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Abstract. Any endomorphism of a �nitely generated free group naturally descends to

an injective endomorphism of its stable quotient. In this paper, we prove a geometric

incarnation of this phenomenon: namely, that every expanding irreducible train track map

inducing an endomorphism of the fundamental group gives rise to an expanding irreducible

train track representative of the injective endomorphism of the stable quotient. As an

application, we prove that the property of having fully irreducible monodromy for a splitting

of a hyperbolic free-by-cyclic group depends only on the component of the BNS-invariant

containing the associated homomorphism to the integers.
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1. Introduction

In the theory of Out.FN / train-tracks serve as important tools for understanding

free group automorphisms: given an automorphism � one strives to �nd a train

track representative (say, via the Bestvina–Handel algorithm) that is useful in

analyzing the automorphism.

In [10], we naturally encountered train-track maps f W‚ ! ‚ for which

f�W�1.‚/ ! �1.‚/ was not injective (and thus also not surjective by the

Hop�an property of free groups); other sources that have considered train tracks
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for endomorphisms of free groups include [9, 18, 2]. We showed in [10] that f�

descends to an injective endomorphism �WQ ! Q of the stable quotient

Q D �1.‚/=
[

k�1

ker.�k/:

The group Q is also a nontrivial (since f is a train-track map) free group, and

in the setting of [10] � is often an automorphism. In this paper, we explain how

to produce from any expanding, irreducible train track map f W‚ ! ‚ an honest

train track representative Nf W N‚ ! N‚ for �, and we describe its relationship with f .

Theorem 1.1. Let f W‚ ! ‚ be an expanding irreducible train track map. Let

f�W�1.‚/ ! �1.‚/ be the free group endomorphism represented by f , and let

�WQ ! Q be the induced injective endomorphism of the stable quotientQ of f�.

Then there exists a �nite graph N‚with �1. N‚/ Š Q (and no valence 1 vertices),

and an expanding irreducible train-track map Nf W N‚ ! N‚ such that Nf� D �, up

to post-composition with an inner automorphism of Q. Furthermore, there exists

graph maps NpW N‚ ! ‚ and ˆW‚ ! N‚ such that

� Nfˆ D f̂ and Np Nf D f Np,

and

� Npˆ D f K and ˆ Np D Nf K , for some K � 1.

As an application, we have the following theorem about the Bieri-Neumann-

Strebel invariant for free-by-cyclic groups (see [6, 17, 5, 8] for background in-

formation on the BNS-invariant). To state it, recall that a group homomorphism

u 2 Hom.G;R/ D H 1.GIR/ is primitive integral if u.G/ D Z and that the mon-

odromy �u 2 Out.ker.u// of such a homomorphism is the generator of the action

of Z on ker.u/ de�ning the semi-direct product structure G D ker.u/ Ì�u
Z. Re-

call also that the BNS-invariant †.G/ of G [6] is an open subset of the positive

projectivization,

†.G/ � .H 1.GIR/ � ¹0º/=RC;

which captures �nite generation properties; for example, a primitive integral class

u 2 H 1.GIR/ has ker.u/ �nitely generated if and only if u;�u 2 †.G/.

Theorem 1.2. SupposeG is a hyperbolic group,†0.G/ a component of the BNS-

invariant, andu0; u1 2 H 1.GIR/ primitive integral classes projecting into†0.G/

with ker.u0/; ker.u1/ �nitely generated. Then ker.u0/ is free with fully-irreducible

monodromy�u0
if and only if ker.u1/ is free with fully irreducible monodromy�u1

.
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The fact that ker.u0/ is free if and only if ker.u1/ is free follows from [15].

The point of the theorem is that the monodromy of u0 is fully irreducible if and

only if the monodromy for u1 is. The proof of Theorem 1.2 builds on our papers

[11, 10] which developed new machinery for studying dynamical aspects of free-by-

cyclic groups by exploiting properties of natural semi-�ows on associated folded

mapping tori 2–complexes; see also [1] for related work.

Since full irreducibility is preserved by taking inverses, Theorem 1.2 yields the

following corollary.

Corollary 1.3. SupposeG is a hyperbolic group and that †.G/[ �†.G/ is con-

nected. Then for any two primitive integral u0; u1 2 H 1.GIR/ with �nitely gen-

erated, free kernels, �u0
is fully irreducible if and only if �u1

is fully irreducible.

Proof. Consider a componentC of†.G/. By Theorem 1.2, either every primitive

integral u 2 H 1.GIR/ projecting into C with ker.u/ �nitely generated has the

property that ker.u/ is free and �u is fully irreducible, or else no such u projecting

into C has this property. Say that C is a fully irreducible component in the former

case and that it is a non-fully irreducible component in the latter. Now if†0.G/ is

a fully irreducible component and†1.G/ a non-fully irreducible component, then

observe that .†0.G/[�†0.G//\ .†1.G/[�†1.G// D ;. For, if not, then there

exists a primitive integral uwith �nitely generated kernel and �u fully irreducible,

such that �u lies in †1.G/. Since �u is fully irreducible if and only ��u D ��1
u

is, this is a contradiction.

Now let F.G/ � †.G/ [ �†.G/ denote the union of open sets †0.G/ [

�†0.G/, over all fully irreducible components †0.G/, and let N.G/ � †.G/ [

�†.G/ be the union of open sets †1.G/[ �†1.G/ over all non-fully irreducible

components†1.G/. The open sets F.G/ and N.G/ cover†.G/[ �†.G/ and are

disjoint by the previous paragraph, hence one must be empty and the corollary

follows. �

For the case that G D �1.M/, where M is a �nite volume hyperbolic 3–

manifold, considerations of the Thurston norm [19] imply that †.G/ D �†.G/

is projectively equal to a �nite union of top-dimensional faces of the polyhedral

Thurston norm ball in H 1.M IR/ (c.f. [6]); thus here †.G/ [ �†.G/ is never

connected unless it is empty. However, for hyperbolic free-by-cyclic groups G

it can easily happen that †.G/ [ �†.G/ is connected and nonempty: In the

main example of [10], one may easily apply Brown’s algorithm [7, Theorem 4.4]

to the presentation [10, Equation 3.4] to calculate that †.G/ contains all rays in

H 1.GIR/ Š R
2 except for those in the directions .�1; 0/, .1; 2/, and .1;�2/ (as

in [10], we work with left actions, so we must take the negative of the result of

applying Brown’s algorithm). The cone S calculated in [10, Example 8.3] is one

component of †.G/, and the vector u1 D .�1; 2/ 2 †.G/ satis�es �u1 … †.G/;

see [10, Figure 8]. In particular, we see that †.G/ [ �†.G/ is the entire positive

projectivization of H 1.GIR/ n ¹0º Š R
2 n ¹0º, and is thus connected.
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Theorem 1.2 extends and generalizes our earlier result [11, Theorem C]. There

we considered a hyperbolic free-by-cyclic group G D FN Ì�0
Z with fully

irreducible monodromy �0 2 Out.FN / and constructed an open convex cone A �

H 1.GIR/ containing the projection FN Ì�0
Z ! Z and whose projectivization

is contained in †.G/ \ �†.G/. Among other things, [11, Theorem C] showed

that for every primitive integral u 2 A the splitting G D ker.u/Ì�u
Z has �nitely

generated free kernel ker.u/ and fully irreducible monodromy �u 2 Out.ker.u//.

