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Examples of buildings constructed via covering spaces
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Abstract. Covering space theory is used to construct new examples of buildings.
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Introduction

A building consists of a Coxeter system .W; S/, a set C (of “chambers”) and a “Weyl
distance” ı W C � C ! W , satisfying certain axioms. Given a building C , a space
X , and a “mirror structure” on X , one can construct a “realization” U.C ; X/ of the
building, by pasting together copies of X , one for each element of C . (Details are
given in §1.2.) The classical choice for X is a simplex.

The following types of buildings have been studied:

(1) spherical buildings, where W is a finite Coxeter group;
(2) affine buildings, where W is a Euclidean reflection group;
(3) hyperbolic buildings, where W is a hyperbolic reflection group (or possibly a

word hyperbolic Coxeter group), cf. [5], [6], [7], [17], [18], [19], [20], [21],
[27], [30], [31];

(4) Kac–Moody buildings over finite fields, where W is fairly arbitrary but where
the “thickness” is restricted to be a constant prime power q, cf. [9], [24], [29];

(5) right-angled buildings, where W is required to be a right-angled Coxeter group,
cf. [4], [11], [12], [17], [26].

Classical buildings are either spherical or affine. There is some overlap between
the three classes of “nonclassical” buildings; however, each class contains examples
which are distinct from the other two.

The purpose of this note is to use covering space theory to construct new exam-
ples of buildings. On the level of Coxeter systems, this construction was described

�The author was partially supported by NSF grant DMS 0706259.
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previously in [10]. It goes as follows. Start with a Coxeter system .W 0; S/. Change
some m.s; t/’s in its Coxeter matrix from integers � 2 to the symbol 1. This defines
a new Coxeter system .W; S/. Suppose that C 0 is a building of type .W 0; S/. We
want to use it construct a building C of type .W; S/. Let K be the “Davis chamber”
for .W; S/. Use it to get a realization U.C 0; K/ for C 0. Since we made changes
in W 0, the space U.C 0; K/ will not be simply connected. However, as we show in
Theorem 2.5, its universal cover is the realization of a building C of type .W; S/.

Although in these constructions we can start with any building C 0, many interesting
examples can be constructed by starting with the case where W 0 is a finite Coxeter
group and C 0 is a spherical building. In particular, there are examples of buildings
with the following features.

� There are buildings whose maximal spherical residues contain an arbitrary set
of spherical buildings and whose standard realizations are highly connected at
infinity and so, cannot be obtained by the procedure of simply taking the free
product of various spherical buildings. (The concept of a “free product” of
buildings is defined in Example 3.3 at the end of §3.1.)

� In contrast to the (irreducible) Kac–Moody case, there are examples of buildings
with different thicknesses for different types of spherical residues. In other
words, even when these spherical residues are associated to algebraic groups
over finite fields, the fields may be different. (Previous examples of this in the
case of 2-dimensional hyperbolic buildings had been noticed in [6].)

� When C 0 is a finite spherical building, the automorphism group Aut.C/ always
contains a torsion-free uniform lattice.

In §3 we specialize to the case where C 0 is a direct product, C0 �� � ��Cp . By making
appropriate choices of which m.s; t/’s to change to 1, we can define the notions of
“free products” and “graph products” of buildings analogously to the corresponding
notions for groups. When each of the buildings Ci has the same rank, there also
is the notion of a “square product,” C0 � � � � � Cp (see Example 3.2). The square
product is interesting when there are only two factors, C0, C1, and both are spherical
buildings. In this case the fundamental chamber K is combinatorially isomorphic to
an n-cube. The link of one vertex of K in the standard realization, U.C0 � C1; K/

is the spherical realization of C0 while the link at an opposite vertex is the spherical
realization of C1 (see Example 3.9). This construction can be used to get new examples
of 3-dimensional hyperbolic buildings (see Examples 3.10 and 3.11).

My thanks go to Tadeusz Januszkiewicz for several helpful conversations con-
cerning these examples during the past twenty years. Thanks also to the referee for
his careful proofreading and for several valuable suggestions.
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1. Basic definitions

1.1. Coxeter groups. A Coxeter matrix over a set S is an S � S symmetric matrix
M D .m.s; t// with each diagonal entry equal to 1 and each off-diagonal entry either
an integer � 2 or the symbol 1. The matrix M defines a presentation of a group W

as follows: the set of generators is S and the relations have the form .st/m.s;t/ where
.s; t/ ranges over all pairs in S � S such that m.s; t/ ¤ 1. The pair .W; S/ is a
Coxeter system (cf. [1], [8], [12]). Given T � S , WT denotes the subgroup generated
by T ; it is called a special subgroup. The pair .WT ; T / is itself a Coxeter system (see
[8], IV.8, Theorem 2 (i)). The subset T is spherical if WT is finite.

Definition 1.1. The poset of spherical subsets of S (partially ordered by inclusion) is
denoted � (or �.W; S/). The set of nonempty elements in � is an abstract simplicial
complex L (or L.W; S/) called the nerve of .W; S/. (In other words, the vertex set
of L.W; S/ is S and a nonempty subset T � S spans a simplex if and only if it is
spherical.)

Given a word s D .s1; : : : ; sn/ in S , its value, w.s/, is the element of W defined
by w.s/ ´ s1 � � � sn. The word s is a reduced expression if it is a word of minimum
length for w.s/, i.e., if l.w.s// D n.

Tits’ solution to the word problem. Given elements s; t 2 S and an integer m � 2,
let prod.s; t I m/ denote the alternating word .s; t; : : : / in s and t beginning with s and
having length m. Consider the following two operations on a word s:

(I) delete a subword of the form ss;
(II) replace a subword prod.s; t I m.s; t// by prod.t; sI m.s; t//.

An operation of type (I) is a cancellation; one of type (II) is a flip.
Tits proved that if a word s D .s1; : : : ; sn/ is not a reduced expression for an

element w, then it can be changed to a reduced expression for the same element by a
sequence of flips and cancellations. Moreover, if s and s0 are two reduced expressions
for the same element, then one can be changed to the other by a sequence of flips (see
[1], §2.3.3).

