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Rips construction and Kazhdan property (T)

Igor Belegradek and Denis Osin�

Abstract. We show that for any non-elementary hyperbolic group H and any finitely presented
group Q, there exists a short exact sequence 1 ! N ! G ! Q ! 1, where G is a hyperbolic
group and N is a quotient group of H . As an application we construct a hyperbolic group
that has the same n-dimensional complex representations as a given finitely generated group,
show that adding relations of the form xn D 1 to a presentation of a hyperbolic group may
drastically change the group even in case n � 1, and prove that some properties (e.g. properties
(T) and FA) are not recursively recognizable in the class of hyperbolic groups. A relatively
hyperbolic version of this theorem is also used to generalize results of Ollivier–Wise on outer
automorphism groups of Kazhdan groups.
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1. Introduction and main results

Given any finitely presented group Q, the Rips construction [33] produces a short
exact sequence

1 ! N ! G ! Q ! 1;

where G is a hyperbolic group and N is finitely generated. This result and its variations
are a powerful source of pathological examples in geometric group theory, see [4],
[9], [37], [24]. In this note the small cancellation methods developed in [28] and [1]
are used to prove the following version of the Rips construction. (We refer to the next
section for definitions.)

Theorem 1.1. Let H be a non-elementary hyperbolic group, Q a finitely generated
group, S a subgroup of Q. Suppose that Q is finitely presented with respect to S .
Then there exists a short exact sequence

1 ! N ! G
"! Q ! 1; (1)
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and an embedding � W S ! G such that

(a) N is isomorphic to a quotient group of H .

(b) G is hyperbolic relative to the .proper/ subgroup �.S/.

(c) � B " � id.

(d) If H and Q are torsion free, then so is G.

(e) The canonical map � W Q ! Out.N / is injective and jOut.N / W �.Q/j < 1.

If S D f1g, we get the following corollary whose applications are discussed in
Section 3.

Corollary 1.2. For any non-elementary hyperbolic group H and any finitely presented
group Q, there exists a short exact sequence (1), where G is hyperbolic and N is a
quotient group of H . Moreover, G is torsion-free whenever H is.

Remark 1.3. One can generalizeTheorem 1.1 to the case where H is a non-elementary
group hyperbolic relative to a collection of proper subgroups and Q is finitely gen-
erated and finitely presented relative to a collection of subgroups S1; : : : ; Sm. In this
case the collection of peripheral subgroups of G will consist of isomorphic copies of
S1; : : : ; Sm and the images of the peripheral subgroups of H under the homomorphism
H ! N . We leave the proof as an exercise for the reader.

It is also worth noting that an alternative proof of Corollary 1.2 can be obtained by
means of Ol’shanskiı̆’s small cancellation theory over ordinary hyperbolic groups [25]
without using any results of [28] and [1].

2. Proof of Theorem 1.1

Recall that a group G generated by a finite set X is said to be finitely presented with
respect to a subgroup S if the kernel of the natural map " W F.X/ � S ! G, where
F.X/ is the free group with basis X , is the normal closure of a finite subset R of
F.X/ � S . For instance, any group is finitely presented relative to itself.

Given an element w 2 F.X/ � S , we denote by jwjX[S its length with respect
to the generating set X [ S . A group G is hyperbolic relative to S if G is finitely
presented with respect to S and, in the above notation, there is a constant C > 0 such
that for any w 2 F.X/ � S such that ".w/ D 1, we have

w D
kY

iD1

f �1
i R˙1

i fi ; (2)
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where Ri 2 R and fi 2 F.X/ � S for i D 1; : : : ; k, and k � C jwjX[S . In
particular, this definition becomes the definition of an ordinary hyperbolic group in
the case S D 1.

Let G be a group hyperbolic relative to a subgroup S . Given a subgroup H � G,
we denote by H 0 the set of all elements g 2 H of infinite order such that g is not
conjugate to an element of S . For every g 2 G0, there exists a unique maximal
virtually cyclic subgroup EG.g/ of G containing g [29]. Moreover,

EG.g/ D ff 2 G W f �1gnf D g˙n for some n 2 Ng: (3)

In this paper we use the notion of a suitable subgroup of a relatively hyperbolic
group introduced in [28]. The most convenient form of the definition is proposed
in [1]: A subgroup H � G is called suitable if H 0 ¤ ; and

\

g2H 0

EG.g/ D f1g: (4)

In particular, (3) and (4) imply that every suitable subgroup H � G has trivial
centralizer.

