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Abelian subgroups of the fundamental group

of a space with no conjugate points

James Dibble

Abstract. Each Abelian subgroup of the fundamental group of a compact and locally
simply connected d -dimensional length space with no conjugate points is isomorphic to
Zk for some 0 � k � d . It follows from this and previously known results that each
solvable subgroup of the fundamental group is a Bieberbach group. In the Riemannian
setting, this may be proved using a novel property of the asymptotic norm of each Abelian
subgroup.
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1. Introduction

A locally simply connected length space X with universal cover � W yX ! X has no

conjugate points if any two points in yX can be joined by a unique geodesic. Let X

be a compact and locally simply connected length space with no conjugate points
and finite Hausdorff dimension d . In the Riemannian case, it has been believed
for some time that Abelian subgroups of �1.X/ must be finitely generated; for
example, this is stated in [2], although the argument there contains a gap. It will be
shown here that each Abelian subgroup is isomorphic to Zk for some 0 � k � d .

Theorem 1. Each Abelian subgroup of �1.X/ is isomorphic to Zk for some

0 � k � d .

For nonpositively curved manifolds, Theorem 1 is a consequence of the flat
torus theorem of Gromoll and Wolf [3] and Lawson and Yau [6], which was
generalized to manifolds with no focal points by O’Sullivan [10].

It was proved by Yau [11] in the case of nonpositive curvature, and O’Sullivan
[10] for no focal points, that every solvable subgroup of the fundamental group
is a Bieberbach group. Croke and Schroeder [2] mapped out a way to generalize
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this to spaces with no conjugate points: if a torsion-free solvable group has the
property that its Abelian subgroups are all finitely generated and straight, then it
must be a Bieberbach group. Lebedeva [7] showed that finitely generated Abelian
subgroups of the fundamental group of a compact and locally simply connected
length space with no conjugate points must be straight. Combining this with
Theorem 1 completes the argument set out by Croke and Schroeder.

Theorem 2. Each solvable subgroup of �1.X/ is a Bieberbach group.

This continues the theme, developed in [2], [7], and [4], as well as in unpub-
lished work of Kleiner, that, at the level of fundamental group, spaces with non-
positive curvature.

Since the exponential map at each point of its universal cover is a diffeomor-
phism, a Riemannian manifold with no conjugate points must be aspherical. It’s
worth pointing out that this condition isn’t enough to guarantee the conclusion
of Theorem 1, as Mess [9] showed that, for each n � 4, there exists a compact
manifold with universal cover Rn whose fundamental group contains a divisible
Abelian subgroup, which cannot be finitely generated. This is discussed further
in [8].

The second section contains a short proof of Theorem 1. The third section
gives a different proof in the Riemannian setting, based on a property of Rie-
mannian norms satisfied by the asymptotic norm of each Abelian subgroup of the
fundamental group.

Acknowledgments. I’m grateful to Vitali Kapovitch, Michael Kapovich, and
Christopher Croke for helpful discussions. This topic arose during a conversa-
tion with Vitali Kapovitch, who showed using Corollary 4.3 of [4] that, for a suf-
ficiently regular Riemannian manifold, the center of its fundamental group must
be finitely generated. The proof of Theorem 1 in the second section contains a
simplification of my original argument due to an anonymous referee, whose im-
provement works without any regularity assumptions.

2. Proof of Theorem 1

Fix Op 2 yX and a basepoint p D �. Op/ for �1.X/. Overloading notation, each
 2 �1.X/ will be identified with the corresponding deck transformation of yX .
Let � be an Abelian subgroup of �1.X/, in which the group operation is written
additively, and suppose �1; : : : ; �k 2 � are linearly independent. Denote by G

the subgroup generated by the �i . The following are proved in [7]: on �1.X/, the
function

j j1 D lim
m!1

Od.m. Op/; Op/

m
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is positively homogeneous over Z; it is bounded below on �1.X/ n ¹eº by sys.X/,
the length of the shortest nontrivial geodesic loop in X , so �1.X/ is torsion
free; its restriction to � satisfies the triangle inequality; and, with respect to the
isomorphism G Š Zk that takes each �i to the i-th standard basis vector, j � j1
extends to a norm k � k1 on Rk.