1.2. Buildings

Definition 1.2 (cf. [1], [25]). Suppose that .W; S/ is a Coxeter system. A building
of type .W; S/ is a pair .C ; ı/ consisting of a nonempty set C (the elements of which
are called chambers), and a function ı W C � C ! W (called the Weyl distance) so
that the following conditions hold for all C; D 2 C :

(WD1) ı.C; D/ D 1 if and only if C D D.
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(WD2) If ı.C; D/ D w and C 0 2 C satisfies ı.C 0; C / D s 2 S , then ı.C 0; D/ D
sw or w. If, in addition, l.sw/ D l.w/ C 1, then ı.C 0; D/ D sw.

(WD3) If ı.C; D/ D w, then for any s 2 S there is a chamber C 0 2 C such that
ı.C 0; C / D s and ı.C 0; D/ D sw.

Example 1.3. The group W itself has the structure of a building: ı W W � W ! W

is defined by ı.v; w/ D v�1w. It is called the thin building of type .W; S/.

A chamber system is a set C together with a family of equivalence relations on C

indexed by another set S . Chambers C; D 2 C are s-adjacent if they are s-equivalent
and not equal. A gallery in C is a finite sequence of chambers .C0; : : : ; Ck/ such
that Cj �1 is adjacent to Cj , for 1 � j � k. The type of this gallery is the word
s D .s1; : : : ; sk/ where Cj �1 is sj -adjacent to Cj . If each sj belongs to a given subset
T of S , then the gallery is a T -gallery. Two chambers are in the same T -connected
component if they can be connected by a T -gallery. The T -connected components
of a chamber system C are its residues of type T . An s-equivalence class is the same
thing as a residue of type fsg. (An s-equivalence class is sometimes called a panel.)

Now suppose that C is a building of type .W; S/. Chambers C; D 2 C are s-
adjacent if ı.C; D/ D s; they are s-equivalent if they are either s-adjacent or equal.
This gives C the structure of a chamber system. When C D W , a T -residue is just a
left coset of WT .

A residue of type T in a building is itself a building; its type is .WT ; T /. A
building of type .W; S/ is spherical if W is finite. A building has finite thickness if
each s-equivalence class is finite, for each s 2 S . (This implies all spherical residues
are finite.) Henceforth, all buildings will be assumed to have finite thickness.

A gallery .C0; : : : ; Ck/ of type s is reduced if s is a reduced expression for w.s/.
It is proved in [1], Proposition 5.23, that the conditions (WD1), (WD2), (WD3)

in Definition 1.2 are equivalent to the following two conditions on a chamber system
C , equipped with a function ı W C � C ! W .

� Each s-equivalence class has at least two elements.
� Given a reduced expression s for an element w 2 W , there is a gallery of type

s from C to D if and only if ı.C; D/ D w.

(This is the definition in [25].)
An apartment in C is a subset which is W -isometric to the thin building W . In

other words, it is a subset A � C such that for any C 2 A, the function �C W A ! W

defined by D 7! ı.C; D/ is an isomorphism.
An automorphism of C is a self-bijection which preserves s-equivalence classes

for each s 2 S . Equivalently, it is a self-bijection which preserves Weyl distance.
Given C 2 C , the combinatorial ball of radius n about C is the set BC .n/ ´

fD 2 C j l.ı.C; D// � ng. There is a natural topology on the group Aut.C/ of auto-
morphisms of C : an open neighborhood of 1 2 Aut.C/ is the set of automorphisms



Examples of buildings constructed via covering spaces 283

which fix each element of BC .n/ for some n 2 N and C 2 C . (The neighborhood
is small if n is large.) Since C is locally finite, Aut.C/ is a locally compact, totally
disconnected topological group. As such, it has a Haar measure. A closed subgroup
G � Aut.C/ inherits a topology and a Haar measure. A subgroup � � G is a lattice
if it is discrete and G=� has finite volume. It is a uniform lattice if G=� is compact.
A discrete subgroup � � Aut.C/ is a uniform lattice if and only if C=� is finite.
(See [26] for a discussion of lattices in Aut.C/, when C is a right angled building.)

Definition 1.4. A subgroup G � Aut.C/ is chamber-transitive if it is transitive on
C . It is strongly transitive if it is transitive on the set of pairs .A; C /, where A is
an apartment in C and C 2 A (cf. [1], §6.1.1). (In fact, it is not necessary use all
apartments in this definition, A need only belong to a certain “system of apartments”
satisfying the classical axioms for a building, cf. [1], §6.1).

It turns out that if G is strongly transitive on a thick building, then it inherits the
structure of a BN pair (also called a “Tits system”), cf. [1], Theorem 6.56. (A building
is thick if, for each s 2 S , each s-equivalence class contains at least three elements.)

1.3. Geometric realizations. A mirror structure over a set S on a space X is a
family of subspaces .Xs/s2S indexed by S . Given a mirror structure on X and a
subspace Y � X there is an induced mirror structure on Y defined by Ys ´ Y \ Xs .
If X is a CW complex and each Xs is a subcomplex, then X is called a mirrored CW
complex. For each nonempty subset T � S , define subspaces XT and XT by

XT ´ T
s2T

Xs and XT ´ S
s2T

Xs:

Put X; ´ X and X; ´ ;. Given a cell c of (a CW complex) X or a point x 2 X ,
put

S.c/ ´ fs 2 S j c � Xsg;
S.x/ ´ fs 2 S j x 2 Xsg:

Given a building C of type .W; S/ and a mirrored space X over S , define an
equivalence relation � on C � X by .C; x/ � .D; y/ if and only if x D y and
ı.C; D/ 2 WS.x/ (i.e., C and D belong to the same S.x/-residue). The X -realization
of C , denoted U.C ; X/, is defined by

U.C ; X/ ´ .C � X/=� :

(C has the discrete topology.)

Example 1.5 (Spherical realizations). Suppose that W is a finite Coxeter group of
rank n C 1 and C is a spherical building of type .W; S/. Then W is a reflection
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group on the unit sphere Sn � RS . Let �n � Sn be the fundamental simplex
with its codimension one faces indexed by S . The space U.C ; �n/ is called the
spherical realization of C . It is homotopy equivalent to a wedge of n-spheres (cf. [1],
Theorem 4.127).