The key ingredient of the proof of Theorem 1.1 is the following result obtained
in [28] (see Theorem 2.4 and its proof there).

Theorem 2.1. Let G0 be a group hyperbolic relative to S � G0, H a suitable
subgroup of G0. Then for every finite subset T D ft1; : : : ; tkg � G0, there exist
elements w1; : : : ; wk 2 H such that the quotient group

G D G0=hht1w1; : : : ; tkwkii; (5)

satisfies the following conditions:

(i) the restriction of the natural homomorphism � W G0 ! G to S is injective;

(ii) G is hyperbolic relative to �.S/;

(iii) if G0 is torsion free, then G is torsion free;

(iv) �.H/ is suitable in G;

Proof of Theorem 1.1. Suppose that X � Q is a finite subset generating Q. Since Q

is finitely generated and finitely presented with respect to S , the group S is also finitely
generated by [30, Theorem 1.1]. Let Z denote a finite generating set of S . Assume
also that the kernel of the natural homomorphism F.X/ � S ! Q is the normal
closure of a finite subset R � F.X/ � S . The free product G0 D F.X/ � S � H is
hyperbolic relative to S [30, Theorem 2.40].

It is well known that every non-elementary hyperbolic group H contains a unique
maximal normal finite subgroup K � H , in fact K is precisely the kernel of the H -
action on the boundary of H . Thus passing to the quotient H=K if necessary we may
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assume that H has no nontrivial finite normal subgroups. Since H is non-elementary,
it is a suitable subgroup of G0 and we may apply Theorem 2.1 to the set

T D fxyx�1; x�1yx j x 2 X [ Z; y 2 Y g [ R; (6)

where Y denotes a finite generating set of H . Let G be the corresponding quotient
of G0. By N we denote the image of H in G. Clearly (5) and (6) imply that N is
normal in G and G=N Š Q. Assertions (b)–(d) of the theorem follow immediately
from Theorem 2.1.

To prove (e) we first choose a non-elementary hyperbolic group L with prop-
erty (T). Ol’shanskiı̆’s results [25] (see also [26]) imply that there is a non-elementary
hyperbolic common quotient H1 of H and L. Thus replacing H with H1, we may
assume that H has property (T), and hence so does N . By part (iv) of Theorem 2.1, N

is a suitable subgroup, therefore (3) together with the definition of a suitable subgroup
implies that N has trivial centralizer in G. In particular, there is a canonical injection
Q ! Out.N /. Now (e) follows as in [6, Section 5], and for completeness we sketch
a proof below.

Recall the definition of a relatively hyperbolic group given in [8, Definition 1]: if G

is a conjugacy-invariant family of infinite finitely generated subgroups of a group � ,
then � is called hyperbolic relative to G if � acts isometrically and properly discon-
tinuously on a complete locally compact hyperbolic metric space X such that each
point of the ideal boundary of X is either a conical limit point or a bounded parabolic
point of � , and the elements of G are precisely the maximal parabolic subgroups of � .

To continue the proof note that if S is infinite, then G is hyperbolic relative to S in
the sense of the above definition. Indeed, as we mentioned before, since G is finitely
generated, so is S [30, Theorem 1.1], and in this situation the above definition of
Bowditch is equivalent to the definition introduced in [30], which is the definition
we follow in this paper. The equivalence of the definitions is explained in appendix
to [30]. If S is finite, then G is hyperbolic [30, Corollary 2.41], so G acts isometrically,
properly discontinuously and cocompactly on a locally compact complete hyperbolic
space X.

Precomposing the inclusion N ,! G with automorphisms of N , we get a sequence
of injective homomorphisms from N to G, which defines a sequence of N -actions
on X. These homomorphisms fall into finitely many G-conjugacy classes, else a
standard rescaling argument of Bestvina–Paulin [7], [31], applied to the N -actions
on X, produces a nontrivial action on an R-tree which contradicts the fact that N

has property (T). Since N has trivial centralizer in G, the canonical homomorphism
G ! Aut.N / in injective, and by the previous sentence its image has finite index
in Aut.N /. Let G� be the intersection of all the conjugates of (the image of) G in
Aut.N /. Note that G� is a finite index normal subgroup of Aut.N / that contains
N . The kernel of the surjection of Out.N / D Aut.N /=N onto the finite group
Aut.N /=G� is G�=N . Since G�=N � G=N � Out.N /, we conclude that the image
of Q D G=N has finite index in Out.N /.
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3. Applications

The idea behind many applications of the Rips construction is to lift a (usually patho-
logical) property of Q to G, and the extra control over N provided by Theorem 1.1
makes the job easier.

