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Centering Koebe polyhedra

via Möbius transformations

Zsolt Lángi1

Abstract. A variant of the Circle Packing Theorem states that the combinatorial class of
any convex polyhedron contains elements, called Koebe polyhedra, midscribed to the unit
sphere centered at the origin, and that these representatives are unique up to Möbius trans-
formations of the sphere. Motivated by this result, various papers investigate the problem
of centering spherical configurations under Möbius transformations. In particular, Spring-
born proved that for any discrete point set on the sphere there is a Möbius transformation
that maps it into a set whose barycenter is the origin, which implies that the combinato-
rial class of any convex polyhedron contains an element midsribed to a sphere with the
additional property that the barycenter of the points of tangency is the center of the sphere.
This result was strengthened by Baden, Krane and Kazhdan who showed that the same idea
works for any reasonably nice measure defined on the sphere. The aim of the paper is to
show that Springborn’s statement remains true if we replace the barycenter of the tangency
points by many other polyhedron centers. The proof is based on the investigation of the
topological properties of the integral curves of certain vector fields defined in hyperbolic
space. We also show that most centers of Koebe polyhedra cannot be obtained as the center
of a suitable measure defined on the sphere.
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1. Introduction

The famous Circle Packing Theorem [19] states that every simple, connected plane
graph can be realized as the intersection graph of a circle packing in the Euclidean
plane, or equivalently, on the sphere; that is, by a graph whose vertices are the
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centers of some mutually nonoverlapping circles, and two vertices are connected
if the corresponding circles are tangent.

This theorem was first proved by Koebe [15], and was later rediscovered by
Thurston [27], who noted that this result also follows from the work of Andreev
[3, 4]. The theorem has induced a significant interest in circle packings in many
different settings, and has been generalized in many directions. One of the most
known variants is due to Brightwell and Scheinerman [7]. By this result, any
polyhedral graph (i.e. any simple, 3-connected planar graph [23, 25]), together
with its dual graph, can be realized simultaneously as intersection graphs of two
circle packings with the property that each point of tangency belongs to two pairs
of tangent circles which are orthogonal to each other. Such a pair of families of
circles on the unit sphere S2 centered at the origin o generate a convex polyhedron
midscribed to the sphere; that is, having all edges tangent to it. In this polyhedron,
members of one family, called face circles, are the incircles of the faces of the
polyhedron, and members of the other family, called vertex circles, are circles
passing through all edges starting at a given vertex. This yields the following
theorem [7, 21].

Theorem 1. The combinatorial class of every convex polyhedron has a represen-

tative midscribed to the unit sphere S2.

Such representatives of combinatorial classes are called Koebe polyhedra. By
Mostow’s rigidity theorem [18, 11], these representations are unique up to Möbius
transformations of the sphere. We note that by a famous result of Steinitz [24], not
all combinatorial classes can be represented by polyhedra circumscribed about (or
inscribed in) a sphere; in his seminal paper Rivin [20] gave a characterization of
the possible classes.

In [16], Mani strengthened this result by showing that up to Euclidean isome-
tries, every combinatorial class can be uniquely represented by a polyhedron mid-
scribed to S2 such that the barycenter of the tangency points is the origin (cf. also
[28, p. 118] and [12, p. 296a]). Springborn [22] gave an elegant different proof of
the same statement, based on the application of the following theorem.

Theorem 2 (Springborn). For any mutually distinct points v1; v2; : : : ; vn on the

d -dimensional unit sphere Sd centered at the origin o, where n � 3 and d � 2,

there is a Möbius transformation T of Sd such that
Pn

iD1 T .vi/ D o. Furthermore,

if zT is another such Möbius transformation, then zT D RT , where R is an isometry

of Sd .

Baden, Krane, and Kazhdan examined this problem in a more general form [5],
and showed that the idea of the proof of Theorem 2 in [22] can be extended to the
center of mass of any sufficiently well-behaved density function on Sd . Similar
problems are investigated in [6], where the authors considered the algorithmic as-
pects of optimization of circle families on S2 via Möbius transformations. We note
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that all these results investigate the problem of centering certain configurations on
the sphere Sd (in particular, S2) via Möbius transformations, having applications
e.g. in computer graphics [6, 5].

The aim of this paper is to approach this question from geometric point of view,
and to examine the problem of centering Koebe polyhedra via Möbius transforma-
tions, using various notions of “centers” of polyhedra from the literature. Whereas
this problem seems similar to the one investigated in the papers mentioned above,
it is worth noting that it cannot be reduced to the investigation of suitable density
functions defined on S2: in Remark 4 we show that for most notions of centers
examined in this paper, every combinatorial class contains a Koebe polyhedron
whose center is outside the unit ball B3. In the first part of the paper we show
that, apart from uniqueness, Springborn’s statement can be generalized for most
notions of polyhedron centers appearing in the literature. In addition, we prove a
variant of Theorem 2 for families of circles.

We remark that the variant of Theorem 3 with respect to the center of mass
of the polyhedron, which we state as Problem 1, proves that every combinato-
rial class has a representative whose every face, vertex and edge contains a static
equilibrium point [8]. An affirmative answer to the problem, with many applica-
tions in mechanics [8, 10, 9], would be a discrete version of Theorem 1 in [10],
stating that for every 3-colored quadrangulation Q of S2 there is a convex body
K whose Morse–Smale graph, with respect to its center of mass, is isomorphic
to Q. These papers also describe possible applications of our problem in various
fields of science, from physics to chemistry to manufacturing.

To state our main results, for any convex polyhedron P � R3, by cc.P /, IC.P /

and for k D 0; 1; 2; 3 by cmk.P / we denote the center of the (unique) smallest
ball containing P , the set of the centers of the largest balls contained in P , and
the center of mass of the k-dimensional skeleton of P , respectively. Furthermore,
if P is simplicial, by ccm.P / we denote the circumcenter of mass of P (see,
e.g. [26], or Definition 1 in Section 2).

Our main theorems are the following, where, with a little abuse of notation, if
P is a Koebe polyhedron and T is a Möbius transformation, by T .P / we mean
the polyhedron defined by the images of the face circles and the vertex circles of
P under T .

Theorem 3. Let P be a Koebe polyhedron, and let g.�/ 2 ¹cc.�/; cm0.�/; cm1.�/;
cm2.�/º. Then there is some Möbius transformation Tg such that g.Tg.P // D o.

Furthermore, there is a Möbius transformation Tic with o 2 IC.Tic.P //, and if

P is simplicial, then for every � 2 Œ0; 1/, there is a Möbius transformation T�

satisfying � cm3.T�.P // C .1 � �/ ccm.T�.P // D o.

We remark that even though it seems difficult to state formally under which
conditions the method of the proof of Theorem 3 works, it is plausible to assume
that our key lemma, Lemma 1, holds for a rather large class of hyperbolic vector
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fields, implying the statement of Theorem 3 for many other possible notions of
polyhedron centers.

In the next theorem, which can be regarded as a generalization of Theorem 2,
by a spherical cap on Sd we mean a d -dimensional closed spherical ball of spher-
ical radius 0 < � < �

2
. Furthermore, if T W Sd ! Sd is a Möbius transformation,

then by �T .C / and cT .C / we denote the center and the spherical radius of the
spherical cap T .C /, respectively.