Geometric realizations of posets. Given a poset T , Flag.T / denotes the set of finite
chains in T , partially ordered by inclusion, i.e., an element of Flag.T / is a finite,
nonempty, totally ordered subset of T . Flag.T / is an abstract simplicial complex
with vertex set T and with k-simplices the elements of Flag.T / of cardinality k C 1.
The corresponding topological simplicial complex is the geometric realization of the
poset T and is denoted by jT j.

Suppose that L is a simplicial complex with vertex set S . Let �.L/ be the poset of
subsets of S (including ;) which are vertex sets of simplices in L. Let K.L/ ´ j�.L/j
be the geometric realization of this poset. (Then K.L/ is isomorphic to the cone on
the barycentric subdivision of L, where ; 2 � provides the cone point.) Define a
mirror structure on K.L/ by putting K.L/s ´ j�.L/�fsgj.

Galleries in C and edge paths in U.C ; K.L//. Let v; denote the central vertex of
K.L/ corresponding to ; and for each C 2 C , let vC denote the image of .C; v;/ in
U.C ; K.L//. The vertices vC , with C 2 C , are the central vertices of U.C ; K.L//.
Let vs denote the vertex of K.L/ corresponding to fsg. If R is a residue of type fsg
(i.e., a “panel”), then for any C 2 R the image of .C; vs/ in U.C ; K.L// is denoted
vR and called a mirror vertex. The union of edges in U.C ; K.L// connecting central
vertices to mirror vertices is called the dual 1-skeleton of U.C ; K.L//. Given a gallery
.C0; : : : ; Ck/ in C we get an edge path in the dual 1-skeleton with successive vertices
.vC0

; vR1
; vC1

; : : : ; vCk
/. (There are 2k C 1 vertices in this edge path; every other

one has the form vRj
where Rj is a residue of type sj .) We will simplify notation by

omitting the odd vertices and writing .vC0
; : : : ; vCk

/ for the corresponding edge path
in U.C ; K.L//.

The standard realization, U.C ; K/. As before, � denotes the poset of spherical
subsets of S . Put K ´ j� j. For each s 2 S , put Ks ´ j��fsgj and for each T 2 � ,
KT D j��T j. The mirrored complex K is sometimes called the Davis chamber of
.W; S/ and U.W; K/, the Davis complex. The simplicial complex U.C ; K/ is the
standard realization of C . (Alternatively, U.C ; K/ is the geometric realization of
the poset of spherical residues of C ; see [11]). By construction U.C ; K/ is locally
finite (since C is assumed to have finite thickness). It is proved in [11] that U.C ; K/

is contractible.

1.4. Duality groups. A space X is an n-dimensional duality space if it is acyclic
and if its compactly supported cohomology, H �

c .X/, is torsion-free and concentrated
in degree n. A discrete group � is an n-dimensional duality group if H �.�I Z�/ is
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torsion-free and concentrated in degree n. If a group � acts freely and cocompactly
on a duality space, then it is a duality group.

A finite simplicial complex L has punctured (co)homology concentrated in degree
m if, for each closed simplex � of L (including the empty simplex), the reduced
cohomology, xH �.L � �/, is torsion-free and concentrated in degree m (cf. [15], §6).
We write L is PHm as a shorthand for this condition. For example, any triangulation
of Sm is PHm.

The following proposition is proved in [13] (also cf. [15], [16]).

Proposition 1.6 ([13], Corollary 9.5). Suppose that C is a building of type .W; S/.
Then its standard realization, U.C ; K/, is an n-dimensional duality space if and only
if the nerve, L.W; S/, is PHn�1.

2. Constructing examples using covering spaces

2.1. The main construction. Next we recall a construction of [10], §2. Suppose
that L is a simplicial complex with vertex set S , .W 0; S 0/ is a Coxeter system and
f W S ! S 0 is a function defining a simplicial map (also denoted by f ) from L to the
nerve L.W 0; S 0/ of .W 0; S 0/. Suppose also that the restriction of f to each simplex
is injective. (Most of the time, f W S ! S 0 will be a bijection and W 0 will be a finite
Coxeter group.) Let .m0.s0; t 0// be the Coxeter matrix for .W 0; S 0/. Define an .S �S/

Coxeter matrix .m.s; t// by

m.s; t/ ´

8̂<
:̂

1 if s D t ,

m0.f .s/; f .t// if fs; tg 2 Edge.L/,

1 otherwise:

(1)

Let .W; S/ be the corresponding Coxeter system. The map f W S ! S 0 of generating
sets extends to a homomorphism 'f W W ! W 0. Let � ´ Ker.'f /. The space K.L/

is the cone on the barycentric subdivision of L and as is explained in §1.3, it has a
mirror structure over S . Pushing forward via f , we get a mirror structure over S 0 on
K.L/, defined by

K.L/s0 ´ S
s2f �1.s0/

K.L/s:

As in §1.3, we have the W -space, U.W; K.L//, and the W 0-space, U.W 0; K.L//.
The space U.W 0; K.L// is connected if and only if f W S ! S 0 is surjective (cf. [10],
Remark 2.2). Henceforth, assume this. Then 'f W W ! W 0 is an epimorphism and
it induces 'f -equivariant map q W U.W; K.L// ! U.W 0; K.L//. It is easy to see
that q is a covering projection and that W is the group of all lifts of the W 0-action.
By [12], Theorem 9.1.3, p. 166, U.W; K.L// is simply connected. Hence,

� D �1.U.W 0; K.L///:
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Remark. The space U.W; K.L// need not be contractible. A necessary and sufficient
condition for this to be true is that for every spherical subset T � S , T is the vertex
set of a simplex in L, i.e., that L D L.W; S/.

