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Limiting distribution of geodesics

in a geometrically finite quotients

of regular trees

Sanghoon Kwon1 and Seonhee Lim2

Abstract. Let T be a .q C 1/-regular tree and let � be a geometrically finite discrete

subgroup of the group Aut.T/ of automorphisms of T. In this article, we prove an extreme

value theorem on the distribution of geodesics in a non-compact quotient graph �nT. Main

examples of such graphs are quotients of a Bruhat–Tits tree by non-cocompact discrete

subgroups � of PGL.2; K/ of a local field K of positive characteristic.

We investigate, for a given time T , the measure of the set of �-equivalent classes of

geodesics with distance at most N.T / from a sufficiently large fixed compact subset D of

�nT up to time T . We show that there exists a function N.T / such that for Bowen–Margulis

measure � on the space �nGT of geodesics and the critical exponent ı of � ,

lim
T !1

�.¹Œl� 2 �nGTW max
0�t�T

d.D; l.t// � N.T /C yº/ D e�qy=e2ıy

:

In fact, we obtain a precise formula for N.T /: there exists a constant C depending on �

and D such that

N.T / D loge2ı=q

� T .e2ı�q/

2e2ı � C.e2ı � q/

�

:
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1. Introduction

Extreme value in probability theory has been developed for the last several

decades. For a given random process, one can consider probabilistic questions

such as law of large numbers, central limit theorem, local limit theorem, etc. One

of the probabilistic questions is the distribution of an extreme value of a random
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variable: what is the threshold N.T / of extreme events so that the probability that

Xt has value at most N.T / for 1 � t � T is not 0 nor 1 as T tends to infinity?

Recently, there has been a series of results on stationary stochastic processes

arising from various chaotic dynamical systems such as random walks starting

from [5] (see a survey paper [6] and references therein).

One can ask a similar question for geodesics in a non-compact manifold with

respect to a measure on the set of geodesics:

What is the threshold function N.T / for which the measure of the set of
geodesic rays visiting the region of distance at most N.T / from a fixed
point in time Œ0; T � is neither 0 nor 1 as T tends to1?

For the modular surface H
2= SL2.Z/, a related question on continued fraction

expansion was answered by Galambos [7] whose result was used by Pollicott [15]

for the analogous question on geodesics.

In this article, we address the question for quotients of regular trees, which are

the non-Archimedean analog of hyperbolic surfaces. We obtain an extreme value

distribution for geometrically finite quotients, which will be defined, of regular

trees. These include all the algebraic quotients of Bruhat–Tits tree of the group

PGL2 over positive characteristic local fields.

Let us state our main result. For a .q C 1/-regular tree T, the group Aut.T/

of automorphisms of T is equipped with the compact-open topology. Let � be a

discrete subgroup of Aut.T/. The quotient graph X D �nT has a structure of a

graph of groups, which is a graph together with a family of groups Gx; Ge attached

to each vertex x and oriented edge e of X together with injective homomorphisms

˛e WGe ! Gi.e/. (These groups Gx are usually given by the stabilizers of vertices

and edges in the fundamental domain of � in T). We call ŒGi.e/W ˛e.Ge/� the edge-
index of e. See Section 2 for details.

Suppose that the quotient graph �nTmin of the minimal �-invariant subtree

Tmin of T is a union of a finite graph with finitely many rays each of which is a ray

of Nagao type as in Figure 1, with edge-indices alternating between q and 1. We

call such � geometrically finite ([14]). For instance, if G is an F -rank one simple

algebraic group over local field F whose Bruhat–Tits tree is .qC 1/-regular, then

every lattice � of G is geometrically finite (see [12]). The Bruhat–Tits tree of G

is regular if ŒP1 W B� D ŒP2 W B� for a minimal parabolic subgroup B of G and

two maximal proper parabolic subgroups P1 and P2 containing B .

We denote by ı D ı� the critical exponent of �, which is defined by

ı D ı� D lim
n!1

log #¹ 2 �W d.x; x/ � nº
n

for any fixed vertex x 2 V T. The value does not depend on the choice of x 2 V T.
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Figure 1. The quotient graph of a geometrically finite subgroup with compact part D

Let h
.l/
T be the maximum of the height of l among t 2 Œ0; T �, which is the

distance from a fixed compact part D as in Figure 1:

h
.l/
T D max

0�t�T
d.D; l.t //:

Let � be the Bowen–Margulis measure. (See Definition 3.2.)

Theorem 1.1. Let � be a geometrically finite discrete subgroup of the group
Aut.T/ of automorphisms of a .qC1/-regular tree T. Then there exists a constant
C D C.�/ such that for

N D loge2ı=q

� T .e2ı � q/

2e2ı � C.e2ı � q/

�

;

we have
lim

T !1
�.¹Œl � 2 �nGTW h.l/

T � N C yº/ D e�qy=e2ıy

:

Recall that if � is a geometrically finite discrete subgroup for which �nT is

non-compact, then ı� > 1
2

log q (Proposition 4.5 of [11], see also Lemma 5.2).

Therefore, as y goes to infinity, the measure of the left-hand side clearly tends

to 1.

If � is a lattice subgroup of Aut.T/, then ı D log q and � is Aut.T/-invariant.

Moreover, if the quotient itself is a ray of Nagao type, then the constant C is equal

to 0. (See the proof in Section 4). The main example of such � is PGL2.Fq Œt �/

sitting in PGL2.Fq..t�1/// (see Section 4).

