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Abstract. In the theory of random groups, we consider presentations with any �xed number

m of generators and many random relators of length `, sending ` ! 1. If d is a density

parameter measuring the rate of exponential growth of the number of relators compared

to the length of relators, then many group-theoretic properties become generically true or

generically false at di�erent values of d . The signature theorem for this density model is

a phase transition from triviality to hyperbolicity: for d < 1=2, random groups are a.a.s.

in�nite hyperbolic, while for d > 1=2, random groups are a.a.s. order one or two. We study

random groups at the density threshold d D 1=2. Kozma had found that trivial groups are

generic for a range of growth rates at d D 1=2; we show that in�nite hyperbolic groups are

generic in a di�erent range. (We include an exposition of Kozma’s previously unpublished

argument, with slightly improved results, for completeness.)
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1. Introduction

We will study random groups on m generators, given by choosing relators of length

` through a random process. For a function numWN ! N, let G.m; `; num/ be the

probability space of group presentations with m generators and with jRj D num.`/

relators of length ` chosen independently and uniformly from the

.2m/.2m � 1/`�1 � .2m � 1/`

possible freely reduced words of length `. Then the usual density model of random

groups is the special case num.`/ D .2m � 1/d`, and the parameter 0 � d � 1 is

called the density. We will generalize in a natural way by de�ning

D WD 1

`
log2m�1.num.`//

and saying that the (generalized) density is d D lim`!1 D.
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The foundational theorem in the area of random groups is the result of Gromov

and Ollivier [6, Theorem 11] that d D 1=2 is the threshold for a phase transition

between hyperbolicity and triviality. To speak more precisely, the theorem is that

for any num with d > 1=2, a presentation chosen uniformly at random from

G.m; `; num/ will be isomorphic to 1 or Z=2Z with probability tending to 1 as

` ! 1; on the other hand, if d.num/ < 1=2, a presentation chosen in the same

manner will be an in�nite, torsion-free, word-hyperbolic group with probability

tending to 1 as ` ! 1. (From now on, we will say that a property of random

groups is asymptotically almost sure (or a.a.s.) for a certain m and num if its

probability tends to 1 as ` ! 1.)

Here, we study the sharpness of this phase transition. Letting D D 1=2 � f .`/

lets us use functions f .`/ D o.1/ to parametrize all cases with generalized density

1=2. For simplicity of notation, where m is understood to be �xed in advance, let us

write G 1
2
.f / D G.m; `; .2m � 1/`. 1

2
�f .`///. Taking f .`/ to be a constant changes

the density, but in the f .`/ ! 0 case we show here that the properties of random

groups in G 1
2
.f / will depend on the rate of vanishing.

Theorem 1. Consider the density 1=2 model G 1
2
.f / for various f .`/ D o.1/.

´

G 2 G 1
2
.f / a.a.s. in�nite hyperbolic, f .`/ � 105 �log1=3.`/=`1=3I

G 2 G 1
2
.f / a.a.s. Š 1 or Z=2Z, f .`/ � log.`/=4` � log log.`/=`:

Here and in the rest of the paper logarithms are taken base 2m � 1 and a group

isomorphic to 1 or Z=2Z is called trivial. Theorem 1 is illustrated in Figures 1

and 2.

D

f .`/

f .`/ ! 0
slowly

f .`/ ! 0
fast

log1=3 `

`1=3

1
`

log `

4`

G in�nite hyperbolic G trivial

Figure 1. We study density 1=2 by taking num.`/ D .2m � 1/`. 1
2 �f .`// relators for various

functions f .`/ D o.1/.

Figure 2 o�ers a �ner view of the transition, restricting attention to f˛ˇ .`/ WD
logˇ.`/

`˛ . Note that logˇ .`/ � ` for all ˇ. If G 2 G 1
2
.f˛ˇ / is a.a.s. trivial,

then G0 2 G 1
2
.f˛0ˇ 0/ is a.a.s. trivial as well whenever ˛0 > ˛ or ˛0 D ˛,

ˇ0 < ˇ. Similarly if G 2 G 1
2
.f˛ˇ / is a.a.s. hyperbolic, then the same is true

of G0 2 G 1
2
.f˛0ˇ 0/ whenever ˛0 < ˛ or ˛0 D ˛, ˇ0 > ˇ.
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hyperbolic trivial?

˛

ˇ

0
0

1

11=3

1=3

Figure 2. A �ner view, taking f .`/ D f˛ˇ.`/ D logˇ.`/

`˛ .

This implies in particular that setting d D 1=2 in the classical Gromov model

(which corresponds to f D 0) gives a.a.s. trivial groups.

In unpublished notes from around 2010, Gady Kozma had given an argument

for triviality at density 1=2. We give an expanded exposition here. By tracking

through Kozma’s argument as sharply as possible, we �nd triviality at f .`/ D
log.`/=4` � log log.`/=`, which corresponds to any number of relators greater

than

num.`/ D .2m � 1/`. 1
2

�f .`// D .2m � 1/
1
2

` �log.`/�`�1=4 < .2m � 1/
1
2

` �`�1=4C�

for any � > 0. (This is slightly sharper than Kozma’s conclusion, and he notes that

such a result—with a power of ` factor as we have here—would be interesting.)

