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1. Introduction

Gromov’s geometric group theory seeks to classify finitely generated groups in terms
of the “large scale geometry” of their Cayley graphs. In this paper, we shall discuss this
program from the perspective of the theory of Borel equivalence relations and point
out some intriguing connections with the recent work of Louveau and Rosendal [22],
[24] on the class of K� equivalence relations. In particular, we shall consider the
complexity of possible complete invariants for the quasi-isometry relation on the
space of finitely generated groups and we shall present a number of results which
strongly suggest that the quasi-isometry relation is considerably more complex than
the isomorphism relation.

The basic idea of geometric group theory is to regard finitely generated groups as
metric spaces via their word metrics. Of course, if G is a typical finitely generated
group, then G does not have a “canonical” finite generating set; and if S; S 0 � G are
different finite generating sets with associated word metrics dS , dS 0 , then the metric
spaces .G; dS /, .G; dS 0/ are usually not isometric. However, .G; dS / and .G; dS 0/

always have the same large scale geometry, in the sense that the identity map is a
quasi-isometry between them. In particular, the following definition does not depend
on the choice of the finite generating sets S , T for the groups G, H .

�Research partially supported by NSF Grant 0600940.
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Definition 1.1. Let G, H be finitely generated groups with word metrics dS , dT

respectively. Then G, H are said to be quasi-isometric, written G �QI H , iff there
exist

• constants � � 1 and C � 0, and
• a map ' W G ! H

such that for all x; y 2 G,

1

�
dS .x; y/ � C � dT .'.x/; '.y// � �dS .x; y/C C I

and for all z 2 H ,
dT .z; 'ŒG�/ � C:

In this case, ' is said to be a .�; C /-quasi-isometry.

By Grigorchuk [8] and Bowditch [2], there are 2@0 finitely generated groups up
to quasi-isometry. (In the case of Grigorchuk [8], the result is not stated explicitly as
the quasi-isometry relation for finitely generated groups had not yet been introduced
at the time when the paper was written.) It is interesting to note that both proofs
involve the use of growth rates as quasi-isometry invariants; namely, the growth rates
of balls [8] and “taut loops” [2] in Cayley graphs. In Section 4, we shall show that a
suitably chosen growth rate is a complete invariant for the quasi-isometry relation for
finitely generated groups.

A clear account of the basic properties of the quasi-isometry relation for finitely
generated groups can be found in de la Harpe [10], including a proof of the following
result.

Definition 1.2. Two finitely generated groups G1, G2 are said to be virtually iso-
morphic or commensurable up to finite kernels, written G1 �VI G2, iff there exist
subgroups Ni 6 Hi 6 Gi for i D 1; 2 satisfying the following conditions:

(a) ŒG1 W H1�, ŒG2 W H2� < 1.
(b) N1, N2 are finite normal subgroups of H1, H2 respectively.
(c) H1=N1 Š H2=N2.

Theorem 1.3. If G1, G2 are virtually isomorphic finitely generated groups, then G1,
G2 are quasi-isometric.

It is well known that the converse does not hold and it is natural to conjecture that
the quasi-isometry relation is strictly more complex than the virtual isomorphism re-
lation. Before we can give a precise formulation of this conjecture, it is first necessary
to recall some of the basic notions of the theory of Borel equivalence relations.
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If X is a Polish space, then a Borel equivalence relation on X is an equivalence
relationE � X2 which is a Borel subset ofX2. For example, if G is the Polish space
of (marked) finitely generated groups, then the isomorphism, virtual isomorphism
and quasi-isometry relations are all Borel equivalence relations on G . (We shall recall
the definition of G in Section 2 and prove that these relations are Borel in Sections 3
and 6.) IfE,F are Borel equivalence relations on the Polish spacesX , Y respectively,
then we say that E is Borel reducible to F and write E �B F if there exists a Borel
map f W X ! Y such that x E y iff f .x/ F f .y/. We say that E and F are Borel
bireducible and write E �B F if both E �B F and F �B E. Finally we write
E <B F if both E �B F and F —B E. The notion of a Borel reduction from E to
F is intended to capture the idea of an explicit reduction from the E-classification
problem to theF -classification problem. Hence the following result can be interpreted
as saying that the virtual isomorphism relation on G is strictly more complex than the
isomorphism relation.

Notation 1.4. From now on, Š, �VI and �QI will denote the isomorphism, virtual
isomorphism and quasi-isometry relations on the space G of finitely generated groups.

Theorem 1.5 (Thomas [27]). Š <B �VI.

Our earlier conjecture can now be formulated as follows.

Conjecture 1.6. �VI <B �QI.

In the remainder of this section, we shall discuss some of the evidence in support
of Conjecture 1.6. We shall begin by describing the precise Borel complexity of the
isomorphism relation Š on G . Recall that an equivalence relation E on a Polish
space X is said to be countable iff every E-class is countable. By Dougherty–
Jackson–Kechris [4], there exists a universal countable Borel equivalence relation
E1; i.e., a countable Borel equivalence relation E1 such that F �B E1 for every
countable Borel equivalence relation F . (Clearly this universality property uniquely
determines E1 up to Borel bireducibility.) E1 has a number of natural realisations
in many areas of mathematics, including algebra, topology and recursion theory. (See
Jackson–Kechris–Louveau [16].) Following the usual practice, in this paper, we shall
takeE1 to be the orbit equivalence relation arising from the shift action of free group
on two generators F2 on 2F2 .

Theorem 1.7 (Thomas–Velickovic [30]). The isomorphism relation Š on G is a
universal countable Borel equivalence relation.

Of course, it is well known that the virtual isomorphism relation �VI is not a
countable Borel equivalence relation. For example, by Erschler [5], there exist un-
countably many nonisomorphic groups which are virtually isomorphic to the wreath
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product Z wr Z. In fact, combining Theorems 1.5 and 1.7, we see that �VI is not
essentially countable; i.e., there does not exist a countable Borel equivalence relation
E such that �VI �B E. Thus if we wish to understand the precise Borel complexity
of the virtual isomorphism relation �VI (and also conjecturally of the quasi-isometry
relation �QI), then we must work within a strictly larger class of Borel equivalence
relations than the relatively well-understood class of countable Borel equivalence
relations.

Definition 1.8. The equivalence relationE on the Polish spaceX is said to beK� iff
E is the union of countably many compact subsets of X �X .

For example, in Sections 3 and 6, we shall show that the isomorphism, virtual
isomorphism and quasi-isometry relations are all K� equivalence relations on G . By
Kechris [19] and Louveau–Rosendal [22], there also exists a universalK� equivalence
relation. In fact, Rosendal [24] has recently shown that the relation of Lipschitz
equivalence between compact metric spaces is a universal K� equivalence relation.
Of course, this suggests the following conjecture.

Conjecture 1.9. The quasi-isometry relation �QI on the space G of finitely generated
groups is a universal K� equivalence relation.

In Section 4, making essential use of the results of Rosendal [24], we shall prove
the following weak version of Conjecture 1.9. (The notion of a quasi-isometry makes
sense for arbitrary metric spaces, including connected graphs equipped with their path
metrics.)

Theorem 1.10. The quasi-isometry relation on the space of connected 4-regular
graphs is a universal K� equivalence relation.

