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Abstract. In this article we will describe a �nitely presented subgroup of the group of

piecewise projective homeomorphisms of the real projective line. �is in particular pro-

vides a new example of a �nitely presented group which is nonamenable and yet does not

contain a nonabelian free subgroup. It is in fact the �rst such example which is torsion free.

We will also develop a means for representing the elements of the group by labeled tree

diagrams in a manner which closely parallels Richard �ompson’s group F .
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1. Introduction

�e notion of an amenable group was introduced by John von Neumann as an
abstract means for preventing the existence of paradoxical decompositions of the
group: a discrete group is amenable if it admits a �nitely additive translation in-
variant probability measure. At the heart of Banach and Tarski’s paradoxical de-
composition of the sphere is the existence of a paradoxical decomposition of the
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concerning Monod’s example in [14] which took place while the author was visiting Université
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free group on two generators. Since subgroups of amenable groups are easily seen
to be amenable, it is natural to ask whether every nonamenable group contains a
free group on two generators. Day was the �rst to pose this problem in print [7],
where he attributed it to John von Neumann.

In 1980, Ol’shanskii solved the von Neumann-Day problem by producing a
counterexample [16]. Soon after, Adyan showed that certain Burnside groups are
also counterexamples [1][2]. �ese examples are not �nitely presented and the re-
striction of the von Neumann-Day problem to the class of �nitely presented groups
remained open until Ol’shanskii and Sapir constructed an example in 2003 [17].
Shortly after, Ivanov published another �nitely presented counterexample [11], that
is somewhat simpler but similar in spirit to the Ol’shanskii-Sapir example. Both
examples were produced by elaborate inductive constructions and are di�cult to
analyze. It is also interesting to note that both of these examples are based on the
constructions of nonamenable torsion groups (they are torsion-by-cyclic) and in
particular are far from being torsion free.

In his recent article [14], Monod produced a new family of counterexamples to
the von Neumann-Day problem. �ey are all subgroups of the group H consisting
of all piecewise projective transformations of the real projective line which �x the
point at in�nity. Monod demonstrated that H does not contain nonabelian free
subgroups by adapting the method of Brin and Squier [4].

In this article, we will isolate a �nitely presented nonamenable subgroup of
Monod’s group H . To our knowledge, this provides the �rst �nitely presented tor-
sion free counterexample to the von Neumann-Day problem. Moreover, our pre-
sentations for this group are very explicit: it has a presentation with 3 generators
and 9 relations as well as a natural in�nite presentation. �e group is generated
by a.t/ D t C 1 together with the following two homeomorphisms of R:

b.t/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

t if t � 0;

t

1 � t
if 0 � t � 1

2
;

3 � 1

t
if

1

2
� t � 1;

t C 1 if 1 � t;

c.t / D

8

<

:

2t

1 C t
if 0 � t � 1;

t otherwise.

�e main result of this paper is the following.

�eorem 1.1. �e group G0 generated by the functions a.t/, b.t/, and c.t/ is
nonamenable and �nitely presented.
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Since it is a subgroup of H , G0 does not contain a nonabelian free subgroup.
We claim no originality in our proof that G0 is nonamenable; this is a routine
modi�cation of the methods of [14] which in turn relies on [6] and [9].

It is interesting to note that, by an unpublished result of �urston, a.t/ and
b.t/ generate the subgroup P.Z/ � H , consisting of those homeomorphisms
which are C 1 and piecewise PSL2.Z/. He moreover observed that this group is
isomorphic to Richard �ompson’s group F . Remarkably, the methods of [14]
easily show that t 7! t C 1=2 and b.t/ generate a nonamenable group, although
at present it is unclear whether this group is �nitely presented. In spite of the
apparent strong parallels between the groups ha; b; ci and ht 7! t C 1=2; bi and
�ompson’s F , however, neither [14] nor the present article seems to shed any
light on whether or not F is amenable.

�e paper is organized as follows. Section 2 contains a review of some of
the preliminaries we will need later in the paper. Both an in�nite and a �nite
presentation are described in Section 3 and it is demonstrated there how to prove
that the �nite presentation generates the in�nite presentation. Tree diagrams for
elements of the group are developed in Section 4. Finally, Section 5 contains
a proof that the relations isolated in Section 3 su�ce to give a presentation for
ha; b; ci.

