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Tarski numbers of group actions
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Abstract. The Tarski number of a group actionG Õ X is the minimal number of pieces in

a paradoxical decomposition of it. In this paper we solve the problem of describing the set

of Tarski numbers of group actions. Namely, for any k � 4we construct a faithful transitive

action of a free group with Tarski number k. We also construct a group actionG Õ X with

Tarski number 6 such that the Tarski numbers of restrictions of this action to �nite index

subgroups of G are arbitrarily large.
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1. Introduction

LetG Õ X be a group action. We will always assume that groups are acting from

the right.

De�nition 1.1. The group action G Õ X admits a paradoxical decomposition if

there exist positive integers m and n, disjoint subsets P1; : : : ; Pm; Q1; : : : ; Qn of

X and subsets S1 D ¹g1; : : : ; gmº, S2 D ¹h1; : : : ; hnº of G such that

X D

m[

iD1

Pigi D

n[

j D1

Qjhj : (1.1)

The sets S1; S2 are called the translating sets of the paradoxical decomposition.

It is well known [9] that G Õ X admits a paradoxical decomposition if and

only if it is non-amenable. The minimal possible value of mC n in a paradoxical

decomposition of G Õ X is called the Tarski number of the action and denoted

by T.G Õ X/. If G acts on itself by right multiplication, the Tarski number of

the action is called the Tarski number of G and denoted by T.G/.
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Clearly, m; n � 2 in any paradoxical decomposition. Thus, the Tarski number

of any group action cannot be smaller than 4. By a result of Jónsson (see, for

example, [8, Theorem 5.8.38]) the Tarski number of a group is 4 if and only if it

contains a non-abelian free subgroup.

The problem of describing the set of Tarski numbers of groups was posed

in [2]. Recently, together with M. Ershov and M. Sapir [3], we constructed the

�rst examples of groups with Tarski numbers 5 and 6. Note, that no integer � 7 is

known to be the Tarski number of a group.

A similar situation existed for the Tarski numbers of group actions. A result

of Dekker characterizes all group actions with Tarski number 4.

Theorem 1.2 ([9, Theorems 4.5 and 4.8]). Let G Õ X be a group action. Then,

the Tarski number of the action is 4 if and only if G contains a non-abelian free

subgroup F such that the stabilizers of points from X in F are cyclic.

Groups with Tarski numbers 5 and 6 clearly admit actions with Tarski numbers

5 and 6 respectively. No actions with Tarski number > 6 were known.

In this paper we completely solve the problem of describing Tarski numbers

of group actions.

Theorem 1. Every integer k � 4 is the Tarski number of a faithful transitive action

of a �nitely generated free group.

From Theorem 1.2, it follows that if F is a non-abelian free group and the

action F Õ X has cyclic point stabilizers then T.F Õ X/ D T.F /. Part (2) of

the following theorem generalizes this result. Note that this theorem, is the group

action analogue of parts (a) and (c) of [3, Theorem 1]. Parts (b) and (d) can be

extended to group actions as well.

Theorem 1.3. Let G Õ X be a group action.

(1) LetH � G be a �nite index subgroup andH Õ X the action of G restricted

to H . Then,

T.H Õ X/ � 2 � ŒG W H�.T.G Õ X/ � 2/:

(2) If G Õ X has amenable point stabilizers then T.G Õ X/ D T.G/.

In [3] we observed that there exists t such that the property of having Tarski

number t is not invariant under quasi isometry. Indeed, a construction from [4]

yields a non-amenable group G with �nite index subgroups with arbitrarily large

Tarski numbers. The only estimate of the value of t bounds it from above by 10108
.

Note that the case t D 4 is the famous open problem by Benson Farb. So far we

are not able to lower t , but for group actions we prove the following.



Tarski numbers of group actions 935

Theorem 2. Let F be a free group of rank 3. There exists a faithful transitive

action F Õ X such that T.F Õ X/ D 6 and restrictions of the action to �nite

index subgroups of F have arbitrarily large Tarski numbers.

Note that by Theorem 1.2, the number 6 cannot be replaced by the number 4

in Theorem 2. We do not know if it can be replaced by 5.

Organization. Section 2 contains background information about Tarski numbers

of group actions and the proof of Theorem 1.3. Section 3 contains preliminary

information about subgroups of free groups and their Stallings cores. Section 4

contains the proof of Theorem 1 and Section 5 contains the proof of Theorem 2.

Acknowledgments. The author would like to thank Mikhail Ershov and Mark

Sapir for useful discussions and comments on the text. Most of the research was

done during the author’s stay at Vanderbilt University and at the University of Vir-

ginia. She is grateful for the accommodations and hospitality. The author would

also like to thank the anonymous referee for helpful comments and suggestions.

2. Tarski numbers of group actions

Lemma 2.1. [9, Proposition 1.10] Let G Õ X be a free action. Then, if G has

a paradoxical decomposition with translating sets S1; S2, then G Õ X has a

paradoxical decomposition with the same translating sets.

Corollary 2.2. If the free group hx; yi acts freely on X , then the action has a

paradoxical decomposition with translating sets ¹1; xº and ¹1; yº.

Proof. The free group hx; yi has a paradoxical decomposition with these trans-

lating sets [9, Theorem 1.2]. �

Lemma 2.3. Let G Õ X be a group action.

