp��

Fp/ D 0! � � �
Finally (22) follows from fU D f2;U f1;U , f2;U is surjective and so

dimFp
coker.fU / � dimFp

coker.f1;U /

� dimFp
.H2. yR/˝FpŒŒ yUp��

Fp/

� dimFp
H2. yR/: �

Lemma 6. For all i � 1,

TorZŒG�
i .Z; FpŒŒ yGp��/ ' Hi . yR/ D Hi .R˝ZŒG� FpŒŒ yGp��/ (25)

is finite.

Proof. By (20), (21) and (22)

dimFp
ker.'3;U / D dimFp

H3.U; Fp/ � dimFp
im.'3;U /

� dimFp
H3. yUp; Fp/C .m � 1/ � dimFp

im.'3;U /

� dimFp
H2. yR/C .m � 1/ <1:

(26)

Then using the exact sequences

0! lim �U2C
im.'3;U /! .lim �U2C

H3. yUp; Fp// D 0! � � �
and

0! lim �U2C
ker.'3;U /! lim �U2C

H3.U; Fp/! .lim �U2C
im.'3;U // D 0! � � � ;

and by (26) we deduce that

dimFp
H3. yR/ D dimFp

TorZŒG�
3 .Z; FpŒŒ yGp��/

D dimFp
H3. yR/

D dimFp
lim �U2C

H3.U; Fp/

D dimFp
lim �U2C

ker.'3;U /

� dimFp
H2. yR/C .m � 1/ <1:

(27)

Finally (17), (20) and (27) complete the proof.
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Consider the dual complex M D HomZŒG�.R
del; ZŒG�/. Define T the complex

obtained from M by adding its unique non-trivial cohomology:

T W 0!M 0 !M 1 !M 2 !M 3 !M 4 ! H 4.M/ D Z! 0:

In particular the complex T is a projective resolution of the trivial left ZŒG�-module
Z and as before we define yT D FpŒŒ yGp��˝ZŒG� T . Then

yT del ' HomFpŒŒ yGp��
. yRdel; FpŒŒ yGp��/; (28)

H i .HomFpŒŒ yGp��
. yRdel; FpŒŒ yGp��// ' H i . yT del/: (29)

As in the proof of Theorem 2, let bRop be the version of yR exchanging right
with left modules. Then by the dual version of (25) (i.e., exchanging left with right
modules)

H i . yT del/ ' TorZŒG�
4�i .FpŒŒ yGp��; Z/ ' H4�i .bR

opdel/

is finite for all i ¤ 4 and
H 4. yT del/ D 0: (30)

Since the complex � in (23), considered for U D G, contains only projectives,
we get a short exact sequence of complexes

HomFpŒŒ yGp��
.� ; FpŒŒ yGp��/! HomFpŒŒ yGp��

.Q; FpŒŒ yGp��/

! HomFpŒŒ yGp��
. yR; FpŒŒ yGp��/

and the corresponding long exact sequence in cohomology

� � � ! H 1.HomFpŒŒ yGp��
.� ; FpŒŒ yGp��// D 0! H 1.HomFpŒŒ yGp��

.Q; FpŒŒ yGp��//

! H 1.HomFpŒŒ yGp��
. yR; FpŒŒ yGp��//! H 2.HomFpŒŒ yGp��

.� ; FpŒŒ yGp��// D 0

! H 2.HomFpŒŒ yGp��
.Q; FpŒŒ yGp��//! H 2.HomFpŒŒ yGp��

. yR; FpŒŒ yGp��//

! H 3.HomFpŒŒ yGp��
.� ; FpŒŒ yGp��// ' Ext0

FpŒŒ yGp��
.H2. yR/; FpŒŒ yGp��/! � � �

Note that Ext0

FpŒŒ yGp��
.Fp; FpŒŒ yGp��/ ' H 0. yGp; FpŒŒ yGp��/ D 0 since yGp is in-

finite (remember that yGp is not virtually procyclic, hence is not virtually trivial),
where Fp is the trivial FpŒŒ yGp��-module. Then since H2. yR/ is finite, it has a filtra-
tion of FpŒŒ yGp��-modules with simple quotients, and up to isomorphism there is a
unique simple FpŒŒ yGp��-module that is the trivial FpŒŒ yGp��-module Fp , we obtain that
Ext0

FpŒŒ yGp��
.H2. yR/; FpŒŒ yGp��/ D 0.

The inclusion map yR! Q induces isomorphisms

H i .HomFpŒŒ yGp��
.Q; FpŒŒ yGp��//! H i .HomFpŒŒ yGp��

. yR; FpŒŒ yGp��// for i D 1; 2;

(31)
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and by (29), (30), (31) and the fact that the 3-skeleton Q.3/ is a partial profinite
projective resolution of Fp over FpŒŒ yGp�� it follows that

H i . yGp; FpŒŒ yGp��/ ' H i .HomFpŒŒ yGp��
.Q; FpŒŒ yGp��//

' H i .HomFpŒŒ yGp��
. yR; FpŒŒ yGp��//

(32)

is finite for i D 1; 2.
Furthermore by [7], Thm. 3, and (32) either H 1. yGp; FpŒŒ yGp��/ D 0 or yGp is

virtually Zp; the latter cannot hold by assumption. Thus H 1. yGp; FpŒŒ yGp��/ D 0, and
since yGp has type FP2 over Fp (remember G is FP1) by [8], Thm. 1, Cor. 1, and (32)
it follows that

either H 2. yGp; FpŒŒ yGp��/ D 0 or yGp is virtually a pro-p PD2 group: (33)

In the first case we obtain by (29), (32) and (30) that

Hi .bR
op/ ' H 4�i . yT /

' H 4�i .HomFpŒŒ yGp��
. yR; FpŒŒ yGp��//

' H 4�i . yGp; FpŒŒ yGp��/ D 0

(34)

for i D 2; 3.
By the dual version of (17) obtained after exchanging left with right modules we

have Hi .bR
op/ D 0 for i D 0; 1; 4. This combined with (34) implies that bRop is

exact, i.e., TorZŒG�
i .FpŒŒ yGp��; Z/ D 0 for all i � 1. After exchanging left with right

modules in the proof of Corollary 1 we get that condition c) of Corollary 1 can be
substituted with TorZŒG�

i .FpŒŒ yGp��; Z/ D 0 for all i � 1. Thus yGp is an orientable
pro-p PD4 group, a contradiction, and by (33), yGp is virtually a pro-p PD2 group.

Finally for some V 2 C the pro-p group yVp is a pro-p PD2 group, hence
a Demushkin group. For such a group, we have that dimFp

H2. yVp; Fp/ D 1.
Since 2 dimFp

H1. yVp; Fp/ � dimFp
H2. yVp; Fp/ � m there is an upper bound on

dimFp
H1. yVp; Fp/, i.e., yVp is a finite rank Demushkin group. The classification of all

infinite Demushkin groups can be found in [3], [4], [9] and [13] and this classifica-
tion implies that yVp has infinite abelianization. In particular there is a normal closed
subgroup N of yVp such that yVp=N ' Zp . Because every subgroup of infinite index
in a Demushkin group is a free pro-p group, N is a free pro-p group and a pro-p
group of finite rank, so N D Zp . Thus yVp is Zp-by-Zp .
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