On the other hand, our hyperbolicity result applies for any number of relators

at most

num.`/ D .2m � 1/`. 1
2

�105`�1=3 log1=3 `/ D .2m � 1/
1
2

` �.2m � 1/�105`2=3 log1=3.`/;

i.e., where .2m � 1/
1
2

` is divided by a factor that is intermediate between polyno-

mial and exponential. In that case we obtain

Theorem 2. A random group in G 1
2
.f / for f .`/ � 105 � log1=3.`/=`1=3 is a.a.s.

ı–hyperbolic with ı D c`5=3, for a su�ciently large constant c.

By contrast, for d < 1=2, the best known hyperbolicity constant is ı D cd `,

for a coe�cient depending on the density.

The proof for triviality given below follows Kozma in using two elementary

probabilistic ingredients: a “probabilistic pigeonhole principle” (Lemma 5) and a

“decay of in�uence estimate” (Corollary 4). These may be of independent interest,

so they are formulated in §2 in more generality than we need here. The main idea

is to �nd a single short word that is trivial in G and use it to replace the relator set

R with an equivalent relator set xR with higher e�ective density.

For hyperbolicity, we follow Ollivier [6, Chapter V] in proving a linear isoperi-

metric inequality, using a local-to-global principle of Gromov and Papasoglu to
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argue that only a limited number of Van Kampen diagrams need to be checked,

then quoting some classic results of Tutte on enumeration of planar graphs to

accomplish the necessary estimates.

The sharpest phase transition that one could hope for is to have some precise

subexponential function g.`/ and a pair of constants c1 < c2 so that num.`/ D
c1.2m � 1/

1
2

`g.`/�1 and num.`/ D c2.2m � 1/
1
2

`g.`/�1 yield the hyperbolic and

trivial cases, respectively. We hope that in future work we will be able to obtain

further re�ned estimates to “close the gap.”

After completing this project we learned of the 2014 preprint [1] which con-

siders very similar threshold sharpness questions for a di�erent model of random

groups, called the triangular model, in which all relators have length three. They

�nd a one-sided threshold for hyperbolicity and show that triviality admits a very

sharp phase transition in a sense similar to our sense above. However, hyperbolic-

ity is not known to have such a sharp threshold in either model, and furthermore

there is no guarantee that the hyperbolicity and triviality thresholds would agree,

as we conjecture that they do.

1.1. Conventions. We will write 1 for the group ¹1º and we recall that the term

trivial means isomorphic to either 1 orZ=2Z. Throughout the note, when we show

that groups are a.a.s. hyperbolic, we are proving the same strong isoperimetric

inequality as for the d < 1=2 case, so the groups in our hyperbolic range are

in�nite, and furthermore torsion-free, one-ended, with Menger curve boundary.

Since we are concerned with exponential growth with base .2m � 1/, log will

mean log2m�1.

We will use c; c0; c00 for constants whose values depend on context and K; k for

functions of `. As usual, denote f =g ! 1 by f � g. Write Œn� for ¹1; : : : ; nº.
For a word r of length ` we denote by rŒi � (1 � i � `) the i th letter of r , and

write rŒi W j � (where 1 � i < j � `) for the subword rŒi � rŒi C 1� � � � rŒj � of r

(so that in particular r D rŒ1 W `�). For words r; r 0 we write r D r 0 if r; r 0 are the

same words after free reduction, and r DG r 0 if r; r 0 represent the same element

of group G.

As mentioned above, we work with freely reduced words that need not be

cyclically reduced. For models of random groups with cyclically reduced words

we expect that the same threshold bounds hold.

Acknowledgments. We warmly acknowledge Gady Kozma for ideas and conver-

sations. We thank the referee for an extremely close reading and for very helpful

comments. This work was initiated in the Random Groups Research Cluster held

at Tufts University in Summer 2014, supported by NSF CAREER award DMS-

1255442.
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2. Some basic probabilistic facts

2.1. Distribution of letters in freely reduced words. Because the relators in

these models of random groups are chosen by the uniform distribution on freely

reduced words of a given length, it will sometimes be useful to know the condi-

tional probability of seeing a particular letter at a particular position in r , given

an earlier letter.

Let m � 2 be an integer and let m D 1=.2m � 1/.

For any positive integer n let sn be the partial sum of the alternating geometric

series

1 � m C m
2 � � � � ;

i.e., sn D
Pn�1

kD0.�m/k, and s0 D 0. Then lim
n!1

sn D 1
1Cm

.

The following lemma measures the decrease of in�uence of a letter on its

successors.

Lemma 3 (distribution of letters). Consider a random freely reduced in�nite word

w D x0x1x2 : : : in m generators. Then for n > 0,

8

ˆ̂
ˆ
ˆ̂
<

ˆ̂
ˆ̂

:̂

Pr.xn D x0/ D m�sn�1; n evenI
Pr.xn D y/ D m�sn; n even; y ¤ x0I

Pr.xn D x�1
0 / D m�sn�1; n oddI

Pr.xn D y/ D m�sn; n odd; y ¤ x�1
0 :

The proof is an easy induction. Note that as n ! 1 the probability of

each letter appearing at the nth place tends to m

1Cm
D 1=2m, recovering the

uniform distribution, as one would expect. We immediately deduce bounds on

the conditional probability of a later letter given an earlier letter.

