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The geometry of pro�nite graphs revisited
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Abstract. For a formation F of �nite groups, tight connections are established between

the pro-F-topology of a �nitely generated free group F and the geometry of the Cayley

graph �.cFF/ of the pro-F-completion cFF of F . For example, the Ribes–Zalesskiı̆ theorem

is proved for the pro-F-topology of F in case �.cFF/ is a tree-like graph. All these results

are established by purely geometric proofs, more directly and more transparently than in

earlier papers, without the use of inverse monoids. Due to the richer structure provided by

formations (compared to varieties), new examples of (relatively free) pro�nite groups with

tree-like Cayley graphs are constructed. Thus, new topologies on F are found for which

the Ribes–Zalesskiı̆ theorem holds.
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1. Introduction

The Ribes–Zalesskiı̆ theorem [16] states that the productH1 : : :Hn of any �nitely
generated subgroups H1; : : : ; Hn of a free group F is closed in the pro�nite
topology of F . The original motivation for this theorem came from a paper by Pin
and Reutenauer [15]: the theorem provided a nice algorithm to compute the closure
(with respect to the pro�nite topology) of a rational subset of a free group and
implied the truth of the Rhodes type II conjecture, then a long standing conjecture
in the theory of �nite monoids. Since then, the product theorem has become a
subject of independent interest. It has been generalized in various directions:
on the one hand to other groups [10, 23], on the other hand to other topologies
of F . The original proof of the theorem by Ribes and Zalesskiı̆ is formulated
for the (full) pro�nite topology of F but is valid for the pro-C-topology of F
for any extension closed variety C of �nite groups (in the sense that the product
H1 : : :Hn is closed with respect to the pro-C-topology of F for pro-C-closed
H1; : : : ; Hn). The latter has been generalized by Steinberg and the author [4] to
so-called arboreous varieties, a class of varieties which is much larger than the
class of all extension closed varieties. In that paper, tight connections between the
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pro-C-topology of a free group and the geometry of the Cayley graphs of the free
pro-C-groups were established. The purpose of the present paper is twofold. On
the one hand, it is aimed at extending the mentioned results of [4] from varieties to
formations. This includes to expand the method found in [4] to construct pro�nite
groups with tree-like Cayley graphs. On the other hand, a new direct approach,
based on covering graphs, to the entire topic is presented. The proofs in [4]
use an interpretation of the subject within varieties of �nite inverse monoids and
their relatively free pro�nite objects. Meanwhile it is the author’s opinion that
this approach obstructs the direct view and mysti�es the immediate connection
between the pro-F-topology of F and the geometry of �.cFF/. In contrast to [4],
the present proofs are direct and purely geometric, without the use of (relatively
free, pro�nite) inverse monoids; this should raise the accessibility of the results
to readers not familiar with inverse monoids.

The paper is organized as follows. Section 2 collects all results about graphs,
�nitely generated subgroups of free groups and pro�nite graphs that will be used
in the paper. Section 3.1 studies two geometric properties the Cayley graph of
a free pro-F-group for a formation F might have: that of being Hall and that of
being tree-like. It is then shown that these geometric properties are equivalent to
certain separability properties induced on a free group by its pro-F-topology; in
section 3.2 we establish the Ribes–Zalesskiı̆ theorem for the pro-F-topology of a
free group where F is any formation whose free pro�nite objects have tree-like
Cayley graphs. Finally, in section 4 we de�ne, for a �nite, A-generated group G
and a �nite simple group S , the A-universal S -extension of G and show how this
concept can be used to construct pro�nite groups with tree-like Cayley graphs
and to guarantee that for certain formations F the free pro-F-groups have tree-like
Cayley graphs; such formations will be called arboreous.

2. Graphs, subgroups of free groups, and pro�nite graphs

We follow the Serre convention [20] and de�ne a graph � to consist of a set
V.�/ of vertices and disjoint sets E.�/ of positively oriented (or positive) edges

and E�1.�/ of negatively oriented (or negative) edges together with incidence

functions �; � WE.�/[E.�/�1 ! V.�/ selecting the initial, respectively, terminal

vertex of an edge e and mutually inverse bijections (both written e 7! e�1)
betweenE.�/ andE�1.�/ such that �e�1 D �e for all edges e (whence �e�1 D �e,
as well). We set AE.�/ D E.�/ [ E�1.�/ and call it the edge set of �. Given
this de�nition of a graph the notions of subgraph (spanned by a set of edges),
morphism of graphs and projective limit of graphs have the obvious meanings.
Edges are to be thought of geometrically: when one draws an oriented graph,
one draws only the positive edge e and thinks of e�1 as being the same edge, but
traversed in the reverse direction.
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A path p in a graph � is a �nite sequence p D e1 : : : en of consecutive edges,
that is �ei D �eiC1 for all i ; we de�ne �p D �e1 to be the initial vertex of p and
�p D �en to be the terminal vertex of p. A path is reduced if it does not contain a
segment of the form ee�1 for any edge e. We also consider an empty path at each
vertex. A path p D e1 : : : en is a circuit at (base point) v if v D �p D �p. A graph
is connected if any two vertices can be joined by a path. A connected graph is a
tree if it does not contain a non-empty reduced circuit.

Throughout, A shall denote a �nite alphabet, that is, a �nite set of symbols
called letters, usually jAj � 2; we useA�1 to denote a disjoint copy ofA consisting
of formal inverses a�1 of the letters a of A, and set zA D A[A�1. An A-labelled

graph is a graph together with a labelling function `W zE ! zA such that `.e/ 2 A
and `.e�1/ D `.e/�1 for each positive edge e. A morphism of labelled graphs is
assumed to respect the labelling. Given a path p D e1 : : : en in a labelled graph,
the label `.p/ of that path is just `.e1/ : : : `.en/.

If V.�/,E.�/ andE.�/�1 are topological spaces, AE.�/ is the topological sum
of E.�/ and E�1.�/, and �, � and . /�1 (in both directions) are continuous, then
� is called a topological graph. A pro�nite graph is a topological graph � which
is a projective limit of �nite, discrete graphs. It is well known [24, 18] that �
is pro�nite if and only if V.�/ and AE.�/ are both compact, totally disconnected
Hausdor� spaces. Morphisms between pro�nite graphs are always assumed to
be continuous. Subgraphs of pro�nite graphs are understood in the category of
pro�nite graphs: they must be closed as topological spaces. Moreover, a connected

pro�nite graph is one all of whose �nite continuous quotients are connected as
abstract graphs (such are termed “pro�nitely connected” in [1, 2]). For more
information about pro�nite graphs the reader is referred to [1, 2, 18] and [4, Section
2].

The pro�nite graphs of primary interest are subgraphs of Cayley graphs of
pro�nite groups where a pro�nite group is a compact, totally disconnected group,
or, equivalently, a projective limit of �nite groups. We refer the reader to [19] for
basic de�nitions on pro�nite and relatively free pro�nite groups.

