
Groups Geom. Dyn. 10 (2016), 771–793

DOI 10.4171/GGD/365

Groups, Geometry, and Dynamics

© European Mathematical Society

Pseudo-Anosov dilatations and the Johnson �ltration

Justin Malestein1 and Andrew Putman2

Abstract. Answering a question of Farb, Leininger, and Margalit, we give explicit lower

bounds for the dilatations of pseudo-Anosov mapping classes lying in the kth term of the

Johnson �ltration of the mapping class group.

Mathematics Subject Classi�cation (2010). Primary: 57M05; Secondary: 20F34.

Keywords. Pseudo-Anosov, dilatation, mapping class group, lower central series, intersec-

tion number, Torelli group.

1. Introduction

Let Mod.†/ be the mapping class group of a closed orientable surface †.

Thurston’s well-known classi�cation of surface homeomorphisms (see [6]) says

that every element of Mod.†/ is either �nite order, reducible, or pseudo-Anosov.

By de�nition, a pseudo-Anosov mapping class f 2 Mod.†/ is one that can be

represented by a homeomorphism F W† ! † such that there exist two trans-

verse singular measured foliations F
u and F

s and some �.f / > 1 such that

F�.F
u/ D �.f / � Fu and F�.F

s/ D 1
�.f /

� Fs. The number �.f / only depends on

f and is known as the dilatation of f . The dilatation �.f / of a pseudo-Anosov

mapping class f shows up in many places; for instance, the number ln.�.f // is

the translation length with respect to the Teichmüller metric of the action of f on

Teichmüller space.

Minimal dilatations. The set of possible dilatations of pseudo-Anosovmapping

classes has many interesting properties. De�ne

Spec.Mod.†// D ¹ln.�.f // j f 2 Mod.†/ is pseudo-Anosovº � R:

1 Supported in part by ERC grant agreement no 226135.

2 Supported in part by NSF grant DMS-1255350 and the Alfred P. Sloan Foundation.
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Arnoux and Yoccoz [1] and Ivanov [8] independently proved that Spec.Mod.†//

is closed and discrete, so it has a minimal elementL.Mod.†//. Penner [14] proved

that there exists some C > 1 such that if † has genus g, then

1

Cg
� L.Mod.†// �

C

g
:

In particular, L.Mod.†// ! 0 as g ! 1.

Johnson �ltration. The Johnson �ltration is an important sequence of sub-

groups of Mod.†/. Recall that if G is a group, then the lower central series of G

is the inductively de�ned sequence

1.G/ D G and dC1.G/ D ŒG; d .G/� for d � 1:

Letting �1 D �1.†/, the kth term of the Johnson �ltration of Mod.†/, denoted

Nk.†/, is the kernel of the natural representation Mod.†/ ! Out.�1=kC1.�1//.

For example, since �1=2.�1/ Š H1.†IZ/, the group N1.†/ is the Torelli group,

that is, the kernel of the action of Mod.†/ on H1.†IZ/. The groups Nk.†/

were �rst de�ned in [10] and have connections to number theory (see [13]) and

3-manifolds (see [7]); however, many basic questions about them remain open.

Dilatation in the Johnson �ltration. IfH < Mod.†/ is a subgroup, then de�ne

Spec.H/ D ¹ln.�.f // j f 2 H is pseudo-Anosovº � R>0:

Possibly Spec.H/ is empty; otherwise, it must have a least element which we will

denote by L.H/. Farb, Leininger, and Margalit [4] proved that if † is a closed

surface whose genus is at least 2 and k � 1, then Spec.Nk.†// is nonempty. They

also proved that there exist numbers nk > 0 which depend only on k such that

L.Nk.†// � nk . Observe that this contrasts sharply with Penner’s theorem for

the whole mapping class group. Finally, they proved that nk ! 1 as k ! 1.

Main theorem. The proof of Farb, Leininger, and Margalit that nk ! 1
as k ! 1 relies on a sort of compactness argument and gives no estimates

for nk . They posed the question of obtaining explicit estimates. Our main theorem

answers their question. It says that L.Nk.†// is bounded below by a quantity that

grows roughly like ln.k/. More precisely, we have the following.

Theorem A. Let † be a closed surface whose genus is at least 2. Then for all

k � 1 we have

L .Nk .†// > max
�
0:197; c � ln

�k C 3

2

�
� ln.2/

�
;

where c D ln.28=25/
ln.4/

.
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Remark. In [4, §4], Farb, Leininger, and Margalit prove that L.Nk.†// is

bounded above by a function which is exponential in k (independent of the genus).

LettingF be a free group of rank 2, the key input to their construction is a sequence

of nontrivial elements wk 2 k.F / whose word lengths are exponential in k. In

fact, there are nontrivial elements of k.F / whose word lengths are quadratic in

k (see the remarks after [12, Theorem 2]). Plugging these into their construction,

one can deduce that L.Nk.†// is bounded above by a function which is quadratic

in k (independent of the genus).

Curves on a surface. If ˛ and ˇ are simple closed curves on †, then denote by

i.˛; ˇ/ the geometric intersection number of ˛ and ˇ, that is, the minimum size

of ˛0 \ ˇ0 as ˛0 and ˇ0 range over curves homotopic to ˛ and ˇ, respectively. One

of the key insights of [4] is that one can obtain estimates on �.f / by bounding

the size of i.f .ı/; ı/ from below for all nonnullhomotopic simple closed curves

ı. Indeed, [4, Proposition 2.7] says that if f 2 Mod.†/ is pseudo-Anosov and

if i.f .ı/; ı/ � n � 3 for all nonnullhomotopic simple closed curves ı, then

�.f / > n=2.

Recall that there is a bijection between free homotopy classes of oriented

closed curves on† and conjugacy classes in �1. If f 2 Nk.†/ and ı is an oriented

simple closed curve, then by de�nition the conjugacy classes in �1 associated to

f .ı/ and ı project to the same conjugacy class in �1=kC1.�1/. The following

theorem (applied with d D kC 1) therefore provides a lower bound on i.f .ı/; ı/.

Theorem B. Let † be a closed surface whose genus is at least 2 and let ˛ and ˇ

be nonisotopic oriented simple closed curves on †. Assume that for some d � 3

the conjugacy classes in �1.†/=d .�1.†// associated to ˛ and ˇ are the same.

Then

i.˛; ˇ/ �
�d C 2

2

�c

;

where c D ln.28=25/
ln.4/

.

Remark. In Appendix A, we show that the conclusion of Theorem B also holds

for compact surfaces with boundary.

Deriving Theorem A from Theorem B. We now discuss how to derive

Theorem A from Theorem B. The bound in Theorem B is greater than 2 start-

ing at d D 9623. Therefore, Theorem B together with the aforementioned result

[4, Proposition 2.7] implies that for k � 9622 we have

L.Nk.†// � ln
�1
2

�k C 3

2

�c�
D c � ln

��k C 3

2

��
� ln.2/; (1)
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where c D ln.28=25/
ln.4/

. Farb, Leininger, and Margalit also proved that L.N1.†// >

0:197 (see [4, Theorem 1.1]), which clearly implies that L.Nk.†// > 0:197 for all

k � 1. The bound in (1) is less than 0:197 for k < 9622, so Theorem A follows.