(1) If H � G is a subgroup of G and H Õ X is the action of G restricted to H

then T.G Õ X/ � T.H Õ X/.

(2) Let G Õ Y be another G-action and f WX ! Y be a G-equivariant map.

If S1; S2 are translating sets of a paradoxical decomposition of G Õ Y then

they are also translating sets of a paradoxical decomposition of G Õ X .

Proof. (1) Every paradoxical decomposition with translating elements fromH is

in particular a paradoxical decomposition with translating elements from G.

(2) Let P1; : : : ; Pm; Q1; : : : ; Qn � Y be a paradoxical decomposition of

G Õ Y with translating sets S1 D ¹g1; : : : ; gmº and S2 D ¹h1; : : : ; hnº. Then

the inverse images f �1.P1/; : : : ; f
�1.Pm/; f

�1.Q1/; : : : ; f
�1.Qn/ form a para-

doxical decomposition of G Õ X with the same translating sets. �
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Lemma 2.4. Let H G G be a normal subgroup. Then if G Õ G=H is non-

amenable so is the group G=H .

Proof. Every translating element from G can be replaced by its image in G=H .

�

If G Õ X is a group action and x 2 X , we let Stab G.x/ D ¹g 2 G W xg D xº

be the stabilizer of x in G. All quotient sets we encounter below, are sets of right

cosets.

Remark 2.5. Let G Õ X be a transitive action and let x 2 X . Then G Õ X has

a paradoxical decomposition with translating sets S1; S2 if and only if so does the

action G Õ G=Stab G.x/.

Remark 2.6. Let G Õ X be a group action. Let ¹X˛º˛2I be a partition of X in

which every set is closed under the action of G. Then G Õ X has a paradoxical

decomposition with translating sets S1; S2 if and only if for every ˛, the action

G Õ X˛ has a paradoxical decomposition with translating sets S1; S2.

Combining Remark 2.6 (for the partition of X into G-orbits) and Remark 2.5

we get the following.

Corollary 2.7. Let G Õ X be a group action. It has a paradoxical decom-

position with translating sets S1; S2 if and only if for every x 2 X , the action

G Õ G=Stab G.x/ has a paradoxical decomposition with these sets as translating

sets.

The following are the analogues for group actions of results of [3], proved orig-

inally for groups. Remark 2.8 is the equivalent of [3, Remark 2.2]. Theorem 2.9

follows from [3, Lemma 2.5] and [3, Theorem 2.6]. Theorem 2.10 is a reformula-

tion of [3, Lemma 5.3(c)].

Remark 2.8. If G Õ X has a paradoxical decomposition with translating sets

S1; S2, then G Õ X also has a paradoxical decomposition with translating sets

S1g1; S2g2 for any given g1; g2 2 G. In particular, we can always assume that

1 2 S1; S2.

Theorem 2.9. Let G Õ X be a group action. Let S1; S2 be �nite subsets of G.

Then, the following assertions are equivalent.

(1) G Õ X has a paradoxical decomposition with translating sets S1; S2.

(2) For any pair of �nite subsets A1; A2 � X , jA1S
�1
1 [ A2S

�1
2 j � jA1j C jA2j.

Theorem 2.10. Let G Õ X be a group action and S D ¹a; b; cº � G. Assume

that for any �nite A � X we have jAS�1 [ Aj � 2jAj. Then T.G Õ X/ � 6.
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We �nish this section with a proof of Theorem 1.3 from the introduction.

The proof is an adaptation of the proof of [3, Theorem 1(a),(c)] for the group

action case. For the proof of Theorem 1.3(1) we will need the following lemma.

Lemma 2.11. Let G Õ X be a group action which has a paradoxical decompo-

sition with translating sets S1 and S2. Let H � G be a �nite index subgroup and

H Õ X be the action of G restricted to H . Let T be a right transversal of H

in G, that is, a subset of G which contains precisely one element from each right

coset of H . For i D 1; 2, let Ri D TSiT
�1 \H . Then, the action H Õ X has a

paradoxical decomposition with translating sets R1 and R2.

Proof. Let x 2 X , let KH D Stab H .x/ and let KG D Stab G.x/. By Corol-

lary 2.7, the action G Õ G=KG has a paradoxical decomposition with translating

sets S1; S2. Since KH � KG , the same is true for the action G Õ G=KH , by

Lemma 2.3(2).

To prove the lemma, by Corollary 2.7, it su�ces to prove thatH Õ H=KH has

a paradoxical decomposition with translating sets R1; R2. Let B1; B2 � H=KH

be �nite subsets. By Theorem 2.9, it su�ces to prove that

jB1R
�1
1 [ B2R

�1
2 j � jB1j C jB2j:

Thus, the following calculation completes the proof of the lemma. The steps of

the calculation are explained below it.

jB1R
�1
1 [ B2R

�1
2 j D jB1.TS

�1
1 T �1 \H/ [ B2.TS

�1
2 T �1 \H/j

.�/
D j..B1TS

�1
1 T �1/ \H=KH / [ ..B2TS

�1
2 T �1/ \H=KH /j

D j..B1TS
�1
1 [ B2TS

�1
2 /T �1/ \H=KH j

.��/
�

jB1TS
�1
1 [ B2TS

�1
2 j

jT j

.���/
�

jB1T j C jB2T j

jT j

.����/
D

jB1jjT j C jB2jjT j

jT j

D jB1j C jB2j:

(*) holds since B1; B2 � H=KH . Indeed, for any A � H=KH and any S � G

we have A.S \H/ D .AS/\H=KH .