Prescribing linear representation. Here we build a hyperbolic group that has the
same set of n-dimensional complex representations as a given finitely generated group;
thus representation theory fails to detect hyperbolicity.

Theorem 3.1. For any finitely generated group � and any integer n > 0 there is a
non-elementary hyperbolic group G and an epimorphism G ! � such that every
representation G ! GLn.C/ factors as the composition of the epimorphism G ! �

and a representation � ! GLn.C/.

Proof. First, we build a finitely presented group Q and an epimorphism Q ! � such
that any representation Q ! GLn.C/ factors through Q ! � . Let hS jRi be a presen-
tation of � where S D fs1; : : : ; smg and R D fR1; : : : ; Rk; : : : g. The representation
variety Hom.�; GLn.C// is the algebraic subvariety of the product of m copies of
GLn.C/ defined by the relators R1; : : : ; Rk; : : : . More precisely, Hom.�; GLn.C//

is the set of m-tuples of elements of GLn.C/ that are mapped to the identity matrix by
each Rk . Let Vk be the algebraic variety defined in the product of m copies of GLn.C/

by the first k relators R1; ::; Rk , and let Ik be the corresponding ideal (produced via
Hilbert’s Nullstellensatz). Since polynomial rings over C are Noetherian, the chain
of ideals I1; : : : ; Ik; : : : stabilizes, i.e. I D Ik for some k, where I is the ideal that
corresponds to Hom.�; GLn.C// (again via Hilbert’s Nullstellensatz). Hence the
group Q WD hs1; : : : ; smjR1 : : : Rki has the same representation variety as � , i.e.
the inclusion Hom.�; GLn.C// ,! Hom.Q; GLn.C// induced by the epimorphism
Q ! � is a bijection. In other words, any representation of Q into GLn.C/ factors
through Q ! � .

Next goal is to build a non-elementary hyperbolic group with no nontrivial homo-
morphisms into GLn.C/. It has been known for some time (see [18]) that there exists a
non-elementary hyperbolic group K such that any homomorphism K ! GLn.C/ has
finite image. In fact, by [18] any proper quotient of a cocompact lattice in Sp.r; 1/ with
r � 2 has this property, and by small cancellation theory there are proper quotients
that are non-elementary hyperbolic. (Kapovich actually proves that K ! GLn.F/

has finite image for any field F ). On the other hand, Lubotzky observed in [21,
Proposition 1.3] if a group L has the property FAb (which means that every finite
index subgroup of L has finite abelianization), then for each n there is a finite index
subgroup Ln of L such that for any representation � W Ln ! GLn.C/ the image
�.Ln/ has connected closure. Lattices in Sp.r; 1/ have FAb, because their finite index
subgroups have property (T). Taking L to be any cocompact lattice in Sp.r; 1/ with
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r � 2, we get Ln such that �.Ln/ has connected closure for any � W Ln ! GLn.C/.
Let Kn be a non-elementary hyperbolic proper quotient of Ln, so that �.Kn/ is finite
and has connected closure, and therefore, is trivial.

Finally, if G is the hyperbolic group produced by the Rips construction as in
Corollary 1.2 with input H D Kn and Q as in the first paragraph of the proof, then
any representation of G into GLn.C/ factors through the epimorphism G ! Q ! � .

Remark 3.2. We do not know whether in Theorem 3.1 one can choose the same
G for all n. The following representation-theoretic properties of a group involve its
complex representations of all dimensions. A finitely generated group � is called

� representation rigid if for every n there are only finitely many pairwise non-
isomorphic n-dimensional irreducible representation � ! GLn.C/,

� representation superrigid if there is a uniform upper bound on the dimension of
the Zariski closure of �.�/ for all complex representations � of � .

For brevity we just say rigid and superrigid. According to [3] any superrigid group is
rigid. The Margulis superrigidity theorem implies that irreducible lattices in semisim-
ple groups of higher rank are superrigid, and the same holds for lattices in Sp.n; 1/

and F
.�20/
4 [11], [15]. Examples of non-linear rigid groups that are not superrigid

can be found in [3]. However, we do not know of any examples of finitely presented
rigid groups that are not superrigid. (In the earlier version of this paper [5], we in-
correctly assumed that such examples were constructed in [3], and we are grateful
to Laszlo Pyber and David Fisher who independently found the mistake). As is ex-
plained in [5], if Q is a finitely presented rigid group that is not superrigid, and if
K is a non-elementary hyperbolic proper quotient of a cocompact lattice in Sp.r; 1/

with r � 2, then the Rips construction as in Corollary 1.2 with input H D K and Q

produces a non-elementary hyperbolic group G that is rigid but not superrigid.