Corollary 1.2. Suppose that � is a discrete subgroup of Aut.T/ such that the edge-
indexed graph associated to �nnT is equal to the ray X of Nagao type. Then we
have

lim
T !1

�.¹Œl � 2 �nGTW h.l/
T � N C yº/ D e�1=qy

;

with

N D logq

�T .q � 1/

2q

�

:
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We remark that for quotient spaces of lattices in Lie groups, Kirsebom [10]

showed some estimates for the limiting distribution of the maximum height over

a specific interval of indices with respect to certain sparse subsequences of the

one-parameter action.

Remark that Theorem 1.1 implies the logarithm law, which is a well known

result of Sullivan for geodesic excursions on non-compact hyperbolic surfaces of

finite area [18] and Heronsky–Paulin for geodesic excursions on negatively curved

manifold [8] and geometrically finite quotient of trees [9].

Corollary 1.3. For �-almost every equivalence class of geodesics Œl � 2 �nGT, we
have

lim sup
T !C1

h
.l/
T

log T
D 1

2ı � log q
:

Proof. For simplicity, let us denote ˛ D e2ı

q
. By Theorem 1.1, we have

lim
T !1

�
�°

Œl � 2 �nGTW
h

.l/
T

log˛ T
� 1C logT

� q.˛ � 1/˛y

.2� C /q˛ C C q

�±�

D e� 1
˛y :

Given any � > 0, choose sufficiently large y and T such that

e� 1
˛y > 1 � � and logT

� q.˛ � 1/˛y

.2� C /q˛ C C q

�

< �:

This yields

lim
T !1

h
.l/
T

log T
� 1

log ˛
:

Let us prove that

lim
T !1

h
.l/
T

log T
� 1

log ˛
:

Assume for a contradiction that there exists � > 0 such that

�
�°

Œl � 2 �nGTW lim sup
T !C1

h
.l/
T

log T
� 1

log ˛
� �

±�

� �:

Then, we can choose T0 > 0 such that whenever T � T0,

�
�°

Œl � 2 �nGTW h.l/
T �

� 1

log ˛
� �

�

log T
±�

� �

2
:

Equivalently,

�
�°

Œl � 2 �nGTW h.l/
T �

log T

log ˛
� �� log T

±�

� �

2
:
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Meanwhile, by Theorem 1.1, given y there exists T1 > 0 such that if T � T1, then

ˇ

ˇ

ˇ�
�°

Œl � 2 �nGTW h.l/
T �

log T

log ˛
� log˛

q.˛ � 1/˛y

.2 � C /q˛C C q

±�

� e� 1
˛y

ˇ

ˇ

ˇ <
�

4
:

If y tends to �1, then we e� 1
˛y < �

4
and for such y, there exists large T for which

�� log T < log˛

� q.˛ � 1/˛y

.2� C /q˛ C C q

�

:

This gives a contradiction. �

The article is organized as follows. We recall the covering theory of graph

of groups developed by Bass and Serre in Section 2. In Section 3, we recall the

Markov chain associated to the discrete time geodesic flow of edge-indexed graphs

and the construction of Gibbs measures. In Section 4, we prove the extreme value

distribution for the simplest case, the ray of Nagao type. We prove the extreme

value distribution of geometrically finite quotients in Section 5 using the theory

of a countable Markov chain and the result for the ray of Nagao type. We tried to

write Section 4 as self-contained as possible (without a Markov chain argument)

for the readers who are mainly interested in the modular ray.

2. Preliminaries: Bass–Serre theory of graphs of groups

We briefly review Bass–Serre theory, the essential features of the covering theory

for graphs of groups. We mainly follow [17] and refer to [2] for further details.

Let A be an undirected graph which is allowed to have loops and multiple

edges. We denote by VA the set of vertices of A and by EA the set of oriented
edges of bi-directed graph obtained from A.

For e 2 EA, let Ne 2 EA be the opposite edge of e and let @0e and @1e be the

initial vertex and the terminal vertex of e, respectively.

Definition 2.1. Let i WEA ! Z>0 be a map assigning a positive integer to each

oriented edge. We say .A; i/ an edge-indexed graph.

Definition 2.2. By a graph of groups A D .A;A/, we mean a connected graph

A together with attached groups Aa .a 2 VA/, Ae D A Ne .e 2 EA/, and

monomorphisms ˛e WAe ! A@1e .e 2 EA/.

An isomorphism between two graph of groups A D .A;A/ and A0 D .A0;A0/

is an isomomorphism �WA ! A0 between two underlying graphs together with

the set of isomomorphisms �aWAa ! A0
�.a/ and �e WAe ! A0

�.e/ satisfying the

following property: for each e 2 EA, there is an element he 2 A0
�.@1e// such that

�@1e.˛e.g// D he � .˛0
�.e/.�e.g/// � h�1

e

for all g 2 Ae ([2], Section 2).
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Given an edge-indexed graph .A; i/, a graph of groups .A;A/ is called a

grouping of .A; i/ if i.e/ D ŒA@1eW ˛eAe� and called a finite grouping if all Aa

.a 2 VA/ are finite.

Suppose that we have a graph of groups A. Choosing a base point a0 2 VA,

we can define a fundamental group �1.A; a0/ ([17] Section 5.1), a universal
covering tree .AA; a0/ and an action without inversion of �1.A; a0/ on .AA; a0/ with

a morphism pW .AA; a0/ ! A which can be identified with the quotient projection

([17], Section 5.3).