Theorem 4. Let C1; C2; : : : ; Cn � Sd be spherical caps such that the union of

their interiors is disconnected. For i D 1; 2; : : : ; n, let wi W
�

0; �
2

�

! .0; 1/ be

C 1-class functions satisfying limt! �
2 �0 wi .t / D 1 for all values of i . For any

point q 2 Sd , let I.q/ denote the set of the indices of the spherical caps whose

boundary contains q, and assume that for any q 2 Sd , we have

lim
t! �

2
�0

X

i2I.q/

wi .t / cos t < lim
t!0C0

X

i…I.q/

wi .t /: (1)

Then there is a Möbius transformation T W Sd ! Sd such that

X

iD1n

wi.�T .Ci //cT .Ci / D o: (2)

In Section 2, we introduce our notation and the concepts in our theorems. In
addition, we describe the method of the proofs, and collect some observations that
we are going to use. As the simplest case, we prove Theorem 3 for cc.�/ and IC.�/
in Section 3. In Section 4 we prove our key lemma, Lemma 1, which is necessary
to prove the rest of the cases in Theorem 3. In Section 5 we prove Theorem 3
for all the remaining cases based on this lemma. We continue with the proof of
Theorem 4 in Section 6. Finally, in Section 7 we collect some additional remarks
and questions. We note that some elements of the proof can be found in [22].

2. Preliminaries

2.1. Polyhedron centers. Let P be a convex polyhedron in the Euclidean
3-space R3. For k D 0; 1; 2; 3, let skelk.P / denote the k-skeleton of P . Then
the center of mass of skelk.P / is defined in the usual way as

cmk.P / D
R

p2skelk.P / p dvk
R

p2skelk.P / dvk

;

where vk denotes k-dimensional Lebesgue measure.
The next concept was defined for polygons in [1] and for simplicial polytopes

in [26] (see also [2]). Before introducing it, we point out that the circumcenter of
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a nondegenerate simplex is the center of the unique sphere containing all vertices
of the simplex, and thus, it may be different from the center of the smallest ball
containing the simplex.

Definition 1. Let P be an oriented simplicial polytope, and let o be a given
reference point not contained in any of the facet hyperplanes of P . Triangulate
P by simplices whose bases are the facets of P and whose apex is o. Let pi and
mi denote, respectively, the circumcenter and the volume of the i th such simplex.
Then the circumcenter of mass of P is defined as

ccm.P / D
P

i mi pi
P

i mi

:

The authors of [26] show that the circumcenter of mass of a simplicial poly-
tope P is

� independent of the choice of the reference point,

� remains invariant under triangulations of P if no new vertex is chosen from
the boundary of P .

� satisfies Archimedes’ Lemma: if we decompose P into two simplicial poly-
topes Q1 and Q2 in a suitable way, then ccm.P / is the weighted average of
ccm.Q1/ and ccm.Q2/, where the weights are the volumes of Q1 and Q2,

� if P is inscribed in a sphere, then its circumcenter of mass coincides with its
circumcenter.

In addition, they use this point to define the Euler line of a simplicial polytope
as the affine hull of the center of mass of P and ccm.P /. This definition is a
generalization of the same concept defined for simplices. They show that for
polygons, any notion of “center” satisfying some elementary properties (i.e. it
depends analytically on the vertices of the polygon, commutes with dilatations
and satisfies Archimedes’s lemma) is necessarily a point of the Euler line.

2.2. Idea of the proof. In the following, let P be a Koebe polyhedron. The
centers and the spherical radii of the vertex circles of P are denoted by vi 2 S2

and ˛i , respectively, where i D 1; 2; : : : ; n, and the centers and the radii of its
face circles by fj 2 S2 and ǰ , respectively, where j D 1; 2; : : : ; m. We note that
by [22], we may assume that the barycenter of the tangency points of P is the
origin o, implying that o is contained both in P and in its dual, or in other words,
the radii of all vertex and face circles of P are less than �

2
. Thus, for any vertex or

face circle there is an associated spherical cap, obtained as the union of the circle
and its interior.

In the proof, we regard the sphere S2 (or, in the proof of Theorem 4, Sd ) as
the set of the ideal points in the Poincaré ball model of the hyperbolic space H3

(or HdC1). Thus, every circle on S2 is associated to a hyperbolic plane, and every
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spherical cap is associated to a closed hyperbolic half space. We note that since
the Poincaré ball model is conformal, the dihedral angle between two circles on
S2 is equal to the dihedral angle between the two corresponding hyperbolic planes
(cf. [13, Observation 0.1]).

For the vertex circle with center vi we denote the corresponding hyperbolic
plane by Vi and the associated closed half space by xVi . Similarly, the hyperbolic
plane corresponding to the face circle with center fj is denoted by Fj , and the
associated closed half space by xFj . We set D D H3 n

��
Sn

iD1
xVi

�

[
�

Sm
j D1

xFj

��

.
Observe that as the radii of all vertex and face circles of P are less than �

2
, we

have o 2 D, and thus, D is a nonempty, open convex set in H3.
Let p 2 D � H3 be a point. For any plane Vi , consider the geodesic line

through p and perpendicular to Vi . Let vi.p/ 2 TpH
3 denote the unit tangent

vector of this line at p, pointing towards Vi , and let d v
i .p/ denote the hyperbolic

distance of p from Vi . We define fj .p/ and d
f

j .p/ similarly for the plane Fj .
An important point of the proof is the following simple observation. Recall

that the angle of parallelism of a point p not lying on a hyperbolic hyperplane
H is the hyperbolic half angle of the hyperbolic cone with apex p formed by the
half lines starting at p and parallel to H . Thus, Remark 1 is a consequence of the
fact that the Poincaré ball model is conformal, and of a well-known hyperbolic
formula [14]. Even though we state it for the 3-dimensional space H3, it also
holds in any dimensions.

Remark 1. Let H be a hyperbolic plane in H3 whose set of ideal points is a circle
C on S2 with spherical radius ˛. Then ˛ is the angle of parallelism of H from the
origin o (cf. Figure 1). In particular, cos ˛ D tanh d , where d is the hyperbolic
distance between H and o.

S
2

˛

o

C

H

Figure 1. The angle of parallelism from the origin of the model is the spherical radius of
the circle C .
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Among other things, it follows by Remark 1 that

tanh d v
i .o/ D cos ˛i and tanh d

f
j .o/ D cos ǰ for all values of i; j: (3)

Furthermore, the metric tensor of the Poincaré ball model yields (cf. [22]) that

vi.o/ D 1

2
vi and fj .o/ D 1

2
fj for all values of i; j: (4)

The idea of the proof of Theorem 3 in most cases is as follows. Let g.�/ be
one of the points in Theorem 3. First, we compute g.P / in terms of the radii and
the centers of its vertex and face circles; that is, in a form g.P / D

Pn
iD1 wiui C

Pm
j D1 Wj vj , where the coefficients wi and Wj are smooth functions depending on

the values 0 < ˛i ; ǰ < �
2

. Applying the formulas in (3) to the coefficients wi

and Wj , we obtain a smooth hyperbolic vector field hW D ! TD. Since in this
model Möbius transformations on S2 are associated to hyperbolic isometries of
H3, this function has the property that if T corresponds to a hyperbolic isometry
that maps p into o, then h.p/ D g.T .P // for all p 2 D. It is well known that
hyperbolic isometries act transitively on H3. Thus, to prove the existence of a
suitable Möbius transformation it suffices to prove that h.p/ D op for some p 2 D.
In the cases of cc.�/ and IC.�/ the function h is not C 1-class; here we use similar,
geometric arguments. In the remaining cases h is smooth; here we examine the
properties of the integral curves of h. To prove Theorem 4, we use an analogous
consideration.