2. Preliminaries

Our analysis of the group G0 will closely parallel the now well-established analysis
of �ompson’s group F . �e group F was �rst introduced in [13] where, among
other things, it was established that F is �nitely presented. We direct the reader
to the standard reference [3] for the properties of F ; additional information can
be found in [5]. We shall mostly follow the notation and conventions of [3] [4].

We recall that ! denotes the set of natural numbers, including 0; in particular
all counting will start at 0. Let 2! denote the collection of all in�nite binary se-
quences and let 2<! denote the collection of all �nite binary sequences. If i 2 !

and u is a binary sequence of length at least i , we will let u � i denote the initial
part of u of length i . If s and t are �nite binary sequences, then we will write
s � t if s is an initial segment of t and s � t if s is a proper initial segment of t .
If neither s � t nor t � s, then we will say that s and t are incompatible. �e set
2<! is equipped with a lexicographic order de�ned by s <lex t if t � s or s and
t are incompatible and s.i/ < t.i/ where i is minimal such that s.i/ ¤ t .i/. If s

and t are incompatible �nite binary sequences such that s <lex t and yet there is
no u incompatible with both s and t such that s <lex u <lex t , then we say that s

and t are consecutive.
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If s and t are two sequences (s is �nite but t may be in�nite), then sat will
be used to denote the concatenation of s and t . In some circumstances, a will
be omitted; for instance we will often write s01 instead of sa01. If � and � are
in�nite sequences, then we will say that � and � are tail equivalent if there are s,
t , and � such that � D sa� and � D ta�. Given an in�nite sequence s, Qs is the
sequence satisfying Qs.i/ D 0 if s.i/ D 1 and Qs.i/ D 1 if s.i/ D 0. �e constant
sequences 000:::; 111::: are denoted by N0; N1 respectively.

Let T denote the collection of all �nite rooted ordered binary trees. More
concretely, we view elements T of T as pre�x sets – those sets T of �nite binary
sequences with the property that every in�nite binary sequence has a unique initial
segment in T . Observe that each element of T is �nite and, for each m, there are
only �nitely many elements of T with m elements. �ere is also a natural partial
ordering on T, which we will refer to as dominance: if every element of S has an
extension in T , then we say that S is dominated by T . Notice that if S is dominated
by T , then jS j � jT j. If A is a �nite set of binary sequences, then there is a unique
minimal element T of T (with respect to the order of dominance) such that every
element of A has an extension in T .

A tree diagram is a pair .L; R/ of elements of T with the property that
jLj D jRj. A tree diagram describes a map of in�nite binary sequences as fol-
lows:

si
a� 7�! ti

a�

where si and ti are the i th elements of L and R, respectively, in the lexicographic
order and � is any binary sequence. �e collection of all such functions from 2! to
2! de�ned in this way is �ompson’s group F . Notice that the function associated
to a tree diagram is also de�ned on any �nite binary sequence u such that u has a
pre�x in L. We will follow [4] and write s:f for the result of applying a function
f to the input s. Notice that this de�nes a partial action of F on the set of �nite
binary sequences: s:.fg/ D .s:f /:g, provided that all quantities are de�ned.

�ompson’s group F is generated by the following functions.

�:a D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0� if � D 00�;

10� if � D 01�;

11� if � D 1�;

�:b D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

0� if � D 0�;

10� if � D 100�;

110� if � D 101�;

111� if � D 11�:

Recall that the real projective line is the set of all lines inR2 which pass through
the origin. Such lines can naturally be identi�ed with elements of R [ ¹1º via
the x-coordinate of their intersection with the line y D 1. In this article it will be
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useful to represent points on the real projective line by binary sequences derived
from their continued fractions expansion. De�ne a map ˆ W 2! ! R [ ¹1º as
follows. First de�ne � W 2! ! Œ0; 1� by

�.0�/ D 1

1 C 1
�.�/

�.1�/ D 1 C �.�/

and set

ˆ.0�/ D ��. Q�/ ˆ.1�/ D �.�/:

�is function is one-to-one except at � which are eventually constant. On se-
quences which are eventually constant, the map is two-to-one: ˆ.s0 N1/ D ˆ.s1 N0/
and ˆ. N0/ D ˆ. N1/ D 1.