Definition 2.3. Given a graph of groups A D .A;A/, we denote by F.A; E/ the

group generated by the groups Aa, .a 2 VA/ and the elements e 2 E, subject to

the relations

Ne D e�1 and e˛e.g/e�1 D ˛ Ne.g/ for e 2 EA and a 2 Ae:

Let �1.A; a0/ be the set of elements of F.A; E/ of the form

g0e1g1e2 � � � en�1gn�1;

where o.eiC1/ D t .ei/ (mod n/ and gi 2 o.eiC1/. It is a subgroup of F.A; E/,

called fundamental group of A based at a0.

Given a graph of groups A, the graph zX D .AA; a0/ is defined as

V zX D
[

a2VA

�1.A; a0/=Stab�1.A;a0/.a/

and

E zX D
[

e2EA

�1.A; a0/=Stab�1.A;a0/.e/:

Theorem 2.4 ([17], Theorem 12). The graph zX defined as above is a tree.

The tree zX D .AA; a0/ is called a universal covering tree of the graph of

groups A.

Definition 2.5. For each v 2 V.�nT/ and e 2 E.�nT/, we choose any corre-

sponding vertex Qv 2 V T and edge Qe 2 ET satisfying the condition NQe D QNe. Fix an

element e 2 � which satisfies e
A@1.e/ D @1. Qe/. Define Av and Ae be the stabi-

lizer of Qv and Qe in �, respectively, and let ˛eWAe ! A@1e be the monomorphism

h 7! �1
e he . Then the graph of groups .�nT;A/ is called the quotient graph

of groups. It does not depend on the choice of Qv; Qe and e up to isomorphism of

graph of groups ([2], Section 3).
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A graph of group .A;A/ is called a ray of Nagao type if it isomorphic to the

following graph of groups with

�C
0 > �0 < �1 < �2 < �3 < � � � and Œ�nW�n�1� <1 for n � 1:

�
�C

0 �
�1 �

�2 �
�3 �

�4 �
�5 � � � �

�6

�0 �1 �2 �3 �4 �5

Figure 2. A ray of Nagao type.

As we mentioned in the introduction, a discrete group � of Aut.T/ is called

geometrically finite if for a minimal �-invariant subtree Tmin of T, the quotient

graph of groups �nnTmin is a union of a finite graph with finitely many rays each

of which is a ray of Nagao type as in Figure 2. If T is .q C 1/-regular, then we

have T D Tmin if and only if ı D log q. The edge-indices of the rays of �nnTmin

are alternating between q and 1 if � is geometrically finite and T is q-regular.

3. A Markov chain and Gibbs measures

In this section, T is a locally finite tree and � a discrete subgroup of Aut.T/. In

particular, we do not need any assumption on the indices of the quotient graph

�nTmin. Let ı D ı� be the critical exponent of � defined in the introduction.

3.1. Bowen–Margulis measure. In this subsection, we review the construction

of a conformal family ¹�xºx2V T of measures on the boundary @1T at infinity and

a measure � on the space GX of bi-infinite geodesics invariant under the geodesic

flow. Such a measure � is finite when � is geometrically finite ([16]). For lattices

of Nagao type, it coincides with Haar measure induced from Aut.T/.

The construction below is a special case of the construction of Bowen–

Margulis measure from Patterson–Sullivan density, more generally that of Gibbs

measures from conformal densities. (See [18] for hyperbolic manifolds, [16] for

CAT(�1) spaces, and [3] for trees.)

Let us fix a vertex x 2 V T. Let GT D ¹l WZ ! V T; n 7! ln isometryº be the

space of bi-infinite geodesics and � the discrete time geodesic flow on GT given

by �.l/.n/ D l.nC 1/. Let GTC D ¹l WZ�0 ! V T; n 7! ln isometryº be the space

of geodesic rays and GT
C
x D ¹l 2 GT

CW l0 D xº be the space of geodesic rays

starting at x.

Let @1T be the Gromov boundary at infinity of T. For a fixed a vertex x 2 V T,

the Gromov boundary @1T can be identified with GT
C
x .

Let � WT ! �nT be the natural projection. It induces the natural projection

map GT ! �nGT which we will also denote by � .
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Definition 3.1 (Patterson–Sullivan density). Given ! 2 @1T and x; y 2 V T, the

Busemann cocycle ˇ!.x; y/ is defined as d.x; z/�d.y; z/ where Œx; !/\ Œy; !/ D
Œz; !/.

(1) A Patterson density of dimension ı for a discrete group � < Aut.T/ is a

family of finite nonzero positive Borel measures ¹�xºx2V T on @1T such that

for every  2 �, for all x; y 2 T and ! 2 @1T,

��x D � �x and
d�x

d�y

.!/ D e�ıˇ!.x;y/:

(2) For � geometrically finite, the Patterson density ¹�xºx2V T of dimension

ı D ı� is the (unique) weak-limit of �x;s as s ! ıC where

�x;s D
1

P

2� e�sd.s;x/

X

2�

e�sd.x;x/ıx

and ıx is the Dirac mass at x ([9]).

Now consider the set GTx of bi-infinite geodesics which reaches x at time zero.