(**) holds since for any A � G=KH we have j.AT �1/ \ H=KH j � jAj
jT j

. In-

deed, since T is a right transversal of H in G, for any coset .KH /g 2 G=KH

there exists a unique t 2 T such that .KH /gt
�1 2 H=KH . Thus, we can de�ne a
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map f WA ! .AT �1/ \ H=KH which sends each a 2 A to the unique element

at�1 2 H=KH for some t 2 T . Since the preimage of any element in the range is

a set of jT j elements at most, we get the result.

(***) holds by Theorem 2.9 since S1, S2 are translating sets of a paradoxical

decomposition of G Õ G=KH .

(****) holds since T is a transversal of H in G and B1; B2 � H=KH . �

For the proof of Theorem 1.3(2) we will need the following lemma.

Lemma 2.12. Let G be a group. Let U1; U2 � G be �nite subsets such that for

every pair of �nite subsets A1; A2 � G we have jA1U1 [ A2U2j � jA1j C jA2j.

Let H � G be an amenable subgroup. Then for every pair of �nite subsets

A0
1; A

0
2 � G=H we have

jA0
1U1 [ A0

2U2j � jA0
1j C jA0

2j:

Proof. Let �WG ! G=H be the natural projection. Let T be a right transversal of

H in G. Thus, there exist unique maps �H WG ! H and �T WG ! T such that

g D �H .g/�T .g/ for all g 2 G. Let  WG=H ! T be the bijection taking a coset

ofH to its representative in T . Note that � .Hg/ D Hg and  �.g/ D �T .g/ for

all g 2 G.

Let U D U1 [ U2 and �x � > 0. Let A0
1; A

0
2 � G=H be �nite sets, let

A00
i D  .A0

i/ and A00 D A00
1 [ A00

2. Let UH D �H .A
00U/. Since UH � H is a

�nite subset of the amenable group H , by Følner’s criterion [9], there exists a

�nite set AH � H such that jAHUH j < .1C �/jAH j. De�ne Ai D AHA
00
i � G.

Since AH � H and A00
i � T , we have jAi j D jAH jjA00

i j D jAH jjA0
i j.

By assumption,

jAH j.jA0
1j C jA0

2j/ D jA1j C jA2j

� jA1U1 [ A2U2j D jAHA
00
1U1 [ AHA

00
2U2j

� jAH�H .A
00
1U1 [ A00

2U2/�T .A
00
1U1 [ A00

2U2/j

� jAHUH�T .A
00
1U1 [ A00

2U2/j

� jAHUH jj�T .A
00
1U1 [ A00

2U2/j

< .1C �/jAH jj�T .A
00
1U1 [ A00

2U2/j:

Letting � tend to 0 yields, jA0
1j C jA0

2j � j�T .A
00
1U1 [ A00

2U2/j.

Note that,

�T .A
00
1U1 [ A00

2U2/ D  �.A00
1U1 [ A00

2U2/

D  �. .A0
1/U1 [  .A0

2/U2/

D  .�. .A0
1//U1 [ �. .A0

2//U2/

D  .A0
1U1 [ A0

2U2/:

Since  is a bijection we have that j�T .A
00
1U1 [ A00

2U2/j D jA0
1U1 [ A0

2U2j

which implies that jA0
1j C jA0

2j � jA0
1U1 [ A0

2U2j as required. �
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Recall the statement of Theorem 1.3.

Theorem 1.3. Let G Õ X be a group action.

(1) LetH � G be a �nite index subgroup andH Õ X the action of G restricted

to H . Then,

T.H Õ X/ � 2 � ŒG W H�.T.G Õ X/ � 2/:

(2) If G Õ X has amenable point stabilizers then T.G Õ X/ D T.G/.

Proof. (1) Choose a paradoxical decomposition of G Õ X with translating sets

S1 and S2 such that jS1j C jS2j D T.G Õ X/ and 1 2 S1 \ S2 (this is possible by

Remark 2.8). Let T be a right transversal of H in G and let Ri D TSiT
�1 \H

for i D 1; 2. By Lemma 2.11, H Õ X has a paradoxical decomposition with

translating sets R1 and R2. Note that for each t 0 2 T and g 2 G there exists a

unique t 2 T such that t 0gt�1 2 H . Moreover, if g D 1, then t D t 0 and therefore

t 0gt�1 D 1. Hence for i D 1; 2 we have

jRi j D jTSiT
�1 \H j � jT j.jSi j � 1/C 1

(here we use the fact that each Si contains 1). Hence

T.H Õ X/ � jR1j C jR2j

� ŒG W H�.jS1j C jS2j � 2/C 2

D ŒG W H�.T.G Õ X/ � 2/C 2:

(2) By Lemma 2.3(2), T.G/ � T.G Õ X/. Indeed, there exists a G-

equivariant map from G to X . For the other direction, choose a paradoxical

decomposition of G with translating sets S1 and S2 such that jS1j C jS2j D T.G/.