In the mid 1970s, �urston observed that the functions a and b from the in-
troduction become the generators a and b for �ompson’s group F de�ned above
when “conjugated” by ˆ. Moreover, the elements of F correspond exactly to those
homeomorphisms f of R which are piecewise PSL2.Z/ and which have continu-
ous derivatives. We will generally take the viewpoint that ˆ provides just another
way of describing the real projective line, just as decimal expansions allow us to
describe real numbers. In particular, we will regard the de�nitions of a and b in
the introduction and the de�nitions given above in terms of sequences as being
two ways of describing the same functions.

Since we will be proving that a group is �nitely presented, it will be necessary
to deal with formal words over formal alphabets. If G is a group and A is a subset of
G, an A-word is a �nite sequence of elements of the set A�.Zn¹0º/. We typically
denote a pair .a; n/ as an, but we emphasize here that it is formally distinct from
the group element an. �e word length of an A-word is the sum of the absolute
values of the exponents which occur in it.

In order to prove the nonamenability of G0, we will need to employ Zimmer’s
theory of amenable equivalence relations. Let X be a Polish space and let E � X2

be an equivalence relation which is Borel and which has countable equivalence
classes. E is �-amenable if, after discarding a �-measure 0 set, E is the orbit
equivalence relation of an action of Z. (�is is not the standard de�nition, but it
is equivalent by [6].) We will need the following two results.

�eorem 2.1. [21] If � is a countable amenable group acting by Borel automor-
phisms on a Polish space X and � is any �-�nite Borel measure on X , then the
orbit equivalence relation is �-amenable.



182 Y. Lodha and J. T. Moore

�eorem 2.2. [9] (see also [15]) If � is a countable dense subgroup of PSL2.R/,
then the action of � on the real projective line induces an orbit equivalence rela-
tion which is not amenable with respect to Lebesgue measure.

We refer the reader to [12] and [15] for further information on amenable equiva-
lence relations.

We will conclude this section by sketching a proof that the group G0 from the
introduction is nonamenable. Let K denote the subgroup of PSL2.R/ generated
by the matrices

 

1 1

0 1

!

;

 

0 1

�1 0

!

;

0

@

p
2 0

0
1p
2

1

A :

Viewed as fractional linear transformations, K is generated by t C1, 2t , and �1=t .
Since K contains PSL2.Z/ as a proper subgroup, it is dense in PSL2.R/ and hence
by �eorem 2.2, the orbit equivalence relation of its action on the real projective
line is not amenable with respect to Lebesgue measure. By �eorem 2.1, it is
su�cient to show that G0 induces the same orbit equivalence relation on R n Q.
To see this, it can be veri�ed that the element bca�1c�1a coincides with t 7! 2t

on the interval Œ0; 1�. From this and the identity 2.r � n/ C 2n D 2r it follows
that the orbits of G0 include the orbits of the action of ht 7! t C 1; t 7! 2ti on
R n Q. Finally aba and ba�3 coincide with t 7! �1=t on the intervals Œ�1; �1=2�

and Œ1=2; 1� respectively. �e assertion about orbits now follows from the fact that
for any r 2 R, there is a n 2 Z such that 2nr is in Œ�1; �1=2� [ Œ1=2; 1� and
.2n/.�1=.2nr// D �1=r .

3. �e presentations

In this section we will describe both a �nite and in�nite presentation of the group
G0 de�ned in the introduction. We start with the following two primitive functions
de�ned on in�nite binary sequences:

�:x D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0� if � D 00�;

10� if � D 01�;

11� if � D 1�;

�:y D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0.�:y/ if � D 00�

10.�:y�1/ if � D 01�;

11.�:y/ if � D 1�:

(�e function x is nothing but the function a described in the previous section.)
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From these functions, we de�ne families of functions xs .s 2 2<!/ and ys

.s 2 2<!/ which act just as x and y, but localized to those binary sequences
which extend s.

�:xs D

8

<

:

sa.�:x/ if � D sa�;

� otherwise,

�:ys D

8

<

:

sa.�:y/ if � D sa�;

� otherwise.

If s is the empty-string, it will be omitted as a subscript. �e functions xs are
elements of F and, by the discussion in the previous section, de�ne partial maps
on 2<! . Notice that t:xs is de�ned exactly when t has a pre�x in ¹s00; s01; s1º or
else is incompatible with s (equivalently t:xs is de�ned exactly when t is not an
initial part of s0).