Let A be an alphabet, G be a group and 'WA ! G be a map. Then the
Cayley graph of G with respect to .A; '/, or, if the mapping ' is clear, the Cayley

graph of G with respect to A, denoted by �A.G/, has vertex set G, edge set
G � zA, incidence functions given by �.g; a/ D g, �.g; a/ D g.a'/ and involution
.g; a/�1 D .g.a'/; a�1/. We call a 2 zA the label of .g; a/. The edge .g; a/ is

usually drawn and thought of as �
g

a
�����!�

g.a'/
. Throughout this paper we consider

A-generated groups G for a �xed alphabet A and the mapping 'WA! G is never
mentioned; this means thatG is generated byA' andA is then treated like a subset
of G though distinct elements of zA are a priori not necessarily distinct elements
of G. In this case, �A.G/ is always denoted �.G/ and is connected. A morphism
from the A-generated group G to the A-generated groupH is always a morphism
extending the mapping a 7! a and hence is uniquely determined and surjective and
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is called the canonical morphism G � H . Given a canonical morphism of �nite
A-generated groups 'WG � H we have a canonical morphism �.G/ � �.H/,
usually also denoted ', of �nite A-labelled graphs which maps each vertex g to
g' and each edge .g; a/ to .g'; a/. Suppose that ¹.Gi ; 'ij / j i; j 2 I º is an inverse
system of �nite A-generated groups; then automatically ¹.�.Gi /; 'ij / j i; j 2 I º
is an inverse system of �nite A-labelled graphs. Let G D lim

 �i2I
Gi ; then the

Cayley graph of G is lim
 �i2I

�.Gi / which is a pro�nite graph having vertex set G

and edge set G � zA where the topology of the latter is just the product topology
with zA considered to be discrete. Since A is a �xed �nite set we need to consider
only countable inverse systems ¹.Gn; 'nm/ j n;m 2 N; m � nº where the linking
morphism 'nm are not always explicitly mentioned. We note that the Cayley graph
of an A-generated pro�nite group G (which means that the abstract subgroup hAi
of G generated by A is dense in G) is connected as a pro�nite graph.

Throughout, F stands for the free group with basis A, its elements are rep-
resented as words in the alphabet zA. It is well known that �nitely generated
subgroups H of F can be encoded in terms of �nite, labelled, pointed graphs
[13, 14, 21]. Let A be a �nite A-labelled graph; A is folded if for every letter a 2 A
and every vertex v there exists at most one edge e starting or ending at v and hav-
ing label a. In a folded graph, the letters from zA induce partial injective mappings
on the vertex set, and for every vertex v and every word w in the letters of zA there
is at most one path starting at v and having label w. From now on we assume all
graphs to be folded. Suppose that A has a distinguished vertex b (the base point)
and let L.A; b/ be the set of all elements w 2 F (w given as a reduced word in zA)
such that w labels a closed path at b in A. Then L.A; b/ is a �nitely generated
subgroup of F .

A graph A with base point b is reduced if no vertex except perhaps b has
degree 1 (where the degree of a vertex v is the number of positive edges e for which
�e D v or �e D v). For every �nitely generated subgroupH ofF then there is up to
isomorphism exactly one �nite, connected,A-labelled, reduced graphAwith base
point b such that L.A; b/ D H . This graph we shall usually denote H with base
point bH. It can be obtained as follows. The Schreier graph†.F;H;A/ has vertex
set the setHnF of all right cosets Hg in F with respect to H and positive edges

�
Hg

a
����! �

Hga
for g 2 F and a 2 A; the edge set then can be identi�ed withHnF� zA.

Let the core graph core.†.F;H;A/;H/ of †.F;H;A/ with respect to the base
point H be the subgraph of †.F;H;A/ spanned by edges which are contained in
a reduced closed path at vertexH . Then core.†.F;H;A/;H/ is isomorphic to H

and will be the called the core graph ofH . For a more constructive method to �nd
H the reader is referred to [13, 14, 21]. In any case, the core graph ofH D L.A; b/,
A �nite, can be obtained from A by removing �nitely may vertices and edges from
A until the outcome is reduced.
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Next let F be a formation of �nite groups; the pro-F-topology of F has as
neighborhood basis of 1 the collection of all normal subgroups N of F for which
F=N 2 F. The pro�nite group

cFF WD lim
 �

F=N2F

F=N

is the free pro-F-group generated by A; the abstract subgroup of cFF generated
by A coincides with F if and only if F is residually F, that is, if and only ifT
F=N2FN D ¹1º. Given an A-generated group G 2 F and w 2 F it is often

convenient to denote the image of w under the canonical morphism F � G by
Œw�G (which means the value of w in G); similarly, given  2 cFF, the image of 
under the canonical morphism cFF � G will be denoted Œ�G .

A �nite A-labelled graph A is complete if the degree of every vertex is 2jAj.
That is, every letter a 2 zA induces a permutation of the set of vertices of A. The
group generated by these permutations is the transition group TA of A which is
an A-generated group. A �nitely generated subgroupH of F is F-extendible [14]
if the core graph H ofH can be embedded into a �nite complete graph xH whose
transition group T xH belongs to F. A key result from [14] is Proposition 2.7: it
states that every pro-F-closed �nitely generated subgroupH of F is F-extendible
— the result is formulated and proved for varieties of �nite groups but the proof
goes through verbally for the more general case of formations.

Suppose that the complete graph A with distinguished vertex b is connected;
then there exists a unique graph morphism 'AW�.TA/ � A for which 1'A D b

which we call the canonical morphism �.TA/ � A. Indeed, it is well known and
easy to see that the mapping g 7! b �g induces a graph morphism �.T xA/ � A and
A is isomorphic to the Schreier graph†.TA; H; A/whereH is the stabilizer of b in
TA. If G is another A-generated group such that 'WG � TA then ''AW�.G/ �

A is the canonical morphism �.G/ � A. Next let A be an A-labelled graph with
base point b and xA be a completion of A (that is, A is a subgraph of the complete
graph xA). We have the canonical mapping ' xAW�.T xA/ � xA. Now, the inverse
image of A under ' xA in �.T xA/ is a subgraph of �.T xA/, not necessarily connected.
But we let AT xA be the connected component containing 1 of this inverse image.
More generally, letG be A-generated with canonical morphism 'WG � T xA; then
we de�ne AG to be the connected component containing 1 of the inverse image of
A under the canonical map '' xAW�.G/ � xA. Then AG is a connected subgraph
of �.G/ and it is the subgraph of �.G/ spanned by all edges that are contained in a
path starting at 1 and having labelw, say, for which there exists a path in A starting
at b and having label w. The latter could be also taken as de�nition of the graph
AG ; it actually makes sense for every A-generated group G, but the existence of
a morphism AG � A is not guaranteed in the general case. However, if there is
a completion xA of A and G � T xA then we do have a canonical graph morphism
AG � A mapping 1 to b. For every h 2 L.A; b/ the element Œh�G is also mapped
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to b by this morphism. Moreover, as a subgraph of �.G/ the graph AG may be
shifted by left multiplication by an element g 2 G to obtain gAG . Then there is
a canonical graph morphism gAG � A which maps g to b. Similarly, for every
h 2 L.A; b/, the element gŒh�G is mapped to b under this morphism.

If we are given an inverse system of A-generated groups

T xA

'0 ��

G0
'1 ��

G1
'2 ��

G2
'3 ��

� � � (2.1)

then we get an inverse system of A-labelled graphs

A
' xA��

AT xA
'0 ��

AG0
'1 ��

AG1
'2 ��

AG2
'3 ��

� � � (2.2)

where in the latter sequence the mappings ' xA and 'i have to be understood as the
appropriate restrictions to the graphs AT xA and AGi . Altogether, every inverse
system of �nite groups as in (2.1) leads to an inverse system of �nite graphs
as in (2.2) and for G D lim

 �
Gn we set AG WD lim

 �
AGn which is a connected

subgraph of the pro�nite Cayley graph �.G/. Assume that the abstract subgroup
of G generated by A is F . Similarly as for the �nite case, we have now a canonical
morphism AG � A which maps every element of the closure L.A; b/ of L.A; b/
in G to the base point b. In addition, for every  2 G there is a canonical graph
morphism AG � A which maps L.A; b/ to b.

As mentioned earlier, the graphs AGi may be de�ned without referring to a
completion xA of A. The same holds for the projective limit AG D lim

 �
AGi . The

pro�nite graph AcFF de�ned in this latter fashion then admits a canonical graph

morphism AcFF � A if and only if A admits a completion xA whose transition
group T xA is in F. The ‘only if’ direction of that claim — which will not be used
in the paper — can be seen as follows. Take an inverse system .Gn/n2N with

Gn 2 F such that cFF D lim
 �

Gn. Then AcFF D lim
 �

AGn ; hence the canonical

morphism AcFF � A factors through AG for G D Gn for some n. Now let H be
the subgroup of G consisting of all Œw�G for w 2 L.A; bA/. The Schreier graph
†.G;H;A/ DW † then is a complete graph which contains A as subgraph. The
transition group T† is a quotient ofG, namely T† Š G=HG whereHG is the core

of H in G. The pro�nite graph AcFF can be viewed as pro-F-universal covering

graph of A.