Let x 2 X and K D Stab G.x/. By assumption K is amenable. By Theorem 2.9,

for every pair of �nite subsets A1; A2 � G we have

jA1S
�1
1 [ A2S

�1
2 j � jA1j C jA2j:

By Lemma 2.12, the same is true for any pair of �nite subsets A0
1; A

0
2 � G=K.

Thus, again by Theorem 2.9, G Õ G=K has a paradoxical decomposition with

translating sets S1 and S2. Since this is true for all stabilizers of elements of X ,

by Corollary 2.7 G Õ X has a paradoxical decomposition with S1 and S2 as

translating sets. Thus T.G Õ X/ � T.G/. �
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3. Schreier graphs and Stallings cores

The de�nitions in this section follow [1, 6, 5]. All the material before Proposi-

tion 3.2 is well known.

Given a free group F D hx1; x2; : : : xmi and a subgroup H � F , let G denote

the oriented Cayley graph of the action F Õ F=H with respect to the symmetric

set S D ¹x˙1
1 ; : : : ; x˙1

m º. This graph is called the Schreier graph of the subgroup

H . By de�nition every vertex in the graph has exactly 2m outgoing edges, each

labeled by a di�erent element of S . For every (directed) edge e, the vertices e�

and eC will be the initial and terminal vertex of e respectively. We will say that

e is incident both to e� and to eC. Note that every edge e has an inverse edge f

such that e� D fC; eC D f� and the labels of e and f are inverses of each other.

Sometimes we will refer to e and its inverse as a single geometric unoriented edge

labeled by a letter c˙1. A path in G is a sequence of directed edges e1; : : : ; en

where for i < n the terminal vertex of ei is the initial vertex of eiC1. It is said to

be reduced if eiC1 ¤ e�1
i for all i < n. A cycle e1; : : : ; en is called reduced if it is

reduced as a path. That is, en might be equal to e�1
1 in a reduced cycle.

Let o be the vertex of the Schreier graph corresponding to the group H and C

the minimal subgraph of G containing o and all reduced cycles from it to itself. C

is called the Stallings core of H or simply the core of H . The vertex o is called

the origin of the core C. Note that the elements of H are exactly those words

which in reduced form can be read on a cycle in C from o to itself. Also, if for

some reduced word w 2 F , the coset Hw belongs to the core of H , then there

exists w0 2 F such that ww0 is reduced and ww0 2 H . Given the core C of H , it

is possible to construct from it the Schreier graph of H by attaching appropriate

trees at each vertex of C with less than 2m outgoing edges. In this setting a tree

is a connected graph with no reduced nontrivial cycles, such that for every edge

in the tree the inverse edge also belongs to the tree. In other words, if we replace

each pair of inverse edges in a tree by a single geometric edge we get a tree in the

usual (unoriented) sense.

For a �nitely generated subgroup H � F there is a simple procedure to

construct the core C of H . (We consider the �nitely generated case for the

procedure to be �nite). If H is generated by the elements p1; p2; : : : ; pn 2 F ,

the �rst step of the procedure consists of attaching n cycles to the origin o. For

each i D 1; : : : ; nwe divide the i th cycle into jpi j edges (and inverse edges) where

jpi j stands for the length of pi as a word in ¹x˙1
1 ; : : : ; x˙1

m º. We label the edges of

the i th cycle by the letters of pi (and the inverse edges accordingly) so that going

from the origin o to itself along the cycle, the word pi is read. The second step,

consists of foldings of edges. If a vertex v has two outgoing edges with the same

label e and e0 we identify the edges e and e0, the inverse edges e�1 and .e0/�1 and

the terminal vertices eC and e0
C. This identi�cation means that all the outgoing

and incoming edges of eC and e0
C are now attached to the single identi�ed vertex.

If o is identi�ed with some vertex we consider the resulting vertex as the origin.
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The �nal step of the procedure consists of deleting every vertex of degree one

in C, other than the origin. A vertex of degree one is a vertex incident to only one

geometric edge. We delete it together with the pair of inverse edges attached to it.

For further details and examples of the construction, see [6, 5].

Once the core C is given, it is possible to erase a �nite number of edges and

get a spanning tree T . We assume that if an edge e is erased, the inverse edge is

erased as well. If k pairs of edges were erased, thenH is free of rank k. Indeed, if

the erased edges are e˙1
1 ; : : : ; e˙1

k
one can construct a free basis of H as follows

(see [5, Lemma 3.3]). For each i 2 ¹1; : : : ; kº, let ai and bi be the unique reduced

paths in T from o to .ei/� and .ei /C respectively. For a path t in C the label `.t/ is

de�ned as the product of labels of the edges along the path. For all i 2 ¹1; : : : ; kº

let `i D `.ai /`.ei /`.bi /
�1, then ¹`1; : : : ; `kº is a free basis of the subgroupH . In

particular, we have that k � n. For further details see [5].

Parts (1) and (2) of the following lemma follow from [5, Proposition 6.7].

Part (3) follows from [5, Proposition 8.3]. We include a proof for the convenience

of the reader. Here and below, an n-generated group is a group of rank � n.