2.3. Basic tools. In the proof we often use the following geometric observation.

Remark 2. For i D 1; 2; : : : ; n and j D 1; 2; : : : ; m, the ih vertex of P is vi

cos ˛i
,

and the incenter of the j th face of P is cos ǰ fj .

Most of the computations will be carried out in the Poincaré half space model.
In this model, we regard H3 embedded in R3 as the open half space ¹z > 0º.

Hyperbolic planes having the “point at infinity” as an ideal point are represented in
this model by the intersections of the Euclidean half space ¹z > 0º with Euclidean
planes parallel to the z-axis, we call these hyperbolic planes vertical. Hyperbolic
planes not having the “point at infinity” as an ideal point are represented by
open hemispheres in the Euclidean half space ¹z > 0º, with their centers on
the Euclidean plane ¹z D 0º, we call these planes spherical. For any plane H

in this model, we denote the set of its ideal points, different from the point at
infinity, by H �. We use the same terminology and notation for this model in any
dimension.

The last remark in this section is the result of elementary computations using
distance formulas from the Poincaré half plane model.
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Remark 3. Let p D .a; t /, a; t > 0 be a point in the Poincaré half plane model,
and let u 2 TpH

2 denote the tangent unit vector of the geodesic line through
p and perpendicular to the y-axis, pointing towards the axis. Furthermore, let
C be the hyperbolic line represented by the circle centered at the origin o and
Euclidean radius r , and let v 2 TpH

2 denote the tangent unit vector of the
geodesic line through p and perpendicular to C , pointing towards C . Assume
that r <

p
a2 C t2. Then the hyperbolic distance of p from the y-axis and from

C are arsinh a
t

and arsinh t2Ca2�r2

2rt
, respectively. In addition, the y-coordinates of

u and v are ap
a2Ct2

and � t2Cr2�a2p
.r2Ca2Ct2/2�4r2a2

, respectively.

3. Proof of Theorem 3 for cc.�/ and IC.�/

First, we prove the statement for cc.�/. During the proof, we set

Dv D H3 n
�

Sn
iD1

xVi

�

:

Observe that a ball B is the smallest ball containing P if, and only if it contains P ,
and its center belongs to the convex hull of the vertices of P lying on the boundary
of the ball.

Let I be the set of indices such that 1
cos ˛i

D max
®

1
cos j̨

W j D 1; 2; : : : ; n
¯

.

Thus, by Remark 2, o D cc.P / if and only if o 2 conv
®

1
cos ˇi

vi W i 2 I
¯

, which
is equivalent to o 2 conv¹vi W i 2 I º. Furthermore, I is the set of indices with
the property that d v

i .o/ D min¹d v
j .o/W j D 1; 2; : : : ; nº. We may extend this

definition for any p 2 Dv, and let I.p/ denote the set of indices with the property
that d v

i .p/ D min¹d v
j .p/W j D 1; 2; : : : ; nº. Since Möbius transformations act

transitively on H3, we need only to show the existence of a point p 2 Dv such
that op 2 conv¹vi .p/ � TpH

3W i 2 I.p/º.
For any plane Vi and � > 0, consider the set Vi .�/ of points in Dv at distance

at most � from Vi . This set is bounded by Vi and a hypersphere, which, in the
model, are represented by the intersections of two spheres with the interior of S2,
and share the same ideal points. Hence, if � is sufficiently small, then the sets
Vi .�/ and Vj .�/, where i ¤ j , intersect if, and only if the i th and the j th vertices
of P are connected by an edge. On the other hand, if � is sufficiently large, then
all Vi .�/s intersect. Let �0 be the smallest value such that some Vi .�0/ and Vj .�0/

intersect, where i ¤ j and the i th and j th vertices are not neighbors, and let
p 2 Vi .�0/ \ Vj .�0/. Note that vi .p/ is an inner surface normal of the boundary
of Vi .�0/ at p. Thus, the definition of �0 yields that the system of inequalities
hx; vi .p/i > 0, i 2 I.p/ has no solution for x, from which it follows that
there is no plane in TpH

3 that strictly separates op from the vi .p/s, implying that
op 2 conv¹vi .p/W i 2 I.p/º. This proves the statement for cc.�/. To prove it for
IC.�/, we may apply the same argument for the face circles of P .
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4. Proof of Lemma 1

The main goal of this section is to prove Lemma 1. In its formulation and proof
we use the notations introduced in Section 2. We note that two hyperbolic planes
Vi and Fj intersect if, and only if the i th vertex of P lies on the j th face of P . In
this case the two planes have a common ideal point, coinciding with a tangency
point of P . This point is the ideal point is one pair of Vis and one pair of Fj s, and
these two pairs are orthogonal.

If q is a boundary point of D in the Euclidean topology, by a neighborhood of q

we mean the intersection of a neighborhood of q with D, induced by the Euclidean
topology of R3. Before stating our main lemma, we note that if hW D ! TD is
a smooth vector field, then by the Picard–Lindelöf Theorem for any p 2 D with
h.p/ ¤ o there is a unique integral curve of h passing through p. These integral
curves are either closed, or start and end at boundary points of D or at points q

with h.q/ D o.

Lemma 1. Let

hW D �! TD; h.p/ D
n

X

iD1

wivi.p/ C
m

X

j D1

Wj fj .p/;

be a vector field where the coefficients wi and Wj are positive smooth functions of

nCm variables, depending on d v
i .p/, i D 1; 2; : : : ; n and d

f
j .p/, j D 1; 2; : : : ; m.

Assume that for any boundary point q of D,

(i) q has a neighborhood disjoint from any closed integral curve of h;

(ii) if q 2 Gj for some value of j , then there is no integral curve of h ending at j ;

(iii) if q 2 Fi for some value of i and q … Gj for all values of j , then q has a

neighborhood in which the integral curve through any point ends at a point

of Fi ;

(iv) if q 2 S2 is a tangency point of P , then there is a codimension 1 foliation of

a neighborhood of q in D such that q is not an ideal point of any leaf, and

for any point p on any leaf h.p/ ¤ o, the integral curve through p crosses

the leaf, either in the direction of q or from this direction, independently of

the choice of p, the leaf and q.

Then h.p/ D op for some p 2 D.

First, we prove Lemma 2, where, by Bd , we mean the closed d -dimensional
Euclidean unit ball centered at o.

Lemma 2. Let X D .int BdC1/ n .1 � "/BdC1, where 0 < " < 1, and d � 2.

Let Z1; : : : ; Zk be pairwise disjoint closed sets in X , where k � 1. If X n Zi is

connected for all values of i then X n
� Tk

iD1 Zi

�

is connected.
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Proof. We prove the assertion by induction for k. If k D 1, then the statement is
trivial. Assume that Lemma 2 holds for any k � 1 closed sets. Let Z0 D

Sk�1
iD1 Zi .