�e relationship between these functions and the functions a, b, and c of the
introduction is expressed by the following proposition.

Proposition 3.1. For all � in 2! , �.�:y/ D 2�.�/ and

ˆ.�/:a D ˆ.�:x/;

ˆ.�/:b D ˆ.�:x1/;

ˆ.�/:c D ˆ.�:y10/:

Remark 3.2. �e e�ects of doubling on continued fractions, which is closely
related to the identity ˆ.�/:c D ˆ.�:y10/, was �rst worked out by Hurwitz [10].
Raney introduced transducers for making calculations such as these in [19].

Proof. We will only prove the identities �.�:y/ D 2�.�/ and ˆ.�/:c D ˆ.�:y10/;
the remaining veri�cations are similar and left to the reader. We will �rst verify
the identity �.�:y/ D 2�.�/. Observe that, since � and y are continuous, it su�ces
to verify this equality for sequences which are eventually constant. �e proof is
now by induction on the minimum digit beyond which the sequence is constant.
For the base case we have

�. N0:y/ D �. N0/ D 0 D 2 � 0

and

�. N1:y/ D �. N1/ D 1 D 2 � 1:



184 Y. Lodha and J. T. Moore

In the inductive step, we have three cases:

�.00�:y/ D �.0.�:y//

D 1

1 C 1

�.�:y/

D 1

1 C 1

2�.�/

D 2

2 C 1

�.�/

D 2�.00�/;

�.01�:y/ D �.10.�:y�1//

D 1 C 1

1 C 1

�.�:y�1/

D 1 C 1

1 C 2

�.�/

D 2

1 C 1

1 C �.�/

D 2�.01�/;

and
�.1�:y/ D �.11.�:y//

D 2 C �.�:y/

D 2 C 2�.�/

D 2.1 C �.�//

D 2�.1�/:

Next we turn to the veri�cation of ˆ.�/:c D ˆ.�:y10/. Observe that if � does
not extend 10, then ˆ.�/ is outside the interval .0; 1/ and we have

ˆ.�/:c D ˆ.�/ D ˆ.�:y10/:
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Noting that
2t

t C 1
D 2

1 C 1=t
;

the remaining case follows from the identity we have already established,

ˆ.10�/:c D

0

B

B

@

1

1 C 1

�.�/

1

C

C

A

:c

D 2

2 C 1

�.�/

D 1

1 C 1

2�.�/

D 1

1 C 1

�.�:y/

D ˆ.10�:y10/:

From this point forward, we will identify a, b, and c with x, x1, and y10,
respectively and suppress all mention of ˆ.

We now return to our discussion of the generators. It is straightforward to
verify that the following relations are satis�ed by these elements, where s and t

are �nite binary sequences:

(1) x2
s D xs0xsxs1;

(2) if t:xs is de�ned, then xt xs D xsxt:xs
;

(3) if t:xs is de�ned, then yt xs D xsyt:xs
;

(4) if s and t are incompatible, then ysyt D ytys;

(5) ys D xsys0y
�1
s10ys11.

We will refer to these relations collectively as R. �e �rst two groups of relations
are known to give a presentation for F : the function x1n corresponds to the nth
generator in the standard in�nite presentation of F . We will use F to denote the
group generated by ¹xs W s 2 2<!º (this presentation of F �rst appeared in [8]).
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First observe that if s and t are incompatible then xs commutes with both xt

and yt . Also notice that any ys is conjugate by an element of F to exactly one of
y, y0, y1, or y10 (to see uniqueness, observe that whether N0 or N1 are in the closure
of the support of g is invariant under conjugation and hence none of y0, y10, and
y1 are conjugate to each-other). De�ne

X D ¹xs W s 2 2<!º; Y D ¹ys W s 2 2<!º;

and Y0 to be the set of all ys such that s is not a constant binary sequence. Ob-
serve that Y0 consists of those elements of Y which are conjugate to y10 by an
element of F . �e group G0 de�ned in the introduction is therefore generated by
the (redundant) generating set S0 D X [ Y0.

Let R0 be those relations in R which only refer to generators in S0 and let G

be the group generated by S D X [ Y . �e rest of the paper will focus on proving
the following theorem.

�eorem 3.3. �e relations R give a presentation for G and the relations R0 give
a presentation for G0. Moreover, G and G0 admit �nite presentations.