Lemma 3.1. Let F D hx1; : : : ; xmi be a free group of rank m and let H � F be

an n-generated subgroup.

(1) Let A be the core corresponding to the subgroup H . Then, the origin o has

at most 2n incoming edges.

(2) Let K � H be a (not necessarily �nitely generated) subgroup and let A0 be

the core of K. Then, the origin o0 of A0 has at most 2n incoming edges.

(3) Let M � F be any �nitely generated subgroup of in�nite index and B the

corresponding core. Then, there exists a vertex v in B such that v has less

than 2m incoming edges.

Proof. (1) Let N D ¹p1; : : : ; pkº be a Nielsen-reduced free basis of H . In

particular k � n and N freely generates H . Thus, every element w 2 H has

a unique presentation as a word in the elements of N and their inverses. Also, if

p�
i for � D ˙1 is the last element in the presentation of w 2 H then, as a word in

the generators of F , the last letters of w and p�
i coincide. Thus, there are at most

2k � 2n possibilities for the last letter of a reduced word in H . In particular, the

origin of A has at most 2n distinct incoming edges.

(2) If the letter c labels an incoming edge of o0 in A0 then there is a reduced

word w D w0c inK ending with c. SinceK � H , the word w 2 H . Thus c labels

an incoming edge of o in A and the result follows from part .1/.

(3) Assume by contradiction that every vertex in B is of degree 2m. Then B

is the Schreier graph of the action F Õ F=M . Since M is �nitely generated, the

set of vertices of B is �nite (indeed, see the construction of the core of a �nitely

generated subgroup above). Thus,M has �nite index in F , a contradiction. �
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Proposition 3.2. LetGn D hx; y1; : : : ; yn; zi be an .nC 2/-generated free group.

Let Hn � Gn be an n-generated subgroup. Then, there exists j 2 ¹1; : : : ; nº such

that for all g 2 Gn we have that ŒHn; Hn�\ hx; yj ig D ¹1º.

Proof. The proof is by induction on n. For n D 1, since H1 is cyclic, the derived

subgroup ŒH1; H1� D ¹1º and the proposition holds. Assume the proposition holds

for n but not for nC 1. Let HnC1 � GnC1 be an .nC 1/-generated subgroup for

which the proposition fails. In particular, for j D nC 1 there exist g 2 GnC1 and

an element h ¤ 1 such that

h 2 ŒHnC1; HnC1�\ hx; ynC1ig :

Let � WGnC1 ! Gn be the epimorphism taking ynC1 to 1 and any other generator

of GnC1 to its copy in Gn. Then

�.h/ 2 Œ�.HnC1/; �.HnC1/�\ h�.x/i�.g/ � ŒGnC1; GnC1� \ hxi�.g/ D ¹1º:

Since � is not injective on HnC1, the rank of the image �.HnC1/ is at most n.

In particular �.HnC1/ is n-generated. Let Hn D �.HnC1/ � Gn. We will

show that the proposition fails for it, which would yield the required contradiction.

Indeed, if the proposition holds forHn, then there exists some j 2 ¹1; : : : ; nº such

that for all b 2 Gn we have

.�/ ŒHn; Hn� \ hx; yj ib D ¹1º:

By assumption, for the same j , the proposition fails forHnC1 � GnC1. Therefore,

there exist g0 2 GnC1 and an element h0 ¤ 1 such that

h0 2 ŒHnC1; HnC1� \ hx; yj ig0

:

Applying the projection � we get that

�.h0/ 2 ŒHn; Hn�\ hx; yj i�.g0/

where here, x and yj are considered as elements of Gn. Since � is injective on

hx; yj i � GnC1 and h0 is a conjugate of a nontrivial element in hx; yj i, its image

�.h0/ is a conjugate of a nontrivial element of hx; yj i � Gn. In particular, it is

nontrivial which contradicts .�/ for b D �.g0/. �

Corollary 3.3. Let Gn D hx; y1; : : : ; yn; zi be a free group of rank nC 2 and let

H � Gn be an n-generated subgroup. Let A be the core of the derived subgroup

ŒH;H�. Then there exists j 2 ¹1; : : : ; nº such that there are no reduced nontrivial

cycles in A labeled by elements of hx; yj i.

Proof. Let j 2 ¹1; : : : ; nº be an index for which the conclusion of Proposition 3.2

is satis�ed for H . Assume by contradiction that s is a reduced nontrivial cycle in



Tarski numbers of group actions 943

A labeled by a word in hx; yj i and let v be the initial (and terminal) vertex of s.

There exists g 2 G such that v represents the coset ŒH;H�g. Thus, ifw is the label

of s we have that ŒH;H�gw D ŒH;H�g which implies thatw 2 ŒH;H�g \hx; yj i.

Then

wg�1

2 ŒH;H�\ hx; yj ig�1

is a nontrivial element, by contradiction to the choice of j . �

4. Construction of group actions with a given Tarski number

In this section we prove Theorem 1. LetF D Gn D hx; y1; : : : ; yn; zi be an .nC2/-

generated free group for n 2 N. We will construct a subgroup H for which the

action F Õ F=H is faithful and has Tarski number n C 3. H will be de�ned by

means of its core. In the construction, whenever an edge labeled by a letter c is

attached, we assume that the inverse edge, labeled by c�1, is attached as well, even

when it is not mentioned explicitly.