The proofs of [11, Theorem C] and Theorem 1.2 are fairly di�erent, although

both exploit the dynamics of a natural semi-�ow on the folded mapping torus Xf

constructed from a train-track representative f W� ! � of �0. Our proof of [11,

Theorem C] starts by establishing the existence of a cross-section ‚u � Xf dual

to each primitive integral u 2 A such that the �rst return map fuW‚u ! ‚u is a

train-track representative of �u. We then used the �ne structure of the semi-�ow

(derived from the train map f and the fully irreducible atoroidal assumption on

�0) to conclude that fu is expanding and irreducible and has connected Whitehead

graphs for all vertices of ‚u. This, together with the word-hyperbolicity of

G, allowed us to apply a criterion obtained in [16] to conclude that �u is fully

irreducible.

The proof of Theorem 1.2 starts similarly. Given G D FN Ì�0
Z as above and

an epimorphism uWG ! Z in the same component of †.G/ as FN Ì�0
Z ! Z

and with ker.u/ being �nitely generated (and hence free), we use our results

from [10] to �nd a section ‚u � Xf dual to u such that the �rst return map

fuW‚u ! ‚u is an expanding irreducible train track map. However, now .fu/� is

a possibly non-injective endomorphism of �1.‚u/. We thus pass to the stable

quotient of .fu/�, which we note is equal to the monodromy automorphism

�u 2 Out.ker.u// since ker.u/ is �nitely generated. We then apply Theorem 1.1 to

obtain an expanding irreducible train-track representative NfuW N‚u ! N‚u and use

the provided maps N‚u � ‚u to construct a pair of �ow-equivariant homotopy

equivalencesM Nfu
� Xf with additional nice properties; hereM Nfu

is the mapping

torus of Nfu. Supposing that �u D . Nfu/� were not fully irreducible, we then �nd

a proper nontrivial �ow-invariant subcomplex in a �nite cover ofM Nfu
which, via

the equivalences M Nfu
� Xf , gives rise to a proper nontrivial �ow-invariant

subcomplex of some �nite cover of Xf . From here we deduce the existence of

a �nite cover � ! � and a lift hW� ! � of some positive power of f such

that � admits a proper nontrivial h–invariant subgraph. But by a general result

of Bestvina–Feighn–Handel [3], this conclusion contradicts the assumption that

�0 D f� is fully irreducible.

Our proof of Theorem 1.2 uses the assumption that u1 and u2 lie in the same

component of †.G/ to conclude, via the results of [10], that both splittings of G

come from cross sections of a single 2–complex equipped with a semi-�ow. It is

therefore unlikely that this approach will lead to any insights regarding splittings

in di�erent components of †.G/. Nevertheless, we ask:
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Question 1.4. Can Theorem 1.2 be extended to remove the hypothesis that u1 and

u2 lie in the same component of the BNS-invariant †.G/?

Acknowledgement. The authors would like to thank the referee for carefully

reading an earlier version of the paper and providing helpful suggestions that

improved the exposition.

2. Induced train track maps – general setting

Let ‚ be a �nite graph with no valence 1 vertices, and let f W‚ ! ‚ be a

graph map (as in [11, De�nition 2.1]). Recall from [11, §2] that the .e0; e/–entry

of the transition matrix A.f / of f records the total number of occurrences of the

edge e˙1 in the edge path f .e0/. The transition matrix A.f / is positive (denoted

A.f / > 0) if every entry is positive and is irreducible if for every ordered pair

.e0; e/ of edges of ‚ there exists t � 1 such that the .e0; e/–entry of A.f /t is

positive. We say that f is irreducible if its transition matrix A.f / is irreducible,

and that f is expanding if for each edge e of ‚ the edge paths f n.e/ have

combinatorial length tending to 1 with n. In this paper, as in [10], we use the

term “train-track map” to mean the following:

De�nition 2.1 (train-track map). A train-track map is a graph map f W‚ ! ‚

such that:

� the map f is surjective, and

� for every edge e of ‚ and every n � 1 the map f nje is an immersion.

Note that, unlike the original de�nition [4], our de�nition of train-track maps

allows for valence 2 vertices in ‚. Lemma 2.12 of [11] shows that train-track maps

must be locally injective at each valence 2 vertex, thus the presence of valence 2

vertices does not lead to any complications.

Our De�nition 2.1 di�ers from the traditional setting in another important

way; namely, we do not require a train-track map f W‚ ! ‚ to be a homotopy

equivalence. Thus f� need only determine an endomorphism of �1.‚/, in which

case f is not a topological representative of any outer automorphism of �1.‚/.

Nevertheless in [10, §4] we saw that an arbitrary endomorphism 'WFN ! FN

of a �nite-rank free group naturally gives rise to an injective endomorphism N' of

the quotient group

Q D FN =
[

k�1

ker.'k/:

In fact, the kernels stabilize after �nitely many, say K, steps so that
[

k�1

ker.'k/ D ker.'K/:
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Then Q is isomorphic to the image J D 'K.FN / < FN and is thus itself free.

Moreover, the isomorphism conjugates N' to the restriction of ' to J , and thus we

may view N'WQ ! Q and 'jJ W J ! J as the “same” injective endomorphism.

We refer to the train track map f W‚ ! ‚ as a weak train track representative

of this quotient endomorphism N'WQ ! Q of f�. The goal of this section is to

prove Theorem 1.1 which promotes the weak train track representative f W‚ ! ‚

to an honest train track representative Nf W N‚ ! N‚ of N' (meaning that Nf� D N' up

to conjugation) whenever f is an expanding irreducible train track map.

2.1. Subgroups and lifts. For the remainder of §2 we �x an expanding irre-

ducible train track map f W‚ ! ‚. We begin with a simple observation.

Lemma 2.2. For every edge e of‚, there exists a legal loop ˛eWS1 ! ‚ crossing

e. Here “legal” simply means that f k ı˛WS1 ! ‚ is an immersion for all k � 0.

In particular,‚ is a union of legal loops.

Proof. Since f is expanding and ‚ has �nitely many edges, there exists an

integer j so that f j .e/ crosses some edge e0 at least twice in the same direction.