Corollary 4 (decay of in�uence). For any letters x; y (not necessarily distinct)

and for any n � 1, Pn.x; y/ D Pr.xn D x j x0 D y/ is bounded between m�sn�1

and m�sn, i.e.,

m � m
2 C � � � C m

n�1 � m
n � Pn.x; y/

� m � m
2 C � � � C m

nC1 .n even/;

m � m
2 C � � � � m

nC1 � Pn.x; y/

� m � m
2 C � � � � m

n�1 C m
n .n odd/:

In particular,

2m � 2

.2m � 1/2
� Pr.x2 D x j x0 D y/ � 1

2m � 1
:
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2.2. A generalized “probabilistic pigeonhole principle”. Consider z red balls

and z blue balls, and so on for a total of q colors. Each of these qz balls is thrown

at random into one of n boxes, giving Œn�-valued random variables x1; : : : ; xqz .

We bound the probability that there is some box with balls of all colors.

Lemma 5 (probabilistic pigeonhole principle on q colors). Let � be any prob-

ability measure on Œn�. Fix arbitrary q; z 2 N such that z � 2n1�1=q. Then if

x1; : : : ; xqz are chosen randomly and independently under �,

Pr.there exists i1; i2; : : : ; iq with .j � 1/z < ij � jz; xi1 D xi2 D � � � D xiq /

� 1 � e�cz=n1�1=q

for any c � �1
4

ln.1 � 2�q/, or in particular c � 2�q�2.

Note that as n ! 1 a q-color coincidence is asymptotically almost sure as

long as z � n1�1=q , and in particular a 2-color coincidence occurs if z �
p

n.

We further remark that this is equivalent to another probabilistic pigeonhole

principle (that for z � n1�1=q uncolored balls in n boxes, some box contains

at least q balls a.a.s.), in the sense that each implies the other.

Proof. We start by considering the case of a 3-color coincidence (q D 3). Let

I WD ¹.i1; i2; i3/ j .j � 1/z < ij � jzºI

X WD #¹.i1; i2; i3/ 2 I j xi1 D xi2 D xi3º:
Since X � 0 we can bound Pr.X > 0/ using the classical inequality Pr.X > 0/ >

E
2ŒX�=EŒX2�. We compute expectation by �nding the probability of coincidence

for some choice of distinct i1; i2; i3 and multiplying by z3:

EŒX� D z3 Pr.xi1 D xi2 D xi3/ D z3

n
X

pD1

�3.p/:

We next write

X D
X

i1

X

i2

X

i3

ıxi1
Dxi2

Dxi3

and reindex as

X D
X

i4

X

i5

X

i6

ıxi4
Dxi5

Dxi6
;

so by symmetry we get

EŒX2� D z3 Pr.xi1 D xi2 D xi3/

C 3z3.z � 1/ Pr.xi1 D xi2 D xi3 D xi4/

C 3z3.z � 1/2 Pr.xi1 D xi2 D xi3 D xi4 D xi5/

C z3.z � 1/3 Pr.xi1 D xi2 D xi3 ; xi4 D xi5 D xi6/

with respect to any .i1; i2; i3/; .i4; i5; i6/ 2 I with the six ij distinct.
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Using 1 < r < s H) kxkr � kxks , we get

EŒX2� � z3
� n

X

pD1

�3.p/
�3=3

C 3z4
� n

X

pD1

�3.p/
�4=3

C 3z5
� n

X

pD1

�3.p/
�5=3

C z6
� n

X

pD1

�3.p/
�6=3

:

These expectation formulas easily generalize from 3 to any number q of colors:

EŒX� D zq

n
X

pD1

�q.p/I EŒX2� �
q

X

iD0

��

q

i

�

� zqCi �
� n

X

pD1

�q.p/
�qCi

q

�

:

The probability of a coincidence is at least E2ŒX�=EŒX2�. First let us consider

a simple case, where the number of balls of each color is chosen to get good

cancellation: set

z0 WD
� n

X

pD1

�q.p/
��1=q

;

so that 1 � z0 � n1�1=q , where the upper bound follows from Hölder’s inequality:

1 D
n

X

pD1

�.p/ D
n

X

pD1

�.p/ � 1 �
� n

X

pD1

�q.p/
�1=q

� n1�1=q:

Then we get Pr.X > 0 j z � z0/ > 1=2q.

The general case is z D z0 for some  � 2. Divide up each of the intervals
�

.j � 1/z; jz
�

into subintervals of length dz0e, with the last subinterval longer if

necessary, and let � be the number of subintervals (the hypothesis that z � 2n1�1=q

ensures that =4 � � � ). Let Xk count the number of q-color coincidences

which occur in the respective kth subintervals. The above calculation tells us that

Pr.Xk > 0/ > 1=2q.