Then xZk D X n Zk and Z0 D Z n Z0 are open sets whose union is X . Consider
the Mayer–Vietoris exact sequence [17] of these subspaces:

H1.X/ �! H0.Zk \ Z0/ �! H0.Zk ˚ Z0/ �! H0.X/ �! 0:

Note that by the induction hypothesis, Z0 is connected. On the other hand, since
Sd is a deformation retract of X , their homology groups coincide, implying that
rank H1.X/ D 0, rank H0.X/ D 1. Since X is locally path-connected, any
connected subset of X is path-connected, and thus, rank H0.X/ is the number
of connected components of X , implying that rank.H0.Zk ˚ Z0// D 2, and
rank.H0.Zk \ Z0// D t , where t is the number of the connected components of
Zk \ Z0. The exactness of the Mayer–Vietoris sequence yields that 1 � 2 C t D 0,
that is, t D 1. �

Now we prove Lemma 1.

Proof. We prove Lemma 1 by contradiction. Assume that h.p/ ¤ o for any
p 2 D, and let S denote the set of tangency points of P . Furthermore, let Z denote
the set of the points of D belonging to a closed integral curve. For i D 1; 2; : : : ; n,
let Yi denote the set of points whose integral curve terminates at a point of Hi ,
and let Ws be the set of the points with their integral curves ending at s 2 S . By
(iii), every set Yi is open, and it is easy to see that every set Ws is closed.

First, assume that for any s 2 S , the integral curve through any point p on
a leaf of the codimension 1 foliation in a neighborhood of s points away from
the direction of s. This implies, in particular, that Ws D ; for all s 2 S . For
all q 2 bd D, let Vq denote a neighborhood of q satisfying the conditions of the
lemma. By the definition of induced topology, Vq D V �

q for some neighborhood
of q in R3. We may assume that V �

q is open for all q 2 bd D. Since the sets V �
q

cover the compact set bd D, we may choose a finite subfamily that covers bd D.
By finiteness, it follows that there is some " > 0 such that the set D" of points at
Euclidean distance less than " from bd D is disjoint from Z. On the other hand,
D" is connected, yet it is the disjoint union of the finitely many open sets Yi \ D",
a contradiction.

Assume now that that for any s 2 S , the integral curve through any point p on
a leaf of the codimension 1 foliation in a neighborhood Vs of s points towards s.
By this, if s 2 S is the tangency point connecting the i th and j th vertices, then
Vs � Ws [Yi [Yj . On the other hand, by (iii), all Yis are connected. Thus, for any
walk on the edge graph of P starting at the kth and ending at the l th vertex, there
is a continuous curve in D starting at a point of Yk and ending at a point of Yl ,
and passing through points of only those Yis and Wss for which the associated
vertices and edges of P are involved in the walk. In addition, the curve may pass
arbitrarily close to bd D, measured in Euclidean metric.
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We choose the set D" as in the previous case. Note that D" is homeomorphic
to .int B3/ n .1 � "/B3, and thus, we may apply Lemma 2 with the Wss playing the
roles of the Zj s. Then it follows that for some s 2 S , D" n Ws is disconnected.
Since the union of finitely many closed sets is closed, there are some Yk and Yl in
different components. By Steinitz’s theorem [23, 25], there is a path in the edge
graph of P that connects the kth and l th vertices and avoids the edge associated
to s. Hence, there is a continuous curve in D, starting at a point of Yk and ending
at a point of Yl that avoids Ws; a contradiction. �

5. Proof of Theorem 3

5.1. Barycenter of the vertices: cm0.P/. We show that Theorem 3 for the
barycenter of its vertices is an immediate consequence of Theorem 4.

By Remark 2, we have cm0.P / D 1
n

Pn
iD1

1
cos ˛i

vi . Thus, it is sufficient to
show that the conditions of Theorem 4 are satisfied for the family of vertex circles
of P with the weight functions wi .t / D 1

cos t
for all is.

First, observe that if n D 4 (i.e. if P is a tetrahedron), then cm0.P / D o if P is
regular. Thus, we may assume that n � 5. Note that the weight functions wi .t /D

1
cos t

are positive smooth functions on
�

0; �
2

�

and satisfy limt! �
2

wi .t / D 1.

Furthermore, since jI.q/j � 2 for all points q 2 S2, the inequality in (1) holds,
and Theorem 4 implies Theorem 3 for cm0.�/.

5.2. Center of mass of the wire model: cm1.P/. Let E denote the set of edges
of the edge graph of P ; that is, ¹i; j º 2 E if, and only if the i th and j th vertices
are connected by an edge. An elementary computation yields that if ¹i; j º 2 E,
the length of the corresponding edge of P is tan ˛i C tan j̨ , and its center of mass
is 1

2

�

vi

cos ˛i
C vj

cos j̨

�

. Thus, letting A D
P

¹i;j º2E .tan ˛i C tan j̨ /, we have

cm1.P / D 1

2A

X

¹i;j ºinE

.tan ˛i C tan j̨ /
� vi

cos ˛i

C vj

cos j̨

�

: (5)

Set Dv D H3 n
� Sn

iD1
xVi

�

, and define the function hvW Dv ! TDv as

hv.p/ D
X

¹i;j º2E

� 1

sinh d v
i .p/

C 1

sinh d v
j .p/

�

.coth.di .p//vi.p/ C coth.dj .p//vj .p//:

(6)
Then hv is a smooth function on Dv and the coefficient of each vector vi .p/

is positive. By Remark 1, it follows that if there is a point p 2 Dv such that
hv.p/ D o, then, choosing a Möbius transformation T that maps p into o, we
have cm1.T .P // D o. We denote the restriction of hv to D by h, and show that h

satisfies the conditions in Lemma 1.
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Let q be a boundary point of D in some plane Fj associated to a face circle
of P . Assume that q is not contained in Vi for any value of i . Observe that if the
i th vertex lies on the j th face, then vi.q/ and fj .q/ are orthogonal, and otherwise
vi .q/ points inward to D. Thus, by the continuity of hv, there is no integral curve
of h that ends at q, and q has a neighborhood disjoint from the set Z of the points
of the closed integral curves of h. If q is contained in Vi for some i , then a slight
modification of this argument can be applied. This proves (ii) in Lemma 1.

Let q be a point of some Vi not contained in any of the Fj s. Then, denoting the

coefficient of vj .p/ by �j .p/ for any j , we have that �i .p/
�j .p/

! 1 for all j ¤ i , as

p ! 1, which shows that if p is “close” to q, then h.p/ is “almost orthogonal”
to Fj . This shows (iii), and the fact that a neighborhood of q is disjoint from Z.

Finally, let q be a tangency point of P . Without loss of generality, we may
assume that q is the ideal point of V1, V2, F1 and F2. To prove (iv), we imagine
the configuration in the Poincaré half space model, with q as the “point at infinity”;
geometrically, it means that we apply an inversion to R3 about a sphere centered
at q. Then D is contained in the half-infinite cylinder bounded by the four vertical
planes V1; V2; F1 and F2 (for the definition of vertical and spherical plane, see
Subsection 2.2). Note that the cross section of this cylinder is a rectangle, and
that all other Vis and Fj s are spherical planes centered at ideal points of D in the
Euclidean plane ¹z D 0º.

For any t > 0, let Dt denote the intersection of the set ¹z D tº with D.
We remark that ¹z D tº is a horosphere whose only ideal point is q, and thus,
the sets Dt , where t is sufficiently large, form a codimension 1 foliation of a
neighborhood of q in D. Hence, to show that the conditions of Lemma 1 are
satisfied, it is sufficient to show that if t is sufficiently large, then h.p/ has a positive
z-coordinate for any p 2 Dt .