Proof techniques for Theorem B. The heart of our proof of Theorem B is the

construction of a suitable nilpotent cover of † which “resolves” the intersections

of ˛ and ˇ. This nilpotent cover is obtained by constructing a sequence of

2-fold covers each of which resolves at minimum some constant fraction of the

intersections. It is easy to construct covers that resolve a single intersection

at a time, but that only leads to a logarithmic bound in Theorem B. To get

our stronger bound, we need to resolve many intersections at once. It seems

di�cult to explicitly construct these 2-fold covers, but we show that they exist

using probabilistic arguments. Namely, we prove that if the covers are chosen at

random in an appropriate way, then the expected value of the number of resolved

intersections is larger than some constant fraction of the intersections, and thus

that there must exist some cover that resolves enough intersections. See the proofs

of the key Lemmas 4.1–4.2 below.

Subtleties. We close this introduction by discussing some di�culties that arise

in proving Theorem B. Though in the end we will not phrase it that way, one

can view our proof as deriving a contradiction from the existence of nonisotopic

simple closed curves ˛ and ˇ on † that induce the same conjugacy classes in

�1.†/=d .�1.†// and that satisfy i.˛; ˇ/ <
�

dC2
2

�c
. One di�culty that must be

overcome is that given two such curves ˛ and ˇ and a basepoint v 2 †, it seems

hard to �nd based representatives Ǫ ; Ǒ 2 �1.†; v/ of ˛ and ˇ with the following

two properties.

� Ǫ and Ǒ intersect i.˛; ˇ/ times (perhaps up to a constant factor), and

� Ǫ Ǒ�1 2 d .�1.†; v//.

In other words, the algebraic and topological conditions on ˛ and ˇ do not interact

very well.

If such Ǫ and Ǒ existed, then the self-intersection number of Ǫ Ǒ�1 would be at

most i.˛; ˇ/ (up to a constant factor) and one could appeal to the paper [12] of the

authors, which bounds from below the self-intersection number of nontrivial ele-

ments of d .�1.†; v//. Our proof does share some ideas with [12], but substantial

new ideas were needed to overcome the di�culties just discussed.

Remark. We do not know any examples of curves ˛ and ˇ as above that cannot

be realized by based curves with the above properties, but we conjecture that they

exist.

Acknowledgments. We want to thank Tom Church for helpful comments.
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2. Initial reduction

We will prove Theorem B by constructing a certain �nite cover of† that “resolves”

the intersections of ˛ and ˇ in an appropriate way. In this section, we will state

the lemma that gives this cover and then show how to derive Theorem B.

Curve-arc triples. We begin with some necessary de�nitions. Fix a closed

surface † whose genus is at least 2, and choose a hyperbolic metric on †.

A curve-arc triple on † is a tuple ..˛; v/; �; .ˇ; w// as follows.

� The element ˛ is a simple closed oriented geodesic on † which is based at

v 2 †.

� The element ˇ is a simple closed oriented geodesic on † which is based at

w 2 †.

� ˛ and ˇ are nonisotopic.

� The element � is a path (possibly with self-intersections) from v to w.

If ..˛; v/; �; .ˇ; w// is a curve-arc triple and .z†; Qv/ ! .†; v/ is a (based) cover,

then we can lift the triple ..˛; v/; �; .ˇ; w// to .z†; Qv/ as follows. First, endow z†
with the hyperbolic metric that makes the covering map a local isometry. The arc

� lifts to an arc Q� starting at Qv; let zw be the endpoint of Q� . Then ˛ lifts to a geodesic

arc Q̨ starting at Qv and ˇ lifts to a geodesic arc Q̌ starting at zw. We will say that

.. Q̨ ; Qv/; Q�; . Q̌; zw// is a closed lift of ..˛; v/; �; .ˇ; w// if Q̨ and Q̌ are simple closed

curves (and thus .. Q̨ ; Qv/; Q�; . Q̌; zw// is a curve-arc triple on z†). We will say that

..˛; v/; �; .ˇ; w// has only a partially closed lift if one of Q̨ and Q̌ is closed and

the other is not closed. Finally, we will say that ..˛; v/; �; .ˇ; w// has a nonclosed

lift if neither Q̨ nor Q̌ is closed.

Remark. The reason we require our curves to be geodesics with respect to some

hyperbolic metric is that this implies that they intersect minimally

(see [5, Corollary 1.9]). Moreover, this persists when we pass to �nite covers.

The key lemma. With these de�nitions in hand, we can state the key lemma of

this paper.

Lemma 2.1. Let† be a closed surface whose genus is at least 2. Fix a hyperbolic

metric on † and let ..˛; v/; �; .ˇ; w// be a curve-arc triple on †. Set n D i.˛; ˇ/.

Then for some k satisfying

k �

´
2 log28=25.n/C 1 if n � 2,

3 if 0 � n � 1,
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there exists a tower

.†k ; vk/ �! .†k�1; vk�1/ �! � � � �! .†0; v0/ D .†; v/

of regular degree 2 based covers such that ..˛; v/; �; .ˇ; w// has only a partially

closed lift to .†k; vk/.

Remark. It is important that the lift is partially closed – the proof below will not

work if it is either closed or nonclosed.

The proof of Lemma 2.1 is contained in §3.

The main theorem. Before deducing Theorem B from Lemma 2.1, we need the

following two known lemmas. Recall that a group G is at most k-step nilpotent if

kC1.G/ D 0.

Lemma 2.2 ([3, §6.1 Proposition 2]). LetG be a �nite group of order 2k for some

k � 2. Then G is at most .k � 1/-step nilpotent, and hence k.G/ D 0.

Lemma 2.3 ([12, Lemma 2.3]). Let

�k C �k�1 C � � � C �0

be groups satisfying Œ�i W �iC1� D 2 for 0 � i < k. Then there exists a subgroup

� 0
C �k such that � 0

C �0 and Œ�0 W � 0� D 2` with ` � 2k � 1.

Proof of Theorem B. As in the statement of the theorem, let† be a closed surface

whose genus is at least 2 and let ˛ and ˇ be nonisotopic oriented simple closed

curves on † such that for some d � 3 the conjugacy classes in �1.†/=d .�1.†//

associated to ˛ and ˇ are the same. Set n D i.˛; ˇ/. Our goal is to show that

n �
�d C 2

2

�c

with c D ln.28=25/
ln.4/

.

We �rst claim that n � 2. If n D 1, then ˛ and ˇ have algebraic intersection

number ˙1, which is impossible since they are homologous. Assume now that

n D 0, i.e. that ˛ and ˇ are disjoint. We divide this into two cases.