3. Pro�nite topology and geometry of graphs

For a certain class of formations F of �nite groups we establish tight connections
between the pro-F-topology of a �nitely generated free group F and the geometry
of the Cayley graph �.cFF/ of its pro-F-completion cFF. This is an extension to
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formations of the results formulated and proved for varieties in [4, Section 5].
While the proofs of [4] would carry over to the case of formations more or less
easily, it is our explicit intention to present new proofs which avoid relatively
free pro�nite inverse monoids and instead use the above mentioned concept of
(pro�nite) covering graphs.

3.1. Being Hall and being arboreous. According to a result of [14] mentioned
in section 2, for every formation F, every �nitely generated pro-F-closed subgroup
H of F is F-extendible. Here we shall present a criterion for an extendible group
H to be closed. It turns out that this can be expressed in terms of a geometric

property of the pro-F-universal covering graph HcFF of the core graph H of H .
For this purpose, we modify and generalize the concept of Hall property

of a pro�nite graph introduced in [4]. Let � be a connected pro�nite graph;
a connected subgraph � is a Hall subgraph of � if, whenever � contains the
endpoints of a �nite reduced path p in � then � contains the (graph spanned by
the) pathp itself. Note that, by de�nition, every connected pro�nite graph is a Hall
subgraph of itself. The concept of Hall subgraph allows to give a characterization
of which F-extendible subgroupsH of F are pro-F-closed.

Theorem 3.1. Let F be a formation of �nite groups. An F-extendible subgroupH

of F is pro-F-closed if and only if HcFF is a Hall subgraph of �.cFF/:

Proof. Here we do not assume that F is residually F. In particular we do not
assume thatF is canonically embedded in cFF. For convenience, for a wordw 2 F ,
the value of w in cFF will simply be denoted Œw�F rather than Œw�cFF

.

Let H be an F-extendible subgroup of F with core graph H. Suppose �rst

that HcFF is not a Hall subgraph of �.cFF/. We need to show that H is not pro-
F-closed. Throughout the following proof we shall identify every path p with the

graph spanned by p. Let  be a vertex of HcFF for which there exists a reduced
word w 2 F such that the path  ! Œw�F in �.cFF/, starting at  and being

labelled w, is outside HcFF except for its endpoints.
Let xH be a completion of H with transition group T in F and let

G0

��

G1

��

� � �

be an inverse system of groups in F such that lim
 �

Gn D cFF and G0 � T , and

such that, denoting for all n the canonical projections cFF � Gn by 'n, we have
that the path '0 ! '0Œw�G0

in �.G0/ labelled w is outside HG0 (except for
its endpoints). Let v 2 F be a reduced word labelling a path 1 ! '0 running
entirely inside HG0 . Then, in �.cFF/, the path 1 ! Œv�F labelled v runs inside

HcFF (being the lift of the corresponding path in HG0); in particular, Œv�F 2 HcFF .
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Next, the path Œv�F ! Œvw�F in �.cFF/ labelledw is outside HcFF (except, perhaps,
for its endpoints) since its projection in �.G0/ is outside HG0 . We claim that

Œvw�F does belong to HcFF . Indeed, for each n choose a word pn labelling a
path 'n ! .Œw�F/'n D .'n/Œw�Gn

which runs entirely inside HGn . Since
Œpn�Gn

D Œw�Gn
for all n, limpn D w. Each path 1 ! Œvpn�F in �.cFF/ labelled

vpn runs entirely in HcFF being the lift of the corresponding path in HGn . Since

HcFF is closed it follows that Œvw�F D limŒvpn�F 2 H
cFF . Hence we may consider

the vertices Œv�F and Œvw�F instead of  and Œw�F.
Next, consider the group K WD v�1Hv. Since conjugation is a homeomor-

phism of F ,H is closed if and only ifK is closed. It is clear that for the core graph

K of K the equality KcFF D v�1HcFF holds. For KcFF we have that 1; Œw�F 2 KcFF

but the path 1 ! Œw�F in �.cFF/ labelled w is outside KcFF (except for its end-
points). Finally, choose, for every n, a word un which labels a path 1 ! Œw�Gn

which runs entirely inside KGn . Then limun D w and unu�1
0 2 K since this word

labels a closed path at 1 in KG0 . On the other hand, lim unu
�1
0 D wu�1

0 … K: if
wu�1

0 were in K then it would label a closed path in K at base point bK and that
path would lift to a path in KG0 starting at 1. This however, this is not the case by
construction of w.

Let conversely H � F be �nitely generated, F-extendible with core graph H

and suppose that HcFF is a Hall subgraph of �.cFF/. Let .wn/n2N be a sequence
of elements of H with limwn D w 2 F with respect to the pro-F-topology of F .

We need to show that w 2 H . Since Œwn�F 2 H
cFF for all n, also Œw�F 2 HcFF . So,

HcFF contains 1 and Œw�F and therefore also the path 1! Œw�F in �.cFF/ labelled

w. By the canonical map HcFF � H, that path is mapped to a closed path at bH
with label w which means that w 2 H . �

Of particular interest are formations F for which every extendible subgroupH
of F is closed. Let us call such a formation Hall. More precisely, a formation F is
Hall if for every alphabet A (with jAj � 2) every �nitely generated, F-extendible
subgroupH of F is pro-F-closed in F . This is the straightforward generalization
to formations of a notion originally introduced for varieties [22]. Exactly as in that
special case, the property of being Hall of a formation F can be expressed in terms
of the geometry of the Cayley graphs of free pro-F-groups. A connected pro�nite
graph � is an absolute Hall graph, or, shortly a Hall graph if every connected
subgraph is a Hall subgraph of �. If �.cFF/ is a Hall graph then by Theorem 3.1,
every F-extendible subgroupH of F is pro-F-closed. Also the converse holds: if
�.cFF/ is not Hall then there exists an F-extendible subgroupH of F which is not
pro-F-closed. This leads to a ‘global’ version of Theorem 3.1; for varieties this
was proven in [4]



The geometry of pro�nite graphs revisited 147

Theorem 3.2. A formation F is Hall if and only if for each alphabetA the Cayley

graph �.cFF/ is Hall.

Proof. The ‘if’ part is a consequence of Theorem 3.1. For the converse, let
� � �.cFF/ be a connected subgraph containing the endpoints  and Œw�F of
some reduced path p whose label is w, say, such that the graph spanned by p is
outside � except for its endpoints. We may consider instead the graph �1� and
hence assume that  D 1. As in the proof of Theorem 3.1, let G0 � G1 � � � �

be an inverse system of groups in F such that lim
 �

Gn D cFF and, denoting the

canonical morphism cFF � Gn by 'n we have that the graph spanned by the path
in �.G0/ with label w starting at 1 is outside �'0 except for the endpoints 1 and
Œw�G0

. For every n, let un be a word labelling a path 1 ! Œw�Gn
running inside

�'n; then lim un D w. The group H D L.�'0; 1/ is F-extendible; since un
also labels a path 1 ! Œw�G0

in �'0 it follows that unu�1
0 2 H for every n and

lim unu
�1
0 D wu0. But wu�1

0 does not belong to H since wu�1
0 does not label a

closed path at 1 in �'0. Altogether, H is not closed for the pro-F-topology. �

Next we consider a strengthening of the former property, this time motivated
from the side of the geometry of the Cayley graph of cFF. An obvious strengthening
of the property of being Hall is that any two vertices u and v which are contained
in a connected subgraph should be contained in a smallest (with respect to con-
tainment) connected subgraph. Equivalently, for any two given vertices contained
in a connected subgraph, the intersection of all such connected subgraphs is again
connected. A connected pro�nite graph with this property has been called tree-

like in [4]; pro-p-trees and similarly de�ned graphs in the sense of [16, 17, 18] do
have this property but there are many tree-like (Cayley) graphs which are not of
this form (including some new examples which can be constructed by the method
presented in section 4). We are going to show that this geometric property of the
Cayley graph is equivalent to a strengthened condition on the pro-F-topology of
the free group F : namely that the productHK of any two F-extendible subgroups
H andK of F is pro-F-closed. Throughout, for vertices ˛; ˇ of a tree-like graph �
we shall denote by Œ˛; ˇ� the unique smallest connected subgraph of � containing
˛ and ˇ — the geodesic subgraph determined by ˛ and ˇ.