Of course, since the virtual isomorphism relation �VI is also a K� equivalence
relation, Conjecture 1.6 implies that �VI is not a universal K� equivalence relation;
and most of our effort in this paper will go into proving that this is indeed the case.

Theorem 1.11. The virtual isomorphism relation �VI on the space G of finitely
generated groups is not a universal K� equivalence relation.

Combining Theorems 1.10 and 1.11, we obtain the following weak version of
Conjecture 1.6.

Theorem 1.12. The virtual isomorphism relation �VI on the space G of finitely
generated groups is strictly less complex (with respect to Borel reducibility) than the
quasi-isometry relation on the space of connected 4-regular graphs.
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An interesting feature of Theorem 1.11 is the key role which is played in its proof
by Hjorth’s notion of turbulence [11]. More specifically, we shall need the result of
Kanovei–Reeken [17] that ifG is a Polish group andX is a turbulent PolishG-space,
then EX

G —B E
C
1 .

Finally it should be pointed out that very little is known concerning the Borel
complexity of the quasi-isometry relation �QI on the space G of finitely generated
groups. In fact, the following result sums up the current state of knowledge regarding
this problem.

Theorem 1.13 (Thomas [28], [29]). The quasi-isometry relation on the space G of
finitely generated groups is not smooth.

Here the Borel equivalence relation E on the Polish space X is said to be smooth
iff there exists a Borel function f W X ! Y into a Polish space Y such that x E y iff
f .x/ D f .y/. By Silver [26], if E is a smooth Borel equivalence relation and F is
a Borel equivalence relation with uncountably many F -classes, then E �B F . Thus
the smooth relations are the least complex Borel equivalence relations with respect to
Borel reducibility.

The remaining sections of this paper are organised as follows. In Section 2, we
shall review some of the basic features of the space G of (marked) finitely generated
groups. In Section 3, we shall show that the isomorphism and quasi-isometry relations
are K� equivalence relations on the space G ; and we shall also discuss two other
important K� equivalence relations which will play a key role in the later sections
of this paper. In Section 4, we shall show that the growth rate equivalence relation
and the quasi-isometry relation for connected 4-regular graphs are both completeK�

equivalence relations. In Sections 5 and 6, we shall study the Borel complexity of
the virtual isomorphism relation �VI on G . In particular, we shall prove that �VI is
a non-universal K� equivalence relation.

Acknowledgements. This paper would not have been possible without the invaluable
assistance of Greg Hjorth. I would also like to thank Alexander Kechris, Christian
Rosendal and Boban Velickovic for very helpful discussions concerning the material
in this paper.

2. The space of finitely generated groups

In this section, we shall review some of the basic features of the space G of (marked)
finitely generated groups, which was first introduced by Grigorchuk [8]. (For a fuller
treatment, see Champetier [3] or Grigorchuk [9].)

A marked group .G; Ns/ consists of a finitely generated group with a distinguished
sequence Ns D .s1; : : : ; sm/ of generators. (Here the sequence Ns is allowed to contain



286 S. Thomas

repetitions and we also allow the possibility that the sequence contains the identity
element.) Two marked groups .G; .s1; : : : ; sm// and .H; .t1; : : : ; tn// are said to be
isomorphic iff m D n and the map si 7! ti extends to a group isomorphism between
G and H .

Definition 2.1. For each m � 2, let Gm be the set of isomorphism types of marked
groups .G; .s1; : : : ; sm// with m distinguished generators.

Let Fm be the free group on the generators fx1; : : : ; xmg. Then for each marked
group .G; .s1; : : : ; sm//, we can define an associated epimorphism �G;Ns W Fm ! G

by �G;Ns.xi / D si . It is easily checked that two marked groups .G; .s1; : : : ; sm//
and .H; .t1; : : : ; tm// are isomorphic iff ker �G;Ns D ker �H;Nt . Thus we can naturally
identify Gm with the set Nm of normal subgroups of Fm. Note that Nm is a closed
subset of the compact space P .Fm/ of all subsets of Fm and so Nm is a compact
space. Hence, via the above identification, we can regard Gm as a compact space.

The topologies on Nm and Gm can be described more explicitly as follows. For
each marked group .G; Ns/ and integer ` � 1, letB`.G; Ns/ be the closed ball of radius `
around the identity element in the (labelled directed) Cayley graph Cay.G; Ns/. Then,
letting Nx D .x1; : : : ; xm/, the basic open neighborhoods in Nm of a normal subgroup
N are given by

UN;` D fM 2 Nm j M \ B`.Fm; Nx/ D N \ B`.Fm; Nx/g; ` � 1:

If .G; Ns/ 2 Gm corresponds to the normal subgroupN 2 Nm, then the set of relations
N \ B2`C1.Fm; Nx/ contains the same information as the closed ball B`.G; Ns/ in the
Cayley graph of .G; Ns/. It follows that the basic open neighborhoods in Gm of a
marked group .G; Ns/ are given by

V.G;Ns/;` D f.H; Nt / 2 Gm j B`.H; Nt / Š B`.G; Ns/g; ` � 1:

Finally, for each m � 2, there is a natural embedding of Nm into NmC1 defined
by

N 7! the normal closure of N [ fxmC1g in FmC1.

This enables us to regard Nm as a clopen subset of NmC1 and to form the locally
compact Polish space N D S

Nm. Note that N can be identified with the space of
normal subgroupsN of the free group F1 on countably many generators such thatN
contains all but finitely many elements of the basis X D fxi j i 2 NCg. Similarly,
we can form the locally compact Polish space G D S

Gm of finitely generated groups
via the corresponding natural embedding

.G; .s1; : : : ; sm// 7! .G; .s1; : : : ; sm; 1//
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Remark 2.2. In the literature, the Polish spaces N and G are usually completely iden-
tified. However, in this paper, it will be convenient to distinguish between these two
spaces. (Some of our arguments are better expressed in the setting of marked groups,
while others are better expressed in terms of the corresponding normal subgroups of
the free group F1.)

Remark 2.3. In the remaining sections of this paper, the symbol Š will always denote
the usual isomorphism relation on the space G of finitely generated groups; i.e., two
marked groups are Š-equivalent iff their underlying groups (obtained by forgetting
about the distinguished sequences of generators) are isomorphic. It is well known
that Š is a countable Borel equivalence relation on G . For example, to see that every
Š-class is countable, simply note that there are only countably ways to convert a
finitely generated group G into a marked group .G; Ns/.

3. K� equivalence relations

In the first half of this section, we shall show that the isomorphism and quasi-isometry
relations are K� equivalence relations on the space G of finitely generated groups.
(The proof that the virtual isomorphism relation is also aK� equivalence relation will
be given in Section 6.) In the second half, we shall discuss two other important K�

equivalence relations which will play a key role in the later sections of this paper.

Theorem 3.1. The isomorphism relation Š on the space G of finitely generated
groups is a K� equivalence relation.