Irreducibility then provides some ` � j so that f `.e/ crosses e twice in the same

direction. Thus we may �nd a subinterval I � e, say whose endpoints both map

to an interior point of e, such that the restriction f `jI de�nes an immersed closed

loop ˛WS1 ! ‚ crossing e. Since f is a train-track map, it follows that ˛ is

legal. �

Let v be an f –periodic vertex of ‚, say of period r . Then set v0 D v and

vi D f i .v0/ for i D 1; : : : ; r � 1. We consider the indices of the vertices

v0; : : : ; vr�1 modulo r in what follows.

Now we let Bi D �1.‚; vi/. Then f induces homomorphisms Bi ! BiC1,

with i D 0; : : : ; r � 1 and indices modulo r . We write f� to denote any of these

homomorphisms (though to clarify, we may also write .f�/i WBi ! BiC1). With

this convention, we can write f
j

� , for j 2 Z with j � 0, to denote any of the r

homomorphisms .f
j

� /i WBi ! BiCj with subscripts taken modulo r .

A path ı from vj to vi determines an isomorphism �ı WBi ! Bj . The image

f `
u .ı/ D ı0 likewise determines an isomorphism �ı0 WBiC` ! Bj C`, and we have

.f `
� /j ı �ı D �ı0 ı .f `

� /i : (2.3)

Note that changing ı (and hence also ı0), we obtain potentially di�erent isomor-

phisms �ı and �ı0 .

Fix i and let n > 0 be an integer such that the restriction of f� to the subgroup

Ji D f nr
� .Bi / < Bi is injective. Let ı be a path from viC1 to vi and ı0 D f nr .ı/.

Then setting

JiC1 D f nr
� .BiC1/
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we have

JiC1 D f nr
� .�ı.Bi // D �ı0.f nr

� .Bi // D �ı0.Ji /;

and hence �ı0 restricts to an isomorphism from Ji to JiC1. It is interesting to note

that JiC1 is de�ned without reference to ı (or ı0). Furthermore, if ı00 D f .ı0/,

then by (2.3) we have

.f�/iC1 D �ı00 ı .f�/i ı ��1
ı0 WBiC1 ! BiC2;

and hence the restriction of f� to JiC1 is injective. Therefore, if we let n.i/ > 0 be

the smallest positive integer so that f� restricted to Ji D f
n.i/r

� .Bi / is injective,

then we have shown that n.i/ � n.i C 1/. Since this condition is true for all i , it

follows that n.i/ D n.j / for all 0 � i; j � r � 1. We henceforth �x n D n.i/.

For each i let pi W z‚i ! ‚ denote the cover corresponding to the conjugacy

class Ji < �1.‚; vi/. Let zVi � p�1
i .vi/ denote the set of all vertices Qvi so that

.pi /�.�1.z‚i ; Qvi// D Ji . Then the covering group of pi W z‚i ! ‚ acts simply

transitively on zVi . Since the isomorphism �ı0 sends Ji to JiC1, it follows that

there is an isomorphism of covering spaces z‚i ! z‚iC1. Repeating this r times,

we see that all the covering spaces ¹pi W z‚i ! ‚ºr�1
iD0 are pairwise isomorphic. In

particular, we now simply write pW z‚ ! ‚ for any one of these spaces. Write N‚

for the convex (Stallings) core of z‚, and we note that this is a proper subgraph.

For all m � n we have f mr
� .Bi / D f nr

� .f
.m�n/r

� .Bi // � f nr
� .Bi / D Ji . Thus

from standard covering space theory, we know that for every i and every Qvi 2 zVi

there is a unique continuous map bf mr
Qvi

making the following diagram commute:

.z‚; Qvi/

p

��
.‚; vi/

f mr

//

bf mr
Qvi

::
✉
✉
✉
✉
✉
✉
✉
✉
✉
✉

.‚; vi/

Proposition 2.4. For any m � n and Qvi 2 zVi , we have bf mr
Qvi
.‚/ D N‚.

Proof. Fixm � n and Qvi 2 zVi . Since bf nr
Qvi

is surjective on the level of fundamental

groups, the containment N‚ � bf nr
Qvi
.‚/ is immediate. Since f W‚ ! ‚ is itself

surjective, it follows that we also have the inclusion

N‚ � bf nr
Qvi
.‚/ D bf nr

Qvi
ı f .m�n/r .‚/ D bf mr

Qvi
.‚/:

Here we have used the equality bf nr
Qvi

ı f .m�n/r D bf mr
Qvi

guaranteed by the unique-

ness of lifts of f mr sending vi to Qvi .
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On the other hand, for any legal loop ˛WS1 ! ‚ the composition bf mr
Qvi

ı ˛ is

an immersion; this conclusion follows from the local injectivity of p ı bf mr
Qvi

ı˛ D

f mr ı ˛. Since the closure of z‚ n N‚ consists of �nitely may pairwise disjoint

trees, it follows that the image of bf mr
Qvi

ı ˛ must be contained in the core N‚. The

containment bf mr
Qvi
.‚/ � N‚ now follows from the fact that ‚ is a union of legal

loops (Lemma 2.2). �

Since .f�/i restricted to Ji is an injective homomorphism into JiC1, for any

choice of basepoints Qvi 2 zVi and QviC1 2 zViC1 covering space theory again

provides a unique map QfQvi ;QviC1
W z‚ ! z‚making the following diagram commute:

.z‚; Qvi/
Qf Qvi ; QviC1//

p

��

.z‚; QviC1/

p

��
.‚; vi/

f
// .‚; viC1/

Proposition 2.5. Let Nf D QfQvi ;QviC1
j N‚ be the restriction of any such lift QfQvi ;QviC1

to

N‚. Then Nf . N‚/ D N‚ and Nf W N‚ ! N‚ is an expanding train track map.

Proof. Proposition 2.4 and Lemma 2.2 show that there exist �nitely many legal

loops ˛1; : : : ; ˛k WS1 ! ‚ such that N‚ is the union of the images of ǰ D bf nr
Qvi

ı j̨

for j D 1; : : : ; k. Noting that Nf ı ǰ is an immersion (because it is a lift of the

immersion f ı f nr ı j̨ ), its image must be contained in N‚. Therefore, Nf maps

the union [j ǰ .S
1/ D N‚ into N‚, and we conclude Nf . N‚/ � N‚.

Thus Nf is a graph map from N‚ to itself, Nf W N‚ ! N‚, and we may consider

its iterates Nf `. As above, we now see that Nf ` ı ǰ lifts f ` ı f nr ı j̨ and so

is an immersion for each ` > 0. Since each edge of N‚ is crossed by some ǰ ,

this proves each iterate Nf ` is locally injective on each edge Qe of N‚. Moreover,

since p is a covering map, the combinatorial length of Nf `. Qe/ is equal to that of

p ı Nf `. Qe/ D f `.p. Qe//. Therefore Nf is expanding because f is.