Proposition 3.3. Suppose that �.cFF/ is tree-like; then the product HK of any

two F-extendible subgroupsH and K of F is closed in the pro-F-topology of F .

Proof. Let .wn/ be a sequence in HK such that limwn D w 2 F ; we need to
prove that w 2 HK. Each wn admits a representation wn D hnkn with hn 2 H
and kn 2 K (equality holds in F , so the word hnkn need not be reduced). We may
assume (by going to a subsequence) that the sequences .hn/ and .kn/ converge in
cFF: there exist �; � 2 cFF such that � D lim hn and � D lim kn. Then �� D w and
we may assume that � ¤ 1 ¤ w. Let H and K, respectively, be the core graphs
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of H and K. By construction, HcFF contains 1 and all vertices hn and hence also

� D lim hn. Likewise, KcFF contains 1 and �. Consequently,HcFF[�KcFF contains

1 and w D ��. By the Hall property, HcFF [ �KcFF contains the geodesic Œ1; w�.

Since 1 2 HcFF and w 2 �KcFF , some vertex, say v, of the geodesic Œ1; w� is

contained in HcFF \ �KcFF . That is, w admits a factorization w D vu such that

v 2 HcFF \ �KcFF . Since �.cFF/ is tree-like, we have

Œ1; v� � H
cFF ; Œv; �� � H

cFF \ �KcFF ; Œv; w� � �KcFF :

1 w

�

v

Figure 1. The graph HbFF [ �KbFF .

Now consider a �nite quotient cFF

'
� G such that

� G � T xH and G � T xK,

� 1 ¤ �' ¤ w',

� ' restricted to Œ1; w� is injective,

where xH and xK are completions of H and K, respectively, with transition groups
in F. Then we have

Œv; ��' � .HcFF/' D HG

and

Œv; ��' � .�KcFF/' D .�'/KG :

Choose a path pW v' ! �' which runs entirely inside Œv; ��' and suppose its
label is s. Then the word vs labels a path 1 ! �' running inside HG . Since the

projection HcFF � H maps both 1 and � to the base point bH of H so does the
projection HG � H: 1 and �' are both mapped to the base point bH. It follows
that vs 2 H . By an analogous reasoning: s�1u labels a path �' ! w' running
inside .�'/KG . The canonical projection .�'/KG � K maps both �' andw' to
the base point bK of K. Altogether, s�1u 2 K and thus w D vs � s�1u 2 HK, as
required. �

Next we are going to prove the converse of Proposition 3.3. We start with a
de�nition which will be also used in Section 4. Let � be a (pro)�nite graph with
distinguished vertex 1; a constellation in � is a triple .„; ;‚/ where
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(1)  is a vertex of �, „ and ‚ are connected subgraphs of �,

(2) 1;  2 „ \‚,

(3) the connected„ \‚-components of 1 and  are distinct.

A constellation of anA-generated group then is a constellation of its Cayley graph.
It is clear that the Cayley graph �.G/ of an A-generated pro-�nite group G is tree-
like if and only if it does not admit a constellation.

Let G0 � G1 � G2 � � � � be an inverse system of A-generated �nite

groups with G D lim
 �

Gn with canonical projections G
'n

� Gn. Suppose that �.G/
admits a constellation .„; ;‚/. Then there exists a positive integer m such that
.„'m; 'm; ‚'m/ is a constellation in �.Gm/ (since the two „ \‚-components
of 1 and  may be separated by clopen subgraphs). Moreover, for every n � m,
denoting by 'nm the canonical morphismGn � Gm we see that .„'n; 'n; ‚'n/
is a constellation in �.Gn/ and

.„'m; 'm; ‚'m/ D .„'n'nm; 'n'nm; ‚'n'nm/:

Proposition 3.4. If �.cFF/ is not tree-like then there exist F-extendible subgroups

H and K of F for which the productHK is not pro-F-closed in F .

Proof. Take a constellation .„; ;‚/ in �.cFF/ and a �nite quotient G of cFF with
morphism 'WcFF � G such that .„'; ';‚'/ is a constellation in �.G/. Set
G0 WD G and take an inverse system G0 � G1 � G2 � � � � of A-generated
groups with cFF D lim

 �
Gn. Denote by 'm the canonical morphism cFF � Gm. For

every m, the triple .„'m; 'm; ‚'m/ is a constellation in �.Gm/.
Choose two words u; v 2 F such that u labels a path 1 ! '0 which runs

entirely in„'0 and v labels a path '0 ! 1 which runs entirely in ‚'0. Next, for
each m choose words hm; km 2 F such that hm labels a path 'm ! 1 in �.Gm/
which runs entirely in „'m and km labels a path 1! 'm in �.Gm/ which runs
entirely in ‚'m, Then, for every m,

Œhm�Gm
D Œ�1�Gm

and Œkm�Gm
D Œ�Gm

and therefore lim hm D 
�1 and lim km D  in cFF.

Notice that hm labels also a path '0 ! 1 running in„'0 and km labels a path
1! '0 running in ‚'0. Let H D L.„'0; 1/ and K D L.‚'0; 1/, respectively.
Both H and K are F-extendible. Since uhm labels a closed path at 1 in „'0 and
kmv labels a closed path at 1 in ‚'0 it follows that uhm 2 H and kmv 2 K.
Moreover,

lim
m!1

uhmkmv D u
�1v D uv 2 F:

We are left with showing that uv … HK. Suppose, by contrast, that there are
h 2 H; k 2 K such that uv D hk (equality holding in F ). Then h�1u D kv�1. In
G0 we have

Œh�1u�G0
D '0 D Œkv

�1�G0
;
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and h�1u and therefore also its reduced form red.h�1u/ labels a path 1 ! '0
in �.G0/ running entirely in „'0; likewise, kv�1 and therefore also red.kv�1/

labels a path 1 ! '0 in �.G0/ running entirely in ‚'0. However, red.h�1u/

and red.kv�1/ are identical as words and so must label the same path 1! '0 in
�.G0/. This contradicts the fact that there is no path 1 ! '0 in �.G0/ running
entirely in „'0 \‚'0. �

As a consequence we may summarize:

Theorem 3.5. The free pro-F-group cFF has tree-like Cayley graph if and only

if for any two F-extendible subgroups H and K of F the product HK is pro-F-

closed.

The last result motivates the following de�nition: a formation F is arboreous

if the Cayley graph �.cFF/ of every �nitely generated free pro-F-group is tree-
like; this is the straightforward analogue in the context of formations of a notion
introduced for varieties in [4]. Then F is arboreous if and only if for every �nitely
generated free group F , the product HK of any two F-extendible subgroups H
and K of F is closed in F with respect to the pro-F-topology.