Proof. Instead of working directly with G , it will be more convenient to work with the
space N of normal subgroupsN of the free group F1 on countably many generators
such that N contains all but finitely many elements of the basis X D fxi j i 2 NCg.
Let Autf .F1/ be the subgroup of Aut.F1/ generated by the elementary Nielsen
transformations

f˛i j i 2 NCg [ fˇij j i ¤ j 2 NCg;
where ˛i is the automorphism sending xi to x�1

i and leaving X X fxig fixed; and
ˇij is the automorphism sending xi to xixj and leaving X X fxig fixed. Then the
natural action of Autf .F1/ on F1 induces a corresponding action as a group of
homeomorphisms on the space N . Furthermore, if N;M 2 N , then F1=N Š
F1=M iff there exists ' 2 Autf .F1/ such that 'ŒN � D M . (For example, see
Champetier [3].) Hence it is enough to show that graph.'/ is aK� subset of N �N for
every ' 2 Autf .F1/. If ' 2 Autf .F1/, then there existsm0 such that 'ŒNm� D Nm

for allm � m0. Since ' � Nm induces a homeomorphism of the compact space Nm,
it follows that graph.'/\Nm �Nm is a compact subset of Nm �Nm and so the result
follows.
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Theorem 3.2. The quasi-isometry �QI relation on the space G of finitely generated
groups is a K� equivalence relation.

Proof. Clearly it is enough to show that �QI� Gm is aK� subset of Gm �Gm for each
m � 2. Fix some m � 2 and let � � 1, C � 0 be integers. Suppose that .G; Ns/,
.H; Nt / 2 Gm are marked m-generator groups and let dS , dT be the corresponding
word metrics on G, H . For each integer ` � 1, let B`.G; Ns/, B`.H; Nt / be the closed
balls of radius ` around the identity element in the Cayley graphs of G, H .

Note that there exists a .�; C /-quasi-isometry' W G ! H iff there exists a .�; C /-
quasi-isometry with'.1G/ D 1H . By König’s Lemma, this occurs iff for everyn � 1,
there exists a map

 W Bn.G; Ns/ ! B�nCC .H; Nt /
such that the following conditions are satisfied:

(i)  .1G/ D 1H .
(ii) For all x; y 2 Bn.G; Ns/,

1

�
dS .x; y/ � C � dT . .x/;  .y// � �dS .x; y/C C:

(iii) For each natural number m � .n=�/ � 2C and z 2 Bm.H; Nt /, there exists
x 2 Bn.G; Ns/ such that dT .z;  .x// � C .

Hence if there does not exist a .�; C /-quasi-isometry from G to H , then this is
witnessed by balls of suitably large radii in the Cayley graphs of G, H . This means
that the relation R�;C , defined on the space Gm of marked m-generator groups by

G R�;C H iff there exists a .�; C /-quasi-isometry ' W G ! H;

is a closed subset of Gm � Gm; hence �QI� Gm is a K� subset of Gm � Gm.

As we mentioned earlier, the isomorphism relation Š on G is a countable Borel
equivalence relation. On the other hand, although Conjectures 1.6 and 1.9 imply
that the quasi-isometry relation �QI is not essentially countable, it remains an open
question whether this is indeed the case.

We shall next discuss two important K� equivalence relations which will play a
key role in the later sections of this paper.

Example 3.3. Let E1 be the equivalence relation on .2N/N defined by

.x0; : : : ; xn; : : : / E1 .y0; : : : ; yn; : : : / iff .9N/ .8n > N/ .xn D yn/:

Then it is easily checked that E1 is a K� equivalence relation on .2N/N . If G is a
Polish group and .g; x/ 7! g 	 x is a continuous action of G on the Polish space X ,
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then we say that X is a Polish G-space. More generally, if .g; x/ 7! g 	 x is a Borel
action of G on X , then we say that X is a Borel G-space. In both cases, we denote
the associated orbit equivalence relation by EX

G . By Kechris–Louveau [21], if G is
a Polish group and X is a Borel G-space, then E1 —B E

X
G . In particular, E1 is not

essentially countable. Conversely, Hjorth–Kechris [15] have conjectured that if E is
a Borel equivalence relation such that E1 —B E, then there exists a Polish group G
and a Borel G-space X such that E �B EX

G . (In [15], Hjorth–Kechris conjecture
that there exist G, X such that E �B EX

G . However, making use of Theorem 1.5 of
Kechris [18], it follows easily that the equivalence relation constructed in Hjorth [13]
is a counterexample to this stronger conjecture.)

Example 3.4. Regarding f0; 1g as the cyclic group of order 2, the Cantor space 2N

is a compact group with respect to the operation of pointwise addition. Identifying
2N with the powerset P .N/, the group operation in 2N corresponds to the symmetric
difference operation on P .N/, defined by

A�B D .A X B/ [ .B X A/:
The summable ideal is the subgroup �2 of P .N/ defined by

�2 D ˚
A � N j P

n2A

1
nC1

< 1�I

and E2 is the orbit equivalence relation arising from the translation action of �2 on
P .N/. It is easily checked that �2 is a Polish group with respect to the topology
generated by the complete metric

d.A;B/ D
X

n2A�B

1

nC 1

and that E2 is a K� equivalence relation on P .N/. For later use, we note that
Hjorth [11, 3.26] has shown that the action of the summable ideal �2 on P .N/ is
turbulent. In particular, it follows that E2 is not essentially countable.

The following result strongly suggests the conjecture that ifE is aK� equivalence
relation which is not essentially countable, thenE involves eitherE1 or else a turbulent
Borel equivalence relation.

Theorem 3.5. Let E be a K� equivalence relation on the Polish space X . If there
exists a Polish groupG and a BorelG-space Y such thatEY

G is Borel andE �B E
Y
G ,

then exactly one of the following two conditions holds:

(a) There exists a countable Borel equivalence relation F such that E �B F .

(b) There exists a turbulent Polish G-space Z such that EZ
G �B E.
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The proof of Theorem 3.5 makes use of the following result.

Lemma 3.6. Let E be a K� equivalence relation on the Polish space X . Suppose
that G is a Polish group and that Y is a Borel G-space such that EY

G is Borel and

E �B E
Y
G . Then there existsG-invariant Borel subset Y0 � Y such that E �B E

Y0

G .

Proof. Suppose that f W X ! Y is a Borel reduction from E to F D EY
G . Consider

the Borel relation
R D f.y; x/ 2 Y �X j y F f .x/g:

For each y 2 Y , the section Ry D fx 2 X j .y; x/ 2 Rg is either an E-class
or else the empty set. In particular, each Ry is a K� subset of X . Hence by the
Arsenin–Kunugui Theorem [20, 35.46], the G-invariant subset

Y0 D fy 2 Y j .9x 2 X/ .y; x/ 2 Rg
is Borel and there exists a Borel map g W Y0 ! X such that .y; g.x// 2 R for all
y 2 Y0. Clearly f is a Borel reduction from E to F � Y0 and g is a Borel reduction
from F � Y0 to X .

Proof of Theorem 3.5. Applying Lemma 3.6, we can suppose that E �B EY
G . By

Hjorth [11], conditions (a) and (b) are mutually exclusive. Suppose that condition (b)
fails. By Hjorth [12], there exists a Borel S1-space Z such that EZ

S1
�B EY

G .
HenceEZ

S1
�B E and this implies that the S1-spaceZ is potentially F� . Hence by

Hjorth–Kechris [14, 3.8], there exists a countable Borel equivalence relation F such
that F �B EZ

S1
.