Let ¹Hiºi2N be an enumeration of all the n-generated subgroups of F . For

each i let Ai be the core representing the derived subgroup ŒHi ; Hi � and let oi be

its origin. By Lemma 3.1(2), oi has at most 2n incoming edges. Thus, there exists

a letter ci … ¹z; z�1º di�erent than the labels of all incoming edges of oi .

We de�ne the core C of H in the following way (for an illustration, see

Figure 1). Let o be the origin of C and e1; e2; : : : an in�nite sequence of edges,

all labeled by z, such that .e1/� D o and for all i we have .ei/C D .eiC1/�. Since

the letters ci … ¹z; z�1º, for each i it is possible to attach to .ei/C an outgoing

edge labeled by ci . To its head vertex one can attach the core Ai by identifying

oi with the vertex in question. Indeed, the choice of letters ci guarantees that no

vertex in C has two outgoing or two incoming edges labeled by the same letter.

o : : :

A1 A2 A3 A4

c1 c2 c3 c4

zzzz

Figure 1. The core of H
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Clearly, if H is the group represented by C, then H is generated by the union

of ŒHi ; Hi �
.zi ci /�1

for all i 2 N. By construction, the origin o has degree 1 in C.

Since 1 < 2.n C 2/ it follows from [5, Theorem 8.14] that H does not contain

a nontrivial normal subgroup of F . Indeed, to ensure that H does not contain a

nontrivial normal subgroup of F it su�ces that some vertex of C has less than

2.nC 2/ outgoing edges.

Let G be the Schreier graph of the action F Õ F=H . The graph G can be

obtained from C by attaching trees to every vertex of C with less than 2.n C 2/

outgoing edges.

Lemma 4.1. Let v be a vertex of G. There is at most one core Am to which one

can get from v via a path whose label does not include the letter z˙1.

Proof. Clearly, there is no path between two di�erent cores Al and Ar which does

not cross an edge labeled by z˙1. Assume that t1; t2 are paths from v to two distinct

cores A˛ and Aˇ , such that both t1 and t2 do not cross any edge labeled by z˙1.

Then the path t�1
1 t2 connects A˛ and Aˇ and does not contain the letter z˙1. �

Let ¹Xj ºn
j D1 be a partition of the set of cores ¹Aiºi2N, where Ai 2 Xj if and

only if j is the smallest index which satis�es the conclusion of Corollary 3.3 for

the core Ai . By Lemma 4.1, for each vertex v of G there exists at most one core

Ai to which it is possible to get via a path not including the letter z˙1. Thus, it is

possible to de�ne a partition of the vertex set of G to n sets ¹Yj ºn
j D1 in the following

way. For a vertex v, if Am is a core reachable from v via a path not containing the

letter z˙1 and Am belongs to Xj for some j , then v will belong to Yj for the same

j . If no core Ai is reachable from v via such a path, v will belong to Y1. Note,

that each of the sets in the partition is closed under the action of hx; y1; : : : ; yni.

Lemma 4.2. For j D 1; : : : ; n the group hx; yj i acts freely on Yj .

Proof. Let j 2 ¹1; : : : ; nº and v be a vertex of Yj . Assume by contradiction that

w 2 hx; yj i is a reduced nontrivial word stabilizing v. Then w labels a reduced

nontrivial cycle s from v to itself in G. Since s is nontrivial, it must contain as

a subpath a reduced nontrivial cycle s0 through some core Am. Note that Am

is reachable from v via a subpath of s, which by de�nition does not contain the

letter z˙1. Therefore, v 2 Yj implies that Am 2 Xj and thus contains no reduced

nontrivial cycle labeled by a word in hx; yj i, a contradiction. �

Lemma 4.3. The Tarski number of the action of F on G is at least nC 3.

Proof. Assume by contradiction that the action has Tarski number at most nC 2

and let S1; S2 be translating sets of a paradoxical decomposition with jS1j C

jS2j � n C 2. By Remark 2.8, we can assume that 1 2 S1 \ S2. Then,

S D .S1 [ S2/ n ¹1º is a set of n elements at most. Let K be the subgroup it
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generates. Then K Õ G has a paradoxical decomposition with translating sets S1

and S2. Since K is n-generated, K D Hm for some m 2 N where Hm is one of

the n-generated subgroups enumerated above. Let om be the origin of the core

Am. By Corollary 2.7,K Õ K=Stab K.om/ has a paradoxical decomposition with

translating sets S1; S2. Since ŒK;K� � Stab K.om/, Lemma 2.3(2) implies that

the same is true for the action K Õ K=ŒK;K�. In particular, this action is non-

amenable. By Lemma 2.4, the groupK=ŒK;K� is non-amenable, in contradiction

to it being abelian. �

Lemma 4.4. Let F 0 D hx; y1; : : : ; yni. Then F 0 Õ G has a paradoxical decom-

position with translating sets S1 D ¹1; xº, S2 D ¹1; y1; : : : ; ynº. In particular,

T.F 0 Õ G/ � nC 3.