It would be interesting if in Proposition 3.4 and therefore in the ‘if’-part of
Theorem 3.5 “F-extendible” may be replaced with “pro-F-closed” for the involved
groups H and K. If we allow formations F for which F is not residually F then
this is not true for trivial reasons. Indeed, in that case the Cayley graph �.cFF/ is
certainly not tree-like since it contains a �nite circuit. LetLF be the intersection of
all normal subgroups N of F for which F=N 2 F. Then the pro-F-closure of ¹1º
is LF and every pro-F-closed subgroupH of F must contain LF. In that case, the
core graph of H is complete, hence H is — if it is �nitely generated — of �nite
index and therefore clopen. The productHK of two such groups is necessarily also
clopen (being the union of �nitely many cosets of H ). In this case the adequate
environment to study separability properties concerning products H1 : : :Hn of
�nitely generated subgroups is the group F=LF rather than F .

Problem 1. Does there exist a non-arboreous formation (or variety) F for which

F is residually F and such that the productHK is pro-F-closed for any two �nitely

generated pro-F-closed subgroupsH and K of F ?

Any such example must be a non-Hall formation. Another open problem
occurring in this context is:

Problem 2. Does there exist a formation (or variety) which is Hall but not

arboreous?
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3.2. The Ribes–Zalesskiı̆ theorem. Now we show that for an arboreous forma-
tion F even a stronger separability condition holds: the product H1 : : :Hn of an
arbitrary number n of F-extendible subgroupsH1; : : : ; Hn of F is pro-F-closed.

We start with some preliminary statements concerning tree-like graphs.

Lemma 3.6. Let � be a connected pro�nite graph and � and „ be non-empty

disjoint subgraphs of �. Then the graph � [„ is disconnected.

Proof. The closed subsets V.�/ and V.„/ of V.�/ are disjoint and therefore
can be separated by open sets. Hence there exists a �nite quotient � 0 of � with
canonical morphism 'W� � � 0 such that �' \„' D ;. Since �' and„' have
no common vertex, every path from a vertex in�' to a vertex in„' must traverse
an edge outside�'[„'. It follows that .�[„/' D �' [„' is not connected.
Consequently,� [„ is not connected, as well. �

Theorem 3.7. Let � be a tree-like graph, n � 3 and 0; : : : ; n 2 V.�/ be such

that

Œk�2; k�1� \ Œk�1; k�\ Œk; kC1� D ; for all k 2 ¹2; : : : ; n� 1º: (3.1)

Then Œ0; 1� \ Œn�1; n� D ;.

Proof. First recall that in �, the intersection of any two connected subgraphs ƒ
and „ is connected [4, Prop. 2.2]: indeed, for any two vertices u; v in ƒ\„, the
geodesic Œu; v� is also contained in ƒ \„.

Suppose that the claim of the Theorem is not true and let n � 3 be minimal
such that a counterexample 0; : : : ; n exists. Set

� D Œ0; 1�\ Œn�1; n�; ‚ D Œn�2 \ n�1�\ Œn�1; n�;

and
ƒ D Œ0; 1� [ Œ1; 2� [ � � � [ Œn�2; n�1�:

Since 0; 1; : : : ; n is a counterexample, � ¤ ;. Since n is minimal for a
counterexample,

ƒ \ Œn�1; n� D .Œ0; 1� [ Œn�2; n�1�/ \ Œn�1; n� D � [‚:

Moreover, � \‚ D ;. In case n D 3 this is equivalent to

Œ0; 1� \ Œ1; 2� \ Œ2; 3� D ;I

for n > 3 this follows from Œ0; 1� \ Œn�2; n�1� D ; (since n is minimal for a
counterexample). By Lemma 3.6, the graph

ƒ\ Œn�1; n� D � [‚

is disconnected which contradicts the fact that the intersection of two connected
subgraphs of � is connected. �
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Theorem 3.7 immediately implies that in case (3.1) holds for 0; : : : ; n then

Œi�1; i � \ Œk ; kC1� D ;

for all 1 � i < k � n � 1. Theorem 3.7 is a generalization of Theorem 3.7 in [4]
but the proof presented here is much simpler than the one in [4].

Now let G be anA-generated pro�nite group with tree-like Cayley graph �.G/;
note that the abstract subgroup of G generated by A is F .

Lemma 3.8. Let n � 2, 0; : : : ; n 2 G and suppose that in case n � 3 for

all i 2 ¹2; : : : ; n � 1º condition (3.1) holds. Let w 2 F , u be a pre�x of w,

that is w D uv for some v (equality of words) and suppose that u 2 Œ0; 1�

and w 2 Œn�1; n�. Then v admits a factorisation v D v1 : : : vn such that, for

zi D uv1 : : : vi ( for 0 � i � n) then

zi 2 Œi�1; i �\ Œi ; iC1� for 1 � i � n � 1

and Œzi�1; zi � � Œi�1; i � for 1 � i � n.

Proof. The situation described in the lemma is depicted in Figure 2.

�
�
u

�
�

�
�
z2

�
�
z3

�

�
zn�2

�

�
zn�1

�
�
w

0
1 2 3 n�2 n�1 n

z1

Figure 2. The graph Œ0; 1� [ Œ1; 2� [ � � � [ Œn�1; n�.

The proof is by induction on n. For n D 2 we have u 2 Œ0; 1�, uv D w 2

Œ1; 2�. Since Œ0; 1�[Œ1; 2� is connected, Œu; w� � Œ0; 1�[Œ1; 2� (since�.G/
is a Hall graph). The geodesic Œu; w� has vertex u in Œ0; 1� andw in Œ1; 2� hence
must go through a vertex in Œ0; 1�\ Œ1; 2�. Let v D v1v2 be the corresponding
factorization of the label v of the path u! w then uv1 2 Œ0; 1�\ Œ1; 2�. Since
u; uv1 2 Œ0; 1� we also have Œu; uv1� � Œ0; 1�, likewise uv1; uv1v2 D w 2

Œ1; 2� whence Œuv1; w� D Œuv1; uv1v2� � Œ1; 2�, as required.
Now suppose that n � 3 and the claim be true for n � 1. By assumption,

u;w 2 Œ0; 1� [ Œ1; 2�[ � � � [ Œn�1; n�

whence
Œu; w� � Œ0; 1�[ Œ1; 2� [ � � � [ Œn�1; n�

since the latter is connected. Let

� D Œ1; 2�[ � � � [ Œn�1; n�:
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Since Œu; w� � Œ0; 1� [ �, u 2 Œ0; 1� and w 2 � the geodesic Œu; w� must go
through a vertex x in Œ0; 1�\�. By Theorem 3.7 we have Œ0; 1�\Œi ; iC1� D ;
for all i > 1. Hence x 2 Œ0; 1� \ Œ1; 2�; then u; x 2 Œ0; 1� implies
Œu; x� � Œ0; 1� (again since �.G/ is a Hall graph). Let v1 be the label of the
corresponding geodesic path u ! x which is a pre�x of v; then, for v D v1z, z
labels the geodesic path x ! w which runs entirely in � since x; w 2 � implies
Œx; w� � �. By the induction hypothesis, z admits a factorization z D v2 : : : vn
such that for z0 WD u, z1 WD x D uv1 and zi D xv2 : : : vi (for 2 � i � n) then
zj 2 Œj�1; j � \ Œj ; jC1� for 1 � j � n � 1 and Œzi�1; zi � � Œi�1; i � for
i D 1; : : : ; n. �

We have thus all prerequisites we need for a proof of the Ribes–Zalesskiı̆
theorem for the pro-F-topology of F for an arboreous formation F.

Theorem 3.9. Let F be an arboreous formation, n � 2 and H1; : : : ; Hn � F

be �nitely generated F-extendible groups. Then the product H1 : : :Hn is pro-F-

closed in F .

Remark 1. Since an arboreous formation is a fortiori Hall, being pro-F-closed
and being F-extendible are equivalent for a �nitely generated subgroup of F .
Hence the formulation above is equivalent to the more familiar one: the product
H1 : : :Hn is pro-F-closed for pro-F-closed subgroupsH1; : : : ; Hn of F .