� If ˛ and ˇ are nonseparating, then [11, Theorem 1.1.2] implies that

T˛T
�1
ˇ

2 Nd�1.†/. However, T˛T
�1
ˇ

… N2.†/ � Nd�1.†/; see [9].

� If ˛ and ˇ are separating, then [11, Theorem 1.1.2] implies that

T˛T
�1
ˇ

2 Nd .†/. However, T˛T
�1
ˇ

… N3 � Nd .†/; see [2, Appendix A].
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Remark. As stated, [11, Theorem 1.1.2] concerns surfaces with one boundary

component. However, the desired result for closed surfaces easily follows from

this via the map on mapping class groups obtained by gluing a disc to the boundary

component.

Fix a hyperbolic metric on† and isotope ˛ and ˇ such that they are geodesics.

Fix basepoints v and w for ˛ and ˇ, respectively, and regard them as based

curves. Choose an arc � 0 from v to w. By assumption, ˛ 2 �1.†; v/ and

� 0 � ˇ � .� 0/�1 2 �1.†; v/ map to conjugate elements in �1.†; v/=d.�1.†; v//.

There thus exists some � 00 2 �1.†; v/ such that letting � D � 00 � � 0, we have

� � ˇ�1 � ��1 � ˛ 2 d .�1.†; v//. The triple ..˛; v/; �; .ˇ; w// is a curve-arc triple.

By Lemma 2.1, for some k � 2 log28=25.n/C 1, there exists a tower

.†k ; vk/ �! .†k�1; vk�1/ �! � � � �! .†0; v0/ D .†; v/

of regular degree 2 based covers such that ..˛; v/; �; .ˇ; w// has only a partially

closed lift to .†k; vk/. For 0 � i � k, let �i � �1.†; v/ be the subgroup

associated to .†i ; vi/, so we have a sequence

�k C �k�1 C � � � C �0

of groups. Lemma 2.3 says that there exists a subgroup� 0
C �k such that� 0

C �0

and Œ�0 W � 0� D 2` with ` � 2k � 1. Since ..˛; v/; �; .ˇ; w// has only a partially

closed lift to .†k; vk/, one element in ¹˛; � � ˇ � ��1º lies in �k and the other does

not lie in �k . We deduce that � �ˇ�1 � ��1 �˛ … �k, and hence � �ˇ�1 � ��1 �˛ … � 0.

Lemma 2.2 implies that �0=�
0 is at most .`�1/-step nilpotent, so `.�0/ � � 0.

Since � �ˇ�1 � ��1 � ˛ … � 0 and � � ˇ�1 � ��1 � ˛ 2 d .�0/, we conclude that d < `,

i.e. that

d � 2k � 2 � 22 log28=25.n/C1 � 2:

A little elementary algebra then shows that

n �
�d C 2

2

�c

with c D ln.28=25/
ln.4/

, as desired. �

3. Building a tower

This section is devoted to the proof of Lemma 2.1. We begin by presenting several

basic constructions used in the proof in §3.1. We then prove the lemma in §3.2.
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3.1. Basic constructions. To simplify our notation, from this point onward we

will write F2 instead of Z=2. For an oriented closed curve ı in †, the associated

element of H1.†IF2/ is denoted by Œı�.

Lemma 3.1. Let† be a closed surface whose genus is at least 2. Fix a hyperbolic

metric on † and let ..˛; v/; �; .ˇ; w// be a curve-arc triple on †. Assume that

Œ˛� ¤ Œˇ�. Then there exists a regular degree 2 cover .z†; Qv/ ! .†; v/ such that

..˛; v/; �; .ˇ; w// has only a partially closed lift to .z†; Qv/.

Proof. Pick a homomorphism �W H1.†IF2/ ! F2 such that �.Œ˛�/ ¤ �.Œˇ�/,

and let .z†; Qv/ ! .†; v/ be the 2-fold regular cover associated to �. Let the lift

of ..˛; v/; �; .ˇ; w// to .z†; Qv/ be .. Q̨ ; Qv/; Q�; . Q̌; zw//. Clearly Q̨ is closed (resp. Q̌ is

closed) if and only if �.Œ Q̨ �/ D 0 (resp. �.Œ Q̌�/ D 0). Since �.Œ˛�/ ¤ �.Œˇ�/,

we deduce that ..˛; v/; �; .ˇ; w// has only a partially closed lift to .z†; Qv/, as

desired. �

Next, we need the following.

Lemma 3.2. Let† be a closed surface whose genus is at least 2. Fix a hyperbolic

metric on † and let ..˛; v/; �; .ˇ; w// be a curve-arc triple on †. Assume that

˛ and ˇ are disjoint and that Œ˛� D Œˇ� ¤ 0. Then there exists a regular

degree 2 cover .z†; Qv/ ! .†; v/ such that ..˛; v/; �; .ˇ; w// has a closed lift

.. Q̨ ; Qv/; Q�; . Q̌; zw// to .z†; Qv/ satisfying Œ Q̨ � ¤ Œ Q̌�.

Proof. The curves ˛ and ˇ are disjoint and homologous over F2. It is easy to see

that this implies that they are actually homologous over Z, i.e. that they bound an

embedded subsurface of †. As is shown in Figure 1, there exists a regular degree

2 cover .z†; Qv/ ! .†; v/ with the following properties.

x

x

y

y

z

z

w

w

Q̨1

Q̨2

Q̌
1

Q̌
2

˛

ˇ

Figure 1. In the left hand surface, the boundary components are glued in pairs to form a

closed connected surface z†. This has a regular degree 2 covering map to the right hand

surface †; the deck group exchanges the top and bottom piece while �ipping them. The

preimage of ˛ is Q̨1 t Q̨2 and the preimage of ˇ is Q̌
1 t Q̌

2.
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� The preimage of ˛ in z† consists of two disjoint simple closed curves, and

similarly for ˇ.

� If Q̨ and Q̌ are any components of the preimage in z† of ˛ and ˇ, respectively,

then Œ Q̨ � ¤ Œ Q̌�.

Clearly .z†; Qv/ ! .†; v/ is the desired cover. �

A similar idea will yield the following.

Lemma 3.3. Let † be a closed surface whose genus is at least 2. Let ı be a

nonnullhomotopic oriented simple closed curve on † such that Œı� D 0. Then

there exists a regular degree 2 cover z† ! † such that the preimage of ı in z† has

two components Qı1 and Qı2 satisfying Œ Qıi � ¤ 0 for i D 1; 2.

Proof. Using the fact that ı is a simple closed curve which is nullhomologous over

F2, it is easy to see that ı is actually nullhomologous over Z, i.e. that ı separates

†. The needed cover is as depicted in Figure 2. �

x

x

y

y

z

z

w

w

eı1

eı2

ı

Figure 2. In the left hand surface, the boundary components are glued in pairs to form a

closed connected surface z†. This has a regular degree 2 covering map to the right hand

surface †; the deck group exchanges the top and bottom piece while �ipping them. The

preimage of ı is Qı1 t Qı2.