For any ¹i; j º 2 E, denote the term in h.p/ belonging to ¹i; j º by hi;j .p/,
and the z-coordinate of hi;j .p/ by zi;j .p/. Let ¹i; j º and ¹1; 2º be disjoint. Note
that the closure of Dt is compact. Thus, by Remark 3, if t ! 1, then h.p/

uniformly converges to 0. Assume that ¹i; j º \ ¹1; 2º is a singleton, say i D 1

and j ¤ 2. Then, by Remark 3, the z-coordinate of coth d v
1 .p/v1.p/ is 1, and

that of coth d v
j .p/vj .p/ is less than 1. Thus, z1;j .p/ > 0 in this case. Finally,

z1;2.p/ > C t for any p 2 Dt for some universal constant C > 0. Thus h.p/ has
a positive z-coordinate for large values of t , and Lemma 1 implies Theorem 3 for
the case of cm1.�/.

5.3. Center of mass of the paper model: cm2.P/. Let I denote the edge set
of the vertex-face incidence graph of P ; that is, .i; j / 2 I if, and only if the i th
vertex lies on the j th face. Consider some .i; j / 2 I . Then there are exactly
two edges of P adjacent to both the vertex and the face. Let the tangency points
on these two edges be denoted by e1

i;j and e2
i;j . Then, by Remark 2, the points

vi

cos ˛i
, e1

i;j , cos ǰ fj and e2
i;j are coplanar, and they are the vertices of a symmetric



Centering Koebe polyhedra 209

right trapezoid Qi;j (cf. Figure 2). Note that bd P can be decomposed into the
mutually nonoverlapping trapezoids Qi;j , .i; j / 2 I . An elementary computation
yields that the center of gravity of Qi;j is

1

3

�2 tan2 ˛i C sin2
ǰ

tan2 ˛i C sin2
ǰ

cos ǰ fj C tan2 ˛i C 2 sin2
ǰ

tan2 ˛i C sin2
ǰ

1

cos ˛i

vi

�

:

The area of Qi;j is tan ˛i sin ǰ . Thus, letting A D
P

.i;j /2I tan ˛i sin ǰ , we have

cm2.P / D 1

3A

X

.i;j /2I

tan ˛i sin ǰ

�2 tan2 ˛i C sin2
ǰ

tan2 ˛i C sin2
ǰ

cos ǰ fj

C tan2 ˛i C 2 sin2
ǰ

tan2 ˛i C sin2
ǰ

1

cos ˛i

vi

�

:

(7)

vi

cos ˛i

e1
i;j

e2
i;j

cos ǰ fj

Qi;j

Figure 2. The right trapezoid Qi;j .

Let us define the smooth vector field hW D ! TD as

h.p/ D
X

.i;j /2I

hi;j .p/; (8)

where

hi;j .p/ D 1

sinh d v
i cosh d

f
j

�2 cosh2 d
f

j C sinh2 d v
i

cosh2 d
f

j C sinh2 d v
i

tanh d
f

j fj .p/

C
cosh2 d

f
j C 2 sinh2 d v

i

cosh2 d
f

j C sinh2 d v
i

coth d v
i vi .p/

�

:
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Here, for simplicity, we set d v
i D d v

i .p/ and d
f

j D d
f

j .p/. The function h is
a smooth function on D with positive coefficients. Furthermore, by Remark 1,
if h.p/ D o for some p 2 D and T is a Möbius transformation mapping p

into o, then cm2.T .P // D o. Similarly like in Subsection 5.2, we show that the
conditions of Lemma 1 are satisfied for h.

To prove (ii) and (iii) we apply the same argument as in Subsection 5.2. To
prove (iv), we follow the line of the same proof, and imagine the configuration
in the half space model. Let q be the ideal point of V1; V2; F1 and F2. Then D

is bounded by the vertical planes V1; V2; F1 and F2 which form a rectangle based
half-infinite cylinder. We adapt the notations from the previous subsection, and set
Dt D D \ ¹z D tº for all > 0. We denote the z-coordinate of hi;j .p/ by zi;j .p/,
and show that their sum is positive if t is sufficiently large.

By Remark 3 and an elementary computation, if i … ¹1; 2º, then zi;j .p/

uniformly tends to zero for all p 2 Dt as t ! 1. To examine the remaining
cases, for i D 1; 2, let xi .p/ denote the Euclidean distance of the point p from Vi .
Then x1.p/ C x2.p/ D x is the Euclidean distance of V1 and V2. By Remark 3,
there is some constant C1 > 0 independent of p, t , i and j such that for all
p 2 Dt , j � 3 and i 2 ¹1; 2º, we have zi;j .p/ � �C1

xi
. Similarly, there is some

constant C2 > 0 independent of p; t; i; j such that for all p 2 Dt , i; j 2 ¹1; 2º, we

have zi;j .p/ � C2t2

xi
. This implies that if t is sufficiently large (and in particular, if

t >
q

C1k
C2

, where k is the maximal degree of a vertex of P ), then the z-coordinate

of h.p/ is positive for all p 2 Dt . From this, Theorem 3 readily follows for cm2.�/.

5.4. Circumcenter of mass: ccm.�/. In this subsection we assume that P is
simplicial.

Similarly like in Subsection 5.3, we denote by I the set of edges of the vertex-
face incidence graph of P , and by Vj D ¹aj ; bj ; cj º the set of the indices of the
vertices adjacent to the j th face of P .

Let the convex hull of the j h face of P and o be denoted by Sj . To compute
ccm.P /, we need to compute the volume and the circumcenter of Sj , which we
denote by mj and pj . To do this, in the next lemma for simplicity we omit the
index j , and in addition denote tan ˛xj

by tx for x 2 ¹a; b; cº.

Lemma 3. The volume of Sj is

mj D 1

3

p

tatbtc.ta C tb C tc � tatbtc/: (9)

The circumcenter of Sj is

pj D
X

s2¹a;b;cº
Nsvs; (10)
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where

Na D
.tb C tc/..tb C tc/t2

a C .2t2
b
t2
c C t2

b
C t2

c /ta � tbtc.tb C tc///

4tatbtc.ta C tb C tc � tatbtc/
; (11)

and Nb and Nc are defined analogously.

Proof. Note that the three edges of Sj starting at o are of length 1
cos ˛x

with

x 2 ¹a; b; cº. Furthermore, the edge opposite of the one with length 1
cos ˛x

is tyCtz,
where ¹x; y; zº D ¹a; b; cº. Thus, the volume of Sj can be computed from its
edge lengths using a Cayley–Menger determinant. It is worth noting that since the
projection of F onto S2 is a spherical triangle of edge lengths ˛a C˛b, ˛a C˛c and
˛bC˛c , and such a triangle is spherically convex, its perimeter is ˛aC˛bC˛c < � .
From this an elementary computation yields that ti C tj C tk � ti tj tk > 0, and the
formula in (9) is valid.