Proof. We proceed by induction on n with induction base n D 2 being true by
Proposition 3.3. Let n > 2 and suppose that the claim be true for n0 < n. So
let H1; : : : ; Hn � F be F-extendible. By the induction hypothesis, for each i 2
¹1; : : : ; nº and w 2 F the set H1 : : :Hi�1wHiC1 : : :Hn is pro-F-closed. Indeed,
as mentioned above, being F-extendible is equivalent to being pro-F-closed which
is a purely topological property and hence preserved by homeomorphisms of
F . From the fact that the conjugation x 7! wxw�1 is a homeomorphism it
follows that each group wHk D wHkw

�1 is F-extendible and hence, by induction
hypothesis the set

H1 : : :Hi�1w.HiC1 : : :Hn/w
�1 D H1 : : :Hi�1

wHiC1 : : :
wHn

is pro-F-closed. Since right translation x 7! xw is also a homeomorphism the
claim follows.

Now take a sequence .wk/k2N with wk 2 H1 : : :Hn such that limwkDw2F .
We need to show that w 2 H1 : : :Hn. Each wk can be written as

wk D h1kh2k : : : hnk

with hik 2 Hi for all i and k and equality holds in F (the product on the right
hand side need not be reduced). We may assume (by going to a subsequence) that
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each of the sequences .hik/k2N converges in cFF. So, let �i D limk!1 hik for
i D 1; : : : ; n. In addition, we may assume that for all i < j , �i : : : �j�1 ¤ 1 since
otherwise we could replace each wk with

w0

k WD h1k : : : hi�1;khjk : : : hnk :

Then w D limwk D limw0

k
and

limw0

k 2 H1 : : :Hi�1Hj : : :Hn � H1 : : :Hn

by the induction hypothesis. Setting 0 WD 1 and i D �1 : : : �i for i D 1; : : : ; n

then we have that the elements i are pairwise distinct. We distinguish two cases

(1) there exists i 2 ¹2; : : : ; n� 1º such that

Œi�2; i�1�\ Œi�1; i � \ Œi ; iC1� ¤ ;;

(2) for all i 2 ¹2; : : : ; n� 1º,

Œi�2; i�1� \ Œi�1; i �\ Œi ; iC1� D ;:

Let H1; : : : ;Hn be the core-graphs ofH1; : : : ; Hn with base points b1; : : : ; bn,
completions H1; : : : ;Hn and transition groups T1; : : : ; Tn 2 F, respectively. In
case (1), let i 2 ¹2; : : : ; n� 1º be such that there exists

� 2 Œi�2; i�1� \ Œi�1; i �\ Œi ; iC1�:

Take an A-generated group G0 2 F such that G0 � Tl for all l and such
that all elements Œl �G0

are pairwise distinct. Choose an inverse system .Gm/ of
A-generated groups in F such that G0 � G1 � G2 � � � � and lim

 �
Gm D cFF

and denote the canonical morphism cFF � Gm by 'm. We may assume, by
considering an appropriate subsequence .wkm

/ of .wk/, that

Œhlm�Gm
D Œ�l �Gm

for all l D 1; : : : ; n and all m 2 N.
For � 2 Œi�2; i�1�\ Œi�1; i � \ Œi ; iC1� we note that

Œi�1; �� � Œi�2; i�1�\ Œi�1; i � and Œ�; i � � Œi�1; i �\ Œi ; iC1�:

Choose m 2 N and consider the image of

Œi�2; i�1�[ Œi�1; i � [ Œi ; iC1�

under 'm (that is, within the graph �.Gm/) and set gk WD k'm for k D i � 2,
i � 1; i; i C 1 and x D �'m. The words hi�1;m; him; hiC1;m label paths

gi�2 �! gi�1; gi�1 �! gi ; gi �! giC1;
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all in �.Gm/, but not necessarily inside .Œi�2; i�1� [ Œi�1; i � [ Œi ; iC1�/'m.
We choose words em, fm such that em labels a path pmW gi�1 ! x which runs
inside Œi�2; i�1�'m \ Œi�1; i �'m, and fm labels a path qmW x ! gi which runs
inside Œi�1; i �'m \ Œi ; iC1�'m. The situation is depicted in Figure 3.

� � � ��
gi�2 gi�1 gi

giC1x

hi�1;m hiC1;m

him

em fm

Figure 3. The graph .Œi�2; i�1� [ Œi�1; i � [ Œi ; iC1�/'m.

Consequently, Œhim�Gm
D Œemfm�Gm

: Doing so for every m 2 N we see that

lim
m!1

emfm D lim
m!1

him D �i :

It follows that

lim
m!1

h1m : : : hi�1;memfmhiC1;m : : : hnm D lim
m!1

wm D w:

Now observe that, for each m, the canonical projection gi�2H
Gm

i�1 � Hi�1 maps
gi�2 as well as gi�1 to the base point bi�1 and hence the path pm to a path p0

m in
Hi�1 starting at the base point bi�1. For everym, p0

m also ends at the same vertex,

say v, namely at the image of � under the canonical mapping i�2H
cFF

i�1 � Hi�1.
Let e be a word labelling a �xed path in Hi�1 from the base point bi�1 to v.
Then eme�1 labels a closed path at bi�1 in Hi�1, whence eme�1 2 Hi�1 for each
m. Likewise, there exists a word f labelling a path inside HiC1 from some �xed
vertex u to the base point biC1 and f �1fm 2 HiC1 for eachm 2 N. Consequently,
for every m, the word

w0
m D h1m : : : .hi�1;meme

�1/ef .f �1fmhiC1;m/ : : : hnm

belongs to H1 : : :Hi�1efHiC1 : : :Hn and

lim
m!1

w0
m D lim

m!1
wm D w:
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By the induction hypothesis, w 2 H1 : : :Hi�1efHiC1 : : :Hn. Hence there exist
hk 2 Hk (for k D 1; : : : ; i � 1; i C 1; : : : ; n) such that

w D h1 : : : hi�1ef hiC1 : : : hn:

Finally, let us look once more at the word emfm for some �xedm, say m D 0. We
know that e0f0 labels a path i�1'0 ! i'0 which runs entirely in Œi�1; i �'0.
Under the canonical mapping .i�1'0/H

G0

i � Hi that path is mapped to a
closed path at base point bi . Consequently, e0f0 2 Hi . Since, by construction,
ee�1
0 2 Hi�1 and f �1

0 f 2 HiC1 we arrive at

w D h1h2 : : : hi�1ee
�1
0„ ƒ‚ …

2Hi�1

e0f0„ƒ‚…
2Hi

f �1
0 f hiC1„ ƒ‚ …

2HiC1

: : : hn;

thus w 2 H1 : : :Hn, as required.
Now consider case (2). We have 0 D 1 and n D w. By Lemma 3.8, w admits

a factorization w D v1v2 : : : vn such that, for zi D v1 : : : vi (for 0 � i � n) then

zi 2 Œi�1; i � \ Œi ; iC1� for 1 � i � n � 1

and for 1 � i � n, Œzi�1; zi � � Œi�1; i �. Now choose an A-generated group
G 2 F with canonical morphism 'WcFF � G such that

� G � Ti for all i ,

� all i' are pairwise distinct,

� ' restricted to Œ1; w� is injective.