Next we want to carry out the same construction for buildings. Suppose that we
are given the same data as above, as well as a building C 0 of type .W 0; S 0/. Let v;
be the central vertex of K.L/ corresponding to ;. For each C 0 2 C 0, let vC 0 denote
the corresponding central vertex of U.C 0; K.L//. We can identify C 0 with the set
Cent.U.C 0; K.L/// ´ fvC 0gC 02C 0 of central vertices. By analogy with the case of
Coxeter groups, consider the universal cover p W zU ! U.C 0; K.L//. Define

C ´ Cent. zU/ ´ p�1.Cent.U.C 0; K.L///: (2)

Let Q� denote the fundamental group of U.C 0; K.L//. There is a free action of Q� on
C such that the quotient set is identified with C 0. Since K.L/ is simply connected (it
is a cone), p�1.K.L// is isomorphic to Q� � K.L/. For each C 2 C , let ChKi denote
the component of p�1.K.L// which contains the vertex C . We shall say that ChKi is
a chamber of zU. Note that pjChKi

maps ChKi homeomorphically onto K.L/.
We want to show that C has the structure of a building of type .W; S/ and that

zU Š U.C ; K.L//. To this end, we first show C has the structure of a chamber system
over S . Chambers C; D 2 C are s-adjacent if ChKi \DhKi is nonempty and projects
homeomorphically onto K.L/f .s/. A gallery in C (D Cent. zU/) is reduced if its type
s is a reduced expression for w.s/.

Lemma 2.1. Let C D Cent. zU/ be defined by (2). Suppose that .C0; : : : ; Ck/ is a
gallery in zU of type s and that s0 is another word in S which can be obtained from s

by flip moves. Then there is a gallery in zU of type s0 with the same endpoints.

Proof. Suppose that T 2 �.W; S/ is a spherical subset. Then the restriction of p to
a T -residue in C is a bijection to (the set of central vertices in) a T -residue of C 0.
Hence , every T -residue in C is a spherical building. It suffices to show that we can
accomplish a single flip move on s without changing the endpoints. So, suppose that
s D prod.s; t I m.s; t//, where m.s; t/ < 1. Then the entire gallery from C0 to Ck

(where k D m.s; t/) lies in a single fs; tg-residue. Since this residue is a building and
prod.s; t I m.s; t// is a reduced expression, there is a gallery of type prod.t; sI m.s; t//

with the same endpoints. In the general case we apply this step to the subgallery in
which the flip is supposed to take place, proving the lemma.

Tits’ solution to the word problem for Coxeter groups gives the following.

Corollary 2.2. Suppose that .C0; : : : ; Ck/ is a gallery in zU of type s with s a reduced
expression for an element of W . Let s0 be another reduced expression for w.s/. Then
there is a gallery of type s0 from C0 to Ck .
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Lemma 2.3. Suppose that C D .C0; : : : ; Ck/ is a gallery of type s from C0 to Ck . If
C has minimum length, then s is a reduced expression.

Proof. If s is not reduced, then, by Tits’solution to the word problem, s can be changed
by a sequence of flips to s0 D .s0

1; : : : ; s0
k
/ so that s0 contains a subword of length two

of the form .s0
j ; s0

j C1/ D .s; s/. By Lemma 2.1, there is a gallery C 0 D .C 0
0; : : : ; C 0

k
/

with the same endpoints as C . Let .C 0
j �1; C 0

j ; C 0
j C1/ be the subgallery corresponding

to the subword .s; s/. Then C 0
j �1; C 0

j and C 0
j C1 are all s-equivalent. If C 0

j C1 D C 0
j �1,

then we can shorten the gallery by deleting C 0
j �1 and C 0

j . If not, we can shorten it by
deleting C 0

j . In either case we contradict the assumption that C has minimum length.

Next, we want to define the Weyl distance ı W C � C ! W . Fix a chamber
C 0 2 C 0 and let �C 0 W C 0 ! W 0 be the function D0 7! ı0.C 0; D0/. Since �C 0 maps
s0-equivalent chambers to s0-equivalent elements of W 0, it induces a map of spaces
rC 0 W U.C 0; K.L// ! U.W 0; K.L//, which can be thought of as the realization of
retraction onto an apartment. Choose a chamber C 2 C lying over C 0. We want to
construct a map rC W zU ! U.W; K.L// making the following diagram commute:

zU
p

��

rC �� U.W; K.L//

q

��
U.C 0; K.L//

rC 0 �� U.W 0; K.L//.

Since q is a covering projection and U.W; K.L// is simply connected, the standard
lifting theorem in covering space theory implies that rC 0 B p W zU ! U.W 0; K.L//

has a unique lift rC , as in the diagram, taking the central vertex C to 1. Restricting
rC to the subset C � zU, we get a function �C W C ! W . (Recall that C is the set
of central vertices in zU and W is the set of central vertices in U.W; K.L//.) Define
ı W C � C ! W by

ı.C; D/ ´ �C .D/:

Remark. The reason this procedure works comes down to a fact, which was used
in the proof of Lemma 2.1: every spherical residue in the chamber system C is a
spherical building. This together with simple connectivity of the standard realization
implies that C is a building (cf. Tits [28]).

Lemma 2.4. Suppose that C D .C0; : : : ; Ck/ is a reduced gallery in C of type s.
Then ı.C0; Ck/ D w.s/.

Proof. Let � W Œ0; k� ! zU be the edge path in the dual 1-skeleton of zU corresponding
to C . Thus, � crosses the central vertices C0; C1 : : : ; Ck in succession. Then rC0

B �
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is an edge path in the dual 1-skeleton of U.W; K.L//. Let .w0; w1; : : : ; wk/ be the
corresponding gallery in W . By construction the type of this gallery is s (the type
of C ). Since rC0

.C0/ D 1, the initial vertex w0 is 1. Thus, ı.C0; Ck/ D rC0
.Ck/ D

wk D w.s/.

Theorem 2.5. The map ı W C � C ! W is a Weyl distance function; hence, C is a
building of type .W; S/. Moreover, zU can be identified with U.C ; K.L//.

Proof. We must check conditions (WD1), (WD2), (WD3) of Definition 1.2. The first
condition is immediate. To check (WD2) suppose that ı.C; D/ D w and C 0 2 C

satisfies ı.C 0; C / D s. By definition of ı there is a gallery .C0; : : : ; Ck/ of type s

from C to D, where s D .s1; : : : ; sk/ is a reduced expression for w. There are two
cases to consider.