To prove the proposition it remains to show that Nf . N‚/ � N‚. Fix preferred lifts

Qvi 2 zVi for each 0 � i < r and set Nfi D QfQvi ;QviC1
j N‚ for 0 � i < r . It su�ces to

show that each Nfi maps N‚ onto N‚. To see that Nfi . N‚/ D N‚, note that

Nfi ı Nfi�1 ı � � � ı NfiC2 ı NfiC1 ı 1f nr
QviC1

W .‚; viC1/ ! .z‚; QviC1/

(with subscripts taken modulo r) is a lift of f .nC1/r taking viC1 to QviC1. Therefore

the above composition (and in particular Nfi ) has image N‚ by Proposition 2.4. �
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For the remainder of this section, we let Qf D QfQvi ;QviC1
be any lift of f as above,

let Nf D Qf j N‚W N‚ ! N‚ be its restriction to the core N‚ of the covering pW z‚ ! ‚,

and write Np D pj N‚W N‚ ! ‚.

Lemma 2.6. There is a lift ˆW‚ ! z‚ of a power f K of f with ˆ.‚/ D N‚ such

that ˆ ı p D Qf K and consequently ˆ ı Np D Nf K .

Becauseˆ is a lift of f K and since Nf and Np are restrictions, we also obviously

have p ıˆ D f K , Np ıˆ D f K , and Np ı Nf D f ı Np.

Proof. The composition Nf r necessarily maps the �nite set p�1.vi/\ N‚ into itself.

Thus the sequence Qvi ; Nf r . Qvi/; Nf 2r . Qvi /; : : : is eventually periodic. Choosing k to

be a su�ciently large multiple of the period, it follows that the point z WD Nf kr . Qvi/

satis�es Nf mkr .z/ D z and Nf mkr . Qvi/ D z for all m � 1.

Set J D p�.�1.z‚; z//, and note that J and Ji D p�.�1.z‚; Qvi// are conjugate

but possibly distinct subgroups of Bi . Observe that

f 2knr
� .�1.‚; vi// D f knr

� ı f knr
� .�1.‚; vi//

� f knr
� .Ji /

D f knr
� ı p�.�1.z‚; Qvi//

D p� ı Qf knr
� .�1.z‚; Qvi//

� p�.�1.z‚; z//

D J:

Therefore there is a unique lift ˆW .‚; vi/ ! .z‚; z/ of f 2knr sending vi to z. By

inspection, this lift must be ˆ D Qf knr ı 1f knr
Qvi

D Nf knr ı bf nr
Qvi

and therefore has

image N‚ by Propositions 2.4–2.5.

Set K D 2knr , and we claim that Qf K D ˆ ı p. Indeed, both maps lift the

composition

f K ı pW .z‚; Qvi/ �! .‚; vi/

and send Qvi ! z by construction; hence they are equal by uniqueness of lifts.

Interestingly, this argument shows that a power of Qf (namely Qf K) maps all of z‚

into N‚. �

Proposition 2.7. Let f W‚ ! ‚ and Nf W N‚ ! N‚ be as above. If f is irreducible

then Nf is irreducible. If f has a power with positive transition matrix, then Nf has

a power with positive transition matrix.

Proof. Assume �rst that f is irreducible. Choose arbitrary edges Qe; Qe0 of N‚ and

set e D Np. Qe/. With ˆ as in Lemma 2.6, we have ˆ.‚/ D N‚, and so we may



1188 S. Dowdall, I. Kapovich, and Ch. J. Leininger

choose an edge e0 of ‚ such that ˆ.e0/ � Qe0. By irreducibility of f , there exist

s > 0 such that e0 � f s.e/. Then applying Lemma 2.6 withK as in the statement,

we have

Nf KCs. Qe/ D Nf K ı Nf s. Qe/ D ˆ ı Np ı Nf s. Qe/ D ˆ ı f s.e/ � ˆ.e0/ � Qe0:

Thus Nf is irreducible provided f is. Next assume there is a power f ` with positive

transition matrix, so that in particular f `.e/ D ‚ for every edge e of‚. Choosing

any edge Qe of N‚, as above we �nd

Nf KC`. Qe/ D Nf K ı Nf `. Qe/ D ˆ ı Np ı Nf `. Qe/ D ˆ ı f `. Np. Qe// D ˆ.‚/ D N‚:

Therefore Nf KC` has positive transition matrix as well. �

2.2. Train tracks for induced endomorphisms. Combining the results above,

we can now easily give the

Proof of Theorem 1.1. The map Nf W N‚ ! N‚ is given by Proposition 2.5, which

together with Proposition 2.7 implies Nf is an expanding irreducible train track

map. The map NpW N‚ ! ‚ is the restriction of a covering map to the core, and hence

Np� de�nes an isomorphism of �1. N‚/ onto the image J D f nr
� .�1.‚// < �1.‚/,

up to conjugation. By construction, f�jJ determines an injective endomorphism

J ! J , up to conjugation. Since Np�
Nf� D f� Np�, it follows that Nf� induces

an injective endomorphism of �1. N‚/, up to conjugation. As was shown in [10,

Proposition 2.6], there is an isomorphism J ! Q conjugatingf�jJ to �. It follows

that with respect to this isomorphism and Np� we have � D Nf�, up to conjugation.

Let ˆW‚ ! N‚ and K > 0 be as in Lemma 2.6. The conclusion of that lemma

proves the remainder of the theorem. �

The intrepid reader is encouraged to apply Theorem 1.1 to the naturally arising

�rst return map f2W‚2 ! ‚2 described in Example 5.7 and Figure 7 of [10]. For

a warm-up, here is a simpler example:

Example 2.8. Let ‚ be the 3–petal rose depicted in Figure 1, and let f W‚ ! ‚

be the expanding irreducible train track map de�ned on edges by f .a/ D ab,

f .b/ D bc, f .c/ D abbc. Then �1.‚/ is free on generators a; b; c (correspoding

to petals of the same letter), and we �nd that f�.�1.‚// D hab; bci. Thus

f� is neither surjective nor injective, but we �nd that the restriction of f� to

J D hab; bci is injective. The induced endomorphism �WQ ! Q of the

stable quotient Q Š J of f� is therefore given by �.ab/ D .ab/.bc/ and

�.bc/ D .bc/.ab/.bc/, which is an automorphism of this rank 2 free group.
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a

b

ca0

b0b1

c0

f

Nf

Np

ˆ

‚

N‚

Figure 1. An application of Theorem 1.1.

Plugging f W‚ ! ‚ into Theorem 1.1, the construction produces the graph N‚

depicted in Figure 1 along with maps Nf , Np, and ˆ de�ned on edges by

� Nf .a0/ D a0b0, Nf .b0/ D Nf .b1/ D b1c0, and Nf .c0/ D a0b0b1c0,

� Np.a0/ D a, Np.b0/ D Np.b1/ D b, and Np.c0/ D c,

� ˆ.a/ D a0b0, ˆ.b/ D b1c0, and ˆ.c/ D a0b0b1c0.