By Hölder’s inequality again, we have  � z

n1�1=q
. It follows that

Pr.X > 0/ � 1 �
�

Y

kD1

.Pr.Xk D 0//

� 1 � .1 � 2�q/=4

� 1 � .1 � 2�q/
1
4

� z

n1�1=q : �

We emphasize that this result does not depend on the choice of probability distri-

bution �.
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3. The trivial range

The usual proof that a random group G is trivial at densities d > 1=2 uses the

probabilistic pigeonhole principle to show that there are pairs of relators r1; r2

which have di�erent initial letters r1Œ1� D x; r2Œ1� D y, but with the remainder of

the words equal. Consequently r1r�1
2 D xy�1 is trivial. In this way one shows

that a.a.s. all generators and their inverses are equal in G.

To show triviality at density d D 1=2 is more involved. The overall plan here

is to �nd shorter trivial words than the ones from relator set R; treating these as

an alternate relator set will push up the “e�ective density” of G, then a similar

argument as before will show that the group is trivial.

Theorem 6 (su�cient conditions for triviality). Given any f .`/ D o.1/, suppose

there exists a function k W N ! N with k.`/ � ` for all ` and such that

k � 2 f̀ �! 1 (?)

and
` � 2

.2k C 2/.2m � 1/2k
�! 1 (�)

as ` ! 1. Then a.a.s. G 2 G 1
2
.f / is 1 or Z=2Z.

Corollary 7. The functions

k.`/ D 1

2
log.`/ � log log.`/

and

f .`/ D log.`/

4`
� log log.`/

`

satisfy (?), (�). Thus a random group in G 1
2

�
log.`/

4`
� log log.`/

`

�

is a.a.s. 1 orZ=2Z.

Outline of the proof of Theorem 6

(Step 1) Using the pigeonhole principle (Lemma 5), we �nd a freely reduced word

w of length 2k such that w DG 1. The existence of such a w is guaranteed

by (?), and we will use it to reduce other relators.

(Step 2) In each relator r we set aside the �rst two letters for later use, and then

chunk the last ` � 2 letters into b blocks of size .2k C 2/.2m � 1/2k, with the

last block possibly smaller. The (�) condition says that b ! 1. We show

that w appears in one of these blocks surrounded by non-canceling letters

with probability > 1
4
.
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(Step 3) With these reductions, the probability that r reduces to length at most

`0 D ` � bk
2

is more than 1=3.

(Step 4) Finally we show that for this choice of `0, conditions (?) and (�) ensure

that d` � `0

2
! 1. From this we deduce that for any pair of generators

ai , aj , we can almost surely �nd two reduced relators that start with ai ,

aj , respectively, and match after that. Therefore ai DG aj for all pairs of

generators (including aj D a�1
i ), which establishes the triviality result.

Proof of Theorem 6.

Step 1. Suppose k � 2 f̀ ! 1. Then a.a.s. there exists a reduced word w of

length 2k such that w DG 1.

To ensure that the word w we �nd is independent of the later steps in the proof,

we divide the relator set R into to equal subsets R1 and R2, and in this step consider

only R1.

For each r 2 R the word rŒk C 1 W `� is one of the 2m.2m � 1/`�k�1 reduced

words of length ` � k. We will �nd two relators r1; r2 2 R1 such that their tails

match (i.e., r1Œk C 1 W `� D r2Œk C 1 W `�) but they di�er in the previous letter

(r1Œk� ¤ r2Œk�). We can conclude that w D r1r�1
2 reduces to a word of length 2k.

For any word w of length p, we de�ne Rw to be the subset of relators beginning

with that word:

Rw WD ¹r 2 R j rŒ1 W p� D wº:

To restrict to relators in R1 (or R2), we write R1
w D Rw \R1 (or R2

w D Rw \R2).

For letters x; y; z, Rxz and Ryz are disjoint as long as x and y are distinct

and neither one is equal to z�1. Fix such letters x; y; z. There are 2m.2m � 1/

possible two-letter reduced words and since we choose R uniformly, the law of

large numbers tells us that a.a.s.

jR1
xz j >

1

2m.2m � 1/ C 1
� jR1j D .2m � 1/`. 1

2
�f .`//

4m.2m � 1/ C 2
:

The same holds for R1
yz.

We will check that

.2m � 1/`. 1
2

�f .`//

4m.2m � 1/ C 2
�

q

2m.2m � 1/`�k�1:



994 Duchin, Jankiewicz, Kilmer, Lelièvre, Mackay, and Sánchez

Using 2m � 1 � 3, we have

4m.2m � 1/ C 2 � 4.2m � 1/2 and 2m.2m � 1/`�k�1 � 4.2m � 1/`�k ;

which gives

.2m � 1/`. 1
2

�f .`//

4m.2m � 1/ C 2
� 1

p

2m.2m � 1/`�k�1
� c.2m � 1/`. 1

2
�f .`//� `�k

2

D c.2m � 1/
k
2

� f̀ .`/;

where c D 1=8.2m � 1/2 > 0. The right-hand side goes to in�nity precisely

when (?) holds.

The purpose of introducing the letter z is to ensure that the tails of words in

R1
xz and R1

yz have the same distribution. Hence we can apply Lemma 5 (with

q D 2) to conclude that a.a.s. there exist r1 2 R1
xz and r2 2 R1

yz such that

r1Œk C 1 W `� D r2Œk C 1 W `�. Then setting w D .r1Œ1 W k�/�1 � r2Œ1 W k�, we

have w DG 1.