On the set GTx, we define � locally by �x � �x: for D�; DC � @1T such that

every geodesic line connecting a point in D� and DC passes through x, we define

.�x � �x/.¹l 2 GTxW l� 2 D� and lC 2 DCº/ D Cx�x.D�/�x.DC/

on GTx . Here, Cx is the normalizing constant such that .�x � �x/.GTx/ D 1.

For x 2 V T, let �x be the stabilizer of x in �. Choosing a set of represen-

tatives Œx� 2 �nV T, we have a one-to-one correspondence between �nGT and
S

Œx�2�nV T �xnGTx . (Note that �x acts on GTx and GT D
S

Œx�2�nV T GTx .) We

take the sum of �x � �x and normalize to get a �-invariant probability measure

as in the following definition.

Definition 3.2 (Bowen–Margulis measure). For a measurable subset E � �nGT,

define

�.E/ WD C0

X

Œx�2�nV T

1

j�x j
.�x � �x/.��1E \ GTx/;

where

C0 D
�

X

Œx�

1

j�x j
��1

:

Note that C0 is chosen so that �.�nGT/ D 1 and the quantity above is well-

defined i.e., it depends only on the class of x. Furthermore, the measure � is

�-invariant. Indeed, any measurable subset of �nGT can be decomposed into

projection of cylinders of the form

E D �.CE /
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with

CE D ¹l 2 GTx W l� 2 D�; lC 2 DCº

small enough so that � is one-to-one on CE . Note that the measure of such

cylinders are �-invariant:

�.��1E/ D 1

j�x0 j .�x0 � �x0/.��1��1E \ GTx0/

D 1

j�x0 j j�x0 j.�x0 � �x0/.C��1E \ GTx0/

D 1

j�x j
j�x j.�x � �x/.CE \ GTx/

D 1

j�x j
.�x � �x/.��1E \ GTx/

D �.E/;

where x0 is the base point of the elements of ��1E. The third equality follows

from the definition of �x ��x. Another way of seeing �-invariance is to observe

that � is a Gibbs measure for dicrete time geodesic flow �, comparing with

Proposition 4.13 of [3].

3.2. The Markov chain of �f nGT. In this subsection, we construct a Markov

chain associated to the geodesic flow on the compact part. First enlarge the given

geometrically finite group � to the full group �f associated to �, which is defined

as the group maximal with the property that the quotient graph �nT coincides

with �f nT [4], namely

�f D ¹g 2 Aut.T/W� ı g D �º:

Note that �nGT and �f nGT can be very different. We will define a Markov

chain of �f nGT coding the geodesic flow. We remark that �f is not necessarily

virtually discrete, thus, the Markov chain of �f nGT does not necessarily give a

Markov chain of �nGT coding the geodesic flow. However, the quotient graphs

are identical, thus the extreme value condition for �f holds if and only if the same

condition holds for � if we consider the measure on �nGT induced from �f nGT.

More precisely, let � be the Bowen–Margulis measure defined in Defini-

tion 3.2. Denote by p the natural projection �nGT ! �f nGT such that � ı p D
p ı�. An important fact is that the set ¹Œl � 2 �nGTW h.l/

T � N Cyº is invariant un-

der the associated full group �f . Thus, if we denote by N� the measure on �f nGT
given by N�.E/ D �.p�1.E//, then it suffices to consider the limiting distribution

of

N�.¹Œl � 2 �f nGTW h.l/
T � N C yº/:
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Now we construct the Markov chain associated to the discrete time geodesic

flow. Recall that for an undirected graph A, EA is the set of all oriented edges,

thus the cardinality of EA is twice the number of edges of A.

For a given edge-indexed graph .A; i/, consider the following subset

X.A;i/ D ¹x D .ej /j 2ZW @0ej C1 D @1ej and if ej C1 D ej ; then iA.ej / > 1º

of admissible paths in .EA/Z. The family of cylinders

Œe0; : : : ; en�1� WD ¹x 2 X.A;i/W xi D ei ; i D 0; : : : ; n� 1º

is a basis of open sets for the subspace topology on X.A;i/ induced from a product

topology of .EA/Z. Let � WX.A;i/ ! X.A;i/ be the shift given by �.x/i WD xiC1.

If .A; i/ is the edge-indexed graph associated with the quotient graph of groups

�f nnT, then we have a bijection ˆW .�f nGT; �/ ! .X.A;i/; �/ given by ˆ.Œl�/ D
.ej /j 2Z, @iej D liCj for all j 2 Z and i D 0; 1, so that the following diagram

commute (cf. [4]).

�nGT �f nGT X.A;i/

�nGT �f nGT X.A;i/

 !p

 ! �

 !ˆ

 ! �  ! �

 !p  !ˆ

For f 2 ET, we denote the shadow of an edge f by

O.f / D ¹! 2 @1TW there exists � 2 GT such that

�0 D @0f; �1 D @1f and �C D !º:

Let Œe0; : : : ; en�1� be an admissible cylinder of X.A;i/. Following [4], we define �

by

�.Œe0; : : : ; en�1�/ D �@0f0
.O.f0//�@1fn�1

.O.fn�1//

j�f0;:::;fn�1
j e�nı

where fj is an oriented edge of T for which �.fj / D ej and @1fj D @0fj C1 and

�f0;:::;fn�1
is the stabilizer group of f0; : : : ; fn�1 of �. This quantity does not

depend on the choice of fj .