One may easily verify that these satisfy the conclusion of Theorem 1.1 withK D 1.

3. Semi-�ows on 2–complexes and free-by-cyclic groups

To see how Theorem 1.1 can be applied to Theorem 1.2, we brie�y recall some of

the setup and results from [11, 10]. Starting with an expanding, irreducible train-

track map f W� ! � representing an automorphism of the free group �1.�/,

in [11] we constructed a 2–complex X D Xf , the folded mapping torus, which

is a (homotopy equivalent) quotient of the mapping torus of f and contains an

embedded copy of �. The suspension �ow on the mapping torus descends to a

semi-�ow  on X having � as a cross section and f as �rst return map, in the

following sense.

De�nition 3.1 (see [10, §5.1]). A cross section of .X;  / is a �nite embedded graph

‚ � � that is transverse to (meaning there is a neighborhoodW of‚ and a map

�WW ! S1 such that ‚ D ��1.x0/ for some x0 2 S1 and for each � 2 X the map

¹s 2 R�0 j  s.�/ 2 W º ! S1 given by s 7! �. s.�// is an orientation preserving

local di�eomorphism) with the property that every �owline hits‚ in�nitely often

(meaning ¹s 2 R�0 j  s.�/ 2 ‚º is unbounded for all � 2 X).

Being homotopy equivalent to the mapping torus, we have G WD �1.X/ D

�1.�/ Ìf�
Z. The projection onto Z de�nes a primitive integral element u0 2

Hom.GIR/ D H 1.GIR/ D H 1.X IR/. The class u0 projects into a component

†0.G/ of the BNS-invariant †.G/ of G, and we let S � H 1.GIR/ denote the

open cone which is the preimage of†0.G/. In [10] we proved that every primitive
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integral u 2 S is “dual” to a cross section ‚ � X of  enjoying a variety of

properties; see also [13, 14, 20] for other results related to the existence of dual

cross-sections for complexes equipped with semi-�ows. To describe the duality,

we recall that the �rst return map f‚W‚ ! ‚ of  to ‚ allows us to write G

as the fundamental group of the mapping torus of f‚. This expression for G

determines an associated homomorphism to Z which is precisely u. The class u

is determined by ‚, and we thus write Œ‚� D u. Alternatively, ‚ is dual to u if

the map witnessing the transversality of ‚ to  can taken as a map �‚WX ! S1

de�ned on all of X for which .�‚/� D u. Then,  can be reparameterized to  ‚
s

so that the time-one map,  ‚
1 restricted to ‚ is the �rst return map.

The map f‚ was shown to be an expanding irreducible train-track map in [10],

but it is not a homotopy equivalence in general. The descent to the stable quotient

�Œ‚�WQŒ‚� ! QŒ‚� of .f‚/� is an automorphism if and only if ker.Œ‚�/ is �nitely

generated. In this case we can identify QŒ‚� D ker.Œ‚�/, so that the associated

splitting ofG as a semi-direct productG D ker.Œ‚�/ÌZ has monodromy �Œ‚�. The

associated expanding irreducible train track map Nf‚W N‚ ! N‚ from Theorem 1.1

is thus a topological representative for �Œ‚�. Therefore, Theorem 1.2 reduces to

proving the following.

Theorem 3.2. Suppose f W� ! � is an expanding irreducible train track rep-

resentative of a hyperbolic fully irreducible automorphism. Further assume that

‚ � X D Xf is a section of the semi-�ow  , as constructed in [10], with �rst

return map f‚W‚ ! ‚ such that ker.Œ‚�/ is �nitely generated. Then for the in-

duced train track map Nf‚W N‚ ! N‚ from Theorem 1.1, . Nf‚/� is a fully irreducible

automorphism.

Proof of Theorem 1.2 from Theorem 3.2. Suppose that ker.u0/, say, is free and

�u0
is fully irreducible. Let f W� ! � be an expanding irreducible train track

representative of �u0
, and let X; be the associated folded mapping torus and

suspension semi-�ow. From [10], there is a section ‚ � X such that Œ‚� D u1

whose �rst return map f‚W‚ ! ‚ has the property that .f‚/� descends to the

monodromy �u1
on the (free) stable quotient Qu1

D �1. N‚/. By Theorem 3.2,

. Nf‚/� D �u1
is fully irreducible, as required. �

The proof of Theorem 3.2 requires some new constructions which are carried

out in the next few sections. We need to work in a slightly more general context

of semi-�ows on compact 2–complexes, without �xed points. Cross sections and

duality are de�ned just as above.

4. Flow-equivariant maps

Here we describe a general procedure for producing maps between spaces

equipped with semi-�ows. The particular quality of map we will require is pro-

vided by the following:
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De�nition 4.1. Given spaces X; Y each equipped with semi-�ows  X
s ;  

Y
s , then

maps ˛WX ! Y and ˇWY ! X are called �ow-homotopy inverse maps if (1) the

maps are �ow-equivariant, i.e.

 Y
s ˛ D ˛ X

s and  X
s ˇ D ˇ Y

s

for all s � 0, and (2) there existsK > 0 so that ˇ˛ D  X
K and ˛ˇ D  Y

K . Note that

˛ and ˇ are indeed homotopy inverses of each other (with the semi-�ows de�ning

the required homotopies). We also call ˛ and ˇ �ow-homotopy equivalences.

Proposition 4.2. Suppose X; Y are 2–complexes with semi-�ows  X
s ;  

Y
s and

cross sections ‚X � X and ‚Y � Y . Further suppose that the �rst return maps

to the cross sections are the restrictions of the time-one maps

FX D  X
1 j‚X

W‚X �! ‚X and FY D  Y
1 j‚Y

W‚Y �! ‚Y :

If there are maps ˛W‚X ! ‚Y and ˇW‚Y ! ‚X such that

� ˛FX D FY ˛ and ˇFY D FXˇ,

and

� ˇ˛ D F k
X and ˛ˇ D F k

Y for some k.

then there are �ow-homotopy inverse maps Ǫ WX ! Y and ǑWY ! X extending

˛ and ˇ, respectively.

Proof. First, letMFX
be the mapping torus of FX W‚X ! ‚X with its suspension

semi-�ow which we denote ‰X
s . Construct maps

hX
0 WMFX

�! X and hX
1 WX �! MFX

by

hX
0 .�; t / D  X

t .�/ and hX
1 .x/ D . X

�X .x/.x/; 1� �X .x//

for � 2 ‚x and t 2 Œ0; 1/, and where �X.x/ 2 .0; 1� is the return time of x 2 X to

‚X . That is, �X .x/ is the smallest number t > 0 so that  X
t .x/ 2 ‚X .