Step 2. Let w be as above and r 2 R2. Set s D .2kC2/.2m�1/2k and b D b `�2
s

c.

From the third letter on, divide r into b blocks of length s (with possibly one

shorter block at the end). For each such block B , let �.B/ be the last letter of

r preceding B . Then the conditional probability that w appears in B given any

particular value of �.B/ is uniformly bounded away from 0 as follows:

Pr .w appears in B j �.B/ D g/ � 1 � e�2=3; for all g:

Observe that r 2 R2 is independent of w, which was found by considering

only R1.

Write w D w1 � � � w2k, let B be a block of size .2k C 2/.2m � 1/2k , and divide

it into .2m�1/2k subblocks B1; : : : ; B.2m�1/2k of size 2k C 2. Let Ei be the event

that the word w appears as Bi Œ2 W 2k C 1�. See Figure 3.

BiC1Bi�1 Bi

w1 w2 � � � w2k

Figure 3. A part of block B .
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Let us compute the probability of Ei given that none of E1; � � � Ei�1 happens

and given any last letter g0 before Bi . For 1 � i � .2m � 1/2k, we have

Pi D Pr.Ei j :E1; : : : ; :Ei�1; �.Bi/ D g0/

.1/D Pr.Bi Œ2� D w1 j :E1; : : : ; :Ei�1; �.Bi/ D g0/ �
� 1

2m � 1

�2k�1

.2/

� 2m � 2

.2m � 1/2
�
� 1

2m � 1

�2k�1

� 2

3
.2m � 1/�2k :

Equality (1) follows from the fact that only Bi Œ2� could be a�ected by previous

letters in r . Inequality (2) is an application of the decay of in�uence estimate

(Corollary 4), which guarantees that Pr.x2 D x j x0 D y/ � .2m � 2/=.2m � 1/2

for any x; y. We deduce that

.2m�1/2k
Y

iD1

Pr.:Ei j :E0; : : : ; :Ei�1; �.B/ D g0/

D
.2m�1/2k

Y

iD1

.1 � Pi / �
�

1 � 2

3
.2m � 1/�2k

�.2m � 1/2k

� e�2=3;

and so �nally for any g0,

Pr.w appears in B j �.B/ D g0/ � 1 � e� 2
3 >

1

4
:

Step 2.5. If there exists a subword w0 of B of the form

w0 D sdwd �1t

for any word d and letters s; t with s ¤ t�1, then we say that B has a w-reduction.

(In this case w DG 1 H) w0 DG st . To perform a w-reduction we replace w0

by st in r and note that the word remains freely reduced.) For k su�ciently large

we bound

Pr.B has a w-reduction j �.B/ D g0/ >
1

4
:

We want to bound from above the conditional probability that w appears in

B in the wrong form for a w-reduction. This only happens if B starts or ends

with dwd �1 for some word d D d1 � � � dn. Let us compute the probability

that B starts this way. First we bound the probability that w appears in the

right place, then conditioning on that we bound the other needed coincidences.

We have Pr.BŒn C 1� D w1/ � 1
2m�1

, and

Pr.BŒn C 1 W n C 2k� D w j BŒn C 1� D w1/ D 1

.2m � 1/2k�1
:



996 Duchin, Jankiewicz, Kilmer, Lelièvre, Mackay, and Sánchez

Next we consider whether BŒnC 1�j � D BŒnC 2k C j ��1 for each j D 1; : : : ; n.

For j D 1, we have

Pr.BŒn� D BŒn C 2k C 1��1/ D 1

2m � 1
or

2m � 2

.2m � 1/2
;

depending on whether w1 D w2k or not, but in either case this is � 1=.2m � 1/.

For j D 2; : : : ; n�1, the conditional probability is exactly 1=.2m�1/. For j D n,

we have the same two possibilities as before, depending on whether �.B/ D d2.

So all together we �nd

Pr.B starts with dwd �1 j �.B/ D g0/ �
� 1

2m � 1

�2kCn

:

The same inequality holds for �nding dwd �1 at the end of B , so

Pr.w appears in B with no w-reduction/ � 2

1
X

nD0

� 1

2m � 1

�2kCn

;

and the right-hand side goes to 0 as long as k ! 1. So �nally for su�ciently

large ` (and therefore k),

Pr.B has a w-reduction j �.B/ D g0/ >
1

4
:

Step 3. For each relator r 2 R2 denote by Nr the word obtained by performing

the �rst appearing w-reduction in each block (as described in the previous step).