We compute pj . Since the vectors va; vb and vc are linearly independent,
we may write this point in the form pj D

P

s2¹i;j;kº Nsvs for some coefficients
Na; Nb; Nc . We multiply both sides of this equation by vr with some r 2 ¹a; b; cº.
Since all vis are unit vectors, we have that hvs; vri D cos.˛s C ˛r / if s ¤ r ,
and hur ; ur i D 1. On the other hand, for any value of r , pj is contained in the
plane with normal vector vr passing through the point ur

2 cos ˛r
. Hence, it follows

that ŒNa; Nb; Nc�T is the solution of the system of linear equations with coefficient
matrix

2

4

1 cos.˛a C ˛b/ cos.˛a C ˛c/

cos.˛a C ˛b/ 1 cos.˛b C ˛c/

cos.˛a C ˛c/ cos.˛b C ˛c/ 1

3

5

and with constants 1
2 cos ˛r

, where r D a; b; c. The determinant of the coefficient

matrix is 36.mj /2.1 C t2
a /.1 C t2

b
/.1 C t2

c / > 0. Thus, this system has a unique
solution, which can be computed by Cramer’s rule, yielding the formula in (11).

�

For s D 1; 2; : : : ; n, let us denote the value csch d v
s .p/ D 1

sh dv
s .p/

by �s.p/.
Observe that Remark 1 implies that csch d v

s .o/ D tan ˛s. For any p 2 D, let us
define the vector field

h.p/ D
m

X

j D1

X

s2Vj

Bs.p/vs.p/; (12)

where, using the notation Vj D ¹a; b; cº and for brevity omitting the variable p,
we have

Ba.p/D
tanh da.�b C �c/.�2

a .�b C �c/ C �a.2�2
b
�2

c C �2
b

C �2
c / � �b�c .�b C �c//

p

�a�b�c.�a C �b C �c � �a�b�c/
:

(13)
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If h.p/ D o and T is a Möbius transformation that maps p into o, then
ccm.T .P // D o. Thus, to prove the statement it is sufficient to prove that for
some p 2 D, f .p/ D o. To do this, we check that the conditions of Lemma 1 are
satisfied.

Let Z denote the set of points of D whose integral curve is closed. Since
for any value of j , Fj is perpendicular to any Vi with .i; j / 2 I and does not
intersect any other Vi , similarly like in Subsection 5.2, it follows that if q 2 Fj for
some plane Fj associated to a face circle of P , then q has a neighborhood disjoint
from Z, and no integral curve ends at q.

Let q 2 Vi for some value of i . It is an elementary computation to check that if
˛CˇC D � , and 0 < ˛; ˇ;  < �

2
, then tan ˛C tan ˇC tan  D tan ˛ tan ˇ tan  .

This and Remark 1 implies that if p ! q and i 2 ¹a; b; cº, then the denominator
of Ba.p/ tends to zero. Since the numerator tends to a positive number if a D i ,
and to zero if i D b or i D c, it follows that if i 2 Vj , then the length of
P

s2Vj
Bs.p/vs.p/ tends to 1, and its direction tends to that of vi.p/. Since

i … Vj implies that
P

s2Vj
Bs.p/vs.p/ can be continuously extended to q, it

follows that the angle of h.p/ and the external normal vector of Vi at q is “almost”
zero in a suitable neighborhood of q. This yields (iii).

We prove (iv) in a Poincaré half space model with q being the “point at infinity.”
Without loss of generality, we may assume that q is the ideal point of V1, V2,
F1 and F2. Then these two pairs of hyperbolic planes are represented by two
perpendicular pairs of vertical hyperbolic planes. As before, let Dt denote the set
of points in D with z-coordinates equal to t . We show that the z-coordinate of
h.p/ is positive for any p 2 Dt , if t is sufficiently large. For any j and any i 2 Vj ,
let us denote the z-coordinate of Bi .p/vi.p/ by z

j
i .p/.

Let p 2 Dt , and denote by x1 and x2 the Euclidean distance of p from V1

and V2, respectively. Consider some value of j . If Vj is disjoint from ¹1; 2º, then
Remark 3 and (13) shows that there is some C1 > 0 independent of p such that
jzj

i .p/j � C1

t2 if t is sufficiently large. Assume that Vj contains exactly one of
1; 2, say 1. Then, an elementary computation and Remark 3 yields the existence
of some C2; C3 > 0 independent of p such that jzF

1 .p/j � C2

t2 , and for 1 ¤ i 2 Vj ,

jzj
i .p/j � C3

t2

x2
1

.

Finally, let Vj D ¹1; 2; iº. Note that in this case j D 1 or j D 2. Furthermore,
since P is simplicial, we have that the Euclidean radius of the hemisphere repre-
senting Vi is x1Cx2

2
, and the Euclidean distance of the center of this hemisphere

from the projection of p onto the ¹z D 0º plane is
q

�

x1�x2

2

�2 C y2
j , where yj is

the Euclidean distance of p from Fj (cf. Figure 3). An elementary computation

yields that by this and Remark 3, the denominator in (13) is t3.x1Cx2/yj

.t2Cy2
j

�x1x2/x1x2
. Us-

ing this, we have jzj
1 .p/j � 2x2

1

x2yj
t , jzj

2 .p/j � 2x2
2

x1yj
t and z

j
i .p/ � x1Cx2

2x2
1

x2
2

yj

t3 if t is
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sufficiently large. Using these estimates, we have z
j
1 .p/ C z

j
2 .p/ C z

j
i .p/ � C4t3

x2
1

x2
2

for some C4 > 0 independently of t and p. Thus, there is some C > 0 such that if
t is sufficiently large,

Pn
j D1

P

i2Vj
z

j
i .p/ � C t3, and, in particular, this expres-

sion is positive. The regions Dt form a codimension 1 foliation of a neighborhood
of q, and thus Theorem 3 follows from Lemma 1.

V1 V2

x1

x2

yjri

Fj

p

Figure 3. The ideal points of hyperbolic planes associated to a simplicial polyhedron in the
Euclidean plane ¹z D 0º. Continuous lines represent planes associated to vertex circles.
Dotted lines represent planes associated to face circles.

5.5. Points of the Euler line. Again, we assume that P is simplicial. Using the
calculations in Subsection 5.3, we have that the center of mass of P is

cm3.P / D 1

4A

X

.i;j /2I

tan ˛i sin ǰ cos ǰ

�2 tan2 ˛i C sin2
ǰ

tan2 ˛i C sin2
ǰ

cos ǰ fj

C tan2 ˛i C 2 sin2
ǰ

tan2 ˛i C sin2
ǰ

1

cos ˛i

vi

�

;

where A D
P

.i;j /2I tan ˛i sin ǰ cos ǰ .
By Remark 1, we define the smooth vector field hcmW D ! TD as

hcm.p/ D
X

.i;j /2I

hi;j .p/; (14)
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where

hi;j .p/ D
sinh d

f
j

sinh d v
i cosh2 d

f
j

�2 cosh2 d
f

j C sinh2 d v
i

cosh2 d
f

j C sinh2 d v
i

tanh d
f

j fj .p/

C
cosh2 d

f
j C 2 sinh2 d v

i

cosh2 d
f

j C sinh2 d v
i

coth d v
i vi .p/

�

:

Furthermore, for any � 2 .0; 1/, we set h�.p/ D �hcm.p/C.1��/hccm.p/, where
hccmW D ! TD is the vector field defined in (12). We observe that if there is some
p 2 D such that h�.p/ D o, and T is a Möbius transformation moving p to o,
then o D � cm3.T .P // C .1 � �/ ccm.T .P //.