Case 1: l.sw/ > l.w/. Then s0 D .s; s1; : : : ; sk/ is a reduced expression for sw

and .C 0; C0; : : : ; Ck/ is a reduced gallery of type s0. So, by Lemma 2.4, ı.C 0; Ck/ D
w.s0/ D sw.

Case 2: l.sw/ < l.w/. Then there is a reduced expression s0 for w which begins
with s. By Corollary 2.2, there is a gallery of type s0 from C to D. The resulting
gallery .C 0; C; C1; : : : ; D/ has type beginning .s; s/. Hence, the chambers C 0, C and
C1 are s-equivalent. If C1 D C 0, then .C1; C2; : : : / is a reduced gallery from C 0 to
D; hence, ı.C 0; D/ D sw. If C1 ¤ C , then .C 0; C1; C2; : : : / has type s0 and is a
gallery from C 0 to D. Hence, ı.C 0; D/ D w.s0/ D w.

To check (WD3), let s be an arbitrary element of S . Suppose that we have a reduced
gallery .C0; : : : ; Ck/ from C to D of type .s1; : : : ; sk/. The argument divides into the
same two cases as above. In Case 1, .C 0; C0; C1; : : : ; Ck/ is a reduced gallery; hence,
ı.C 0; Ck/ D sw. In Case 2, by using Corollary 2.2 and Lemma 2.4, we can assume
that s1 D s (i.e., the type of the gallery begins with s). Then choosing C 0 D C1 we
get a reduced gallery .C1; : : : ; Ck/ from C 0 to D; hence, ı.C 0; D/ D sw.

Examples 2.6. Suppose that W 0 is a finite Coxeter group of rank nC1 with generators
indexed by S 0 D f0; 1; : : : ; ng. Then L0(D L.W 0; S 0/) is the simplex on f0; 1; : : : ; ng.
Suppose that L is an n-dimensional simplicial complex which admits a “folding map”
f W L ! L0 (i.e., the restriction of f to each simplex is injective). Then we can
proceed as above. In particular:

(1) Suppose that L is the barycentric subdivision of an n-dimensional cell complex.
Then there is a folding map f W S ! S 0 which sends the barycenter of a cell
F to dim F . If L is the barycentric subdivision of the boundary complex of an
.n C 1/-dimensional polytope, then K.L/ is a simple polytope. For example, if
L is the boundary of a .n C 1/-simplex, then K.L/ is an .n C 1/-dimensional
permutohedron (cf. Remark 6.6 in [10]). In the building U.C ; K.L// the link of
each vertex of K.L/ is the spherical building U.C 0; �n/, where �n is the dual
simplex to L0.
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(2) Suppose that L is the boundary complex of an .n C 1/-dimensional octahedron
(see §3.2 below). Its vertex set, S , can be identified with f0; : : : ; ng � f˙1g and
the folding map is induced by projection on the first factor, f0; : : : ; ng�f˙1g !
f0; : : : ; ng. In this case, K.L/ is an .n C 1/-cube. As in (1), the link of each
vertex of K.L/ in U.C ; K.L// is the spherical building U.C 0; �n/.

Definition 2.7. A simplicial complex J is a flag complex if any nonempty, finite set
of vertices, which are pairwise connected by edges, spans a simplex of J .

A flag complex J is “determined by its 1-skeleton” in the sense that it is the smallest
full subcomplex of the simplex on Vertex.J / which contains the 1-skeleton J 1.

Theorem 2.8. If in the above construction L is a flag complex, then L D L.W; S/

(and hence, U.C ; K.L// is the standard realization of C ).

Proof. Suppose that T is a spherical subset of S . Since this implies that m.s; t/ < 1
for all s; t 2 T , we see that the elements of T are pairwise connected by edges in L.
Since L is a flag complex, this means that T is the vertex set of a simplex in L. Hence,
L.W; S/ D L.

Remark. When W 0 is finite, the condition that L be a flag complex is also necessary
for L to equal L.W; S/.

Example 2.9. Given .W 0; S 0/, choose a set of edges E � Edge.L.W 0; S 0//. Let
f W S ! S 0 be any bijection. As in (1), define a Coxeter matrix .m.s; t// by

m.s; t/ D
´

m0.f .s/; f .t// if ¹s; tº… E,

1 if ¹s; tº2 E.

Let .W; S/ be the resulting Coxeter system and L D L.W; S/. So, for any building
C 0 of type .W 0; S 0/, we get a building C of type .W; S/.

Here is slightly different spin on the same example. Suppose that L is an arbitrary
finite flag complex with vertex set S . Then L is a subcomplex of the simplex � on
S . Let .W 0; S/ be an arbitrary spherical Coxeter system. Then L.W 0; S/ D �. If
E is the set of edges of � which are not in L, then the construction in the previous
paragraph yields .W; S/ with L.W; S/ D L. For L ¤ �, we could have reached the
same conclusion by choosing .W 0; S/ to be any Coxeter system with nerve @�. For
example, .W 0; S 0/ could be an irreducible affine Coxeter system.

Suppose that the flag complex L is PHn�1 (defined in §1.4). Then, by Proposi-
tion 1.6, U.C ; K.L// is an n-dimensional duality space and, by Corollary 2.12 below,
Aut.C/ is an n-dimensional duality group.
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2.2. Automorphism groups

Proposition 2.10. Suppose that G0 is a group of automorphisms of C 0. Then C

has a group of automorphisms G with C=G Š C 0=G0 and U.C ; K.L//=G Š
U.C 0; K.L//=G0.

Proof. By Theorem 2.5, U.C ; K.L// ! U.C 0; K.L// is the universal covering. Let
G be the group of all lifts of the G0-action. The asserted isomorphisms are easily
established.

Corollary 2.11. If C 0 admits a chamber-transitive group of automorphisms, then so
does C . More generally, if the action of a group G0 of automorphisms of C 0 has only
finitely many orbits, then the G-action on C has the same number of orbits.

Corollary 2.12. If C 0 is a spherical building, then Aut.C/ admits a torsion-free
uniform lattice.

Proof. The discrete subgroup Q� � Aut.C/ is such a lattice (with Q� ´ �1.U.C 0; K/).
It is uniform, since C= Q� D C 0, which is a finite set. It is torsion-free, since it acts
freely on the finite dimensional, contractible space U.C ; K/.