In the remainder of this section, we will prove that G and G0 are �nitely pre-
sented assuming that R and R0 give presentations for these groups. �e �nite
generating sets for these groups are ¹x; x1; y0; y1; y10º and ¹a; b; cº D ¹x; x1; y10º,
respectively. Before proceeding, it will be necessary to de�ne the other generators
as words in terms of these generators; these de�nitions will be compatible with
equalities which hold in G. We begin by declaring

y D xy0y
�1
10 y11;

x0 D x2x�1
1 x�1;

x10 D x2
1x

�1x�1
1 xx�1

1 :

Observe that 0:x�n D 0nC1 and 1:xn D 1nC1 and set

x0nC1 D xnx0x
�n; x1nC1 D x�nx1x

n;

y0nC1 D xny0x
�n; y1nC1 D x�ny1x

n:

If s 2 2<! is nonconstant, �x a word fs in ¹x; x1º such that 10:fs D s and de�ne

xs D f �1
s x10fs

ys D f �1
s y10fs:

Next we note the following two standard properties of F .
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Proposition 3.4 ([13]). If g is any element of F and s is a �nite binary sequence
such that s:g is de�ned, then xsg D gxs:g . In particular if g, xs and xs:g are ex-
pressed as words in ¹x; x1º, then the above equality is derivable from the relations
in (1) and (2) above.

Proposition 3.5. If u <lex v are incompatible binary sequences, then there is a g

in F and s <lex t each of length at most 3 such that s:g D u and t:g D v.

Proof. (sketch) If u <lex v are incomparable binary sequences, de�ne the type of
the pair to be the answers to the following three questions: is u constantly 0? are u

and v consecutive? is v constantly 1? It can be checked that two pairs u <lex v and
v0 <lex v0 have the same type if and only if there is a f in F such that u:f D u0

and v:f D v0. Furthermore, all types can be represented by pairs of sequences of
length at most 3.

From these propositions it follows that every relation in (4) is conjugate via an
element of F to a relation in (4) indexed by sequences of length at most 3. �e
relations in (5) are conjugate via elements of F to a relation ys D xsys0y

�1
s10ys11

where s 2 ¹0; 10; 1º. �e relations in (3) can be expressed as ysg D gys where
s 2 ¹0; 10; 1º and g 2 F such that s:g D s. �ese can be derived from relations
ysxt D xt ys where s:xt D s and s; t are binary sequences of length at most 3.
In particular G and G0 are �nitely presented. In the case of G0, one can check
that the following list of 9 relations actually su�ce:

x1x
�2x1x D x�1x1xx1x

�1;

x1x
�3x1x

2 D x�2x1x
2x1x

�1;

y10x0 D x0y10;

y10x01 D x01y10;

y10x11 D x11y10;

y10x111 D x111y10;

y01y10 D y10y01;

y001y10 D y10y001;

y10 D x10y100y
�1
1010y1011:

(Notice that all of the above relations except the last assert that a pair of elements
of the group commute. In each case this is because they are supported on disjoint
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sets, where the support g is the set of x such that x:g ¤ x.) When expressed in
terms of the original generators, these become

ba�2ba D a�1baba�1;

ba�1a�2ba2 D a�2ba2ba�1;

ca2b�1a�1 D a2b�1a�1c;

cab2a�1b�1ab�1a�1 D ab2a�1b�1ab�1a�1c;

ca�1ba D a�1bac;

ca�2ba2 D a�2ba2c;

caca�1 D aca�1c;

ca2ca�2 D a2ca�2c;

c D b2a�1b�1aca�1bc�1a�1cab�1ab�1:

4. Tree diagrams

Before proceeding further, we will pause to describe how the elements of ha; b; ci
can be described in terms of tree diagrams, similar to those associated to �omp-
son’s group F . �is section is not essential for understanding the proof of �eo-
rem 1.1 in the subsequent section, although the reader may �nd the material here
is useful in visualizing what is happening in the main proofs.

Let zT denote the collection of all �nite sets S of reduced words in the alphabet
¹0; 1; y; y�1º which satisfy the following properties:

� S is nonempty;

� the result of deleting all occurrences of y and y�1 in members of S de�nes
a bijective map between S and an element of T;

� if uyn is a pre�x of some element of S , then any element of S which has u

as a pre�x, also has uyn as a pre�x.