Denote by k � k the Euclidean norm on Rk. From the identifications

G. Op/ Š G Š Zk ;

G. Op/ inherits the coordinate functions �1; : : : ; �k on Zk . Since k � k1 is a norm
on Rk, there exists C > 0 such that

1

C
kuk1 � kuk � C kuk1

for all u 2 Rk. The number C is a Lipschitz constant for the �i on G. Op/, and, as
in the proof of Kirszbraun’s theorem [5], the functions

fi . Ox/ D min
2G

Œ�i .. Op// C C Od. Ox; . Op//�

are Lipschitz extensions of the �i to yN . Each fi is .G;Z/-equivariant, in the sense
that fi .. Ox// � fi . Ox/ 2 Z for all Ox 2 yN and all  2 G.

The map f D .f1; : : : ; fk/W yN ! Rk is Lipschitz, and f .. Ox// � f . Ox/ 2 Zk

for all Ox 2 yN and all  2 G. By construction, f .G. Op// D Zk. Since G is
Abelian, there exists a map �WTk ! X such that ��.�1.Tk// Š G. Lift � to a
map O�WRk ! yN . The composition f ı O�WRk ! Rk descends to a map Tk ! Tk

with surjective induced homomorphism, so by degree theory it must be surjective.
Thus, f is surjective. Since a Lipschitz map cannot increase Hausdorff dimension,
k � d .

It follows that � has rank at most d . If it has rank zero, then the result is
trivial. Without loss of generality, suppose it has rank k > 0. For any  2 �,
there exist n; a1; : : : ; ak 2 Z such that n D

Pk
iD1 ai �i . It is well known that the

function F W � ! Qk defined by F.e/ D .0; : : : ; 0/ and

F./ D .a1=n; : : : ; ak=n/

for  ¤ e is a well-defined and injective homomorphism, so F is an isomorphism
onto its image �0. This map satisfies

kF./k1 D k.a1=n; : : : ; ak=n/k1 D 1

jnjk.a1; : : : ; ak/k1

D 1

jnj
ˇ

ˇ

ˇ

k
X

iD1

ai �i

ˇ

ˇ

ˇ

1
D 1

jnj jn j1 D j j1
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for any  ¤ e. For any distinct q0; q1 2 �0, there exist distinct 0; 1 2 � such
that F.i / D qi for each i . For c D 1=C , one has that

kq0 � q1k � ckq0 � q1k1 D ckF.0/ � F.1/k1 D ckF.0 � 1/k1

D cj0 � 1j1 � c � sys.X/ > 0.

Thus, �0 is a discrete subgroup of Rk and, consequently, � Š Zk.

3. Busemann functions in the Riemannian setting

For simplicity, it will be assumed in this section that X is a smooth d -dimensional
Riemannian manifold, although what follows holds when X is C r for some r de-
pending on d . As before, let G be an Abelian subgroup of �1.X/ generated by
linearly independent 1; : : : ; k. The key step in the proof of Theorem 1 is the
construction of a .G;Zk/-equivariant map f W yX ! Rk such that f .G. Op// DZk.
When X is Riemannian, another such map may be constructed using a nondegen-
erate collection of Busemann functions.

An important theorem of Ivanov and Kapovitch [4] states that, whenever
˛1; ˛2 2 �1.X/ commute, the change in the Busemann functions of axes of ˛2

under the action of ˛1 is constant on yX . This was previously proved by Croke and
Schroeder [2] for analytic X . Thus one may define a function B W G � G ! R by
setting B.˛1; ˛2/ equal to that change.