Claim 4.3. hX
0 and hX

1 are �ow-equivariant, and hX
0 h

X
1 D  X

1 and hX
1 h

X
0 D ‰X

1 .

Proof of Claim. This claim follows easily from the de�nitions, but we spell out a

proof here.

First, note that for all � 2 ‚X , t 2 Œ0; 1/ and s > 0 we have

hX
0 .‰

X
s .�; t // D hX

0 .F
bsCtc

X .�/; s C t � bs C tc/

D  X
sCt�bsCtc.F

bsCtc
X .�//

D  X
sCt�bsCtc 

X
bsCtc.�/

D  X
sCt .�/ D  X

s . 
X
t .�//

D  X
s .h

X
0 .�; t //:

Thus hX
0 is �ow-equivariant, as required.
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Every x 2 X has the form x D  X
t .�/ for some � 2 ‚X and 0 � t < 1. Then

�X .x/ D 1� t , and hence

hX
1 .x/ D hX

1 . 
X
t .�// D . X

1�t 
X
t .�/; 1� .1� t // D .FX .�/; t /:

Therefore

hX
1 . 

X
s .x// D hX

1 . 
X
s  

X
t .�// D hX

1 . 
X
sCt .�//

D hX
1 . 

X
sCt�bsCtcF

bsCtc
X .�//

D .F
bsCtcC1

X .�/; s C t � bs C tc/

D ‰X
sCt .FX .�/; 0/ D ‰X

s .‰
X
t .FX .�/; 0//

D ‰X
s .FX .�/; t / D ‰X

s .h
X
1 .x//:

Thus hX
1 is also �ow-equivariant.

Next let � 2 ‚X and t 2 Œ0; 1/. Then �X. 
X
t .�// D 1� t , and thus

hX
1 h

X
0 .�; t / D hX

1 . 
X
t .�//

D . X
1�t . 

X
t .�//; 1� .1 � t //

D . X
1 .�/; t / D .FX .�/; t /

D ‰X
1 .�; t /:

On the other hand, for all x 2 X we have

hX
0 h

X
1 .x/ D hX

0 . 
X
�X .x/.x/; 1� �X .x// D  X

1��X .x/. 
X
�X .x/.x// D  X

1 .x/:

This completes the proof the claim. 4

We note that because ˛FX D FY ˛ and ˇFY D FX˛, the maps ˛W‚X ! ‚Y

and ˇW‚Y ! ‚X determine �ow-equivariant maps between mapping tori

˛0WMFX
! MFY

and ˇ0WMFY
! MFX

given by

˛0.�; t / D .˛.�/; t / and ˇ0.�; t / D .ˇ.�/; t /

for all � 2 ‚X , � 2 ‚Y and 0 � t < 1. Since ˇ˛ D F k
X and ˛ˇ D F k

Y , we have

ˇ0˛0.�; t / D .F k
X .�/; t / D ‰X

k
.�; t / and ˛0ˇ0.�; t / D .F k

Y .�/; t / D ‰Y
k
.�; t /.

To complete the proof, we must construct maps

Ǫ WX ! Y and ǑWY ! X:

These are simply the compositions of the maps above:

Ǫ D hY
0 ˛

0hX
1 and Ǒ D hX

0 ˇ
0hY

1
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where hY
0 WMFY

! Y and hY
1 WY ! MFY

are de�ned similar to hX
0 and hX

1 , re-

spectively. As a composition of �ow-equivariant maps, these are �ow-equivariant.

Finally, using the �ow-equivariance and the properties of these maps we obtain

Ǒ Ǫ D .hX
0 ˇ

0hY
1 /.h

Y
0 ˛

0hX
1 /

D hX
0 ˇ

0.hY
1 h

Y
0 /˛

0hX
1

D hX
0 ˇ

0‰Y
1 ˛

0hX
1

D hX
0 ‰

X
1 .ˇ

0˛0/hX
1

D hX
0 ‰

X
1 ‰

X
k h

X
1

D hX
0 ‰

X
kC1h

X
1

D  X
kC1h

X
0 h

X
1

D  X
kC1 

X
1

D  X
kC2:

A similar calculation proves Ǫ Ǒ D  Y
kC2

. �

5. A few covering constructions

The proof of Theorem 3.2 relies on some constructions of, and facts about, covers

of 2–complexesY with semi-�ows . We will freely use facts from covering space

theory, typically without mentioning them explicitly. To begin, we note that for

any cover pW zY ! Y there is a lifted semi-�ow, z on zY . This lifted semi�ow has

the property that p z t D  tp for all t � 0. This semi-�ow is obtained by viewing

 tp as a homotopy of p and lifting this to the unique homotopy of the identity

on zY . Observe that for each covering transformation T W zY ! zY , the families

T z t and z tT give two homotopies of T that both lift the homotopy  tp of p.

By the uniqueness of lifted homotopies, it follows that T z t D z tT . Therefore z 

commutes with the group of covering transformations of zY .

Proposition 5.1. Suppose Y is a connected 2–complex with a semi�ow  and a

connected section ‚ � Y such that the �rst return map f W‚ ! ‚ is a homotopy

equivalence, and so that the semi�ow is parameterized so that the restriction of

the time-one map is f , that is,  1j‚ D f .

Suppose � ! ‚ is a connected �nite sheeted covering space and gW� ! �

is a lift of a positive power f n of f . Then there is a �nite sheeted covering space

pW zY ! Y so that the restriction of p to any one of the components of p�1.‚/ is

isomorphic to � ! ‚, and so that � is a section of the lifted semi-�ow with �rst

return map equal to g.
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Proof. Let Œ‚� 2 H 1.Y IR/ be the dual to‚. Since f is a homotopy equivalence,

�1.‚/ D ker.Œ‚�/G�1.Y /, and we let zY� ! zY‚ ! Y be the covers corresponding

to �1.�/ < �1.‚/ < �1.Y /. Write  � and  ‚ for the lifted semi-�ows to these

covers.

The inclusion of ‚ into Y lifts to an embedding ‚ D ‚0 � zY‚ inducing

an isomorphism on fundamental groups. Since  1 restricts to the �rst return

map on ‚,  ‚
1 .‚0/ � zY‚ is another lift of ‚, di�ering from ‚0 by a covering

transformation t that generates the in�nite cyclic covering group of zY‚ ! Y . Let

‚n D tn‚0, for all n 2 Z, so that ‚1 D t‚0 D  ‚
1 .‚0/. Then t�1 ‚

1 j‚0
is

precisely the map f W‚ ! ‚. Since  ‚ commutes with t , we have t�k ‚
k

j‚0
D

f k for all k � 1.