We consider the graph

.Œ0; 1� [ Œ1; 2�[ � � � [ Œn�1; n�/'

in �.G/. For each i D 1; : : : ; n� 1,

Œzi ; i �' � Œi�1; i �' \ Œi ; iC1�'I

let si be a word labelling a path zi' ! i' running inside Œzi ; i �', and set
s0 D 1 D sn. Then for each i D 1; : : : ; n the word s�1

i�1visi labels a path pi
i�1' ! i' running entirely inside Œi�1; i �'. Similarly as argued earlier, the
canonical projection .i�1'/HG

i � Hi maps i�1' as well as i' to the base
point bi . Since Œi�1; i �' � .i�1'/HG , the pathpi is thereby mapped to a closed
path at base point bi . Consequently, s�1

i�1visi 2 Hi for i D 1; : : : ; n. Altogether,

w D v1 : : : vn D v1s1 � s
�1
1 v2s2 : : : s

�1
n�2vn�1sn�1 � s

�1
n�1vn 2 H1 : : :Hn;

as required. �
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4. Constructing groups with tree-like Cayley graphs

We present a method to construct inverse sequences G0 � G1 � G2 � � � � for
which the group G D lim

 �
Gn has a tree-like Cayley graph. Suppose that G is an

A-generated pro�nite group whose Cayley graph admits a constellation .„; ;‚/.
Then there exists a �nite quotientG with canonical morphism 'WG � G such that
.„'; ';‚'/ is a constellation in �.G/. Moreover, if ' factors through another

�nite quotient H , say G
 
� H

�
� G, then .„ ;  ;‚ / is a constellation in

�.H/ and
.„ �;  �;‚ �/ D .„'; ';‚'/:

In particular, there exist words u; v 2 F such that u labels a path 1! ' running
in „', v labels a path 1 ! ' in ‚' and Œu�H D Œv�H : simply take words u; v
which label paths 1 !  in �.H/ such that the one labelled by u runs in „ 
and the one labelled by v runs in ‚ .

Now we come to a crucial de�nition. Let .X; g; T / be a constellation in
the Cayley graph �.G/ of the �nite A-generated group G; let H be another A-
generated group such that H � G. Then H dissolves the constellation .X; g; T /
if, for all pairs of words .u; v/ such that u labels a path 1 ! g running in X and
v labels a path 1 ! g running in T , the inequality Œu�H ¤ Œv�H holds. If H
dissolves the constellation .X; g; T / ofG then, in particular, there does not exist a
constellation .Y; h; Z/ ofH for which .X; g; T / D .Y'; h';Z'/ for the canonical
morphism 'WH � G. Moreover, each A-generated group K for which K � H

then also dissolves the constellation .X; g; T / ofG. This, together with the earlier
discussion implies that �.G/ is tree-like provided that for each �nite quotient G
of G and each constellation .X; g; T / of G there exists another quotient H of G
which dissolves the constellation .X; g; T /. Now, every �nite group can have at
most �nitely many constellations .X; g; T /. If, for every such .X; g; T / we have a
group H.X;g;T / which dissolves .X; g; T / then, taking the A-generated subdirect
product H of all suchH.X;g;T /, we get a group which dissolves all constellations
of G. Thus, we have already proved the ‘if’-direction of the next result.

Proposition 4.1. The Cayley graph �.G/ of an A-generated pro�nite group G is

tree-like if and only if, for each �nite quotient G of G there exists a �nite quotient

H of G which dissolves all constellations of G.

Proof. We only have to prove the ‘only if’-direction. Suppose that G does not
ful�ll the condition stated in the proposition. Then there exists a �nite quotient
G of G such that for every H with G � H � G there exists a constellation
.X; g; T / ofG which is not dissolved byH . LetG DW G0 � G1 � G2 � � � � be
an inverse system of quotients of G such that lim

 �
Gn D G. For every n there exists

a constellation .Xn; gn; Tn/ of G which is not dissolved by Gn. Since G has only
�nitely many constellations we may assume that the constellations .Xn; gn; Tn/
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all coincide with a �xed one, say .X; g; T /. By de�nition, for each n, there exist
words un and vn such that Œun�Gn

D Œvn�Gn
, un labels a path 1! g inside X and

vn labels a path 1! g inside T . We may assume (by going to subsequences) that
both sequences .Œun�G/ and .Œvn�G/ converge, in which case they have the same
limit, say  WD limŒun�G D lim Œvn�G . Now consider the covering graphs XG and
T G (both with respect to the base point 1). Both graphs are connected subgraphs of
�.G/ and both contain  and 1. Since the canonical mapping �.G/ � �.G/maps
XG to X , T G to T ,  to g and 1 to 1 it follows that .XG ; ; T G/ is a constellation
in �.G/ whence �.G/ is not tree-like. �

We continue by a technical lemma saying that in Proposition 4.1 it is not
necessary to consider all �nite quotients of G but rather a co-�nal set.

Lemma 4.2. Let G � H
'
� K be �nite, A-generated. If G dissolves all

constellations of H then G dissolves all constellations of K.

Proof. Let .X; g; T / be a constellation of K and let u; v be words labelling paths
1! g in X and T , respectively. If Œu�H ¤ Œv�H then also Œu�G ¤ Œv�G and we are
done. So, assume that Œu�H D Œv�H DW h. Let Y be the subgraph of �.H/ spanned
by the edges of the path uW 1! h and Z be the subgraph of �.H/ spanned by the
edges of the path vW 1 ! h in �.H/. Then Y' � X , Z' � T , h' D g and
therefore .Y; h; Z/ is a constellation in H . Since G dissolves .Y; h; Z/ it follows
that Œu�G ¤ Œv�G, as required. �

We need some further preparations.

Lemma 4.3. Let S be a �nite, simple group and Ffor.S/.a; b/ be the 2-generator

free object in the formation for.S/ generated by S . Then ambn D 1 only if

am D 1 D bn.

Proof. If S D Cp for some prime p this is clear since Ffor.S/.a; b/ is the
(additive group of) the Fp-vector space with basis ¹a; bº. So assume that S is
non-abelian and let x 2 hai \ hbi. Then x commutes with a as well as with b and
hence belongs to the center of Ffor.S/.a; b/ since a and b generate Ffor.S/.a; b/.
However, since Ffor.S/.a; b/ is a direct power of S this group is centerless, so
x D 1 and hai \ hbi D ¹1º. �

For a �nitely generated free group R and a �nite simple group S let R.S/ be
the intersection of all normal subgroups N of R for which R=N is a direct power
of S . Then R.S/ is a characteristic subgroup of R and R=R.S/ is the r-generator
free object in the formation for.S/ generated by S where r is the rank of R. In
case S D Cp for a prime p we have R.S/ D R.Cp/ D RpŒR; R�. If w1; : : : ; wr
form a basis of R then w1R.S/; : : : ; wrR.S/ form a collection of free generators
of R=R.S/.
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Let G be an A-generated �nite group, 'WF ! G be the canonical morphism
and R D ker.'/. We de�ne GA;S WD F=R.S/ and call this group the A-universal

S -extension of G. For S D Cp this is a classical construction by Gaschütz, see
[11, Appendix ˇ] and [9]. Note that GA;S is an A-generated extension of R=R.S/
by G and R=R.S/ is the r-generator free object in the formation generated by S
where r D jGj.jAj � 1/C 1; GA;S depends on S and A and enjoys the following
universal property: ifH is anyA-generated extension of a member of for.S/ byG,
then

GA;S �� H �� G:

So we are interested, given a �nite A-generated group G, to �nd a group
H � G which dissolves all constellations of G. Since our ultimate goal is to
give a su�cient condition for cFF to be tree-like with respect to a free generating
set A, in view of Lemma 4.2, it is no harm if we impose a few mild restrictions.
Since the cyclic and pro-cyclic case is already clear (every in�nite pro-cyclic group
has a tree-like Cayley graph [4]) we generally assume that jAj � 2. Since, among
the �nite quotients of cFF the relatively free ones form a co-�nal subset we shall
assume that

Œa�G ¤ Œb�G ¤ 1 for all a; b 2 A; a ¤ b: (4.1)

Lemma 4.4. Let G be an A-generated �nite group subject to (4.1) and let

e; f be arbitrary positive edges in the Cayley graph �.G/; then the graph

�.G/ n ¹e˙1; f ˙1º is connected.