Because B.˛; ˛/ D j˛j21 for all ˛ 2 G, one might hope to show that B extends
to an inner product and, consequently, that k�k1 is Riemannian. In fact, B satisfies
a number of the properties of an inner product: it is linear over Z in the first slot
(see Corollary 4.2 of [4]), B.˛1; n˛2/ D nB.˛1; ˛2/ for all n 2 Z, and it satisfies
a version of the Cauchy–Schwarz inequality,

jB.˛1; ˛2/j � j˛1j1j˛2j1, (1)

with equality if and only if ˛1 and ˛2 are rationally related. It follows that B

extends to an inner product if and only if it is symmetric, but it’s far from clear
that symmetry holds in general (cf. [1]). Regardless, B also resembles an inner
product in the following way.

Lemma 3. For each 1 � m � k, there exist ˛1; : : : ; ˛m 2 span¹1; : : : ; mº such

that the m � m matrix ŒB.˛i ; j̨ /� is nonsingular.

If ˛1; : : : ; ˛k are as in Lemma 3 and b1; : : : ; bk are Busemann functions of
respective axes, then, up to composition with an affine isomorphism, the map
F D .b1; : : : ; bk/W yX ! Rk is .G;Zk/-equivariant and satisfies F.G. Op// D Zk.
The Riemannian version of Theorem 1 follows.
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The proof of Lemma 3 is by induction. When m D 1, the conclusion holds with
˛1 D 1. Suppose the conclusion holds for some 1 � m < k. If the conclusion
fails when ˛mC1 D mC1, then there exists a nonzero c D .c1; : : : ; cmC1/ in the
null space of the .m C 1/ � .m C 1/ matrix ŒB. j̨ ; ˛i /�. The following lemma then
completes the inductive step.

Lemma 4. There exists a solid cone C centered around the ray ¹rc j r � 0º
such that, if x D .x1; : : : ; xmC1/ 2 C \ ZmC1, Q̨ i D ˛i for 1 � i � m, and

Q̨mC1 D
PmC1

iD1 xi˛i , then the .mC1/� .mC1/ matrix ŒB. Q̨ i ; Q̨j /� is nonsingular.

The proof of Lemma 4 uses the following elementary fact.

Lemma 5. Let A; C > 0. Suppose M` is a sequence of .p C 1/ � q matrices of

the form
�

M

b`

�

for a fixed p � q matrix M and a sequence b` 2 Rq such that kb`k ! 0. Suppose

also that w` is a sequence of vectors in RpC1 of the form

�

a`

C`

�

for a` 2 Rp satisfying ka`k � A and jC`j � C . If v` 2 Rq satisfy M`v` D w`,

then kM.v`=kv`k/k ! 0. Consequently, M has nontrivial null space.

Proof of Lemma 4. Without loss of generality, one may suppose that max jci j D 1.
Assume for the sake of contradiction that the result is false. Then, for each i

and any fixed sequence "` & 0, there exists a sequence of rational numbers
p`

i =q`
i such that jci � p`

i =q`
i j < "` and, when Q̨ `

i D ˛i for 1 � i � m and
Q̨ `

mC1 D
PmC1

iD1

�
Q

j ¤i q`
j

�

p`
i ˛i , each .m C 1/ � .m C 1/ matrix M` D ŒB. Q̨ `

i ; Q̨ `
j /�

is singular.

Let W D ŒB. j̨ ; ˛i/� for 1 � i; j � m C 1, and write

w` D W
��

Y

j ¤1

q`
j

�

p`
1; : : : ;

�

Y

j ¤mC1

q`
j

�

p`
mC1

�

D
�

mC1
X

iD1

�

Y

j ¤i

q`
j

�

p`
i B.˛i ; ˛1/; : : : ;

mC1
X

iD1

�

Y

j ¤i

q`
j

�

p`
i B.˛i ; ˛mC1/

�

D .B. Q̨ `
mC1; Q̨ `

1/; : : : ; B. Q̨ `
mC1; Q̨ `

m/; B. Q̨ `
mC1; ˛mC1//.