Finally, the most important construction for the proof of Lemma 2.1 is the follow-

ing.

Lemma 3.4. Let†0 be a closed surface whose genus is at least 2. Fix a hyperbolic

metric on †0 and let ..˛0; v0/; �0; .ˇ0; w0// be a curve-arc triple on †0. Set

n0 D i.˛0; ˇ0/. Assume that n0 � 2 and that neither Œ˛0� nor Œˇ0� vanishes.

Then for some q satisfying 1 � q � 2, there exists a tower

.†q; vq/ �! � � � �! .†0; v0/

of regular degree 2 based covers such that one of the following holds.
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� The curve-arc triple ..˛0; v0/; �0; .ˇ0; w0// has only a partially closed lift to

.†q; vq/, or

� The curve-arc triple ..˛0; v0/; �0; .ˇ0; w0// has a closed lift

..˛q; vq/; �q; .ˇq; wq//

to .†q; vq/ such that i.˛q ; ˇq/ � 25
28
n0.

The proof of Lemma 3.4 is di�cult and will be postponed until §4.

3.2. The proof of Lemma 2.1. All the pieces are now in place for the proof of

Lemma 2.1.

Proof of Lemma 2.1. We �rst recall the statement of Lemma 2.1. Let † be a

closed surface whose genus is at least 2. Fix a hyperbolic metric on † and let

..˛; v/; �; .ˇ; w// be a curve-arc triple on †. Set n D i.˛; ˇ/. Our goal is to show

that for some k satisfying

k �

´
2 log28=25.n/C 1 if n � 2,

3 if 0 � n � 1,

there exists a tower

.†k ; vk/ �! .†k�1; vk�1/ �! � � � �! .†0; v0/ D .†; v/ (2)

of regular degree 2 based covers such that ..˛; v/; �; .ˇ; w// has only a partially

closed lift to .†k; vk/. The proof is divided into two steps.

Step 1. Assume that neither Œ˛� nor Œˇ� vanishes. Then we can �nd a tower as

in (2) with

k �

´
2 log28=25.n/ if n � 2,

2 if 0 � n � 1.

The proof is by induction on n. Set .†0; v0/ D .†; v/ and ..˛0; v0/; �0; .ˇ0; w0// D
..˛; v/; �; .ˇ; w//.

Base cases. Suppose n D 0 or n D 1. We divide the veri�cation of these base

cases into three separate cases.

� n D 0 and Œ˛0� ¤ Œˇ0�. Lemma 3.1 implies that there exists a regular degree

2 cover .†1; v1/ ! .†0; v0/ such that ..˛0; v0/; �0; .ˇ0; w0// has only a

partially closed lift to .†1; v1/.
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� n D 0 and Œ˛� D Œˇ�. We �rst apply Lemma 3.2 to obtain a regular degree

2 cover .†1; v1/ ! .†0; v0/ such that ..˛0; v0/; �0; .ˇ0; w0// has a closed

lift ..˛1; v1/; �1; .ˇ1; w1// to .†1; v1/ satisfying Œ˛1� ¤ Œˇ1�. Lemma 3.1 then

implies that there is a regular degree 2 cover .†2; v2/ ! .†1; v1/ such that

..˛1; v1/; �1; .ˇ1; w1// has only a partially closed lift to .†2; v2/.

� n D 1. The F2-algebraic intersection numbers of Œ˛0� and Œˇ0� must be

1, so in particular we must have Œ˛0� ¤ Œˇ0�. Lemma 3.1 then implies

that there exists a regular degree 2 cover .†1; v1/ ! .†0; v0/ such that

..˛0; v0/; �0; .ˇ0; w0// has only a partially closed lift to .†1; v1/.

Inductive step. Now assume that n � 2 and that the claim is true for all smaller

values of n. Let

.†`; v`/ �! � � � �! .†0; v0/

be the tower of regular degree 2 covers provided by Lemma 3.4, so 1 � ` � 2.

If ..˛0; v0/; �0; .ˇ0; w0// has only a partially closed lift to .†`; v`/, then we are

done. Otherwise, let ..˛`; v`/; �`; .ˇ`; w`// be the lift of ..˛0; v0/; �0; .ˇ0; w0// to

.†`; v`/. Set n` D i.˛`; ˇ`/, so n` � 25
28
n. By induction, for some k � ` satisfying

k � ` �

´
2 log28=25.n`/ if n` � 2,

2 if 0 � n` � 1,

there exists a tower of regular degree 2 covers

.†k ; vk/ �! � � � �! .†`; v`/

such that ..˛`; v`/; �`; .ˇ`; w`// has only a partially closed lift to .†k ; vk/.

We claim that

.†k; vk/ �! � � � �! .†0; v0/

is the desired tower of regular degree 2 covers. The only thing that needs veri�-

cation is the bound on k. There are two cases. If n` � 1, then k � ` � 2, and

thus

k � `C 2 � 2C 2 � 2 log28=25.2/ � 2 log28=25.n/;

as desired. Otherwise, n` � 2. Hence k � ` � 2 log28=25.n`/ and

k � `C 2 log28=25.n`/ � 2C 2 log28=25

�25
28
n
�

D 2 log28=25.n/;

as desired.

Step 2. Assume that at least one of Œ˛� and Œˇ� vanishes. Then we can �nd a tower

as in (2) with

k �

´
2 log28=25.n/C 1 if n � 2,

3 if 0 � n � 1.
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We will give the details for the case where Œ˛� D 0; the case Œˇ� D 0 is similar.

Lemma 3.3 implies that there exists a regular degree 2 cover .†1; v1/ ! .†0; v0/

such that the based lift .˛1; v1/ is a closed curve satisfying Œa1� ¤ 0. Let

..˛1; v1/; �1; .ˇ1; w1// be the lift of ..˛0; v0/; �0; .ˇ0; w0/ to .†1; v1/. If ˇ1 is not a

closed curve, then ..˛0; v0/; �0; .ˇ0; w0/ has only a partially closed lift to .†1; v1/

and we are done. We can therefore assume that ˇ1 is closed. If Œˇ1� D 0, then we

can apply Lemma 3.1 to obtain a regular degree 2 cover .†2; v2/ ! .†1; v1/ such

that ..˛1; v1/; �1; .ˇ1; w1// has only a partially closed lift to .†2; v2/, and we are

done. We can assume therefore that Œˇ1� ¤ 0. The desired tower of covers is then

obtained by applying Step 1 to ..˛1; v1/; �1; .ˇ1; w1// and .†1; v1/. �

4. Eliminating 3=28 of the intersections

This section is devoted to the proof of Lemma 3.4. The skeleton of the proof is

in §4.1. This skeleton depends on two lemmas which are proven in §4.2 and §4.3.