By comparing to an appropriate Bernoulli trial, for k su�ciently large we show

that

Pr.#¹reductions of w in Bº > b
4

j rŒ1 W 2� D g1g2/ >
1

3
;

and conclude that

Pr.len. Nr/ < ` � kb
2

j rŒ1 W 2� D g1g2/ >
1

3
:

Let Xi , for i D 1; : : : ; b, be i.i.d. random variables such that Xi D 1 with

probability 1=4 and Xi D 0 with probability 3=4. Then by the central limit

theorem,

lim
b!1

Pr
� X

Xi > b
4

�

D 1

2
:

Let zXi be the indicator random variable for a w-reduction in the i th block B.i/

of r . The variables zX1; zX2; : : : are not independent, but each zXi depends only on

�.B.i//. By Step 2.5 we know that for any g0,

Pr. zXi D 1 j �.B.i// D g0/ >
1

4
D Pr.Xi D 1/;
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so

Pr
� b

X

iD1

zXi >
b

4

ˇ
ˇ
ˇ rŒ1 W 2� D g1g2

�

� Pr
� b

X

iD1

Xi >
b

4

�

�! 1

2
:

Thus for su�ciently large `,

Pr
� b

X

iD1

zXi >
b

4

ˇ
ˇ
ˇ rŒ1 W 2� D g1g2

�

>
1

3
;

and since each reduction shortens the word by at least 2k letters we have

Pr
�

len. Nr/ < ` � bk

2

ˇ
ˇ
ˇ rŒ1 W 2� D g1g2

�

>
1

3
:

Step 4. Let xR2 D ¹Nr j r 2 R2º be the set of reduced words as above. For each

pair of distinct elements x; y chosen from the generators and their inverses, a.a.s.

there exists a pair Nr1; Nr2 2 xR2 such that Nr1Œ1� D x, Nr2Œ1� D y, and

Nr1Œ2 W len. Nr1/� D Nr2Œ2 W len. Nr2/�:

Consequently, x DG y. Triviality follows.

First, (�) says that b ! 1, so we have b � 2 for ` su�ciently large, which

gives
bk

4
� f̀ � k

2
� f̀;

and the right-hand side goes to in�nity by (?).

Next, let x; y; z be chosen among the generators and their inverses such that

z�1 ¤ x; y and x ¤ y. Recall that R2
w denotes relators in R2 beginning with

subword w. We examine relators r 2 R2
xz [ R2

yz such that len. Nr/ � `0 D ` � bk
4

.

Note that jR2
xz j is close to jRj

4m.2m�1/
a.a.s., and we expect 1=3 of these to have

enough reductions so their length is no more than `0. So we get

#¹r 2 R2
xz j len. Nr/ � `0º >

.2m � 1/`. 1
2

�f /

3.4m/.2m � 1/ C 1
;

and the same holds for R2
yz. To apply Lemma 5 to get matching tails, we must

compare the number of shortened words to the square root of the number of

possible tails. (The two colors are initial 2-letter words and the boxes are �nal

.`0 � 2/-letter words; both R2
xz and R2

yz have the same probability distribution

from the third letter onwards so the lemma applies.) In order to see that

.2m � 1/`. 1
2

�f / �
q

.2m � 1/`0�2;
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note that

.2m � 1/`. 1
2

�f /

p

.2m � 1/`0�2
� .2m � 1/

bk
4

� f̀ �! 1:

We may conclude that a.a.s. there exists a pair of words r1 2 R2
xz and r2 2 R2

yz

such that

Nr1Œ3 W len. Nr1/� D Nr2Œ3 W len. Nr2/�;

and since Nr1 DG 1 DG Nr2, we get xz DG yz, so �nally x DG y. This means that

a.a.s. all generators and their inverses are equal in G. �

Proof of Corollary 7. For (?) we compute k � 2 f̀ D log log `, which goes to

in�nity. Condition (�) is equivalent to b ! 1, and we calculate

log b D log
� ` � 2

.2k C 2/.2m � 1/2k

�

D log.` � 2/ � log.2k C 2/ � 2k

� log ` � log log ` � log ` C 2 log log ` � C

D log log ` � C

for a suitable constant C . �

4. The hyperbolic range

To prove hyperbolicity, we establish an isoperimetric inequality on reduced van

Kampen diagrams (RVKDs) for a random group, as in Ollivier [6, Chapter 5].

The main di�erence to our argument is that, rather than aiming to show a linear

isoperimetric inequality directly, we show that the random group satis�es a qua-

dratic isoperimetric inequality with a small constant. This in turn implies that

the group is hyperbolic by a well-known result of Gromov (see Papasoglu [5] and

Bowditch [2]).

Following Ollivier, we write D for a (reduced) van Kampen diagram; jDj for

its number of faces, and j@Dj for the length of its boundary. (Note j@Dj � #

boundary edges because of possible “�laments.”) A path of contiguous edges so

that all interior vertices have valence two is called a contour.

The key fact which allows us to check the isoperimetric inequality only on

diagrams of certain sizes is the following theorem of Ollivier, which is a variation

on Papasoglu’s result in [5].
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Lemma 8 (local-global principle [7, Proposition 9]). For �xed ` and K � 1010,

if
K2

4
� jDj � 480K2

„ ƒ‚ …

i

H) j@Dj2 � 2 � 104`2jDj
„ ƒ‚ …

j

;

then

jDj � K2 H) j@Dj � `

104K
jDj:

That is, if RVKDs in a certain size range satisfy a good enough quadratic

isoperimetric inequality, then all RVKDs satisfy a linear isoperimetric inequality.

Later, we will let K D K.`/ to vary the window of diagrams considered.