It has the Markov property, namely

X

ej W@0ekD@1ej

�.Œej ; ek�/ D �.Œek�/ and
X

ek W@0ekD@1ej

�.Œej ; ek�/ D �.Œej �/: (3.1)

We also have
Z

�f nGT

f d N� D
Z

X.A;i/

ˆ�.f / d� (3.2)
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where ˆ�.f /Œ.xi /i2Z� D f Œˆ�1..xi /i2Z/�: In other words, the measure � is a

Markov measure and two dynamical systems .�f nGT; �; N�/ and .X.A;i/; �; �/ are

isomorphic ([4]).

Let us briefly recall a positive recurrent Markov chain following [13]. Let Zn

be a Markov chain with phase space S D ¹s1; s2; : : : º and transition probabilities

pij D psi sj
D P ¹ZnC1 D sj WZn D siº;

X

j

pij D 1:

For a subset B � S of alphabets, let

f
.n/

ij D P ¹Z1 ¤ sj ; : : : ; Zn�1 ¤ sj ; Zn D sj WZ0 D si º; (3.3a)

p
.n/
ij D P ¹Zn D sj WZ0 D siº: (3.3b)

and set f
.0/

ij D 0 and p
.0/
ij D ıij . Observe the following convolution relation

p.n/
si sj
D

n
X

rD1

f .r/
si si

p.n�r/
si sj

: (3.4)

Suppose that the Markov chain Zn is irreducible, i.e., for any si ; sj 2 S, there

exists n > 0 such that p
.n/
ij > 0. We say �j is a stationary distribution if it satisfies

�j D
P

i2S �ipij . A Markov chain .S; pij / is recurrent if a stationary distribution

exists and furthermore it is called positive recurrent if
P1

nD1 nf
.n/

jj < 1. When

.S; pij ; �j / is positive recurrent, �j is unique and we have

�j D
1

P1
nD1 nf

.n/
jj

:

An irreducible Markov chain is called aperiodic if for some (and hence every)

state si 2 S, its period gcd¹nWp.n/
i i > 0º is 1.

The Markov chain we consider in this article is (see [11]) .S; pij / for

S D E.�nnT/; pij D pei ej
D �.Œei ; ej �/

�.Œei �/
: (3.5)

Note that the stationary distribution is �j D �.Œej �/ which is positive recurrent

and aperiodic. If a positive recurrent Markov chain Zn is aperiodic, then �j D
lim

n!1
p

.n/
ij and �j does not depend on the choice of i 2 S (Chapter 8-10, [13]). We

will use this fact in Section 5.

4. Extreme value distribution for rays of Nagao type

Let T be a .q C 1/-regular tree and let G D Aut.T/. Let X be the edge-indexed

graph described in Figure 3 and � be the fundamental group of a finite grouping
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of X. In other words, � is a discrete subgroup of G for which the edge-indexed

graph associated to the quotient graph of groups �nnT is X. Let us denote the

vertices of X by v0; v1; v2; : : : as in Figure 3.

�
v0

�
v1

�
v2

�
v3

�
v4

�
v5

� � � �
v6

q C 1 q 1 q 1 q 1 q 1 q 1 q

Figure 3. An edge-indexed ray of Nagao type.

The main motivating example is the modular ray: let K D Fq..t�1// and

Z D Fq Œt �. Let G D PGL.2; K/ and � D PGL.2; Z/. The group G acts

transitively on the .q C 1/-regular tree T which is called the Bruhat–Tits tree

associated to G [17]. Let us fix a vertex x 2 V T.

Recall that GT;GTC;GTC
x are the space of biinfinite geodesics, geodesic rays

and geodesic rays starting at x, respectively.

Let � WT ! �nT be the natural projection. It induces the natural projection

map GT ! �nGT which we will also denote by � .

Definition 4.1. Let us denote ��1v0 \ ¹lnW n 2 Z�0º D ¹lt1 ; lt2 ; : : : º: For a fixed

geodesic l , such ti will be denoted by ti .l/.

(1) The sequence of vertices ltn ltnC1 � � � ltnC1
is called the n-th excursion of l .

For given l , such ti will be denoted by ti .l/.

(2) Since the quotient graph of groups has indices alternating between q and 1

as in Figure 2, all the neighbors of ��1.v0/ are mapped to v1 under � . As

for i � 1, all but one neighbors of ��1.vi / are mapped to vi�1 under � and

the remaining one is mapped to viC1. As any geodesic has no back-tracking,

any n-th excursion of geodesic ltn�1
� � � ltn projects to v0 � � �vmvm�1 � � �v1v0.

Call such m the height of n-th excursion of l and denote it by an.l/. The n-th
excursion time is

tiC1.l/ � ti .l/ D 2ai .l/:

Definition 4.2. Let �x be the probability measure on GT
C
x defined as follows. The

subsets Ey D ¹l 2 GT
C
x W l passes through yº for y 2 T form a basis for a topology

on GT
C
x . Let B be the associated Borel �-algebra.

The probability measure �x is given by

�x.Ey/ D 1

.q C 1/qd.x;y/�1
:

The measure �x is invariant under every element of Aut.T/ which fixes x.