4. Universal K� equivalence relations

Recall that a K� equivalence relation E is said to be universal iff F �B E for every
K� equivalence relation F . The existence of universalK� equivalence relations was
established by Kechris [19] and Louveau–Rosendal [22]. In this section, we shall show
that the growth rate equivalence relation and the quasi-isometry relation for connected
4-regular graphs are both complete K� equivalence relations. Both of these results
are straightforward consequences of the following result of Rosendal [24].

Definition 4.1. Let X0 D Q
n�1Œ1; n�, where Œ1; n� D f1; : : : ; ng. Then EK�

is the
equivalence relation defined on X0 by

˛ EK�
ˇ iff .9k/ .8n/ j˛.n/ � ˇ.n/j � k:

Theorem 4.2 (Rosendal [24]). EK�
is a complete K� equivalence relation.
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Definition 4.3. Two strictly increasing functions f , g W NC ! NC are said to have
the same growth rate, written f 
 g, iff there exists an integer t � 1 such that

f .n/ � g.tn/ and g.n/ � f .tn/

for all n � 1.

Theorem 4.4. 
 and EK�
are Borel bireducible.

Proof. By identifying each strictly increasing function f W NC ! NC with its range,
we can regard 
 as an equivalence relation on the collection ŒNC�! of infinite subsets
of NC. It is then easily seen that 
 extends to aK� equivalence relation on the whole
of the Cantor space P .NC/ D 2NC

and it follows that 
 �B EK�
.

In order to see thatEK�
�B 
, first let .nk/k�1 be any strictly increasing sequence

of elements of NC such that nkC1 � nk � k for all k. Then for each ˛ 2 X0, let
A˛ � fm 2 NC j m � 2n1g be the subset such that for all k � 1,

A˛ \ Œ 2nk ; 2nkC1/ D Œ 2nk ; 2nkC˛.k//;

and let f˛ W NC ! NC be the corresponding increasing enumeration function. We
shall prove that the map ˛ 7! f˛ is a Borel reduction from EK�

to 
.
First suppose that ˛; ˇ 2 X0 satisfy f˛ 
 fˇ and let t � 1 be an integer such that

f˛.m/ � fˇ .tm/ and fˇ .m/ � f˛.tm/

for all m � 1. We shall show that j˛.k/ � ˇ.k/j < log2.t C 1/ for all k � 1 and
hence that ˛ EK�

ˇ. To see this, fix some k � 1 and suppose that ˇ.k/ � ˛.k/;
say, ˇ.k/ D ˛.k/ C ck . Let r; s 2 NC be such that f˛.r/ D 2nkC˛.k/ � 1 and
fˇ .s/ D 2nkCˇ.k/ � 1. Then r � 2nkC˛.k/ � 1 and

s � 2nkCˇ.k/ � 2nk D 2nkC˛.k/Cck � 2nk :

Notice that
fˇ .s/ < f˛.r C 1/ � fˇ .t.r C 1//

and so
2nkC˛.k/Cck � 2nk < t 2nkC˛.k/;

which implies that

t >
2nkC˛.k/Cck � 2nk

2nkC˛.k/
> 2ck � 1:

Thus ck < log2.t C 1/, as required.
Next suppose that ˛; ˇ 2 X0 satisfy ˛ EK�

ˇ and let N � 1 be an integer such
that j˛.k/ � ˇ.k/j � N for all k � 1. Let t D 2N C1. We shall show that

f˛.r/ � fˇ .t r/ and fˇ .r/ � f˛.t r/
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for all r � 1 and hence f˛ 
 fˇ . Fix some r � 1. By symmetry, it is enough to show
that f˛.r/ � fˇ .t r/. Suppose that f˛.r/ 2 Œ2nk ; 2nkC˛.k//; say, f˛.r/ D 2nk C d .
Then r � 2nk�1.2˛.k�1/ � 1/ C d . Let s D 2nk�1Cˇ.k�1/ C d . Then clearly
f˛.r/ � fˇ .s/. Let a D ˛.k � 1/, b D ˇ.k � 1/ and c D d=2nk�1 . Then

s

r
� 2nk�1Cˇ.k�1/ C d

2nk�1.2˛.k�1/ � 1/C d

D 2b C c

2a � 1C c

� 2b C c

2a�1 C c

� 2N C1 C e

1C e
where e D c=2a�1

� 2N C1:

Thus f˛.r/ � fˇ .s/ � fˇ .t r/, as required.

Remark 4.5. Combining Theorems 3.2 and 4.4, we see that �QI �B 
. Thus, in this
technical sense, a suitably chosen growth rate is a complete invariant for the quasi-
isometry relation for finitely generated groups. Unfortunately, the above argument
does not yield an explicit “group theoretic” reduction from �QI to 
. Similarly,
although Theorems 3.1 and 4.4 imply that Š �B 
, there are no known explicit “group
theoretic” reductions from the isomorphism relation to the growth rate equivalence
relation.

The remainder of this section is devoted to the proof of the following result.

Theorem 4.6. The quasi-isometry relation on the space of connected 4-regular graphs
is a complete K� equivalence relation.

The proof of Theorem 4.6 will proceed in two steps. First, for each ˛ 2 X0, we
shall define a connected graph �˛ such that the following conditions are satisfied:

� Every vertex v 2 �˛ has valency at most 4.
� If ˛; ˇ 2 X0, then ˛ EK�

ˇ iff �˛ , �ˇ are quasi-isometric.

Then we shall extend each �˛ to a 4-regular graph �C̨ such that the inclusion map
�˛ ,! �C̨ is a quasi-isometry.

Definition 4.7. For each ˛ 2 X0, let f˛ W Z ! N be the function defined by

f˛.n/ D
(
22nC˛.n/; if n � 1;

4; if n � 0.
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Then �˛ D hV˛; A˛i be the graph with vertex set

V˛ D f.n; i/ j n 2 Z; 0 � i < f˛.n/g
and adjacency relation A˛ defined by .n; i/ A˛ .m; j / iff one of the following con-
ditions holds:

(i) i D j D 0 and jn �mj D 1; or

(ii) n D m and ji � j j D 1; or

(iii) n D m and fi; j g D f0; f˛.n/ � 1g.

In other words, �˛ consists of the “spine” f.n; 0/ j n 2 Zg, together with a cycle

C ˛
n D f.n; i/ j 0 � i < f˛g

of length f˛.n/ attached to each vertex .n; 0/.

Lemma 4.8. If ˛ EK�
ˇ, then �˛ and �ˇ are quasi-isometric.

Proof. Since ˛ EK�
ˇ, there exists an integer k � 1 such that

j˛.n/ � ˇ.n/j � k for all n 2 NC:

Hence for each n 2 NC, there exists an integer 1 � tn � 2k such that either
jC ˇ

n j D tnjC ˛
n j or jC ˛

n j D tnjC ˇ
n j. Let ' W V˛ ! Vˇ be the map defined by

'.n; i/ D

8̂<
:̂
.n; tni/; if n 2 NC and jC ˇ

n j D tnjC ˛
n j;

.n; bi=tnc/; if n 2 NC and jC ˛
n j D tnjC ˇ

n j;
.n; i/; if n � 0.