There is also an embedding � D �0 � zY� inducing an isomorphism on

fundamental groups so that the restriction of zY� ! zY‚ to �0 is the covering

� ! ‚. Since t�n ‚
n j‚0

D f n, and since �1.�0/ ! �1. zY�/ is an isomorphism,

the lift gW� ! � of f n can be extended to a lift zY� ! zY� of t�n ‚
n . On the

other hand, t�n ‚
n D  ‚

n t
�n is homotopic via the semi-�ow  ‚ to t�n. The

lifted semi�ow is the lift of the homotopy, and it follows that we can lift (t�n and

hence) tn to a map T W zY� ! zY� so that T �1 �
n W zY� ! zY� is the chosen lift of

t�n ‚
n .

Being a lift of a covering map, T is itself a covering transformation of zY� ! Y ,

and we form the quotient zY D zY�=hT i. Since T commutes with  �, it descends

to a semi-�ow z on zY . The restriction to �0 of zY� ! zY is an embedding of

� into zY , and the �rst return of z to this copy of � occurs precisely at time n.

Since we have factored out by hT i, this �rst return map is the descent of T �1 �
n

restricted to �0, and is thus precisely g, as required. �

The following provides a converse to the previous proposition which we will

need.

Proposition 5.2. Suppose that Y is a connected 2–complex with a semi�ow  

and connected cross section ‚ � Y so that the �rst return map f W‚ ! ‚ is the

restriction of the time-1 map,  1j‚ D f and is a homotopy equivalence. Given a

connected, �nite sheeted covering space pW zY ! Y , any component� � p�1.‚/

is a section, and the �rst return map gW� ! � of the lifted semi-�ow is a lift of a

power of f .

Proof. Every cover of Y is a quotient of the universal covering bY ! Y , and the

proposition will follow easily from a good description of this bY , which we now

explain. We �rst let zY‚ ! Y denote the cover corresponding to�1.‚/ D ker.Œ‚�/.

As in the previous proof, we have homeomorphic copies of ‚ in zY‚, which we

denote ¹‚nºn2Z, so that a generator t of the covering group has t‚n D ‚nC1

for all n. Furthermore, the lifted semi-�ow  ‚ to zY‚ has  ‚
1 .‚n/ D ‚nC1, and

t�1 ‚
1 W‚n ! ‚n is the map f , with respect to the homeomorphism ‚n Š ‚

obtained by restricting zY‚ ! Y to ‚n.
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Since the inclusion ‚n � zY‚ is an isomorphism on fundamental group, the

universal cover bY ! zY‚ contains copies of the universal cover of‚, say ¹b‚nºn2Z

so that for each n, b‚n is the preimage of ‚n. The lifted semi�ow b to bY has

time–1 map sending b‚n to b‚nC1 for all n. In particular, for any integer k > 0,
b k.b‚n/ D b‚nCk , and b k jb‚n

is a lift of the kth power of f from the nth copy of

the universal cover of ‚ to the .nC k/th copy.

Any connected, �nite sheeted cover zY ! Y is a quotient of bY , the lifted semi-

�ow z is the descent of b to zY , and ¹b‚nºn2Z push down to �nitely many graphs
z‚1; : : : ; z‚j in zY , each of which is a �nite sheeted covering space of ‚ (here j is

the subgroup index in Z of the image of �1.z‚/ under the homomorphism Œ‚�).

We may choose our indices 1; : : : ; j so that b‚n pushes down to z‚k, where k � n

mod j for all n. From the description of b , it follows that z 1.z‚k/ D z‚kC1, with

indices taken modulo j . Consequently, z j .z‚k/ D z‚k for all k, and the restriction

of z j to any one is a lift of f j . As this is the �rst return map, we are done. �

Proposition 5.3. Suppose X and Y are connected 2–complexes equipped with

semi-�ows X and Y , respectively. Given �ow-homotopy inverse maps˛WX!Y

and ˇWY ! X , and a connected �nite sheeted cover pW zX ! X , there exists a

connected �nite sheeted cover qW zY ! Y and lifts of ˛ and ˇ which are �ow-

homotopy inverses:

zX
Q̨

))

p

��

zY
Q̌

ii

q

��
X

˛
))
Y

ˇ

ii

Proof. Let qW zY ! Y be the connected cover corresponding to ˛�.p�.�1. zX///.

Since p�.�1. zX// has �nite index in �1.X/, and ˛� is an isomorphism, it follows

that q�.�1. zY // has �nite index in �1.Y /, and hence q is a �nite sheeted cover.

From basic covering space theory, ˛ lifts to a map Q̨ W zX ! zY so that q Q̨ D ˛p.

Since ˇ is a homotopy inverse of ˛, ˇ�.q�.�1. zY /// is (conjugate to) p�.�1. zX//.

By changing the basepoint of zY to adjust this conjugate, it follows that there is a

lift Q̌W zY ! zX so that p Q̌ D ˇq. Let z X and z Y denote the lifted semi-�ows, and

note that p Q̌ Q̨ D ˇq Q̨ D ˇ˛p D  X
K p for some K > 0. Therefore, Q̌ Q̨ is a lift of

 X
K .

Since  X
t , t 2 Œ0; K� de�nes a homotopy from the identity to  X

K , we can lift

the homotopy and thus Q̌ Q̨ is homotopic (via some lift of  X
t ) to a map covering

the identity, i.e. a covering transformation for p. Composing Q̌ with the inverse of

this covering transformation, we get another lift of ˇ (which we continue to call
Q̌) so that now Q̌ Q̨ D z X

K . We claim that Q̨ and Q̌ are �ow-homotopy inverses.



1196 S. Dowdall, I. Kapovich, and Ch. J. Leininger

First, we verify that Q̨ and Q̌ are �ow-equivariant. To see this, �rst note that for

every Qx 2 zX , the paths t 7! Q̨ z X
t . Qx/ and t 7! z Y

t Q̨ . Qx/ are both lifts of the path

t 7! ˛ X
t p. Qx/ D  Y

t ˛p. Qx/. Since these have the same value Q̨ . Qx/ at time t D 0,

uniqueness of path lifting guarantees that z Y
t Q̨ D Q̨ z X

t , so Q̨ is �ow-equivariant.

The same argument works for Q̌.

Our choice of Q̌ ensures that Q̌ Q̨ D z X
K . A similar calculation as above ensures

Q̨ Q̌ di�ers from z Y
K by a covering transformation. To complete the proof, we must

show that this covering transformation is trivial. To do this, we pick any point in

the image of Q̨ , Q̨ . Qx/ 2 zY , and then observe that

Q̨ Q̌ Q̨ . Qx/ D Q̨ z X
K . Qx/ D z Y

K Q̨ . Qx/:

Thus Q̨ Q̌ agrees with z Y
K at the point Q̨ . Qx/. But since these di�er by a covering

transformation and they agree at a point, it follows that the covering transformation

is the identity, and hence Q̨ Q̌ D z Y
K . �

6. Full irreducibility

Proof of Theorem 3.2. Recall that we have the folded mapping torus X D Xf ,

for f W� ! � an expanding irreducible train track representative of a hyperbolic

fully irreducible automorphism. We have ‚ � X a section with �rst return map

f‚W‚ ! ‚, an expanding irreducible train track, inducing an automorphism

on the stable quotient. This automorphism is represented by the expanding ir-

reducible train track map Nf‚W N‚ ! N‚ from Theorem 1.1. Now suppose that . Nf‚/�
is not fully irreducible.