Prescribing minimal actions on Hadamard spaces. A G-action on a complete
CAT.0/ space X is called minimal if X is the only non-empty convex G-invariant
subspace. Let H be a class of complete CAT.0/ spaces for which there exists a non-
elementary hyperbolic group H with the property any isometric H -action on a space
X in H has a non-empty fixed-point-set XH . Let G be a hyperbolic group produced
via the Rips construction as in Corollary 1.2 with input H , Q.

Corollary 3.3. Any .isometric/ minimal G-action on every X in H factors through
the surjection G ! Q. Thus G and Q have the same set of minimal actions on
spaces in H .

Proof. Since N is a quotient of H , its fixed-point-set XN is non-empty, and also
convex by [10, Corollary II.2.8]. The subspace XN is stabilized by G because N
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is normal in G, hence XN D X since the G-action is minimal. Thus N lies in the
kernel of the G-action.

Remark 3.4. The simplest example to which Corollary 3.3 applies is when H is any
Kazhdan hyperbolic group, and H is the class of R-trees. Note that the G-action is
stable if and only if the Q-action is stable. In particular, Corollary 3.3 implies that
studying stable actions of hyperbolic groups on R-trees is no easier than studying
stable actions of finitely presented groups on R-trees. Of course, Corollary 3.3 also
has a relatively hyperbolic version, that shows in particular that stable actions of
finitely generated relatively hyperbolic groups on R-trees can be as pathological as
stable actions of finitely generated groups on R-trees.

Here is a list of some other pairs .H ; H/ to which Corollary 3.3 applies.

� H is any Kazhdan hyperbolic group, and H is the class of affine Hilbert spaces,
and cube (or more generally zonotopal) CAT.0/ cell complexes [23], [16];

� H is the class of Hadamard manifolds (i.e. complete simply-connected Riemann-
ian manifolds of nonpositive sectional curvature), and H is the torsion-free
Kazhdan hyperbolic group constructed in [14], [17] such that any H -action on
a manifold in H has a fixed point;

� finite products of the spaces listed above provided the H -action preserves the
product structure (which is automatically true in most cases), and fixes a point
in every factor.

Adding higher powered relations to hyperbolic groups. A well-known “hyper-
bolic philosophy” suggests that adding higher powered relations to a hyperbolic group
does not change the group too much. For instance if G is non-elementary hyperbolic
and g is an element of infinite order, than G=hhgnii is also non-elementary hyperbolic
for all but finitely many n [25, Theorem 3].

Recall that a group is called large if it contains a finite index subgroups admitting
an epimorphism onto a non-abelian free groups. In a recent paper [20], Lackenby
showed that for any large group G and any element g 2 G, the quotient G=hhgnii is
large for infinitely many n. Moreover, in case G is free and non-abelian, the words
“infinitely many” can be replaced with “all but finitely many”. (A short group theoretic
proof of these facts can be found in [27].) One may guess that the same is true if G is
a large hyperbolic group and g is an element of infinite order. (It is an easy exercise
to construct counterexamples in case we do not require G to be hyperbolic or allow
the order of g to be finite.) However, we have the following.

Corollary 3.5. There exists a large torsion-free hyperbolic group G and an element
g 2 G such that G=hhgnii is not large for all odd n 2 N.
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Proof. Let us consider a short exact sequence (1), where

Q D ha; x; y j a�1xa D y; a�1ya D xi
and N has property (T). Observe that the subgroup S generated by a2; x; y has index 2

in Q and is isomorphic to Z � F2, where F2 is the free group of rank 2. Thus Q is
large and hence so is G.

Let K D G=hhgnii, where g is a preimage of a in G and n is odd. Suppose that
a finite index subgroup L of K admits an epimorphism " W L ! F , where F is a
non-abelian free group. Clearly L splits into the short exact sequence 1 ! U !
L ! V ! 1, where U is a finite index subgroup of a quotient of N and V is a
subgroup of Q=hhanii Š Z=nZ � Z. Since property (T) is inherited by quotients and
subgroups of finite index, U has property (T). In particular ".U / D 1 and hence the
image of L in F is isomorphic to a quotient group of the abelian group Q=hhanii,
which is a contradiction.