We shall show that ' is a quasi-isometry between �˛ and �ˇ . From now on, let d˛ ,
dˇ denote the path metrics on �˛ , �ˇ respectively.

First it is clear that dˇ .z; 'ŒV˛�/ < 2k for all z 2 Vˇ . It is easily checked that if
x; y 2 C ˛

n for some n 2 Z, then

1

2k
d˛.x; y/ � 1 � dˇ .'.x/; '.y// � 2kd˛.x; y/:

Finally suppose that x 2 C ˛
n and y 2 C ˛

m for some n < m 2 Z. Then

d˛.x; y/ D d˛.x; .n; 0//C .m � n/C d˛..m; 0/; y/

and

dˇ .'.x/; '.y// D dˇ .'.x/; .n; 0//C .m � n/C dˇ ..m; 0/; '.y//:

It follows easily that

1

2k
d˛.x; y/ � 2 � dˇ .'.x/; '.y// � 2kd˛.x; y/:

Hence ' is a quasi-isometry.
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In the proof of the converse, we shall make use of the notion of a “taut loop”, as
defined by Bowditch [2]. For the purposes of this paper, it is enough to know that
each of the cycles C ˛

n is a taut loop of �˛ .

Definition 4.9. For each graph � , let H.�/ D fj� j j � is a taut loop of �g.

For example, we have that

H.�˛/ D ff˛.n/ j n 2 Zg D f22nC˛.n/ j n 2 NCg [ f4g:
Definition 4.10. Let k � 1 be an integer. Then two subsets A;B � NC are said to
be k-related iff the following two conditions are satisfied:

(a) For all a 2 A, there exists b 2 B such that a=k � b � ka.

(b) For all b 2 B , there exists a 2 A such that b=k � a � kb.

Lemma 4.11 (Bowditch [2]). If � , � 0 are connected quasi-isometric graphs, then
there exists an integer k � 1 such that H.�/, H.� 0/ are k-related.

Lemma 4.12. If �˛ and �ˇ are quasi-isometric, then ˛ EK�
ˇ.

Proof. By Lemma 4.11, since �˛ and �ˇ are quasi-isometric, there exists a positive
integer k such that H.�˛/, H.�ˇ / are k-related. Let n be any integer such that
n > minf3; log2 kg. Then there exists an integer m � 1 such that

22nC˛.n/

k
� 22mCˇ.m/ � k 22nC˛.n/:

Using the first inequality, together with the fact that k < 2n, we obtain that

2m Cm > 2n � n:
Since n > 3, this implies that m � n. Similarly, using the second inequality, we
obtain that

2m < 2n C 2n

and hence m � n. Thus we have that

22nC˛.n/

k
� 22nCˇ.n/ � k 22nC˛.n/I

and hence, after dividing throughout by 22n
, we obtain that

2˛.n/

k
� 2ˇ.n/ � k 2˛.n/:

Thus for all n > minf3; log2 kg, we have that

˛.n/ � log2 k � ˇ.n/ � ˛.n/C log2 kI
and this implies that ˛ EK�

ˇ.
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Finally we extend each graph �˛ to a connected 4-regular graph �C̨ as follows.
First note that for all n 2 Z,

• the vertex .n; 0/ has valency 4; and
• if i ¤ 0, then the vertex .n; i/ has valency 2.

For each vertex w D .n; i/ with i ¤ 0, let �w be the graph on the vertex set
Vw D faw ; bw ; cw ; dw ; ewg, obtained from the complete graph on Vw by removing
the edge faw ; bwg. Then we obtain �C̨ by attaching each �w to w via the two new
edges fw; awg and fw; bwg. Clearly the inclusion map�˛ ,! �C̨ is a quasi-isometry.
This completes the proof of Theorem 4.6.

5. The quasi-equality relation

In the remaining sections of this paper, we shall study the Borel complexity of the
virtual isomorphism relation. This relation can be regarded as being constructed
from two simpler equivalence relations; namely, the commensurability and the quasi-
equality relations.

Definition 5.1. IfG;H 2 G , thenG andH are said to be (abstractly) commensurable,
written G1 �C G2, iff there exist subgroups Hi 6 Gi of finite index such that
H1 Š H2.

It is well known that if G is a finitely generated group, then there exist only
countably many groups H up to isomorphism such that G �C H and it follows that
the commensurability relation �C is a countable Borel equivalence relation on the
space G of finitely generated groups.

Theorem 5.2 (Thomas [29]). The commensurability relation �C on G is a universal
countable Borel equivalence relation.

In this section, we shall determine the precise Borel complexity of the quasi-
equality relation, which is defined as follows.

Definition 5.3. If G;H 2 G , then G and H are said to be quasi-equal, written
G ' H , iff there exist finite normal subgroups N E G and M E H such that
G=N D H=M as marked groups.

In other words, if G D F1=A and H D F1=B , then G ' H iff there exists
a normal subgroup N such that A;B 6 N E F1 and ŒN W A�, ŒN W B� < 1.
Clearly this is true iff ŒAB W A�, ŒAB W B� < 1. Hence we obtain the following
characterization of the corresponding equivalence relation on N , which we shall also
denote by '.
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Lemma 5.4. If A;B 2 N , then A ' B iff ŒA W A \ B�, ŒB W A \ B� < 1.

In the next section, the following result will play a key role in the proof that the
virtual isomorphism relation �VI is a K� equivalence relation.

Proposition 5.5. The quasi-equality ' relation on the space G of finitely generated
groups is a K� equivalence relation.

Proof. We shall show that the corresponding equivalence relation ' on N isK� . Fix
some m � 1. For each t � 1, consider the relation Rm

t defined on Nm by

A Rm
t B iff ŒA W A \ B� � t and ŒB W A \ B� � t:

Note that ŒA W A \ B� > t iff there exist a1; : : : ; atC1 2 A such that a�1
i aj … B for

all 1 � i < j � t C 1, which is clearly an open relation. Hence Rm
t is a compact

subset of Nm � Nm and it follows that ' is a K� relation on N .

The remainder of this section will be devoted to the proof of the following result.

Theorem 5.6. ' and E1 are Borel bireducible.

One direction of Theorem 5.6 is implicitly contained in Thomas [27].

Lemma 5.7. E1 �B '.

Proof. For each x 2 .2N/N , let �x be the corresponding finitely generated group as
defined in Thomas [27, Section 3]. Then the proof of Thomas [27, Lemma 3.5] shows
that if x E1 y, then �x ' �y . On the other hand, by Thomas [27, Lemma 3.7], if
�x �VI �y , then x E1 y. Of course, it follows that if �x ' �y , then x E1 y.

The other direction is an immediate consequence of the following result, together
with the work of Kechris–Louveau [21].

Theorem 5.8. The quasi-equality relation ' is hypersmooth.

Here the Borel equivalence relation F is said to be hypersmooth iff it can be
written as F D S

n Fn, where F0 � F1 � F2 � 	 	 	 is an increasing sequence
of smooth Borel equivalence relations. By Kechris–Louveau [21], there are only
two nonsmooth hypersmooth Borel equivalence relations up to Borel bireducibility;
namely, E1 and the Vitali equivalence relation E0 on the Cantor space 2N , which is
defined by

x E0 y iff x.n/ D y.n/ for all but finitely many n.