Proposition 4.3 (independence of excursions). Let x be a vertex of T which is a
lift of v0. For any k � 1 and for any 1 � i1 < � � � < ik ,

�x.¹l 2 GT
C
x W max

1�j �k
aij .l/ � N º/ D

�

1 � 1

qN

�k

:
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Proof. We prove by induction. Let us denote

Ai;N D ¹l 2 GT
C
x W max

ti �t�tiC1

d.v0; �.lt// � N º

and Ac
i;N its complement in GT

C
x so that

¹l 2 GT
C
x W max

1�j �k
aij .l/ � N º D

k
\

j D1

Aij ;N :

We first consider the case k D 1 by computing �x.Ac
i1;N /: Let

Vi1 D ¹y 2 ��1.v0/W jŒxy�\ v0�j D i1º

be the set of starting vertices of i1-th excursions of geodesics. The geodesic rays

with a
.l/
i1

> N have lti1
2 Vi1 and the i1-th excursion projects to a ray onX starting

with v0v1 � � �vN vN C1.

The following observation is the keypoint: for each y 2 Vi1 , there exist q C 1

lifts of v1 which are neighbors of y. However, one of them is visited by the

geodesic just before it arrives at y. Thus, there are exactly q lifts of v0v1 starting

from y not backtracking the geodesic lti1�1
lti1

: For each of these lifts, there is a

unique lift of v0 � � �vN C1 starting with the lift. Call the endpoints of these lifts

zj ; j D 1; : : : ; q. It follows that

�x.¹l W lti1
D y; �.lti1

� � � lti1 CN C1/ D v0 � � �vN C1º/
�x.¹l W lti1

D yº/

D
Pq

iD1 �x.Ezi
/

�x.Ey/
D

q � 1

.qC1/qNC1Cd.x;y/�1

1

.qC1/qd.x;y/�1

D 1

qN
:

(4.1)

By definition, lti1
2 Vi1 for any l . Thus, summing over y 2 Vi1 , we have

�x.Ac
i1;N / D

X

y2Vi1

�x.¹l W lti1
D yº \ Ac

i1;N / D
X

�x¹l W lti1
D yº 1

qN
D 1

qN
:

Now suppose the proposition holds up to k � 1. Replacing y 2 Vi1 by z 2 Vik

in the equations (4.1), the equation

�x.¹l W ltik
D zº \

Tk�1
j D1 Aij ;N \ Aik;N /

�x.¹l W ltik
D zº \

Tk�1
j D1 Aij ;N /

D 1 � 1

qN
(4.2)

holds if and only if both the numerator and the denominator of the left hand side

are not zero. Equivalently, Œxz� is the beginning of a geodesic in
Tk�1

j D1 Aij ;N , i.e.

Œxz� does not project to a ray starting with v0 � � �vN C1 on the � � � ik�1-th excursions.
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By induction hypothesis, it follows that

�x.¹l 2 GT
C
x W max

1�j �k
a

.l/
ij
� N º/

D �x

�

k�1
\

j D1

Aij ;N \ Aik;N

�

D
X

z2Vik

�x

�

¹l W ltik
D zº \

k�1
\

j D1

Aij ;N \ Aik ;N

�

D
�

1 � 1

qN

�

X

z2Vik

�x

�

¹l W ltik
D zº \

k�1
\

j D1

Aij ;N

�

D
�

1 � 1

qN

�

�x

�

k�1
\

j D1

Aij ;N

�

D
�

1 � 1

qN

�k

:

This completes the proof of the proposition. �

Although the proof is lengthy, the main idea of the proof above is that each

excursion is independent. We will use this fact again in Section 5 for more general

discrete subgroups.

Proposition 4.4. For any x,

lim
N !1

�x.¹l 2 GT
C
x W max

1�j �qN
aj .l/ � N C yº/ D e�qy

:

Proof. By Lemma 4.3, we have

�x.¹l 2 GT
C
x W max

1�j �n
aj .l/ � N C yº/ D

�

1� 1

qN Cy

�n

:

Letting n D qN , and N !1, we obtain the proposition. �

We now prove a similar result for bi-infinite geodesics. Note that

lim
N !1

.�x � �x/.¹l 2 GTx W max
1�j �qN

aj .l/ � N C yº/

D lim
N !1

�x.¹l 2 GT
C
x W max

1�j �qN
aj .l/ � N C yº/

D e�qy

:
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Proposition 4.5. limN !1 �.¹l 2 GTW max
1�j �qN

aj .l/ � N C yº/ D e�qy
:

Proof. Choose a lift xi in V T of vi . Recall from Definition 4.1 that t1 is the

smallest non-negative integer satisfying �.lt1/ D v0: For i ¤ 0, we have

C0.�xi
� �xi

/.¹l 2 GTxi
W max

1�j �qN
aj .l/ � N C yº/

D C0

1
X

kD0

.�xi
� �xi

/.¹l 2 GTxi
W max

1�j �qN
aj .l/ � N C y; t1 D i C 2kº/

D
1

X

kD0

�.¹Œl � 2 �nGTW max
1�j �qN

aj .l/ � N C y; t1 D i C 2kº \ �.GTxi
//

D
1

X

kD0

�.�iC2kŒ¹Œl � 2 �nGTW max
1�j �qN

aj .l/ � N C y; t1 D i C 2kº \ �.GTxi
/�/

D �.¹Œl � 2 �nGTW max
1�j �qN

aj .l/ � N C yº \ �.GTx/

[
1
[

kD0

¹l 2 �nGTW t1 D i C 2kº/

D C0.�x � �x/.¹l 2 GTxW max
1�j �qN

aj .l/ � N C yº/:

The �-invariance of � gives the third equality. �

Using Proposition 4.5, we prove the main theorem for the rays of Nagao type.