Question. When is Aut.C/ strongly transitive?

In the cases of classical or Kac–Moody buildings, Aut.C/ is usually strongly
transitive. It is also strongly transitive in the case of a right-angled building which is
regular and thick, cf. Bourdon [5] and Barnhill–Thomas [4]. Very little is known in
other cases.

3. Partial products of Coxeter groups and buildings

3.1. General description. Suppose that we are given as data:

� Coxeter systems .Wi ; Si /, for i D 0; 1; : : : ; p;
� for each pair .i; j / with 0 � i; j � p and i ¤ j , a subset Rij � Si � Sj

such that Rj i is obtained from Rij simply by interchanging the factors (i.e.,
.sj ; si / 2 Rj i ” .si ; sj / 2 Rij ).

From this data we define a new Coxeter system .W; S/. First, S is the disjoint
union S ´ S0

`
: : :

`
Sp . For si ; ti 2 Si , let mi .si ; ti / denote the order of si ti .

Define an .S � S/ symmetric matrix .m.s; t// as follows: given s 2 Si , t 2 Sj ,

m.s; t/ D

8̂<
:̂

mi .s; t/ if i D j ,

1 if i ¤ j and .s; t/ 2 Rij ,

2 if i ¤ j and .s; t/ … Rij .
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Define W to be the Coxeter group associated to the Coxeter matrix .m.s; t//. In other
words, the Rij specify the edges from a vertex in Si to one in Sj which are to be
deleted from the nerve of .W0 � � � � � Wp; S/.

Examples 3.1. (1) Suppose that Rij D ; for all i ¤ j . Then W is the direct product
W0 � W1 � � � � � Wp .

(2) Suppose that Rij D Si � Sj for all i ¤ j . Then W is the free product
W0 	 W1 	 � � � 	 Wp .

(3) Suppose that 	 is a simplicial graph with vertex set f0; 1; : : : ; pg and

Rij D
´

; if ¹i; j º2 Edge.	/,

Si � Sj if ¹i; j º… Edge.	/.

Then W is the “graph product” of the Wi , denoted by
Q

� Wi . (See [22] for discussion
of graph products.) As a further specialization, if each Wi is cyclic of order two, then
W D Q

� Z=2 is the right-angled Coxeter group associated to 	. If each Wi is
the infinite dihedral group, D1, then W D Q

� D1 is commensurable with the
right-angled Artin group associated to 	 (cf. [14]).

Example 3.2 (Square products). In this example suppose that the sets Si are mutu-
ally bijective. Assume further that we are given a compatible family of bijections,
f
ij W Si ! Sj g0�i;j �p . (By a “compatible family” we mean that 
i i D 1 and

jk B 
ij D 
ik , for all i , j , k.) The Rij are required to satisfy the following: the
bijection 
i0 � 
j 0 W Si � Sj ! S0 � S0 takes Rij onto the diagonal of S0 � S0 (or
equivalently, .
ij � id/.Rij / is the diagonal of Sj � Sj ). Then for s 2 Si , t 2 Sj ,

m.s; t/ D

8̂<
:̂

mi .s; t/; if i D j ,

1; if i ¤ j and 
ij .s/ D t ,

2; otherwise.

In this case call W the square product of the Wi and write W D W0 � � � � � Wp .
(In the case where there are only two factors and W0 and W1 are both finite, these
examples were discussed in Example 4.3 in [10].)

Spherical subsets of S . Let �i ´ �.Wi ; Si / be the poset of spherical subsets of
Si and let � ´ �.W; S/ be the poset of spherical subsets of S . Any T � S can be
decomposed as T D T0

` � � � `
Tp , where Ti � Si . Clearly, T is spherical if and

only if the following two conditions hold:

� Ti 2 �i , for i D 0; : : : ; p, and

� .si ; sj / … Rij , for all si 2 Ti , sj 2 Tj , i ¤ j .
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Put

W 0 ´ W0 � � � � � Wp:

Note that �.W 0; S/ D �0 � � � � � �p . As in §2, the tautological bijection f W S !
S0

` � � � `
Sp extends to an epimorphism 'f W W ! W 0 and induces an embedding

� ! �.W 0; S/ defined by T 7! .T0; : : : ; Tp/ (where T D T0
` � � � `

Tp). Similarly,
if L ´ L.W; S/ and Li ´ L.Wi ; Si / denote the nerves of their respective Coxeter
systems, we get a simplicial embedding f W L ! L.W 0; S/. (Note that L.W 0; S/ is
the join, L0 	 � � � 	 Lp .)

Buildings. For 0 � i � p, suppose that Ci is a building of type .Wi ; Si /. Then
C0 � � � � � Cp is a building of type .W 0; S/. As in §2 this lead to a new building C

and a covering space, U.C ; K/ ! U.C 0; K/ where K ´ K.L/ is the fundamental
chamber for .W; S/.

If W is as in Examples 3.1 part (1), (2) or (3), then C is, respectively, the product,
free product or graph product of the Ci . In the case of the graph product, write
C D Q

� Ci . If W is as in Example 3.2, then C D C0 � � � ��Cp is the square product
of the Ci .

Example 3.3 (The free product of two buildings). Suppose that C0 and C1 are build-
ings of type .W0; S0/ and .W1; S1/, respectively, and that for i D 0; 1, K.i/ ´
K.Wi ; Si /. Let K ´ K.0/ _ K.1/ denote the one point union at the central vertex.
Then K naturally has a mirror structure over S0

`
S1. By definition, the free product,

C0 	 C1, is the set of chambers in the universal cover of U.C0 � C1; K/. It is a
building of type .W0 	 W1; S0

`
S1/. For example, suppose that each Ci is the edge

set of a tree Ti (without terminal vertices). A fundamental chamber for T0 � T1 has
the form e0 � e1 where ei is an edge of Ti . The space K is defined to be the subspace
.m0 �e1/[ .e0 �m1/, where mi denotes the midpoint of ei . (In other words, K is the
wedge of two edges at their midpoints.) The space T0 � T1 D U.C0 � C1; e0 � e1//

is a 2-dimensional complex tiled by squares. To get U.C0 � C1; K/ remove from
each square everything except K. The resulting 1-dimensional complex is not simply
connected. Its universal cover is by definition U.C0 	 C1; K/.