In [13, Lemma 12.2], Dunfield and Thurston showed, among other things, that
the property to have virtually positive first Betti number is inherited by all but finitely
many quotients of type G=hhgnii, n 2 N, where G is a certain amalgam of finite groups
and g is an element of infinite order. Motivated by some long-standing conjectures
in 3-dimensional topology, they asked [13, Question 11.1] if this is true for arbitrary
amalgam of finite groups and any element of infinite order. Recall that every amalgam
of finite groups is hyperbolic. The next corollary shows that the Dunfield–Thurston
result can not be generalized to the case of arbitrary hyperbolic groups.

Corollary 3.6. There exists a torsion-free hyperbolic group G and an element g 2 G

such that ˇ1.G/ > 0, but G=hhgnii has property (T) for all n 2 N. In particular,
G=hhgnii contains no subgroups of finite index with positive first Betti number.

Proof. It suffices to consider a short exact sequence (1), where Q is infinite cyclic
and N has property (T). If g is a preimage of a nontrivial element of Q in G, then
for any n ¤ 0, G=hhgnii is an extension of a quotient of N by a finite group. Hence
G=hhgnii has property (T) whenever n ¤ 0. Hence G has no finite index subgroups
with infinite abelianization.

Recursively recognizable properties. A group-theoretic property P is called re-
cursively recognizable if there is an effective algorithm that decides from a finite
presentation of a group whether or not the group has the property P (or more for-
mally, P is called recursively recognizable if the set of finite presentations of groups
with property P is recursive).

Recall that the isomorphism problem is decidable for torsion-free hyperbolic
groups [35], [12]. On the other hand many problems are known to be undecid-
able for hyperbolic groups [4], [22]. For instance, the property to be generated by
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a given number of elements is recursively unrecognizable in the class of hyperbolic
groups [4]. Here we provide some other examples. Let P be a property of groups.
We consider the following conditions.

(1) P is not recursively recognizable in the class of all finitely presented groups.
(2) P is preserved under taking quotients.
(3) If groups A and B have P , then any extension of A by B has P .
(4) There exists a non-elementary hyperbolic group with property P .

Example 3.7. Kazhdan’s property (T) and Serre’s property FA satisfy (2)–(4). To
show they are not recursively recognizable in the class of all finitely presented groups
it suffices to note that (T) implies FA [36] and the free product Z=2Z�G has property
(T) (or FA) if and only if G Š f1g. Since the property “to be trivial” is not recursively
recognizable in the class of all finitely presented groups, the properties (T) and FA
are not recursively recognizable in the class of all finitely presented groups.

Corollary 3.8. If P is a property of groups satisfying .1/–.4/, then P is not recursively
recognizable in the class of all torsion-free hyperbolic groups.

Proof. Let H be a non-elementary hyperbolic group with property P . For every
finitely presented group Q, we construct a short exact sequence 1 ! N ! GQ !
Q ! 1 as in the theorem. By (2) and (3), the group GQ has P if and only if Q

has P . Since GQ is hyperbolic and P is not recursively recognizable in the class of
all finitely presented groups, the result follows.

Kazhdan groups and their automorphisms. By a result of Paulin [32], the group
Out.H/ is finite for every hyperbolic group H with Kazhdan property (T). Answering
a question of Paulin, Ollivier–Wise [24] constructed Kazhdan groups whose outer
automorphism groups are infinite. In fact, they showed that any countable group Q

embeds into Out.N / for some Kazhdan group N . In particular, Out.N / can fail to be
finitely presentable (in case Q is not recursively presented). As was noted in [6], this
result of Ollivier–Wise implies that any finitely presented group Q can be embedded
as a finite index subgroup into Out.N / for some Kazhdan group N .

Our methods allow us to recover (and generalize) these results.

Corollary 3.9. For any finitely generated group Q there is split extension N Ì Q

that is hyperbolic relative to Q, and such that the canonical map � W Q ! Out.N / is
injective, jOut.N / W �.Q/j < 1, and N has Kazhdan property (T). In particular, any
countable group embeds into Out.N / for some group N with Kazhdan property (T).

Proof. It suffices to apply Theorem 1.1 for a finitely generated group Q, subgroup
S D Q, and a non-elementary hyperbolic group H with property (T). The assertion
“in particular” follows from the fact that any countable group embeds into a finitely
generated one.
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Question 3.10. If H is a hyperbolic centerless group with property (T), then Aut.H/

is a finite extension of H [32], so Aut.H/ is also a hyperbolic group with property (T).
Hence the automorphism tower of H consists of hyperbolic groups with property (T).
Does the tower terminate in finitely many steps? This is true if H is a centerless finite
group by a classical result of Wielandt [34, 13.5.4].
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