Recall that h
.l/
T D max

0�t�T
d.�.lt /; v0/ and that tn is the starting time of the n-th

excursion of l .

For each geodesic l , let S
.l/
n D 2.a

.l/
1 C� � �Ca

.l/
n / D tnC1� t1 be the total time

of the first n excursions and Tn its expectation with respect to �. Note that

Tn D E�

�

n
X

iD1

2ai

�

D 2nE�.a1/ D 2n

1
X

kD1

k�.a1 D k/ D
1

X

kD1

2nk.q � 1/

qk

D 2qn

q � 1
:

Theorem 4.6. limT !1 �
�®

Œl � 2 �nGTW h.l/
T � logq

�

T .q�1/
2q

�

C y
¯�

D e�1=qy
:

Proof. By the law of large numbers, we have S
.l/
n �Tn

n
! 0 for �-almost every

l 2 GT. Moreover, if we denote by Bn;C the set ¹l 2 GTW jS .l/
n � Tnj � C

p
nº,

then by the central limit theorem of the shift map, for any � > 0, there exists C > 0

such that

�x.Bn;C / > 1� �

holds for all n � 1.
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Let AT;N Cy D ¹l 2 GTW max
1�t�T

d.v0; �.lt// � N C yº. Note that

AT
qN CCqN=2;N Cy � AT

qN ;N Cy � AT
qN �CqN=2;N Cy :

Therefore,

�.AT
qN CCqN=2;N Cy \ Bn;C / � �.A

S
.l/

qN
;N Cy

\ Bn;C /

� �.AT
qN �CqN=2;N Cy \ Bn;C /:

Meanwhile,

�.AT
qN �CqN=2;N Cy/ � �.AT

qN CCqN=2;N Cy/

D �.¹l 2 GTW max
T

qN �CqN=2�t�T
qN CCqN=2

d.v0; �.lt// > N C yº/

D �.¹l 2 GTW max
0�t�2CqN=2

d.v0; �.lt // > N C yº/ .� is �-invariant/

� �.¹l 2 GTW max
0�t� 2q.2N=3/C1

q�1
�CqN=3

d.v0; �.lt // > N C yº/

.
2q.2N=3/C1

q � 1
� C qN=3 � 2C qN=2 for sufficiently large N /

� �.¹l 2 GT \ Bn;C W max
0�t�S

.l/

q2N=3

d.v0; �.lt // > N C yº/C �:

Hence, for any given � > 0, there exists M > 0 such that

�.A
S

.l/

qN

; N C y/ � 2� � �.AT
qN

; N C y/ � �.A
S

.l/

qN

; N C y/C 2�

holds for all N �M . By Proposition 4.5, we have

lim
N !1

�.¹l 2 GTW max
0�t� 2qNC1

q�1

d.v0; �.lt // � N C yº/ D e�qy

which completes the proof. �

5. Extreme value distribution for geometrically finite quotient

In this section, we prove extreme value distribution for geometrically finite quo-

tient graphs of regular trees using the Markov chain on the compact part and the

extreme value distribution result for each ray proved in the previous section.
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We remark that an alternative approach might be to use general extreme value

theorem [6] using the �-mixing property, i.e., the error term of mixing j�.A \
T �nB/ � �.A/�.B/j is bounded by the measures of the sets A and B) of the

measure-preserving transformation T , which is not available here. Note that

exponential mixing is known [3] based on a result of Young [19] (see also the

paper by the first author [11]).

Let us first fix some notations on the quotient graph. Given a .q C 1/-regular

tree T, let Aut.T/ be the group of automorphisms of T and � be a geometrically

finite discrete subgroup of Aut.T/ (see Section 1). There are finite edge-indexed

rays C1; : : : ; Ck and a finite edge-indexed graph D such that

(1) V.�nTmin/ D VD [ VC1 [ � � � [ VCk;

(2) jVD \ VCj j D 1 and VCi \ VCj D � if i ¤ j ;

(3) each Ci is a Nagao ray of index .1; q; 1; q; : : : ; /, i.e., i.en/ D q; i.en/ D 1 for

all n � 0.

Fix such Cj and D. Let us denote by vi;0 the unique element of VD \ VCi

.1 � i � k/. Then, we obtain the Figure 4.

�
v1;0

�
v1;1

�
v1;2

� � �
v1;3

1 q 1 q 1 q

�
v2;0

�
v2;1

�
v2;2

� � �
v2;3

1 q 1 q 1 q

�
v4;0

�
v4;1

�
v4;2

� � �
v4;3

q 1q 1q 1

�
v3;0

�
v3;1

�
v3;2

� � �
v3;3

D

q 1q 1q 1

Figure 4. The quotient graph of a geometrically finite subgroup.

Definition 5.1. Let l 2 GT. We can write

��1.¹v1;0; : : : ; vk;0º/ D ¹: : : ; lt�1
; lt0 ; lt1 ; lt2 ; : : : ; º

with t1 be the smallest positive time when l leaves the compact part. Note that

�.lt2n�1
/ D �.lt2n

/. The sequence of vertices lt2n�1
lt2n�1C1 � � � lt2n

is called the

n-th excursion of l .

Comparing with Definition 4.1, note that the starting time of the n-th excursion

is now t2n�1. As explained in Definition 4.1 (2), any n-th excursion of geodesic

projects to vi;0 � � �vi;mvi;m�1 � � �vi;1vi;0 for some i and m. We call such m the

height of n-th excursion of l and denote it by an.l/.