4.1. Skeleton of the proof of Lemma 3.4. We begin with some de�nitions. Fix

a closed surface † and equip † with a hyperbolic metric. Let ..˛; v/; �; .ˇ; w//

be a curve-arc triple on †. A ˇ-arc of ˛ is a subarc of ˛ both of whose endpoints

lie in ˇ. A ˇ-arc � of ˛ de�nes in a natural way an element Œ��ˇ in the relative

homology group H1.†; ˇIF2/; we will call � a good ˇ-arc if Œ��ˇ ¤ 0 and a bad

ˇ-arc if Œ��ˇ D 0. A set A of ˇ-arcs of ˛ will be called a set of disjoint ˇ-arcs of

˛ if for all distinct �;�0 2 A, we have � \ �0 D ;. If A is a set of disjoint ˇ-arcs

of ˛, then de�ne

A
g D ¹� 2 A j � is goodº and A

b D ¹� 2 A j � is badº;

so A D A
g t A

b.

The following lemma shows that we can eliminate intersections using half of

the good ˇ-arcs of ˛. The reason for our notation will become clear during the

proof of Lemma 3.4 below.

Lemma 4.1. Let†1 be a closed surface equipped with a hyperbolic metric and let

..˛1; v1/; �1; .ˇ1; w1// be a curve-arc triple on †1. Assume that Œ˛1� D Œˇ1� ¤ 0.

Set n1 D i.˛1; ˇ1/. Let A1 be a set of disjoint ˇ1-arcs of ˛1. Then there exists a

regular degree 2 cover .†2; v2/ ! .†1; v1/ such that ..˛1; v1/; �1; .ˇ1; w1// has

a closed lift ..˛2; v2/; �2; .ˇ2; w2// with the following property.

� Set n2 D i.˛2; ˇ2/. Then n2 � n1 � 1
2
jA

g
1j.

The proof of Lemma 4.1 is in §4.2. It will turn out that an appropriate “random”

cover will do the job.
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Unfortunately, it is possible for most of the arcs in a set of disjoint ˇ-arcs of ˛

to be bad. The following lemma shows that we can pass to a cover that makes at

least some of the arcs good (or, even better, eliminates some of the intersections).

See the remark following the lemma for an explanation of the inequalities in its

conclusion.

Lemma 4.2. Let†0 be a closed surface equipped with a hyperbolic metric and let

..˛0; v0/; �0; .ˇ0; w0// be a curve-arc triple on †0. Assume that Œ˛0� D Œˇ0� ¤ 0.

Set n0 D i.˛0; ˇ0/. Let A0 be a set of disjoint ˇ0-arcs of ˛0. Then there exists a

regular degree 2 cover .†1; v1/ ! .†0; v0/ such that ..˛0; v0/; �0; .ˇ0; w0// has

a closed lift ..˛1; v1/; �1; .ˇ1; w1// with the following property.

� Set n1 D i.˛1; ˇ1/. Then there exists a set A1 of disjoint ˇ1-arcs of ˛1 and

some r � 0 such that

jA
g
1j � jA

g
0j C

3

7
jAb

0j � r and n1 � n0 � r: (3)

The proof of Lemma 4.2 is in §4.3. Again, we will see that a suitable “random”

cover has the property we seek.

Remark. The meaning of the inequalities in (3) is that A
g
1 is made up of pieces

corresponding to A
g
0 (the old good arcs) and 3

7
of Ab

0 (the old bad arcs), minus

some number r of arcs that correspond to eliminated intersections.

We now show how to derive Lemma 3.4 from Lemmas 4.1–4.2.

Proof of Lemma 3.4. We begin by recalling the statement. We are given a closed

surface †0 whose genus is at least 2 which is equipped with a hyperbolic metric.

Also, we are given a curve-arc triple ..˛0; v0/; �0; .ˇ0; w0// on †0. Setting n0 D
i.˛0; ˇ0/, we are given that n0 � 2 and that neither Œ˛0� nor Œˇ0� vanishes. Our

goal is to prove that for some ` satisfying 1 � ` � 2, there exists a tower

.†`; v`/ �! � � � �! .†0; v0/

of regular degree 2 based covers such that one of the following holds.

� The curve-arc triple ..˛0; v0/; �0; .ˇ0; w0// has only a partially closed lift to

.†`; v`/, or

� The curve-arc triple ..˛0; v0/; �0; .ˇ0; w0// has a closed lift

..˛`; v`/; �`; .ˇ`; w`//

to .†`; v`/ such that i.˛`; ˇ`/ � 25
28
n0.
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First, if Œ˛0� ¤ Œˇ0�, then Lemma 3.1 says that there exists a regular degree 2

cover .†1; v1/ ! .†0; v0/ such that ..˛0; v0/; �0; .ˇ0; w0// has only a partially

closed lift to .†1; v1/, and we are done. We can assume therefore that Œ˛0� D Œˇ0�.

This implies that n0 D i.˛0; ˇ0/ � 2 must be an even number. We can there-

fore �nd a set A0 of disjoint ˇ0-arcs of ˛0 such that jA0j D n0=2. We then ap-

ply Lemma 4.2 to get a regular degree 2 cover .†1; v1/ ! .†0; v0/ such that

..˛0; v0/; �0; .ˇ0; w0// has a closed lift ..˛1; v1/; �1; .ˇ1; w1//. The lemma also

gives a set A1 of disjoint ˇ1-arcs of ˛1 such that for some r � 0,

jA
g
1j � jA

g
0j C

3

7
jAb

0j � r and n1 � n0 � r;

where n1 D i.˛1; ˇ1/.

Again, if Œ˛1� ¤ Œˇ1�, then Lemma 3.1 says that there exists a regular degree 2

cover .†2; v2/ ! .†1; v1/ such that ..˛1; v1/; �1; .ˇ1; w1// has only a partially

closed lift to .†2; v2/, and we are done. We can assume therefore that Œ˛1� D Œˇ1�.

Lemma 4.1 thus gives a regular degree 2 cover .†2; v2/ ! .†1; v1/ such that

..˛1; v1/; �1; .ˇ1; w1// has a closed lift ..˛2; v2/; �2; .ˇ2; w2// satisfying

i.˛2; ˇ2/ � n1 �
1

2
jA

g
1j � .n0 � r/ �

1

2

�
jA

g
0j C

3

7
jAb

0j � r
�

� n0 �
1

2

�
jA

g
0j C

3

7
jAb

0j
�

� n0 �
1

2

�3
7

jA0j
�

D n0 �
1

2

�3
7

�1
2
n0

��

D
25

28
n0;

as desired. �

4.2. Resolving intersections using good arcs. To prove Lemma 4.1, we need

the following lemma.

Lemma 4.3. Let Ev1; : : : ; Evm 2 F
n
2 be nonzero vectors (not necessarily distinct).

Then there exists a linear map f WFn
2 ! F2 such that f .Evi/ D 1 for at least half

of the Evi , i.e. such that ¹i j 1 � i � m, f .Evi/ D 1º has cardinality at least m=2.