We will use Ollivier’s de�nitions concerning abstract diagrams, which are a

device for precise bookkeeping in van Kampen diagrams to control dependencies

in probabilities. Roughly speaking, an abstract diagram is a van Kampen diagram

where we forget the labelling of edges by generators and the labelling of faces by

relators. We do keep track of the orientation and starting point of the boundary

of each face, and we also label faces so we know which faces bear the same

relator. (Since our relators are reduced but need not be cyclically reduced, each

face in an abstract diagram is allowed to have a single “inward spur”, see [6, p. 83,

footnote 4].)

To show that a group is hyperbolic, it su�ces to have one RVKD for each trivial

word that satis�es the linear isoperimetric inequality. Since we get this inequality

for all RVKDs, following Ollivier’s argument on spherical diagrams will give

that our group is in addition in�nite and torsion-free. We establish that a.a.s.

all diagrams satisfy the hypothesis by showing that the probability of a diagram

existing that has i but not j tends to 0. To calculate this, we must �rst get a

bound on how many abstract diagrams have i, and the probability that such an

abstract diagram is fu�llable from our relator set.

4.1. Probability of ful�llability. Still following Ollivier, we estimate the prob-

ability that some relators exist to ful�ll D.

Lemma 9 ([6, Lemma 59]). Let R be a random set of relators with jRj D num.`/

at length `. Let D be a reduced abstract diagram. Then we have

Pr.D is ful�llable/ � .2m � 1/
1
2

�
j@Dj
jDj

� ` C 2 log num
�

D .2m � 1/
1
2

�
j@Dj
jDj

� `.1 � 2D/
�

In our case, our choice of num.`/ givesD D 1
2

�f .`/. If a diagram satis�es i
and not j, we get

j@Dj
jDj <

p
2�102`

p

jDj
K2=4

<
5�103`K

K2=4
D 2�104`

K
:
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All together, we get

Pr.D is ful�llable/ � .2m � 1/
104 `

K
� `�f .`/

:

4.2. Counting abstract diagrams. There is a forgetful map from abstract dia-

grams � to embedded planar graphs � 0 that strips away the data (i.e., subdivision

of contours into edges, face labelings, and start points and orientations for reading

around each face). Figure 4 shows an example. To see that the planar embedding

matters, consider the two di�erent ways of embedding a �gure-eight—clearly dif-

ferent as van Kampen diagrams. ( versus ) Adding data to a graph to

recover an abstract diagram will be called �lling in.

In order to �nd an upper bound on the number of van Kampen diagrams up

to a certain size, we will count possible abstract diagrams by enumerating planar

graphs and ways of �lling in.

� � 0

1

2

1

Figure 4. Abstract diagram and corresponding embedded planar graph.

Proposition 10 (diagram count). Let NF .`/ be the number of abstract diagrams

with at most F faces, each of boundary length `. Then log NF .`/ is asymptotically

bounded above by 6F log ` C 2F log F .

Proof. Consider abstract diagrams with no more than F faces. Since there are `

edges on the boundary of each face, two orientations, and at most F faces, there

are no more than .2`/F choices of oriented start points. Faces can have at most F

distinct labels, so there are at most F F possible labelings.

In order to estimate the number of ways we can subdivide the contours into

edges, we �rst count edges of � 0. If � 0 has no inward spurs, then every vertex has

valence at least three. Since the Euler characteristic is V � E C F D 1, we have

2E � 3V , which simpli�es to E � 3F � 3 � 3F . Each face of � 0 can have at

most one inward spur, which increases the number of edges by � 2 for each face,

so the total number of edges in � 0 satis�es E � 5F .
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The number of ways to put ` edges around each face can be overcounted by

the number of ways to subdivide each contour into exactly ` edges, which is `E

and so is bounded above by `5F .

Tutte shows in [8, p. 254] that the number of embedded planar graphs with

exactly n edges is 2.2n/Š3n

nŠ.nC2/Š
. Using E � 5F , and .n=e/n � nŠ � nn (with lower

bound from Stirling’s formula), we get

# (� 0 with � 5F edges) �
5F
X

nD1

2.2n/Š 3n

nŠ .n C 2/Š
� 5F

2.10F /Š 35F

.5F /Š .5F C 2/Š

� .10F /Š35F

.5F /Š.5F /Š
� .10F /10F 35F

.5F=e/10F

D .2e/10F 35F � 325F :

Combining the above information, we get

NF .`/ � .2`/F F F `5F 325F ;

and so

log NF � F log.2`/ C F log F C 5F log ` C 25F log 3:

Gathering terms of highest order, we have an upper bound by 6F log ` C
2F log F , as claimed. �

Corollary 11. Let N I .`/ be the number of reduced van Kampen diagrams with

property i at relator length `. Then log N I .`/ is asymptotically bounded above

by 3000K2 log.K`/.

Proof. Considering all diagrams with jDj � 480K2 will be an overcount, so we

use F D 480K2 in the above estimate, i.e., N I .`/ � N480K2.`/. �

4.3. Hyperbolicity threshold

Theorem 12 (su�cient condition for hyperbolicity). Given any f .`/ D o.1/,

suppose there exists a function K W N ! N such that

3000K2 log.K`/ C 104 `
K

� `�f .`/ �! �1: (�)

Then G 2 G 1
2
.f / is a.a.s. (in�nite torsion-free) hyperbolic.