Recall that h
.l/
T D max0�t�T d.D; l.t // and the Markov chain .S; pij / is given

by

S D E.�nnT/; pij D pei ej
D �.Œei ; ej �/

�.Œei �/
: (5.1)
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The stationary distribution is given by �j D �.Œej �/: Recall also that �x is the

Patterson density for � based at x (Definition 3.1) and � is the Gibbs measure

constructed in Definition 3.2.

Lemma 5.2. If � is non-elementary and �nT has at least one Nagao ray, then
ı > 1

2
log q and

N�.¹Œl � 2 �f nGTW an.l/ � N º/ D 1� qN

e2ıN
:

Proof. The proof is verbatim to the proof of Proposition 4.3, except that we need

to obtain the general version of (4.1). For j D 0; : : : ; m, let xj 2 V T be the

vertices satisfying �.xj / D vi;j and xj ; xj C1 are adjacent. For j D 1; : : : ; m, let

fj 2 ET such that @0fj D xj �1 and @1fj D xj . We need to show that for any

integer N > 0,

�xi
.O.fiCN //

�xi
.O.fi //

D
� q

e2ı

�N

:

Let vi;0 � � �vi;mvi;m�1 � � �vi;1vi;0 be the projection of n-th excursion of some geo-

desic l 2 GT under � .

Let j̨ D �xj
.O.fj //. (Note that this does not depend on the choice of xj ).

Since � is non-elementary, it follows that � has no atoms and hence j̨ ¤ 0. The

conformal property of � implies that �xj
.O.fj // D �xj C1

.O.fj //eı . Since there

are q neighbors of xj which projects to vi;j , and �xj
acts transitively on these

neighbors, we have

j̨ C1 D q�xj C1.O.fj // D q�xj
.O.fj //e�ı D q j̨ e�ı : (5.2)

Let ei be the edge given by @0ei D vi�1 and @1ei D vi . Let us decompose

the shadow O.fj CN / into countable disjoint union of sets: O.fj CN / is the union

of .q � 1/ shadows O.g0/ of lifts g0 of ej CN adjacent to fj CN and the shadow

O.fj CN C1/.

The shadow O.fj CN C1/ is in turn the union of q � 1 shadows O.g1/ of lifts

g1 of ej CN C1 adjacent to fj CN C1 and the shadow O.fj CN C2/. We repeat this

decomposition. For any l � 0, we obtain q � 1 shadows O.gl /’s such that

�xj
.O.gl // D �xj

.O.fj CN Cl //e
�2.N Cl/ı D j̨ qN Cl e�2.N Cl/ı

by the conformal property and (5.2)

Therefore, for any j; N � 0, we have

�xj
.O.fj CN // D .q � 1/ j̨

1
X

nDN

qne�2nı D
.q � 1/ j̨

�

q

e2ı

�N

1� q

e2ı

:
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Since �xj
.O.fj // <1, the above series must converge thus ı� > 1

2
log q and

�xj
.Ofj CN

/

�xj
.Ofj

/
D

� q

e2ı

�N

: �

Therefore, by independence of excursions (similar to the proof of Proposi-

tion 4.3), we obtain a limiting Galambos type formula

N�.¹Œl � 2 �f nGTW max
1�j �k

aj .l/ � N C yº/ D
�

1 � qN Cy

e2ı.N Cy/

�k

:

Given a geodesic l in GT, let us denote by C .l/ the expectation

lim
N !1

1

N

N
X

nD1

.lt2nC1
� lt2n

/

of the difference between the starting time of the .nC1/-th excursion time and the

ending time of the n-th excursion of l (the time living in the compact part) over

n 2 Z>0. Note that this does not depend on the choice of representative in �nGT
and the limit exists for �-almost every Œl � 2 �nGT.

Lemma 5.3. Let C� D
R

�nGT
C .Œl�/d�. The expectation with respect to � of the

time of n excursions t2n � t1 over �nGT is
� 2e2ı

e2ı � q
C C�

�

n:

Proof. Since the Markov chain associated to the compact part is finite, it is

positive recurrent (Chapter 10, [13]). Hence, the constant C� is finite and depends

only on the structure of quotient graph �nT and the choice of the compact part D.

The expectation with respect to � of t2n � t1 of l is

E�

�

n
X

iD1

.2a
.l/
i C C .l//

�

D n.2E�.a1/C E�C .l//

D C�nC 2n

1
X

kD1

k�.a1 D k/

D C�nC
1

X

kD1

2nk. e2ı

q
� 1/

. e2ı

q
/k

D C�nC
1

X

kD1

2nk.e2ı � q/qk�1

e2ık

D
� 2e2ı

e2ı � q
C C�

�

n:

This completes the proof of the lemma. �
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By the similar argument deriving Theorem 4.6 from Proposition 4.5, we finally

have that

lim
N !1

�.¹Œl � 2 �nGTW max
0�t�T

h
.l/
T � N C yº/ D e�qy=e2ıy

with

T D
� 2e2ı

e2ı � q
C C�

�e2ıN

qN
:

Therefore,

lim
T !1

�
�°

Œl � 2 �nGTW h.l/
T � loge2ı=q

� T .e2ı � q/

2e2ı � C�.e2ı � q/

�

C y
±�

D e�qy=e2ıy

:
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