We show that the conditions of Lemma 1 are satisfied for h�. Note that since
� 2 .0; 1/, all coefficients in the definition of h� are positive. To check (i), (ii),
and (iii), we may apply an argument similarly like before. To prove (iv), again we
represent the configuration in the half space model. Let Dt be the intersection of
D with the horosphere ¹z D tº, and zcm.p/ and z�.p/ denote the z-coordinate
of hcm.p/ and h�.p/, respectively. Then an elementary computation yields by
Remark 3 that there is some xC > 0 such that jzcm.p/j � xC for all p 2 Dt , if t

is sufficiently large. Thus, by the estimates in Subsection 5.4 and since � < 1 it
follows that if t is sufficiently large, then z�.p/ > 0 for all p 2 Dt . Consequently,
Lemma 1 can be applied, and Theorem 3 holds for the considered point of the
Euler line.

6. Proof of Theorem 4

To prove Theorem 4, we follow the line of the proof of Theorem 3. To do this, we
need a lemma for polyhedral regions in Euclidean space.

Lemma 4. Let S1; : : : ; Sk be closed half spaces in Rd , with outer normal vectors

u1; : : : ; uk. Then there are unit normal vectors v1; : : : ; vm such that hui ; vj i � 0,

for all 1 � i � l and 1 � j � m, and for arbitrary closed half spaces

S 0
1; : : : ; S 0

m with outer unit normal vectors v1; : : : ; vm, respectively, the set Q D
�

Tk
iD1 Si

�

\
�

Tm
j D1 S 0

j

�

is bounded.

Proof. First, observe that the property that Q is bounded is equivalent to the
property that there is no unit vector v 2 Sd�1 such that hv; uii � 0 and hv; vj i � 0

holds for all 1 � i � k and 1 � j � m. In other words, Q is bounded if, and only
if the open hemispheres of Sd�1, centered at the uis and the vj s, cover Sd�1. If
Tk

iD1 Si is bounded, there is nothing to prove, and thus, we may consider the set Z

of vectors in Sd�1 not covered by any open hemisphere centered at some ui . Note
that since Z is the intersection of finitely many closed hemispheres, it is compact.
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Let G.v/ denote the open hemisphere centered at v. Then the family ¹G.v/W v 2 Zº
is an open cover of S , and thus it has a finite subcover ¹G.vj /W i D 1; : : : ; mº. By
its construction, the vectors v1; : : : ; vm satisfy the required conditions. �

Now we prove Theorem 4, and for any i D 1; 2; : : : ; n, we let �i denote the
spherical radius of Ci . We imagine Sd as the set of ideal points of the Poincaré
ball model of HdC1. Then each spherical cap is associated to a closed hyperbolic
half space. We denote the half space associated to Ci by xHi , and the hyperplane
bounding xHi by Hi . Let D D HdC1 n

�
Sn

iD1
xHi

�

, and note that as �i < �
2

for all
indices, D is an open, convex set in HdC1 containing the origin o.

For any p 2 D, let us define the function fi .di / D wi.arccos tanh di /.
Then fi W .0; 1/ ! .0; 1/ is a positive smooth function on its domain satisfying
limd!0C0 fi .d/ D 1. Let vi .p/ 2 TpH

dC1 denote the unit tangent vector of the
geodesic half line starting at p and perpendicular to Hi , and let di .p/ denote the
hyperbolic distance of p from Hi . Finally, let the smooth vector field f W D ! TD

be defined as

f .p/ D
n

X

iD1

fi .di .p//vi.p/:

By (3) and (4), if T is a Möbius transformation mapping p into o, then f .p/ D
P

iD1n wi .�T .Ci //cT .Ci /. Since hyperbolic isometries act transitively on HdC1,
it is sufficient to show that f .p/ D op for some p 2 D.

We prove it by contradiction, and assume that f .p/ ¤ op for any p 2 D.
Consider the integral curves of this vector field. Then, by the Picard–Lindelöf
Theorem, they are either closed, or start and terminate at boundary points of D.
On the other hand, since fi is smooth for all values of i , fi has an antiderivative
function Fi on its domain. It is easy to check that grad.�

Pn
iD1 Fi .di .p/// D

f .p/, implying that f is a gradient field, and thus it has no closed integral curves.
Our main tool is the next lemma. To state it we define a neighborhood of a

point q in the boundary of D as the intersection of D with a neighborhood of q in
RdC1 induced by the Euclidean topology (cf. Section 4). Recall from Theorem 4
that if q 2 Sd , then I.q/ denotes the set of indices of the spherical caps Ci that
contain q in their boundaries.

Lemma 5. Let q be a boundary point of D, and if q … Sd , then let I.q/ denote

the set of indices such that q 2 Hi .

(a) If q … Sd , then q has a neighborhood V such that any integral curve

intersecting U terminates at a point of Hj for some j 2 I.q/.

(b) If q 2 Sd , then there is no integral curve terminating at q.

Proof. First, we prove (a) for the case that I.q/ D ¹iº is a singleton. Let v be
the external unit normal vector of bd D at q. For any p 2 D, if p ! q, then
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fi .di .p// ! 1, and vi .p/ tends to a vector of unit hyperbolic length, perpendic-
ular to Hi at q and pointing outward. On the other hand,

P

j ¤i fj .dj .p//vj .p/ is
continuous at q and hence it tends to a vector of fixed hyperbolic length. Thus, for
every " > 0 there is a neighborhood U of q such that the angle between v and f .p/

is at most ", for any p 2 V . This implies (a) in this case. If I.q/ D ¹j1; : : : ; jkº is
not a singleton and the inner unit normal vectors of Hj1

; : : : ; Hjk
are denoted by

vj1
; : : : ; vjk

, respectively, then a similar argument shows that if p is “close to q,”
then f .p/ is “close” to the conic hull of these vectors.

Now we prove (b). Our method is to show that q has a basis of closed
neighborhoods with the property that no integral curve enters any of them, which
clearly implies (b). For computational reasons we imagine the configuration in
the Poincaré half space model, with q as the “point at infinity.” The region D in
this model is the intersection of finitely many open hyperbolic half spaces with
vertical and spherical bounding hyperplanes, where Hi is vertical if, and only if
i 2 I.q/ (cf. Figure 4).

xdC1

H1

H2

H 0
1

H 0
2

y1

y0
1

y2 y0
2

D

Figure 4. The configuration in the Poincaré half space model.

Consider a neighborhood U of q. Then U is the complement of a set which
is bounded in RdC1. Thus, without loss of generality, we may assume that U

is disjoint from all spherical His, and it is bounded by a spherical hyperbolic
hyperplane H . For any i 2 I.q/, let yi 2 S be the outer unit normal vector of Hi

in RdC1, where we set S D Sd \ ¹xdC1º.
Note that as q is an ideal point of D, D is not bounded in this model. Let D�

denote the set of ideal points of D on the Euclidean hyperplane ¹xdC1 D 0º (cf.
Section 2). This set is the intersection of the closed half spaces xHi , i 2 I.q/ in
the Euclidean d -space ¹xdC1 D 0º (for the definition of H �

i , see Subsection 2.3).
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Thus, if D� is not bounded, Lemma 4 implies that there are some closed vertical
half spaces in HdC1 whose intersection contains H , and whose outer unit normal
vectors y0

1; y0
2; : : : ; y0

m satisfy hy0
j ; yii < 0 for any yi and y0

j . Let the intersection
of these half spaces with D be D0, and their bounding hyperbolic hyperplanes be
H 0

1; H 0
2; : : : ; H 0

m, where y0
j is the outer unit normal vector of H 0

j for all values of j .