Proof. Let � be the probability space consisting of all linear maps F
n
2 ! F2,

each given equal probability. Let XW� ! R be the random variable that takes

f 2 � to the cardinality of the set ¹i j 1 � i � m, f .Evi/ D 1º. We will prove that

the expected value E.X/ of X is m=2, which clearly implies that there exists some

element f 2 � such that X.f / � m=2.
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To prove the desired claim, for 1 � i � m let Xi W� ! R be the random

variable that takes f 2 � to 1 if f .Evi / D 1 and to 0 if f .Evi / D 0. Viewing Evi as

an element of the double dual .Fn
2/

��, the kernel of Evi consists of exactly half of

the elements of .Fn
2/

�. This implies E.Xi / D 1=2. Using linearity of expectation

(which, recall, does not require that the random variables be independent), we get

that

E.X/ D E
� mX

iD1

Xi

�
D

mX

iD1

E.Xi / D
mX

iD1

1

2
D
m

2
;

as desired. �

Remark. One can give a (somewhat more complicated) non-probabilistic proof

of Lemma 4.3; however, we do not know a non-probabilistic proof of Lemma 4.6

below, which is needed for the proof of Lemma 4.2.

Proof of Lemma 4.1. We start by recalling the setup. We are given a closed surface

†1 equipped with a hyperbolic metric and a curve-arc triple ..˛1; v1/; �1; .ˇ1; w1//

on †1 such that Œ˛1� D Œˇ1� ¤ 0. We are also given a set A1 of disjoint

ˇ1-arcs of ˛1. Letting n1 D i.˛1; ˇ1/, our goal is to construct a regular degree 2

cover .†2; v2/ ! .†1; v1/ such that ..˛1; v1/; �1; .ˇ1; w1// has a closed lift

..˛2; v2/; �2; .ˇ2; w2// satisfying

i.˛2; ˇ2/ � n1 �
1

2
jA

g
1j:

Lemma 4.3 implies that there exists a linear map

�W H1.†1; ˇ1IF2/ �! F2

such that ¹� 2 A
g
1 j �.Œ��ˇ1

/ D 1º has cardinality at least 1
2
jA

g
1j. Let

 W H1.†1IF2/ �! F2

be the composition of � with the natural map H1.†1IF2/ ! H1.†1; ˇ1IF2/

and let .†2; v2/ ! .†1; v1/ be the regular 2-fold cover associated to  . Since

 .Œˇ1�/ D 0 and Œ˛1� D Œˇ1�, the curve-arc triple ..˛1; v1/; �1; .ˇ1; w1// has a

closed lift ..˛2; v2/; �2; .ˇ2; w2// to .†2; v2/.

It remains to prove that i.˛2; ˇ2/ � n1 � 1
2
jA

g
1j. Regarding S1 as the unit

circle in C, parametrize ˛1 via a continuous map f1W .S1; 1/ ! .†1; v1/. De�ne

I1 D ¹� 2 S1 j f1.�/ 2 ˇ1º. Since ˛1 and ˇ1 are hyperbolic geodesics, we have

n1 D jI1j. Lift f1 to a map f2W .S1; 1/ ! .†2; v2/ whose image is ˛2 and de�ne

I2 D ¹� 2 S1 j f2.�/ 2 ˇ2º. Again, since ˛2 and ˇ2 are hyperbolic geodesics, we

must have i.˛2; ˇ2/ D jI2j. Also, by construction we have I2 � I1. It is enough,

therefore, to prove that jI1 n I2j � 1
2
jA

g
1j.
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To do this, it is enough to prove that

jI1 n I2j � j¹� 2 A
g
1 j �.Œ��ˇ1

/ D 1ºj: (4)

Consider � 2 A
g
1 such that �.Œ��ˇ1

/ D 1. There exist �; � 0 2 I1 such that � begins

at f1.�/ and ends at f1.�
0/. To prove (4), it is enough to prove that at most one of

� and � 0 lie in I2. Assume otherwise, so �; � 0 2 I2. Let Q� be the oriented arc of ˛2

beginning at f2.�/ and ending at f2.�
0/ and covering �. Also, let Q� be one of the

two oriented arcs of ˇ2 beginning at f2.�
0/ and ending at f2.�/. Then Q� covers

an oriented arc � of ˇ1 beginning at f1.�
0/ and ending at f1.�/. The closed loop

� � � on †1 lifts to the closed loop Q� � Q� on †2, so  .Œ� � ��/ D 0. However, we

also have

 .Œ� � ��/ D �.Œ��ˇ1
/ D 1;

a contradiction. �

4.3. Lifting bad arcs to good arcs. We begin by clarifying the topological

nature of bad arcs.

Lemma 4.4. Let† be a closed surface equipped with a hyperbolic metric and let

..˛; v/; �; .ˇ; w// be a curve-arc triple on †. Assume that Œ˛� D Œˇ� ¤ 0. Also, let

� be a bad ˇ-arc of ˛ which goes from p1 2 ˛\ˇ to p2 2 ˛\ˇ. Then there exists

an oriented arc � of ˇ which goes from p2 to p1 with the following properties.

� The closed curve � � � is a separating simple closed curve which is not

nullhomotopic.

� The curve � � � is isotopic to a curve which is disjoint from ˇ.

Proof. There are two arcs � and �0 of ˇ going from p2 to p1. The elements

Œ� � ��; Œ� � �0� 2 H1.†IF2/ both map to Œ��ˇ 2 H1.†; ˇIF2/, which vanishes

by assumption. It follows that Œ� � �� and Œ� � �0� both lie in the kernel of the map

H1.†IF2/ ! H1.†; ˇIF2/, which consists of 0 and Œˇ�. Letting N�0 be �0 traversed

in the opposite direction, we have

Œ� � ��� Œ� � �0� D Œ� � N�0� D Œˇ�:

We conclude that either Œ� � �� or Œ� � �0�must be 0; relabeling, we can assume that

Œ� ��� D 0. The curve � �� is a simple closed curve which is nullhomologous over

F2. It is not hard to see that this implies that � �� is in fact nullhomologous overZ,

i.e. that � �� is a separating simple closed curve (the key point here being that � ��
is simple). If � � � were nullhomotopic, then it would bound a disc. This would

imply that ˛ and ˇ could be homotoped so as to intersect fewer times, which is

impossible since they are hyperbolic geodesics.
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It remains to prove that � � � is isotopic to a curve which is disjoint from ˇ.

The algebraic intersection number of � �� and ˇ is 0 since � �� is nullhomologous.

If the signs of the intersections of ˛ and ˇ at p1 and p2 were the same, then � � �
would have algebraic intersection number 1 with ˇ (see Figure 3.a), so those signs

must be opposite. The desired result now follows from Figure 3.b. �

ˇ

�

ˇ

�

a b

Figure 3. a. On the left is a local picture of � and ˇ when the signs of the intersections of

˛ and ˇ are the same at p1 and p2. On the right is shown an isotopy of � � � indicating the

algebraic intersection number is 1 between � � � and ˇ. b. On the left is a local picture

of � and ˇ when the signs of the intersections of ˛ and ˇ are di�erent at p1 and p2. On

the right is shown an isotopy of � � � indicating that � � � can be made disjoint from ˇ.