The quasi-isometry and virtual isomorphism problems 297

Furthermore, it is well known that E0 <B E1. Hence, combining Lemma 5.7 and
Theorem 5.8, it follows that ' �B E1.

Turning to the proof of Theorem 5.8, for each A 2 N , let GA D F1=A 2 G

be the corresponding marked group. As explained above, we shall be concerned
with the collection of quotients of GA by finite normal subgroups. By Dicman’s
Lemma [31, Lemma 1.3], if g1; : : : ; gt are elements of GA, each having finite order
and each having only finitely many conjugates inGA, then there exists a finite normal
subgroup N E GA such that g1; : : : ; gt 2 N . Hence we can define a characteristic
subgroup �C.GA/ of GA by

�C.GA/ D fg 2 GA j g is contained in a finite normal subgroup of GAg:
Let AC 2 N be the corresponding normal subgroup of F1 such that

F1=AC D GA=�
C.GA/:

Then the quotients of GA by finite normal subgroups correspond to precisely those
N 2 N such that A 6 N 6 AC and ŒN W A� < 1. Also notice that if M 2 N is a
normal subgroup such that A 6 M 6 AC and ŒM W A� < 1, then MC D AC.

From now on, fix a linear ordering � of the free group F1 of order type ! and let
U W N ! N be the Borel map defined as follows.

• If �C.GA/ D 1, then U.A/ D A.
• Otherwise, let g 2 AC X A be the �-least element and let U.A/ be the normal

closure of A [ fgg in F1.

We shall show that if A;B 2 N , then

A ' B iff there exist n;m � 1 such that U n.A/ D Um.B/:

By Dougherty–Jackson–Kechris [4, Theorem 8.1], this implies that ' is hypersmooth,
as required.

Lemma 5.9. If A 2 N , then A 6 U.A/ 6 AC and ŒU.A/ W A� < 1.

Proof. This is an immediate consequence of the definition of U.A/.

Lemma 5.10. If A 2 N and N 2 N is a normal subgroup such that A 6 N 6 AC
and ŒN W A� < 1, then there exists n � 1 such that N 6 U n.A/.

Proof. Recall that if M 2 N is a normal subgroup such that A 6 M 6 AC and
ŒM W A� < 1, then MC D AC. It follows that for each g 2 AC, there exists an
integer ` � 1 such that g 2 U `.A/. Since N is finitely generated over A, the result
follows.
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Lemma 5.11. If A;B 2 N and there exist n, m � 1 such that U n.A/ D Um.B/,
then A ' B .

Proof. Applying Lemma 5.9 repeatedly, it follows that if A 2 N , then A ' U n.A/

for all n � 1. The result follows.

Lemma 5.12. If A;B 2 N and A ' B , then there exist n;m � 1 such that
U n.A/ D Um.B/.

Proof. Since A ' B , it follows that ŒAB W A�, ŒAB W B� < 1 and this implies that
AC D .AB/C D BC. If ŒAC W A� < 1, then ŒBC W AB� D ŒAC W AB� < 1 and
so ŒBC W B� < 1. Hence, applying Lemma 5.10, there exist integers n, m � 1 such
that

U n.A/ D AC D BC D Um.B/:

Thus we can suppose that ŒAC W A� D ŒBC W B� D 1. Applying Lemma 5.10 once
more, there exist integers s, t � 1 such that AB 6 U s.B/ 6 U t .A/. Let s0 � s be
maximal such that U s0.B/ 6 U t .A/. Suppose inductively that ` � 0 and that we
have defined integers si for 0 � i � ` and elements gj 2 AC D BC for 0 � j < `

such that the following conditions are satisfied:

(a) s0 < s1 < 	 	 	 < s`.

(b) g0 � g1 � 	 	 	 � g`�1.

(c) si is maximal such that U si .B/ 6 U tCi .A/.

(d) gj is the �-least element of both BC X U sj .B/ and AC X U tCj .A/.

Notice that condition (d) implies that:

• U tCj C1.A/ is the normal closure of U tCj .A/ [ fgj g in F1; and
• U sj C1.B/ is the normal closure of U sj .B/ [ fgj g in F1.

Now let g` be the �-least element of BC X U s`.B/. By the maximality of s`, we
must have that g` … U tC`.A/. Since

U s`.B/ 6 U tC`.A/ 6 AC D BC;

it follows that g` is also the �-least element ofAC XU tC`.A/. In particular, it follows
that U s`C1.B/ 6 U tC`C1.A/ and we can let s`C1 � s` C 1 be maximal such that
U s`C1.B/ 6 U tC`C1.A/. Thus the induction can be completed.

By Lemma 5.10, there exists an integer ` � 0 such that U t .A/ 6 U s`C1.B/.
Since

g0; g1; : : : ; g` 2 U s`C1.B/ 6 U tC`C1.A/

and U tC`C1.A/ is the normal closure of U t .A/ [ fg0; g1; : : : ; g`g in F1, it follows
that U s`C1.B/ D U tC`C1.A/. This completes the proof of Lemma 5.12.
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6. The virtual isomorphism relation

In this final section, we shall continue our study of the Borel complexity of the virtual
isomorphism relation �V . More precisely, we shall prove that

.E1 �E1/ �B �VI <B EK�
:

(Recall that E1 denotes the universal countable Borel equivalence relation and that
EK�

denotes the universal K� equivalence relation.) We shall begin by proving the
lower bound.

Theorem 6.1. .E1 �E1/ �B �VI.

We shall make of the following two lemmas, which are straightforward conse-
quences of the earlier results of Thomas [27] and Thomas–Velickovic [30].

Lemma 6.2. There exists a prime p > 5 and a Borel map x 7! �x from .2N/N to G

such that the following conditions are satisfied:

(a) Each �x is generated by two elements of order p.

(b) Each �x has no proper subgroups of finite index.

(c) If N is a finite normal subgroup of �x , then there exists y 2 .2N/N such that
x E1 y and �x=N Š �y .

(d) �x �VI �y iff x E1 y.

(e) �x Š �y iff x D y.

(f) If  W �x ! �y is an embedding, then  is an isomorphism.

Proof. For each x 2 .2N/N , let �x be the corresponding finitely generated group as
defined in Thomas [27, Section 3]. Then there exists a primep > 5 such that each�x is
generated by two elements of orderp; and conditions (b)–(e) hold by Lemmas 3.4–3.7
of Thomas [27]. Finally suppose that  W �x ! �y is an embedding. Since Z.�y/

contains no elements of orderp, it follows that induces a nontrivial homomorphism

 0 W �x ! �y=Z.�y/:

As every nonidentity element of�y=Z.�y/ has orderp and every nonidentity element
of Z.�x/ has a finite order which is coprime to p, it follows that Z.�x/ 6 ker 0.
Since �x=Z.�x/, �y=Z.�y/ are infinite simple groups which have no proper infinite
subgroups, it follows that ker 0 D Z.�x/ and that  0 induces an isomorphism

 00 W �x=Z.�x/ ! �y=Z.�y/:

Arguing as in the proof of Thomas [27, Lemma 3.4], this implies that  is an isomor-
phism.
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Lemma 6.3. There exists a Borel reduction t 7! Gt fromE1 to the commensurability
relation �C on G such that for each t 2 2F2 :

(a) Gt has no nontrivial finite normal subgroups.