We have the following corollary to Corollary 2.12.

Corollary 3.4. Suppose that each Ci is a spherical building (of finite thickness)
and that 	 is a simplicial graph. If 	 is not the 1-skeleton of a simplex, then the
graph product

Q
� Ci is an infinite building whose automorphism group admits a

uniform lattice. Similarly, if p � 1, then C0 � � � � � Cp is an infinite building whose
automorphism group admits a uniform lattice.
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3.2. Description of L for �-products. Suppose that V is a set with n elements
and �.V / is the simplex on V . Define a mirror structure over V on �.V / by letting
�.V /v be the codimension one face opposite to the vertex v. Let .Z=2/V be the direct
product of V copies of the cyclic group of order two. Identify V with the standard
basis of .Z=2/V (so that ..Z=2/V ; V / is a Coxeter system). Then U..Z=2/V ; �.V //

is a triangulation of Sn�1, specifically, it is the boundary complex of an n-dimensional
octahedron.

For any integer p � 1, the set f0; : : : ; pgV is a building of type ..Z=2/V ; V /

and thickness p. Its realization U.f0; : : : ; pgV ; �.V // is an n-dimensional spherical
building. The space U.f0; : : : ; pgV ; �.V // is a simplicial complex which we denote
O.p; V /. The simplices of O.p; V / can be described as follows. Consider pairs of
the form g � �.U / where U � V and g D .gv/v2V is a V -tuple in f0; : : : ; pg. Two
such pairs g � �.U / and g0 � �.U 0/ are equivalent if and only U D U 0 and gv D g0

v

for all v 2 U . A simplex in O.p; V / is an equivalence class.
The complex O.p; V / can also be described as the n-fold join of the set f0; : : : ; pg

with itself.

Lemma 3.5. O.p; V / is PHn�1.

Proof. The vertex set of an .m�1/-simplex � in O.p; V / is a U -tuple g 2 f0; : : : ; pgU ,
for some U with m D Card.U /. The complement of � in O.p; V / deformation re-
tracts onto the complement of the open star of � . The complement of this open star
can be identified with the join of m sets of p elements and n�m sets of pC1 elements.
It is well-known that the join of n finite sets, each of which has at least 2 elements, is
homotopy equivalent to a wedge of .n � 1/-spheres. On the other hand, if at least one
of the sets in an n-fold join has exactly one point, then the join is contractible. The
lemma follows.

As before, .Wi ; Si / are Coxeter systems, 
ij W Si ! Sj are compatible bijections,
Li D L.Wi ; Si / and �i D �.Wi ; Si /. Also, S ´ S0

` � � � `
Sp and W ´

W0 � � � � � Wp . Put V ´ S0. Using the bijections 
i0 W Si ! S0 identify each Si

with V . We are going to define an embedding of posets � ,! �.O.p; V //. The image
will be denoted �0 � � � � � �p . An element of � has the form .T0; : : : ; Tp/, where
Ti � Si . Use the 
i0 to transport the Ti to subsets Ui of V , i.e., put Ui ´ 
i0.Ti /.
The fact that each Rij is the diagonal of V �V means that the Ui are pairwise disjoint
subsets of V . Put U ´ U0 [ � � � [ Up . Since the Ui are disjoint, any u 2 U belongs
to exactly one of them, call it Ugu

. This defines a U -tuple g 2 f0; : : : ; pgU . Extend
this arbitrarily to a V -tuple in f0; : : : ; pg and also denote it by g. (In other words,
gv is completely arbitrary for v 2 V � U .) The embedding � ,! �.O.p; V // is
then defined by .T0; : : : ; Tp/ 7! .U; g/. The corresponding subcomplex of O.p; V /

is denoted L0 � � � � � Lp . This discussion proves the following.
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Proposition 3.6. With notation as above,

L.W; S/ Š L0 � � � � � Lp � O.p; V /:

Remark. The above description of L D L0 � � � � � Lp gives the following estimate
for its dimension:

max
i

fdim Lig � dim L � n � 1:

Corollary 3.7. Suppose that each Wi is a finite Coxeter group of rank n and V is a
set with n elements. Then L.W; S/ Š O.p; V /.

Combining this with Lemma 3.5 and Proposition 1.6 we get the following.

Corollary 3.8. Suppose that each Wi is a finite Coxeter group of rank n so that
each Ci is a spherical building. Then the standard realization of C0 � � � � � Cp is an
n-dimensional duality space and Aut.C0 � � � ��Cp/ is a virtual n-dimensional duality
group.

Example 3.9. When p D 1, O.1; V / is the boundary complex of an n-dimensional
octahedron. So, in this case, K (D K.L/) is combinatorially isomorphic to an n-cube.
Suppose that W0, W1 are finite Coxeter groups of rank n. Then K is the n-cube and
in the standard realization, U.W0 � W1; K/, the isotropy group at one vertex of K is
W0 while at the opposite vertex it is W1, cf. [10], Example 4.3. It follows that W0K is
combinatorially isomorphic to a Coxeter cell of type .W0; S0/. For example, if W0 is
the symmetric group of rank n C 1, then W0K is a permutohedron, cf. [10], §6. Next
suppose that, for i D 0; 1, Ci is a spherical building of type .Wi ; Si /. In the standard
realization, U.C0 � C1/, the link at one vertex is the spherical realization U.C0; �/

while at the other it is U.C1; �/. At the other vertices, the links are joins of the form
U.C 0

0; �0/ 	 U.C 0
1; �1/, where for i D 0; 1, Ci is a building of type .WTi

; Ti / for
Ti � Si and dim �i D Card.Ti /�1. If we choose C0 to be the thin building W0, then
W0 � C1 can be regarded as the building with fundamental chamber the Coxeter cell
W0K obtained, as in Example 2.6, by using the natural folding map from the Coxeter
complex, U.W0; �/, to �.