Remark 13. In view of Corollary 11, one intuitive way of choosing a K; f pair

is to take K2 log ` and f̀ .`/ to be of the same order. It turns out that we can do

slightly better than that by instead choosing to equalize the orders of `
K

and f̀ .`/,

which gives the pair below.
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Corollary 14. For any constants c; c0 with 0 < 4000c02 C 104

c0 < c, the functions

f .`/ D c
log1=3.`/

`1=3
and K.`/ D c0 `1=3

log1=3.`/

satisfy (�).

In particular, for c > 105, a random group in G 1
2

�

c
log1=3.`/

`1=3

�

is a.a.s. (in�nite

torsion-free) hyperbolic.

Proof of Theorem. Observe that

P WD Pr
�

there exists a van Kampen diagram D
that satis�es i but not j

�

�
X

abstract diagrams D
with i but not j

Pr.D is ful�llable/

� N I .`/ � .2m � 1/104 `
K

� �̀f .`/;

where N I .`/ is as in Corollary 11 and .2m � 1/104 `
K � �̀f .`/ is the ful�llability

bound from Lemma 9. (Note that the last inequality vastly overcounts by replacing

Œ i and not j� with simply i.)

We will show that the local-global principle (Lemma 8) holds a.a.s. for all

diagrams, by showing that for a K; f pair as in the hypothesis, the above quantities

go to zero. In particular, we will show that log P ! �1.

We have log P � log N I C 104 `
K

� `�f .`/: By applying Corollary 11, we have

this asymptotically bounded above by

3000K2 log.K`/ C 104 `
K

� `�f .`/:

Requiring that this goes to �1 is exactly (�). �

Proof of Corollary. We calculate each of the four terms of (�) using

K D c0`1=3 log�1=3 ` and f D c`�1=3 log1=3 `:

We have 8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

3000K2 log.K`/ � 4000c02`2=3 log1=3 `;

104 `

K
D 104

c0
`2=3 log1=3 `;

f̀ D c`2=3 log1=3 `:

Provided 4000c02 C 104

c0 < c, the expression goes to �1 and (�) is veri�ed.

For example, we can choose c0 D 1 and c D 105. �

This completes the proof of Theorem 1.
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4.4. Hyperbolicity constant. In this section we use the constants in the isoperi-

metric inequality to estimate the hyperbolicity constant for the density one-half

random groups in our hyperbolic range, namely G 1
2
.105 log1=3.`/=`1=3/.

We will use a variation on a result in Bridson–Hae�iger [3, III.H.2.9], which

di�ers in two main ways. First, they consider a notion of area for general geo-

desic metric spaces; however, we are only concerned with simply connected 2-

complexes X such as the Cayley complex of a group, so for us the area of an edge

loop  in X is the minimal number of faces in a diagram which �lls  . Second,

the statement in Bridson–Hae�iger requires a linear isoperimetric inequality for

all edge loops, while ours only requires the inequality for loops of su�ciently large

area. In both cases, their proof works for our statement.

Theorem 15 (e�ective hyperbolicity constant). Suppose X is a 2–complex that

is geometrically �nite, i.e., there is some N such that every face has at most N

edges. Suppose there is � > 1=N so that X has a linear isoperimetric inequality

for large-area loops: if an edge loop  in X has area � 18�2N 2, then  can be

�lled with at most �j j cells. Then the one-skeleton of X has ı–thin triangles for

ı D 120�2N 3.

Proof. We closely follow the proof in [3, p. 419] from III.H Theorem 2.9

(replacing K by � to avoid notation clash). If there is a triangle which is not

6k D 18�N 2-thin, one builds a hexagon H (or quadrilateral) whose minimal-area

�lling has area � �.˛ � 2k/ � �.6k/ D 18�2N 2. So this hexagon satis�es our

(large-area-only) linear isoperimetric hypothesis, and thus has area jHj � �j@Hj.
The remainder of the proof shows that the hexagon is ı–thin provided

ı � 3k

3N
> 12k� () ı > 3k C 36kN� D 9�N 2 C 108�2N 3:

Since 9�N 2 C 108�2N 3 � 117�2N 3, it su�ces to take ı D 120�2N 3. �

As a corollary, we obtain Theorem 2: a random group in our hyperbolic range,

namely in G 1
2
.f / for f .`/ � 105 � log1=3.`/=`1=3, is a.a.s. ı–hyperbolic with

ı D c`5=3, for a suf�ciently large constant c.

By contrast, as noted above, the best known hyperbolicity constant for d < 1=2

is proportional to `.

Proof of Theorem 2. The output of the local-to-global principle was the linear

isoperimetric inequality j@Dj � `
104K

jDj and to get the needed case we used

K.`/ D `1=3

log2=3.`/
. This gives jDj � c00`�2=3 log�2=3.`/ � j@Dj � c00`�2=3j@Dj, so

we take � D c00`�2=3 and N D `. This linear isoperimetric inequality holds for all

diagrams D of size jDj � K2; observe that 18�2N 2 D 18.c00`�2=3/2`2 � K2 for

large K. Therefore, Theorem 15 gives that all triangles are ı–thin for a value of ı

proportional to `5=3. �
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