(b) Gt has no elements of order q for any prime q > 5.

Proof. By Thomas–Velickovic [30], there exists a Borel reduction t 7! Ht fromE1
to the isomorphism relation Š on G such that each Ht has no elements of order q
for any prime q > 5. Let S be a fixed infinite finitely generated simple group with
no elements of finite order. (For the existence of such a group, see Ol’shanskii [23].)
Consider the Borel map G ! G defined by

A 7! .Alt.5/ wr A/ wr S:

By Thomas [27, Theorem 2.5], if A;B 2 G , then

A Š B iff .Alt.5/ wr A/ wr S �VI .Alt.5/ wr B/ wr S:

Furthermore, by Thomas [27, Lemma 2.2], each .Alt.5/wrA/wrS has no nontrivial
finite normal subgroups and it follows that the same is true of each subgroup of finite
index in .Alt.5/ wr A/ wr S . Hence if A;B 2 G , then

A Š B iff .Alt.5/ wr A/ wr S �C .Alt.5/ wr B/ wr S:

It follows that the map

t 7! Gt D .Alt.5/ wrHt / wr S

satisfies our requirements.

Proof of Theorem 6.1. For each x 2 .2N/N and t 2 2F2 , let �x andGt be the finitely
generated groups given by Lemmas 6.2 and 6.3 respectively. We shall show that the
map .2N/N � 2F2 ! G , defined by

.x; t/ 7! �x �Gt ;

is a Borel reduction from .E1 � E1/ to �VI. Of course, by Lemmas 6.2 and 6.3,
if .x; t/ .E1 �E1/ .y; u/, then �x � Gt �VI �y � Gu. Conversely, suppose that
�x � Gt �VI �y � Gu. Then there exist subgroups of finite index H 6 �x � Gt ,
K 6 �y �Gu and finite normal subgroupsN ,M ofH ,K such thatH=N Š K=M .
Since Œ�x W �x \H� < 1 and �x has no proper subgroups of finite index, it follows
that �x 6 H . Similarly, �y 6 K and it follows that there exist subgroups G0

t , G0
u of

finite index in Gt , Gu such that H D �x � G0
t and K D �y � G0

u. Since Gy , Gu

have no nontrivial finite normal subgroups, the same is also true ofG0
y ,G0

u. It follows
that N , M are actually normal subgroups of �x , �y . By Lemma 6.2, there exist x0,
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y0 2 .2N/N with x0 E1 x and y0 E1 y such that �x=N Š �x0 and �y=M Š �y0 .
Thus the isomorphism H=N Š K=M induces an isomorphism

 W �x0 �G0
t ! �y0 �G0

u:

Recall that �x0 is generated by two elements of prime order p > 5. By Lemma 6.3,
Gu contains no elements of order p and this implies that  .�x0/ 6 �y0 . Hence, by
Lemma 6.2, we have that  .�x0/ D �y0 and thus x0 D y0. In particular, it follows
that x E1 y. It also follows that  induces an isomorphism

.�x0 �G0
t /=�x0 ! .�y0 �G0

u/=�y0

and so G0
t Š G0

u. In other words, we have that Gt �C Gu and hence t E1 u. Thus
.x; t/ .E1 �E1/ .y; u/, as required.

In the remainder of this section, we shall prove that �VI <B EK�
. Of course, the

next theorem implies the weaker result that �VI �B EK�
.

Theorem 6.4. The virtual isomorphism �VI relation on the space G of finitely gen-
erated groups is a K� equivalence relation.

Before we can prove Theorem 6.4, we shall first need to prove the corresponding
result for the following slightly simpler equivalence relation on G .

Definition 6.5. Two finitely generated groups G1; G2 2 G are said to be isomorphic
up to finite kernels, written G1 �FK G2, iff there exist finite normal subgroups
Ni E Gi such that G1=N1 Š G2=N2.

Lemma 6.6. �FK is a K� equivalence relation on G .

Proof. We shall show that the corresponding equivalence relation �FK on N is K� .
To see this, first note that if N;M 2 N , then the following are equivalent:

• N �FK M .
• There exist N � ' N and M � ' M such that F1=N � Š F1=M �.
• There exist N � ' N , M � ' M and ' 2 Autf .F1/ such that '.N �/ D M �.
• There exists ' 2 Autf .F1/ such that '.N / ' M .

Since ' is aK� equivalence relation on N and each ' 2 Autf .F1/ induces a homeo-
morphism of N , it follows that �FK is also a K� equivalence relation on N .

Proof of Theorem 6.4. Once again, we shall show that the corresponding equivalence
relation �VI on N is K� . Clearly it is enough to show that each of the restrictions
�VI� .Nm � Nm/ is K� . From now on, fix some m � 2. Suppose that N;M 2 Nm

satisfy N �VI M . Then there exist
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• N E H 6 Fm,
• M E K 6 Fm

such that ŒFm W H�, ŒFm W K� < 1 and H=N �FK K=M . Suppose that H , K are
freely generated by fw1; : : : ; wrg, fz1; : : : ; zsg respectively. Let ' W Fr ! H and
 W Fs ! K be the isomorphisms defined by '.xi / D wi and  .xj / D zj . Let
Sm be the compact space of all subgroups of Fm. Then ',  induce a continuous
injection

� W Nr � Ns ! Sm � Sm;

.A;B/ 7! . '.A/;  .B//:

LetR denote the restricted relation �FK� Nr �Ns . ThenR is aK� subset of Nr �Ns

and hence �ŒR� is a K� subset of Sm � Sm. It follows that

T D �ŒR� \ .Nm � Nm/

is a K� subset of Nm � Nm such that T � �VI � .Nm � Nm/ and .N;M/ 2 T .
Since there are only countably many possibilities for H , K, ' and  , it follows that
�VI� .Nm � Nm/ is a K� equivalence relation.

Our proof thatEK�
—B �VI makes use of the following upper bound on the Borel

complexity of �VI.

Definition 6.7 (Friedman–Stanley [7]). Suppose thatE is a Borel equivalence relation
on the Polish space X . Then EC is the Borel equivalence relation defined on XN by

.x0; : : : ; xn; : : : / E
C .y0; : : : ; yn; : : : / iff fŒxn�E j n 2 Ng D fŒyn�E j n 2 Ng:

Theorem 6.8. �VI <B E
C
1 .

Theorem 6.8 is an easy consequence of the following lemma, which will be proved
at the end of this section.

Lemma 6.9. There exists a sequence . n/n2N of Borel maps  n W N ! N such
that for each N 2 N ,

fŒ n.N /�' j n 2 Ng D fŒL�' j L 2 N ; L �VI N g:
Proof of Theorem 6.8. Let . n/n2N be the sequence of Borel maps  n W N ! N

given by Lemma 6.9. Then

N �VI M iff fŒL�' j L 2 N ; L �VI N g D fŒL�' j L 2 N ; L �VI M g
iff fŒ n.N /�' j n 2 Ng D fŒ n.M/�' j n 2 Ng
iff . n.N //n2N 'C . n.M//n2N :
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By Theorem 5.6, there exists a Borel reduction ' W N ! .2N/N from ' to E1. It
follows that the map

N 7! ..' B  n/.N //n2N

is a Borel reduction from �VI to EC
1 and so �VI �B E

C
1 .