Example 3.10. (Some 3-dimensional hyperbolic reflection groups). Suppose that
.W0; S0/ and .W1; S1/ are irreducible spherical Coxeter systems of rank 3 with dia-
grams either

A3 B���B���B or B3 B��� 4B���B:

Then L0 � L1 is an octahedron and K ´ K.L0 � L1/ is isomorphic to a 3-dimen-
sional cube. As in Example 3.2, to define W0 � W1, we need to choose a bijection

01 W S0 ! S1. Suppose that S0 D fs0; s1; s2g, S1 D ft0; t1; t2g, where s1 and t1
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correspond to the middle nodes of their diagrams. Choose 
01 so that 
01.s1/ ¤ t1.
For such a choice of 
01 it follows from Andreev’s Theorem [2] that K can be realized
as a convex polytope in hyperbolic 3-space, H3, with dihedral angles between the
faces as prescribed by the Coxeter matrix .m.s; t// of W0 � W1. (In other words, the
dihedral angle between the faces of corresponding to s and t is �=m.s; t/.) The group
generated by the hyperbolic reflections across the faces of this polytope is isomorphic
to W0 � W1. The condition that must be checked for Andreev’s Theorem to hold
is that there are no cycles (without “diagonals”) of length 4of faces in K with all
dihedral angles �=2, cf. [12], §6.10. The polytope K has two distinguished opposite
vertices where the dihedral angles are determined by one of the above diagrams. Each
such vertex is contained in one edge where the dihedral angle is �=2. The condition
that 
01.s1/ ¤ t1 means that these �=2 -edges are not opposite to each other. So,
Andreev’s Condition holds.

Next suppose that W0 and W1 are Euclidean reflection groups of rank 3. Then
K has the same set of faces as a “cube with two ideal vertices,” i.e, two opposite
vertices have been removed from the 3-cube. As before we can choose 
01 to break
up cycles of �=2 -edges. In a second paper, [3], Andreev generalized his theorem to
cover polytopes with ideal vertices. This second result implies that we can realize the
cube with ideal vertices as a convex polytope in H3 with two ideal vertices and with
the prescribed dihedral angles. Hence, W0 � W1 is a reflection group on H3 with a
fundamental polytope which is noncompact but which has finite volume.

Hyperbolic buildings. A building is hyperbolic if W is a cocompact reflection group
on Hn. This implies that the building can be given a metric so that each apartment is
isometric to Hn, cf. [1], Chapter 12.

A building is called Gromov hyperbolic if W is word hyperbolic. Moussong [23]
showed that if this is the case, then the standard realization U.W; K/ can be given a
CAT.�1/ metric, cf. [12], §12.6. It is proved in [11] that if the standard realization
of an apartment is CAT.�1/, then so is the standard realization of a corresponding
building. (For the definition of “CAT.�1/” see, for example, [12], Appendix I.)

It seems that examples of (thick) hyperbolic buildings previously have only been
constructed in the following two cases:

� W a 2-dimensional hyperbolic reflection group generated by the reflections
across the edges of a convex polygon in H2 with angles integral submultiples of
� . (These are called Fuchsian buildings.)

� W is a right-angled Coxeter group, generated by reflections across the faces of
a right-angled polytope in Hn. (Such polytopes can only occur in dimensions
n � 4.)

Examples of Fuchsian buildings can be constructed using the theory of Kac–Moody
groups, e.g., in [18]. It is proved in [11] that for a right-angled W one can construct
buildings of any prescribed thickness along each mirror of K. For discussions of
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right-angled hyperbolic buildings in dimensions 2 and 3 see [5], [6], [7], [17], [18].
New examples of 3-dimensional hyperbolic buildings, which are not right-angled, are
given below.

Example 3.11 (3-dimensional hyperbolic buildings). Let C0 and C1 be finite spherical
buildings of type A3 or B3. It follows from the discussion in Example 3.10 that
U.C0 � C1; K/ is a hyperbolic building. The buildings C0 and C1 correspond to
algebraic groups of rank 3 over finite fields, and the order of the fields can be different
for C0 and C1. Similarly, by using the second paragraph of Example 3.10, one can
construct buildings with fundamental polytope a combinatorial cube in H3 with two
ideal vertices.

Example 3.12 (Free products of Gromov hyperbolic buildings). Suppose that we are
given Gromov hyperbolic buildings, C0; : : : ; Cp . It follows from [23] and [11] that the
standard realization of the free product, C0 	 � � � 	Cp , can be given a CAT.�1/ metric
and hence, is Gromov hyperbolic. Also note that spherical buildings are Gromov
hyperbolic, so we could choose any of the Ci to be spherical.

4. Questions related to Kac–Moody groups

Suppose that .W; S/ is such that m.s; t/ 2 f2; 3; 4; 6; 1g for all s ¤ t and that q is a
prime power. As in [29] one can choose an .S � S/ “Cartan matrix” compatible with
.W; S/ and from this construct a Kac–Moody Lie algebra and a Kac–Moody group
G over the field Fq of order q. Associated to G there is a Tits system .G; B; N; T /

and a building CG with set of chambers G=B . Call CG a Kac–Moody building.
Now suppose as in §2 or §3 that C 0 is a spherical building of type .W 0; S 0/

associated to an algebraic group G0 over a finite field Fq . Then .W; S/ satisfies the
crystallographic condition (that m.s; t/ 2 f2; 3; 4; 6; 1g). Let C be the building
constructed in §2. The question arises: is C isomorphic to a Kac–Moody building
CG? Undoubtedly, it often is. For example, if .W; S/ is a right-angled and C is of
thickness q (so that G0 is the S 0-fold product,

Q
PGL.2; Fq/), then C Š CG (since

any two regular right-angled buildings of type .W; S/ and the same thickness q are
isomorphic). However, even when C Š CG , the group zG � Aut.C/, obtained by
lifting the G0-action to C , will not be closely related to the Kac–Moody group G.
One reason is that if .W; S/ is irreducible, infinite and nonaffine, then, by a result of
Caprace–Remy [9], G is a simple group. On the other hand, there is an epimorphism
zG ! G0. Hence, the restriction of this epimorphism to zG \ G is either trivial or
else it does not extend to G. (Further information about right-angled buildings and
Kac–Moody buildings can be found in Rémy–Ronan [24].)
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