Claim 6.1. There is a �nite sheeted covering � ! N‚, a lift gW� ! � of a

power of Nf‚, and a proper subgraph � � � containing at least one edge so that

g.�/ D �.

Proof. Since . Nf‚/� is not fully irreducible, there exists n > 0 for which we may

choose a vertex z 2 N‚ with Nf n
‚ .z/ D z and free factor H of �1. N‚/ D �1. N‚; z/

such that . Nf n
‚ /�.H/ is conjugate to H .

Let pW . z�; Qz/ ! . N‚; z/ denote the cover corresponding to H and choose a

vertex Qz0 2 p�1.z/ so that p�.�1. z�; Qz0// D . Nf n
‚ /�.H/. Basic covering space

theory guarantees that there is a unique lift hW z� ! z� of Nf n
‚ sending Qz to Qz0. Let

 WS1 ! z� be any non-null-homotopic closed curve. Since . Nf‚/� is hyperbolic,

the sequence of curves hk ı is an in�nite sequence of distinct homotopy classes.

Tightening each curve in the sequence gives an in�nite sequence of curves ¹kº

in the Stallings core N� � z�, each without backtracking, representing distinct

homotopy classes. Furthermore, since neither h nor tightening can increase the
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number of illegal turns in a loop of N�, the number of illegal turns of k is uniformly

bounded as k ! 1. It follows that the length of the maximal legal segment of

k must tend to in�nity with k. From a su�ciently long legal segment we can

construct a legal loop ı contained in N�. The loops hk ı ı must be legal for all

k > 0, and hence must be contained in the core of N�. It follows that

� D
\

k>0

[

j �k

hj .ı.S1// � N�

is a nonempty subgraph of N� with at least one edge, and that h.�/ D � since

h.�/ D h
� \

k>0

[

j �k

hj .ı.S1//
�

D
\

k>0

[

j �k

hj C1.ı.S1// D �:

Next let ` > 0 be such that h` has a �xed vertex w 2 �. Thus h` is a lift of
Nf n`
‚ , and Nf n`

‚ �xes the image v 2 N‚ of w. By Hall’s Theorem (i.e. separability of

�nitely generated subgroups of free groups), there are covering maps

z� �! � �! N‚

such that � ! N‚ is a �nite sheeted covering, and so that z� ! � restricts to an

embedding on�. We use this fact to identify � and the point w with their images

in �, noting that � � � is a proper subgraph containing at least one edge.

Finally, choose a power Nf
jn`

‚ such that . Nf
jn`

‚ /� �xes the image of �1.�;w/

in �1. N‚; v/. By covering space theory again, we may choose a lift gW� ! � of
Nf
jn`

‚ �xing the image of w in �. It follows that the restriction of g to � agrees

with the restriction of hj` to � (via the identi�cation from the covering z� ! �).

In particular, g.�/ D �. 4

As in [10], we may reparameterize the semi-�ow on X so that the �rst return

map to ‚ is the time-one map. Applying Proposition 4.2 (to the maps N‚ ! ‚

and ‚ ! N‚ provided by Theorem 1.1), we get �ow-homotopy inverse maps ˛ and

ˇ between the mapping torus M Nf‚
and X . Note that these maps restrict to graph

maps between N‚ and ‚.

Let� ! N‚ be the �nite sheeted cover, gW� ! � the lift of a power of Nf‚, and

� � � the proper subgraph with at least one edge and g.�/ D �, all from the

claim. By Proposition 5.1, there is a cover pW zM Nf‚
! M Nf‚

so that p restricted to

a component of p�1. N‚/ is isomorphic to � ! N‚. Proposition 5.3 then provides

�ow-homotopy inverse lifted maps to a cover zX of X , denoted Q̨ and Q̌. Letting z�

denote a component of the preimage of � in zX , we have the following diagram:
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� //

��

zM Nf‚

Q̨
))

��

zX
Q̌

ll

��

z�oo

��
N‚ // M Nf‚

˛
))
X

ˇ

ll �oo

Let ‰ and  denote the �ows on zM Nf‚
and zX , respectively, and let K > 0 be so

that Q̌ Q̨ D ‰K and Q̨ Q̌ D  K . Note that this implies Q̨ and Q̌ are surjective, since

‰K and  K are.

There is a proper, �ow invariant subset Z� � zM Nf‚
de�ned by

Z� D
[

t�0

‰t .�/:

Since the �rst return of ‰ to � is g, which is surjective, and since g.�/ D �,

it follows that ‰t .Z�/ D Z� and ‰t . zM Nf‚
/ ¤ Z�, for every t � 0. Now �ow

equivariance implies

 t . Q̨ .Z�// D Q̨ .‰t .Z�// D Q̨ .Z�/

Furthermore, suppose that  t . zX/ D Q̨ .Z�/ for some t . Then surjectivity and

equivariance of Q̌ implies

Z� D ‰K.Z�/ D Q̌. Q̨ .Z�// D Q̌. t . zX// D ‰t . Q̌. zX// D ‰t . zM Nf‚
/ ¤ Z�;

a contradiction. Therefore,  t . zX/ ¤ Q̨ .Z�/ for all t � 0.

Since ˛ sends edges of N‚ to edges of ‚, we see that Q̨ sends edges of � to

edges of the preimage of ‚ in zX . It follows that Q̨ .Z�/ contains an open subset

of a 2–cell of zX and thus that Q̨ .Z�/ eventually �ows over an entire edge e of the

component z� of the preimage of �. Now we note that the �rst return map to z� is

a lift of a power of f by Proposition 5.2. Denote this �rst return map r W z� ! z�.

Thus r is a train track map.

A result of Bestvina-Feighn-Handel [3, Proposition 2.4], or alternatively, a

recent result of Dowdall and Taylor [12, Proposition 5.1] imply that if a hyperbolic

fully irreducible automorphism of FN preserves a subgroup of �nite index in

FN , then the restriction of the automorphism to that subgroup induces a fully

irreducible automorphism of the subgroup.

Therefore r induces a fully irreducible automorphism of �1.z�/, and being a

train track representative of that automorphism, r is an expanding irreducible train

track map (e.g. by [16, Lemma 2.4]). In particular, the edge emust eventually map

over the entire graph z� by some power of the �rst return map r . It follows that the

 –invariant subset Q̨ .Z�/ contains z�. But since z� is a section of  , this implies

that Q̨ .Z�/ D zX , which is a contradiction. �
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