Next note that �VI �B EK�
and that Ecntble D id.2N/C �B EC

1 . It is well
known that EK�

and Ecntble are incomparable with respect to Borel reducibility. (For
example, see Louveau–Rosendal [22].) It follows that EC

1 —B �VI.

The following lemma is an immediate consequence of Kanovei–Reeken [17].

Lemma 6.10. If G is a Polish group and X is a turbulent Polish G-space, then
EX

G —B E
C
1 .

It is now easy to complete the proof that EK�
—B �VI.

Theorem 6.11. �VI <B EK�
.

Proof. We have already seen that �VI �B EK�
. By Lemma 6.10, letting E2 be the

orbit equivalence relation arising from the turbulent action of the summable ideal �2

on P .N/, we have thatE2 —B E
C
1 . SinceE2 is aK� equivalence relation on P .N/,

we also have thatE2 �B EK�
. Since �VI <B E

C
1 , it follows thatEK�

—B �VI.

Thus it only remains to prove Lemma 6.9. During the proof, we shall need to
work with the relation �C on N which corresponds to the commensurability relation
on G . This relation is not as transparent as that corresponding to the �FK relation
on G . For this reason, before presenting the proof of Lemma 6.9, we shall illustrate
the meaning of the �C relation on N by analyzing a simple example.

Example 6.12. To facilitate readability, we shall write x, y, z, t instead of x1, x2,
x3, x4. Let N , M be the normal subgroups of F2 defined by

• N D the normal closure of fŒx; y�; y2g in F2;
• M D the normal closure of fŒx; y�; y3g in F2.

Then F2=N Š Z ˚ C2 and F2=N Š Z ˚ C3, where Cn denotes the cyclic group
of order n. In particular, we have that N �C M . More precisely, if H , K 6 F2 are
the kernels of the canonical homomorphisms F2=N ! C2 and F2=M ! C3, then
H=N Š Z Š K=M . Clearly S D f1; yg and T D f1; y; y2g are Schreier transver-
sals ofH ,K in F2. (For an account of Schreier’s Theorem, see [25, Proposition 16].)
Hence, by Schreier’s Theorem, we have that

• H D the subgroup of F2 freely generated by fx; y2; yxy�1g;
• K D the subgroup of F2 freely generated by fx; y3; yxy�1; y2xy�2g.
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Unfortunately, rank.H/ ¤ rank.K/. However, this can be remedied by identifying
H ,K with the appropriate subgroups of finite index in Fm form > 2. In more detail,
if m > 2 and we identify N with its image under the embedding N2 ,! Nm, then
H can be identified with the kernel of the homomorphism Fm=N ! C2. Clearly
S D f1; yg remains a Schreier transversal ofH in Fm; andH is now freely generated
as a subgroup of Fm by

fx; y2; yxy�1g [ fx`; yx`y
�1 j 3 � ` � mg:

Hence, regarding H , K as subgroups of F4, F3 respectively, we have that H , K are
freely generated by

� fx; y2; yxy�1; z; yzy�1; t; yty�1g,
� fx; y3; yxy�1; y2xy�2; z; yzy�1; y2zy�2g

respectively. Letting ' W H ! F7 and W K ! F7 be the obvious isomorphisms, we
have that F7='.N / Š F7= .M/. Thus, identifying '.N /,  .M/ with their images
under the embedding N7 ,! N , there exists an automorphism � 2 Autf .F1/
such that �.'.N // D  .M/. The proof of Lemma 6.9 is based on the fact that if
N;M 2 N are arbitrary, then N �C M iff corresponding maps ',  and � exist.

In the general case, if H , K 6 Fn are subgroups such that ŒFn W H� D a and
ŒFn W K� D b, then rank.H/ D a.n�1/C1 and rank.K/ D b.n�1/C1. Hence there
are suitable integers r , s � n such that after identifyingH ,K with the corresponding
subgroups of Fr , Fs , we have that rank.H/ D rank.K/. Also note that if we identify
the above normal subgroup N 2 N2 with its image in N , then H corresponds to the
subgroup of F1 freely generated by

fx; y2; yxy�1g [ fx`; yx`y
�1 j ` � 3g:

Proof of Lemma 6.9. Suppose that N;M 2 N satisfy N �VI M . Fix some m � 2

such that N;M 2 Nm. Then there exist
� N E H 6 Fm

� M E K 6 Fm

such that ŒFm W H�, ŒFm W K� < 1 and H=N �FK K=M . Suppose that H , K
are freely generated by W D fw1; : : : ; wrg, Z D fz1; : : : ; zsg respectively and let
S D fs1; : : : ; sd g, T D ft1; : : : ; teg be Schreier transversals ofH ,K in Fm. Applying
Schreier’s Theorem [25, Proposition 16], we see that H , K correspond naturally to
the subgroups H�, K� of F1 freely generated by

W � D W [ fsixns
�1
i j 1 � i � d; n > mg;

Z� D Z [ ftjxnt
�1
j j 1 � j � e; n > mg

in the sense that, identifying N , M with their images under the injection Nm ! N ,
we have that H�=N Š H=N and K�=M Š K=M . In particular, we have that
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H�=N �FK K
�=M . Let 'H;S W H� ! F1 be the isomorphism sending the ordered

basis

w1; w2; : : : ; wr ; s1xmC1s
�1
1 ; s2xmC1s

�1
2 ; : : : ; sdxmC1s

�1
d ; s1xmC2s

�1
1 ; : : :

to the ordered basis x1; x2; : : : ; xn; : : : ; and define 'K;T W K� ! F1 in a similar
fashion. Then F1='H;S .N / �FK F1='K;T .M/ and hence there exists an automor-
phism � 2 Autf .F1/ such that �.'H;S .N // ' 'K;T .M/. Let 	 W H� ! K� be the
isomorphism defined by 	 D '�1

K;T B � B 'H;S . Then 	 induces an associated Borel
partial map

	 W N ! N ;

A 7! 	.A/

with dom 	 D fA 2 N j A 6 H� and 	.A/ E F1g. (Of course, there usually exist
A 2 N withA 6 H� such that 	.A/ μ F1 and hence 	.A/ … N .) Clearly the Borel
partial map 	 W N ! N satisfies the following conditions:

(i) 	.N / ' M .

(ii) If A 2 dom 	 , then A �C 	.A/ and so A �VI 	.A/.

Note that since 	 is uniquely determined by

� the subgroups of finite index H , K 6 Fm,

� the bases W , Z of H , K,

� the Schreier transversals S , T of H , K in Fm, and

� the automorphism � 2 Autf .F1/,
it follows that there are only countably many possibilities for 	 . Finally for each such
Borel partial map 	 , let  W N ! N be the Borel map defined by

 .N/ D
(
	.N /; if N 2 dom 	 ;

N; otherwise.

This completes the proof of Lemma 6.9.
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