Proof. The vertex set V.G/ of the graph G is the disjoint union of the sets Yj

for j D 1; : : : ; n where each of the sets is closed under the action of F 0. By

Lemma 4.2, for each j , the action of hx; yj i on Yj is free. Thus by Corollary 2.2,

Yj has a paradoxical decomposition with translating sets ¹1; xº and ¹1; yj º. By

adding empty sets to the decomposition, we get that every Yj has a paradoxical

decomposition with translating sets S1 and S2. Thus Remark 2.6 yields the

result. �

By Lemma 2.3(1), T.F Õ G/ � T.F 0 Õ G/ � nC 3. Thus, by Lemma 4.3,

T.F Õ F=H/ D T.F Õ G/ D nC 3:

Remark 4.5. For every k; l 2 N such that kCl D nC1 it is possible to rename the

�rst nC 1 generators x; y1; : : : yn of F D Gn by x1; : : : ; xk, y1; : : : ; yl . Then, for

the subgroup H constructed above, F Õ F=H has a paradoxical decomposition

with translating sets S1 D ¹1; x1; : : : ; xkº and S2 D ¹1; y1; : : : ; ylº. Indeed, the

only necessary change is to Proposition 3.2.

Proposition 4.6. Let k; l 2 N andGk;l D hx1; : : : ; xk; y1; : : : ; yl ; zi be a kClC1

generated free group. Let H � Gk;l be a .k C l � 1/-generated subgroup. Then,

there exist i 2 ¹1; : : : ; kº and j 2 ¹1; : : : ; lº such that for all g 2 Gk;l we have

ŒH;H�\ hxi ; yj ig D ¹1º.

Proof. By induction on k. The case k D 1 is Proposition 3.2. Assume the

proposition holds for k (and every l) but not for k C 1. Then there exists

l 2 N such that the proposition fails for GkC1;l . The reduction to the case

Gk;l follows the same argument as that in Proposition 3.2. Here the homomor-

phism � WGkC1;l ! Gk;l maps xkC1 to the identity and any other generator to its

copy. �
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Corollary 4.7. Let k � 4 and let F be the free group of rank k � 1. Then, F has

a faithful transitive action F Õ X , such that T.F Õ X/ D k and for allm; n � 2

such that m C n D k the action F Õ X has a paradoxical decomposition with

translating sets S1; S2 such that jS1j D m and jS2j D n.

Note that nothing similar is known for groups. Indeed, we don’t have an exam-

ple of a group with Tarski number k which has two paradoxical decompositions,

one with translating sets of sizem1 and n1 and the other with translating sets of size

m2 and n2, such that for i D 1; 2 we have mi C ni D k and ¹m1; n1º ¤ ¹m2; n2º.

5. Unbounded Tarski numbers

In what follows, p will be a �xed prime number. Let F be a �nitely generated non-

abelian free group. Let ¹!nF ºn2N be the Zassenhaus p-�ltration of F de�ned by

!nF D
Q

i �pj �n.iF /
pj

. It is easy to see that ¹!nF º is a descending chain of

normal subgroups of p-power index in F . Moreover, ¹!nF º is a base for the pro-

p topology on F , so in particular, F being residually-p implies that \!nF D ¹1º.

It follows that for any n 2 N there exists m.n/ 2 N such that the reduced form of

any element of !m.n/F is of length � 12n. Clearly, the index ŒF W !m.n/F � > n.

Thus, by the Schreier index formula, !m.n/F is free of rank > n. In particular,

every n-generated subgroup of !m.n/F generates a subgroup of in�nite index

inside !m.n/F and thus inside F .

Theorem 2 is a straightforward corollary of the following theorem.

Theorem 5.1. Let F be the free group hx; y; zi and for each n 2 N letm.n/ be as

described above. There exists H � F with the following properties.

(1) H does not contain a nontrivial normal subgroup of F .

(2) For each n 2 N, T.!m.n/F Õ F=H/ � nC 3.

(3) T.F Õ F=H/ D 6.

Proof. The construction of the core C of H will be similar to the construction

used in Section 4. Here as well, whenever an edge labeled by a letter c is attached,

it is implicitly assumed that an inverse edge labeled by c�1 is attached as well.

For each n 2 N, let ¹Hn
i ºi2N be an enumeration of all the n-generated

subgroups of !m.n/F . For each n; i 2 N let A.n;i/ be the core corresponding

to the subgroup Hn
i . By Lemma 3.1(3) there exists a vertex o0

.n;i/
in A.n;i/ with

less than 6 incoming edges. Let c.n;i/ be a letter distinct from the labels of all the

incoming edges of o0
.n;i/

. Let ˛.k/ for k D 1; 2; : : : be an enumeration of all the

pairs .n; i/ 2 N � N.
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To construct the core C of H , let o be the origin and e1; e2; : : : be an in�nite

sequence of edges such that .e1/� D o and for all k we have .ek/C D .ekC1/�. It is

possible to label the edges ek inductively as follows. We choose the label `.e1/ so

that `.e1/ ¤ c�1
˛.1/

. Assuming that the label of ek for k � 1 is already chosen, we

choose the label `.ekC1/ so that `.ekC1/ … ¹`.ek/
�1; c˛.k/; c

�1
˛.kC1/

º. The choice

of the labels of ¹ekºk2N means that for all k, one can attach to .ek/C an outgoing

edge labeled by c˛.k/. To its head vertex, it is possible to attach the core A˛.k/ by

identifying o0
˛.k/

with the vertex in question. Indeed, the choice of letters c˛.k/ and

the labels `.ek/ guarantees than there is no vertex in C with two outgoing or two

incoming edges labeled by the same label. As in the previous section, the origin

o having degree 1 implies that H does not contain a nontrivial normal subgroup

of F . We denote by G the Schreier graph of the group H represented by C.