Let p be a boundary point of D0 in HdC1. Then p 2 H 0
j \ D0 for some

j s. Observe that if i 2 I.q/, then the geodesic line through p and perpendicular
to Hi , which in the model is a circle arc perpendicular to the hyperplane ¹xdC1º,
is contained in the vertical plane through p and perpendicular to Hi . Thus, vi .p/

points strictly inward into D0 at every boundary point of D0. A similar argument
shows the same statement for any i … I.q/ as well. As a result, we have that the
integral curve through any point p 2 bd D0 enters D0 at p.

Let Xt denote the set ¹xdC1 D tº for any t > 0, and note that this is a
horosphere in HdC1 with q as its unique ideal point. Set Dt D Xt \ D0. We
show that if t is sufficiently large, then f .p/ has a negative xdC1-coordinate. We
denote this coordinate by z.p/.

Let p 2 Dt . It follows from Remark 3 and an elementary computation that if
i 2 I.q/, then the xdC1-coordinate of vi .p/ is tanh di .p/, and if i … I.q/, then
it tends to �1 as di .p/ ! 1. On the other hand, for any "; K > 0 there is some
value t0 such that if t > t0, then di .p/ < " for all i 2 I.q/, and di .p/ > K for all
i … I.q/ and for all p 2 Dt . This implies that

lim
t!1

sup
p2Dt

z.p/ D lim
d!0C0

X

i2I.q/

fi .d/ tanh d � lim
d!1

X

i…I.q/

fi .d/:

By the condition (1) and the relation (3), we have that this quantity is negative,
implying that z.p/ is negative for all p 2 Dt if t is sufficiently large. Let t 0 be
chosen to satisfy this property. Without loss of generality, we may also assume that
Xt 0 does not intersect the hyperplane H . Let xV denote the set of points in D0 with
xdC1-coordinates less than t 0, and let V D HdC1n xV . Then V is a neighborhood of
q in HdC1, contained in U , and V has the property that the integral curve through
any boundary point p of V leaves V at p. This proves (b). �

Now we finish the proof of Theorem 4. By the conditions in the formulation
of the theorem, the set

Sn
iD1 Hi � HdC1 is disconnected. Let the components

of this set be X1; X2; : : : ; Xr . By Lemma 5, the integral curve of every point
p 2 D terminates at some point of these sets. Let Yj denote the points of D

whose integral curve ends at a point of Xj . By Lemma 5, no Yj is empty, and it
also implies that Yj is open in D for all j s. Thus, D is the disjoint union of the
r open sets Y1; Y2; : : : ; Yr , where r > 1. On the other hand, D is an open convex
set, and thus, it is connected; a contradiction.
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7. Concluding remarks and open questions

To illustrate why the problem of centering Koebe polyhedra via Möbius transfor-
mations is different from the problem of centering density functions on the sphere,
we prove Remark 4.

Remark 4. Let g.�/ 2 ¹cc.�/; cm0.�/; cm1.�/; cm2.�/; cm3.�/º and let P be a Koebe
polyhedron. Then there is a Möbius transformation T W S2 ! S2 such that
g.T .P // … B3. Furthermore, if P is simplicial, the same statement holds for
g.�/ D ccm.�/.

Proof. We use the notations introduced in Section 2 and without loss of generality,
we assume that the radius of every vertex and face circle of P is less than �

2
.

Consider a closed hyperbolic half space xVi associated to a vertex circle Ci of P .
Let q 2 S2 be an ideal point of xVi with the property that q lies in the exterior
of any vertex circle of P . Let the spherical distance of q from the circle Ci

be 0 < ˛ � �
2

. Then the spherical radius of any vertex circle of P is less
than ��˛

2
. Let L be the hyperbolic line perpendicular to Vi and with ideal

point q. Consider a Möbius transformation T defined by a hyperbolic translation
T along L. Note that T .q/ D q, and T .Vi/ is a hyperbolic plane perpendicular
to L. Clearly, using a suitable translation, T .Vi/ � int xVi , and T .Vi/ is arbitrarily
close to o. Here, the first property implies that, apart from T .Ci/, the radius
of every vertex circle of T .P / is less than ��˛

2
< �

2
, and hence, by Remark 2

for any j ¤ i the distance of j th vertex of T .P / from o is less than 1
cos ��˛

2

.

On the other hand, the second property implies that the distance of the j th
vertex of T .P / from o is arbitrarily large. From this, it readily follows that
cc.T .P //; cm0.T .P //; cm1.T .P //; cm2.T .P //; cm3.T .P // … B3, and if P is
simplicial, then ccm.T .P // … B3. �

We note that a similar construction can be given for spherical cap systems on
Sd satisfying the conditions in Theorem 4.

Remark 5. Using the idea of the proof in Subsection 5.5, it is possible to prove
the following, stronger statement: Let P be a Koebe polyhedron, and let g.�/ D
�0 cm0.�/ C �1 cm1.�/ C �2 cm2.�/ C �3 cm3.�/, where

P3
iD0 �i D 1, �i � 0 for

all values of i and �i > 0 for some i ¤ 3. Then there is a Möbius transformation
T such that g.T .P // D o. Furthermore, if P is simplicial, the same statement
holds for the convex combination g.�/ D �0 cm0.�/ C �1 cm1.�/ C �2 cm2.�/ C
�3 cm3.�/ C �4 ccm.�/ under the same conditions.

Remark 6. More elaborate computations, similar to those in Subsection 5.5, show
that for any sufficiently large value of t , the integral curves of the vector field hcm

defined in (14) cross Dt in both directions. This shows why our argument fails for
cm3.�/.
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Remark 7. An alternative way to prove Theorem 3 for ccm.�/ seems to be the
following. First, we triangulate the boundary of P using the symmetric right
trapezoids Qi;j , or more specifically, we subdivide the faces by the incenters of
the faces and the tangency points on the edges. Computing the circumcenter of
mass of this triangulation leads to a significantly simpler function for ccm.P / than
the one in (12). Nevertheless, as it is remarked in Subsection 2.1, circumcenter of
mass is invariant only under triangulations that do not add new vertices to bd P

(cf. also Remark 3.1 in [26]).

Problem 1. Prove or disprove that every combinatorial class of convex polyhedra
contains a Koebe polyhedron whose center of mass is the origin.

Problem 2. Prove or disprove that the Möbius transformations in Theorem 3 are
unique up to Euclidean isometries.

Problem 3. Is it possible to prove variants of Theorem 4 if the weight functions
wi in (2) depend not only on �T .Ci / but also on the radii of the other spherical
caps as well?

Problem 4. Schramm [21] proved that if K is any smooth, strictly convex body in
R3, then every combinatorial class of convex polyhedra contains a representative
midscribed about K. If K is symmetric to the origin, does this statement remain
true with the additional assumption that the barycenter of the tangency points of
this representative is the origin? Can the barycenter of the tangency points be
replaced by other centers of the polyhedron?

Acknowledgments. The author thanks G. Domokos, P. Bálint, G. Etesi, and
Sz. Szabó for many fruitful discussions on this problem.
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