To “resolve” bad arcs into good arcs, we will need to lift separating curves to

nonseparating curves as in the following lemma. Note that if ı is a simple

closed separating curve on † which divides † into subsurfaces S and S 0, then

H1.†IF2/ D H1.S IF2/˚ H1.S
0IF2/.

Lemma 4.5. Let † be a closed surface and let ı be a simple closed separating

curve on † which divides † into subsurfaces S and S 0. Let �W H1.†IF2/ ! F2

be a linear map such that �jH1.S IF2/ ¤ 0 and �jH1.S 0IF2/ ¤ 0. Let z† ! † be the

regular 2-fold cover associated to �. Finally, let Qı be a component of the preimage

of ı in z†. Then Œ Qı� ¤ 0.

Proof. Let zS and zS 0 be the preimages in z† of S and S 0, respectively. The maps
zS ! S and zS 0 ! S 0 are 2-fold covering maps. Moreover (and this is the key

observation), the assumption that �jH1.S IF2/ ¤ 0 and �jH1.S 0IF2/ ¤ 0 implies that

both zS and zS 0 are connected. Since ı is a separating curve, we have Œı� D 0 and

thus �.Œı�/ D 0, which implies that the preimage of ı in z† has two components.

These two components are the boundary components of zS and zS 0, so we deduce

that both zS and zS 0 have two boundary components. The surface z† is obtained

by gluing the boundary components of zS to the boundary components of zS 0.

Consequently, Qı (which is one of those boundary components) does not separate
z†, so Œ Qı� ¤ 0. �



788 J. Malestein and A. Putman

We thus need to construct linear maps H1.†IF2/ ! F2 which are nontrivial on a

large number of splittings of H1.†IF2/. We will do this with the following lemma,

which plays the same role in the proof of Lemma 4.2 that Lemma 4.3 played in

the proof of Lemma 4.1.

Lemma 4.6. Fix some n � 3. For 1 � i � m, let Vi ; Wi � F
n
2 be nontrivial

subspaces such that Fn
2 D Vi ˚Wi . Then there exists a linear map f WFn

2 ! F2

such that ¹i j 1 � i � m, f jVi
¤ 0, f jWi

¤ 0º has cardinality at least 3
7
m.

Proof. Let � be the probability space consisting of all nonzero linear maps

F
n
2 ! F2, each given equal probability. LetXW� ! R be the random variable that

takes f 2 � to the cardinality of the set ¹i j 1 � i � m, f jVi
¤ 0, f jWi

¤ 0º. We

will prove that the expected value E.X/ of X is at least 3
7
m, which clearly implies

that there exists some element f 2 � such that X.f / � 3
7
m.

To prove the desired claim, for 1 � i � m let Xi W� ! R be the random

variable that takes f 2 � to 1 if f jVi
; f jWi

¤ 0 and to 0 if f jVi
D 0 or f jWi

D 0.

Using linearity of expectation, we have

E.X/ D E
� mX

iD1

Xi

�
D

mX

iD1

E.Xi /:

Fixing some 1 � i � m, it is therefore enough to prove that E.Xi / � 3=7, i.e. to

show that the probability that a random nonzero linear map f WFn
2 ! F2 satis�es

f jVi
; f jWi

¤ 0 is at least 3=7.

Set a D dim.Vi /, so 1 � a � n � 1 and dim.Wi/ D n � a. There are

2a � 1 (resp. 2n�a � 1) nonzero linear maps Vi ! F2 (resp. Wi ! F2). This

implies that there are .2a � 1/.2n�a � 1/ linear maps f WFn
2 ! F2 such that

f jVi
; f jWi

¤ 0. Since there are 2n � 1 nonzero linear maps F
n
2 ! F2, we

deduce that the probability that a random nonzero linear map f WFn
2 ! F2 satis�es

f jVi
; f jWi

¤ 0 is .2a�1/.2n�a�1/
2n�1

. Lemma 4.7 below says that this is at least 3=7,

as desired. �

Lemma 4.7. Set D D ¹.a; n/ j n � 3 and 1 � a � n� 1º, and de�ne

�WD �! R

via the formula

�.a; n/ D
.2a � 1/.2n�a � 1/

2n � 1
:

Then � is bounded below by �.1; 3/ D 3=7.
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Proof. For a �xed n0 � 3, it is easy to see that the function a 7! �.a; n0/ de�ned

on the domain 1 � a � n0 � 1 attains its global minima at the boundary points

a D 1 and a D n0 � 1. Moreover, �.1; n0/ D �.n0 � 1; n0/. Finally, the function

n 7! �.1; n/ de�ned on the domain n � 3 achieves its global minimum at the point

n D 3. The lemma follows. �

We are �nally in a position to prove Lemma 4.2.

Proof of Lemma 4.2. We begin by recalling the setup. We are given a closed

surface †0 equipped with both a hyperbolic metric and a curve-arc triple

..˛0; v0/; �0; .ˇ0; w0// on †0 such that Œ˛0� D Œˇ0� ¤ 0. We are also given

a set A0 of disjoint ˇ0-arcs of ˛0. Our goal is to construct a regular degree 2

cover .†1; v1/ ! .†0; v0/ such that ..˛0; v0/; �0; .ˇ0; w0// has a closed lift

..˛1; v1/; �1; .ˇ1; w1// and there exists a set A1 of disjoint ˇ1-arcs of ˛1 and some

r � 0 satisfying

jA
g
1j � jA

g
0j C

3

7
jAb

0j � r and n1 � n0 � r;

where n1 D i.˛1; ˇ1/.

Write A
b
0 D ¹�1; : : : ; �jAb

0
jº. Using Lemma 4.4, we obtain oriented arcs

�1; : : : ; �jAb
0

j
of ˇ0 such that the following hold for 1 � i � jAb

0j.

� The arc �i begins at the endpoint of �i and ends at the beginning point of �i .

� The curve�i ��i is a simple closed separating curve isotopic to a curve disjoint

from ˇ0.