Lemma 5.2. For each n 2 N we have T.!m.n/F Õ G/ � nC 3.

Proof. Similar to the proof of Lemma 4.3. If K is an n-generated subgroup of

!m.n/F , it �xes a point of G. In particular, the action K Õ G is amenable. 4

Lemma 5.3. Let n 2 N. Let K � !m.n/F be an n-generated subgroup and let

A be the core corresponding to the group K. Then, there exists a spanning tree

T in A such that every vertex in A loses at most one of its incoming edges in the

transition from A to T .

Proof. We always assume that when an edge is erased in the transition from A to

T its inverse edge is erased as well. Thus, for a vertex to lose an incoming edge is

equivalent to losing an incident pair of inverse edges.

As mentioned in Section 3, in order to construct a spanning tree of A we have

to erase at most n pairs of inverse edges from A. Assume that i pairs of edges,

i 2 ¹0; : : : ; n � 1º, were already erased and no vertex has lost more than one of

its incoming edges. If the resulting graph is a tree, we are done. Otherwise, let e

be an edge whose removal (together with e�1) would not a�ect the connectivity

of the graph. Let s be a reduced cycle from e� to itself which starts with the edge

e and does not visit any vertex other than e� twice. In particular, the cycle s does

not contain a pair of opposite edges. The removal of any edge of s, together with

its inverse, would not a�ect the connectivity of A. If the vertex e� corresponds to

the coset Kg and w is the label of the cycle s, then w 2 Kg � !m.n/F . As such,

the length of w, and of the cycle s, is at least 12n. Until now, at most n � 1 pairs

of edges have been erased. Each pair is incident to at most 2 vertices. Each of the

2.n� 1/ vertices in question is incident to at most 6 pairs of edges. Thus there are

at most 12.n � 1/ pairs of edges incident to vertices which have already lost an

incoming edge. As such, at least one edge on the cycle s does not belong to one of

these 12.n � 1/ pairs and one can erase it (together with its inverse) to complete

the induction. 4
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Lemma 5.4. Let S D ¹x; y; zº. Then for any �nite set A of vertices of G, we have

jAS�1 [ Aj � 2jAj. In particular, by Theorem 2.10, T.F Õ G/ � 6.

Proof. Consider the graph G. From each of the cores A.n;i/ attached during

the construction of the core C, it is possible to erase at most n pairs of edges

such that the resulting spanning tree of the core A.n;i/ satis�es the conclusion of

Lemma 5.3. Let T be the graph obtained in this way from the graph G. Clearly, T

is a tree. Lemma 5.3 implies that every vertex of T has at least 5 incoming edges.

Thus, every vertex of T has at least two incoming edges labeled by elements of

S D ¹x; y; zº.

Let A be a �nite set of vertices of G. Let E be the set of all oriented edges

e D .as�1; a/ such that a 2 A, s 2 S and the edge .as�1; a/ lies in T. From

the above, E contains at least 2jAj edges. Clearly, E does not contain a pair of

opposite edges and the endpoints of edges in E lie in the set A [ AS�1. Let ƒ

be the unoriented graph with vertex set A [ AS�1 and edge set E with forgotten

orientation. Thenƒ is a �nite unoriented forest. Hence, if V.ƒ/ andE.ƒ/ denote

the sets of vertices and edges of ƒ, respectively, then

jA [ AS�1j D jV.ƒ/j > jE.ƒ/j D jEj � 2jAj;

as required. 4

Lemma 5.5. T.F Õ G/ D 6.

Proof. It is easy to see that Theorem 1.2 implies that T.F Õ G/ ¤ 4. Thus, it

su�ces to prove that T.F Õ G/ ¤ 5. By contradiction, let S1 D ¹1; aº; S2 D

¹1; b; cº be translating sets of a paradoxical decomposition of F Õ G. For

r D pm.3/, let p1 D ar ; p2 D .ab/r and p3 D .ac/r . Then p1; p2; p3 2 !m.3/F .

Let K � F be the subgroup generated by p1; p2; p3. Let A be the core of

K and let oA be its origin. The core A was attached to the core of H by

some vertex of A. Let A1; A2 be �nite sets of vertices of G de�ned as follows.

A1 D oA � ¹aj ; b�1aj ; c�1aj W 0 � j � r � 1º and A2 D ¹oAº. A simple

calculation shows that A1S
�1
1 D A1¹1; a�1º D A1 (for a visual illustration, see

Figure 2). Clearly, A2S
�1
2 � A1. Thus,

jA1S
�1
1 [ A2S

�1
2 j D jA1j < jA1j C jA2j:

This contradicts the implication .1/ ) .2/ of Theorem 2.9. 4

This concludes the proof of Theorem 5.1. �
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Figure 2. The core A. The set A1 is the set of all the vertices in the �gure.
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