Proof. The claim is true ifG is generated by two elements each of order 2 (that is,
G is a dihedral group). So we may assume that jAj � 3 or jAj D 2 and at least one
generator has order greater than 2. Let �ı be the undirected graph formed from the
positive edges of �.G/ by ignoring the orientation of these edges. Moreover, from
each pair of edges g ¤ g0 coming from a generator of order 2 (that is, �g D �g0 and
�g0 D �g) remove one in order to get a graph rather than a multi-graph. The graph
�ı is vertex transitive with degree at least 3. It follows that the edge connectivity
of �ı is also at least 3 [12, Lemma 3.3.3]. That is, we may remove any two edges
from �ı and retain a connected graph. It follows that �.G/ n ¹e˙1; f ˙1º is also
connected. �

We are now able to prove the main result of this section. For S D Cp for some
prime p this result is known [4].

Theorem 4.5. LetG be anA-generated �nite group subject to the assumption (4.1)
and let S be a �nite simple group. Then GA;S dissolves all constellations of G.

Proof. Let .X; g; T / be a constellation of G and u; v 2 F be words such that
Œu�G D g D Œv�G and u labels a path 1! g insideX , v labels a path 1! g inside
T . We need to show that Œu�GA;S ¤ Œv�GA;S , that is, Œuv�1�GA;S ¤ 1.



160 K. Auinger

The group GA;S is an extension of R=R.S/ by G where R is the kernel of
the canonical morphism F � G, that is, R is an absolutely free group of rank
r D jGj.jAj � 1/ C 1 and R=R.S/ is a relatively free group of rank r in the
formation for.S/ generated by S . From Œuv�1�G D 1 it follows that uv�1 2 R;
moreoverR is a �nitely generated subgroup of F with core-graphR D �.G/with
base point 1. We actually need to show that Œuv�1�R=R.S/ ¤ 1.

We know how to construct a basis of R: for every spanning tree ‡ of �.G/
there exists a basis B‡ whose elements are in bijective correspondence with the
positive edges of �.G/ n‡ . We are going to select a tree which is suitable for our
purpose. We shall argue in the same way as in [3, 5]. For a path � in �.G/ and a
positive edge e denote by �.e/ the number of signed traversals of e by � (that is,
whenever � traverses e in the forward direction this counts C1, in the backward
direction �1).

Let Z be the connected X \ T -component containing 1 and let D be the set
of all positive edges in X with initial vertex in Z and terminal vertex not in Z;
likewise, let C be the set of positive edges of X with initial vertex not in Z and
terminal vertex in Z. As in [3],D[C ¤ ; and the edges ofD[C form a border
that must be traversed by any path � W 1! g inside X one times more often in the
forward direction than in the backward direction. That is, for any such path � ,

X

e2D

�.e/�
X

e2C

�.e/ D 1: (4.2)

Analogously, let D0 be the set of positive edges in T with initial vertex in Z and
terminal vertex in T n Z, and C 0 be the set of positive edges in T with terminal
vertex in Z and initial vertex in T nZ. For every path � W 1! g inside T ,

X

e2D0

�.e/�
X

e2C 0

�.e/ D 1: (4.3)

The situation is depicted in Figure 4.

� �

X

T

1 g

D
[
C

D
0 [

C
0

Z

Figure 4. Constellation .X; g; T /, borders D [ C and D0 [ C 0.
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From the de�nition it is immediately clear that .D[C/\ .D0[C 0/ D ;. Now
let o be the order of a free generating element of Ffor.S/.a; b/, the 2-generator free
object in for.S/, and let Ou and Ov be the paths 1! g in X and T , labelled u and v,
respectively. By (4.2) and (4.3) there exist e 2 D [ C and f 2 D0 [ C 0 such that
Ou.e/ and Ov.f / both are not divisible by o, and e ¤ f since .D[C/\.D0[C 0/ D ;.
By Lemma 4.4 the graph �.G/ n ¹e˙1; f ˙1º is connected, so we my choose a
spanning tree ‡ of �.G/ which does not contain e and f . For a positive edge
h 2 �.G/ n‡ let Qh be the label of the reduced path obtained by running inside ‡
from 1 to �h, traversing h (in the forward direction) and then running back from �h

to 1 inside ‡ . The basis B‡ then consists of all Qh, h a positive edge in �.G/ n‡ .
The label of every closed reduced path at 1 in �.G/ can be expressed uniquely
as a reduced product of elements of B‡ [ B�1

‡ . For a given closed reduced path
� D e1e2 : : : ek we know how to express its label as such a product: simply replace
each positive edge ei by zei provided ei … ‡ and by 1 if ei 2 ‡ ; in case ei is a

negative edge replace it by .ee�1
i /�1 if e�1

i … ‡ and by 1 if e�1
i 2 ‡ . Doing so for

the path labelled uv�1 we observe that uv�1 D w.u/ � w.v�1/ where

� w.u/ and w.v�1/ both are products of members of B‡ [ B�1
‡ ,

� w.u/ does not contain Qf ˙1 and w.v�1/ does not contain Qe˙1.

Setting

� u.e/ WD the sum of exponents of Qe in w.u/,

� �v.f / WD the sum of exponents of Qf in w.v�1/

we have that u.e/ D Ou.e/ and v.f / D Ov.f / and therefore o − u.e/ and o − v.f /.
Consider now the morphism 'WR! Ffor.S/.a; b/ determined by the map Qe 7! a,
Qf 7! b, Qh 7! 1 for h ¤ e; f . Then

.uv�1/' D .w.u//' � .w.v�1//' D au.e/b�v.f / ¤ 1

by Lemma 4.3 since o − u.e/ and o − v.f /. Since ' factors through R=R.S/ we
get

Œuv�1�R=R.S/ D .uv
�1/' D au.e/b�v.f / ¤ 1

where  WR=R.S/! Ffor.S/.a; b/ is the morphism determined by

QeR.S/ 7�! a; Qf R.S/ 7�! b; QhR.S/ 7�! 1 .h ¤ e; f /:

It follows that Œuv�1�R=R.S/ ¤ 1 whence Œuv�1�GA;S ¤ 1. �

Corollary 4.6. Let G D lim
 �

Gi be an A-generated pro�nite group; if for each i

there exists a simple group Si with G � G
A;Si

i then �.G/ is tree-like.

For a prime p, there is the notion of pro-p-tree which is homologically de�ned
[24, 18]. From [2, Theorem 3.9], see also [4, Theorem 9.6], one gets that �.G/ is
a pro-p-tree if and only if G � G

A;Cp

i for every i .
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We are motivated to call a formation F locally extensible if for every A-
generated member G of F there exists a simple group S such that GA;S also be-
longs to F. This seems to be the adequate analogue for formations of a notion
introduced for varieties in [4]. All formations closed under taking normal sub-
groups and extensions (called NE-formations in [19]) are locally extensible, but
the converse is not true.

Corollary 4.7. Every locally extensible formation F is arboreous and therefore

Hall.

The author is not aware of an example of an arboreous formation which is
not locally extensible. The problems of whether there exist Hall varieties which
are not arboreous and arboreous varieties which are not locally extensible have
been formulated in [4, 6, 7]. The problem to classify all Hall formations has been
proposed in [8].

Problem 3. Does there exist an arboreous formation (or variety) which is not

locally extensible?

Finally, let us consider an example. For a simple non-abelian group S (and
jAj � 2) let R1 WD F.S/ and Rn D Rn�1.S/ for n > 1. Let S be the formation
consisting of all �nite groups all of whose composition factors are isomorphic
with S . Then cFS D lim

 �
F=Rn. By Corollary 4.6, the Cayley graph �.cFS/

is tree-like and S is arboreous. However, cFS is perfect. Let a 2 A; then the
closed normal subgroup of cFS generated by A n ¹aº is the whole group cFS since
otherwise it would have a non-trivial abelian quotient. It follows that the answer to
Problem 7.8 in [4] is “No,” so Problem 7.7 (in the same paper) cannot be attacked
by the approach proposed there.
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