(2)
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Let K D max
1�i;j �mC1

jB.˛i ; j̨ /j. Then,

kw`k D






�

Y

j

q`
j

�

W.p`
1=q`

1; : : : ; p`
mC1=q`

mC1/






�
ˇ

ˇ

ˇ

Y

j

q`
j

ˇ

ˇ

ˇK"`

p
m C 1.

(3)

The inductive hypothesis and the linearity of B in the first slot imply that
˛1; : : : ; ˛mC1 are linearly independent. The word norm of Q̨ `

mC1 with respect to
the subgroup of H generated by ˛1; : : : ; ˛mC1 is

j Q̨ `
mC1jword D

mC1
X

iD1

ˇ

ˇ

ˇ

Y

j ¤i

q`
j

ˇ

ˇ

ˇjp`
i j.

Because the corresponding norms on RmC1 are equivalent, there exists D > 0,
depending only on ˛1; : : : ; ˛mC1, such that

1

D

mC1
X

iD1

ˇ

ˇ

ˇ

Y

j ¤i

q`
j

ˇ

ˇ

ˇjp`
i j � j Q̨ `

mC1j1 � D

mC1
X

iD1

ˇ

ˇ

ˇ

Y

j ¤i

q`
j

ˇ

ˇ

ˇjp`
i j.

By the Cauchy–Schwarz inequality (1), for each 1 � i � m,

jB. Q̨ `
i ; Q̨ `

mC1/j � j Q̨ `
i j1j Q̨ `

mC1j1 � D
p

K

mC1
X

iD1

ˇ

ˇ

ˇ

Y

j ¤i

q`
j

ˇ

ˇ

ˇjp`
i j. (4)

Similarly,

B. Q̨ `
mC1; Q̨ `

mC1/ D j Q̨ `
mC1j21 � .1=D2/

h

mC1
X

iD1

ˇ

ˇ

ˇ

Y

j ¤i

q`
j

ˇ

ˇ

ˇjp`
i j

i2

. (5)

Let

a` D .B. Q̨ `
1; Q̨ `

mC1/; : : : ; B. Q̨ `
m; Q̨ `

mC1//;

b` D .B. Q̨ `
mC1; Q̨ `

1/; : : : ; B. Q̨ `
mC1; Q̨ `

m//;

c` D B. Q̨ `
mC1; Q̨ `

mC1/;

and M D ŒB.˛i ; j̨ /� for 1 � i; j � m. Write

Qa` D a`=
h

mC1
X

iD1

ˇ

ˇ

ˇ

Y

j ¤i

q`
j

ˇ

ˇ

ˇjp`
i j

i

,
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Qb` D b`=
ˇ

ˇ

ˇ

Y

j

q`
j

ˇ

ˇ

ˇ,

and

Qc` D c`=
h
ˇ

ˇ

ˇ

Y

j

q`
j

ˇ

ˇ

ˇ

mC1
X

iD1

ˇ

ˇ

ˇ

Y

j ¤i

q`
j

ˇ

ˇ

ˇjp`
i j

i

.

By (2) and (3), k Qb`k � kw`k=j
Q

j q`
j j � K"`

p
m C 1; by (4), k Qa`k � D

p
mK;

and, by (5), Qc` � 1=.2D2/ for all sufficiently large `. Since M is nonsingular, it
follows from Lemma 5 that the matrices

�

M Qa`

Qb` Qc`

�

are nonsingular for all sufficiently large `. The corresponding M` must also be
nonsingular, which is a contradiction. �

When m D 2 in Lemma 3, inequality (1) implies that one may take ˛1 D 1

and ˛2 D 2. When X has no focal points, one may, by the flat torus theorem,
take ˛i D i for all i . However, in the general case for m � 3, there is no apparent
local structure that forces the Busemann functions of the axes of the i to have
linearly independent gradients, and it is not clear that the conclusion of Lemma 3
holds with ˛i D i for all i .

Question 6. Must the k � k matrix ŒB.i ; j /� be nonsingular?
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