For 1 � i � jAb
0j, let Si and S 0

i be the two subsurfaces into which †0

is divided by �i � �i , ordered so that ˇ0 is isotopic into S 0
i . We thus have

H1.†0IF2/ D H1.Si IF2/ ˚ H1.S
0
i IF2/ and Œˇ0� 2 H1.S

0
i IF2/. Let X be the

quotient of H1.†0IF2/ by the span of Œˇ0�, so X Š H1.†0; ˇIF2/. Also, let Vi

and Wi be the projections to X of H1.Si IF2/ and H1.S
0
i IF2/, respectively. Thus

X D Vi ˚Wi . Lemma 4.6 implies that there exists a linear map �WX ! F2 such

that the set ¹i j 1 � i � jAb
0j, �jVi

¤ 0, �jWi
¤ 0º has cardinality at least 3

7
jAb

0j.
Let  W H1.†0IF2/ ! F2 be the composition of � with the projection

H1.†0IF2/ ! X and let .†1; v1/ ! .†0; v0/ be the regular 2-fold cover

associated to  . Since  .Œˇ0�/ D 0 and Œ˛0� D Œˇ0�, the curve-arc triple

..˛0; v0/; �0; .ˇ0; w0// has a closed lift ..˛1; v1/; �1; .ˇ1; w1// to .†1; v1/. De�ne

n1 D i.˛1; ˇ1/. Each arc in A0 lifts to an arc of ˛1; let B1 be the set of these arcs.

Not all of the elements of B1 are ˇ1-arcs. Let A1 D ¹� 2 B1 j � is a ˇ1-arcº.
Finally, de�ne r D jB1 n A1j.

We have constructed all of the objects claimed by the lemma. It remains

to verify the inequalities from its conclusion. Regarding S1 as the unit circle

in C, parametrize ˛0 via a continuous map f0W .S1; 1/ ! .†0; v0/. De�ne

I0 D ¹� 2 S1 j f0.�/ 2 ˇ0º. Since ˛0 and ˇ0 are hyperbolic geodesics, we have
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n0 D jI0j. Lift f0 to a map f1W .S1; 1/ ! .†1; v1/ whose image is ˛1 and de�ne

I1 D ¹� 2 S1 j f1.�/ 2 ˇ1º. Again, since ˛1 and ˇ1 are hyperbolic geodesics,

we must have n1 D jI1j. Also, by construction we have I1 � I0. The desired

inequality n1 � n0 � r is thus equivalent to the assertion that jI0 n I1j � r . This

follows immediately from the fact that the elements of B1 nA1 are exactly the arcs

of B1 at least one of whose endpoints is f1.�/ for some � 2 I0 n I1.

All that is left to do is to prove that

jA
g
1j � jA

g
0j C

3

7
jAb

0j � r: (5)

We �rst de�ne B
g
1 and B

b
1 to be the subsets of B1 that are lifts of elements of

A
g
0 and A

b
0, respectively. Next, de�ne rg D jB

g
1 n A1j and rb D jBb

1 n A1j,
so r D rg C rb. We have

jA
g
1j D jB

g
1 \ A

g
1j C jBb

1 \ A
g
1j: (6)

Moreover, it is clear from the de�nitions that B
g
1 \ A

g
1 D B

g
1 \ A1, so

jB
g
1 \ A

g
1j D jB

g
1 \ A1j D jA

g
0j � rg: (7)

Combining (6) and (7), we see that (5) is equivalent to the assertion that

jBb
1 \ A

g
1j �

3

7
jAb

0j � rb; (8)

which we will now prove.

Recall that we have enumerated A
b
0 as ¹�1; : : : ; �jAb

0
j
º. For 1 � i � jAb

0j, let

the lift of�i to ˛1 be Q�i 2 B
b
1. We know that exactly rb elements of ¹ Q�1; : : : ; Q�

jAb
0

j
º

do not lie in A1. Also, we know that the set ¹i j 1 � i � jAb
0j, �jVi

¤ 0, �jWi
¤ 0º

has cardinality at least 3
7
jAb

0j. We conclude that the set

C WD ¹ Q�i j 1 � i � jAb
0j, �jVi

¤ 0, �jWi
¤ 0, Q�i 2 A1º � B

b
1

has cardinality at least 3
7
jAb

0j � rb. To prove (8), therefore, it is enough to prove

that C � A
g
1.

Consider some Q�i 2 C. The endpoints of Q�i lie in ˇ1 by construction. Let Q�i

be the lift of �i to ˇ1 where �i is the curve constructed in the second paragraph.

Lemma 4.5 implies that Œ Q�i � Q�i � ¤ 0. Also, we know that Œ Q�i � Q�i � projects to

Œ�i � �i � D 0 in H1.†0IF2/, and Œˇ1� projects to Œˇ0� ¤ 0. We deduce that

Œ Q�i � Q�i � ¤ Œˇ1�. Since Œ Q�i �ˇ1
is the projection of Œ Q�i � Q�i � to H1.†1; ˇ1IF2/, we

conclude that Œ Q�i �ˇ1
¤ 0, i.e. that Q�i is a good ˇ1-arc of ˛1 and thus an element

of A
g
1, as desired. �
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Appendix A. Surfaces with boundary

In this appendix, we prove the following theorem. It generalizes Theorem B to

surfaces with boundary.

Theorem C. Let † be a compact orientable surface of genus g with b � 1

boundary components. Assume that 2g C b � 3. Let ˛ and ˇ be nonisotopic

oriented simple closed curves on †. Assume that for some d � 7 the conjugacy

classes in �1.†/=d .�1.†// associated to ˛ and ˇ are the same. Then

i.˛; ˇ/ �
�d C 2

2

�c

;

where c D ln.28=25/
ln.4/

.

Remark. In the exceptional cases where 2g C b < 3, the theorem would be

vacuous.

We begin with an elementary lemma.

Lemma A.1. Let † be an orientable compact surface of genus g � 0 with b � 1

boundary components. Assume that 2g C b � 3. Let ˛ and ˇ be nonisotopic

simple closed curves on †. Then there is a closed surface †0 of genus at least 2

and an embedding f W † ,! †0 such that f .˛/ and f .ˇ/ are nonisotopic on †0.

Proof. Let †0 be the double of †, i.e. let †0 D .†� ¹0º [†� ¹1º/= �, where we

identify .x; 0/ � .x; 1/ for all x 2 @†. Then †0 is a closed orientable surface

of genus at least 2. Moreover, there is a retraction r W †0 ! † de�ned by

r..x; i// D x.

Suppose for the sake of contradiction that f .˛/ and f .ˇ/were isotopic curves

on †0. Then ˛ D r.f .˛// is homotopic to ˇ D r.f .ˇ// on †. Since homotopic

simple closed curves on a surface are isotopic (see, e.g., [5, Proposition 1.10]), this

is a contradiction. �

Proof of Theorem C. Let†0 and f be as in Lemma A.1 and let f� be the induced

homomorphism on �1. Then f�.d .�1.†/// � d .�1.†
0//, and so there is an

induced map �1.†/=d .�1.†// ! �1.†
0/=d .�1.†

0//. This implies that f .˛/

and f .ˇ/ have the same conjugacy class in �1.†
0/=d .�1.†

0//. Moreover, it

is clear that i.˛; ˇ/ � i.f .˛/; f .ˇ//, and from the lemma f .˛/ and f .ˇ/ are

nonisotopic. By Theorem B,

i.˛; ˇ/ � i.f .˛/; f .ˇ// �
�d C 2

2

�c

: �
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