Elements of zT be be visualized as follows. Let S be in zT and T is the result of
removing the occurrences of y and y�1 from elements of S . We can think of T as
de�ning a rooted ordered binary tree, whose vertexes correspond to the pre�xes of
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elements of T . �e elements of S can be speci�ed by an assignment of an integer
to each vertex of T . For instance if

S D ¹0; 1yy0y�1; 1yy1º;

then the associated labeled tree is

⑧⑧⑧⑧
❄❄

❄❄
❄❄

❄

⑧⑧
⑧⑧

2

�1

(here and below unspeci�ed labels are 0).

A labeled tree diagram is a pair S ! T of elements of zT such that S and T

have the same number of vertexes. �e key point is now to de�ne the appropriate
notion of equivalence of tree diagrams. First we de�ne a notion of equivalence
on zT. Two (possibly in�nite) words in the alphabet ¹0; 1; y; y�1º are equivalent if
one can be converted into the other by the following substitutions:

y00 () 0y; y01 () 10y�1; y1 () 11y;

y�1
0 () 00y�1; y�1

10 () 01y; y�1
11 () 1y�1:

Two elements of zT are equivalent if the sets of equivalence classes of their el-
ements coincide. In terms of labeled tree diagrams, this means that S and T

are equivalent if T can be obtained from S by a sequence of substitutions of the
following form:

⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧ ❄❄
❄❄

❄

❄❄
❄❄

❄

m

i j

k
() ❄❄❄❄❄

❄❄❄❄❄⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧

m � 1

i C 1j � 1

k C 1

In many simple computations, labels are either 0, 1 or �1. In this case it is conve-
nient to use � and ı to indicate the labels 1 and �1 respectively. �e substitution
rule above then becomes a pair of substitutions:

⑧⑧
⑧⑧ ❄❄
❄❄
� () ❄❄

❄❄⑧⑧
⑧⑧�ı� and ❄❄

❄❄⑧⑧
⑧⑧
ı () ⑧⑧

⑧⑧
❄❄

❄❄ı �ı:

Notice that if S and T are equivalent elements of zT , then S and T have the same
number of leaves.



190 Y. Lodha and J. T. Moore

Equivalence of labeled tree diagrams is generated by the equivalence of trees,
together with the following manipulations on tree diagrams:

� If S ! T is a labeled tree diagram, then we can insert a caret below the
i th leaf of S and below the i th leaf of T to produce an equivalent diagram
S 0 ! T 0. �e labels of the top vertexes of the new carets are the same as the
original vertexes; the leaves of the new carets are labeled 0.

� If S ! T is a labeled tree diagram, then we may add 1 to the label of the i th

leaves of S and of T to produce an equivalent diagram S 0 ! T 0.

If S ! T is a labeled tree diagram and S has no labels, then it describes a
continuous function g W 2! ! 2! as follows. If � is an in�nite sequence in the
alphabet ¹0; 1; y; y�1º with only �nitely many occurrences of y or y�1, then de�ne
lim � to be the unique in�nite binary sequence � such that every pre�x of � occurs
as a pre�x of a sequence equivalent to �. If si and ti are the i th-least elements of
S and T respectively in the lexicographic order, then de�ne g.si �/ D lim ti�. It is
easy to check that the generators can be described as follows:

a D
�

⑧⑧⑧

⑧⑧⑧ ❄❄
❄

❄❄
❄ ! ❄❄❄

❄❄❄⑧⑧
⑧

⑧⑧
⑧

�

b D
�

⑧⑧⑧ ❄❄
❄

⑧⑧⑧ ❄❄
❄

⑧⑧⑧ ❄❄
❄ ! ⑧⑧⑧ ❄❄

❄
⑧⑧⑧ ❄❄
❄

⑧⑧⑧ ❄❄
❄

�

c D
�

❄❄❄

❄❄❄⑧⑧
⑧

⑧⑧
⑧ ! ❄❄❄

❄❄❄⑧⑧
⑧

⑧⑧
⑧�

�

In fact we can modify this de�nition slightly in order to associate a function
to any labeled tree diagram: de�ne g.lim si�/ D lim ti�. We leave it to the reader
to verify that this is a well de�ned map. �e equivalence of tree diagrams is set
up so as to capture exactly when the corresponding functions coincide. We will
eventually see that the collection of all functions arising in this way is a group
which then coincides with the group G of the previous section. Notice that if
S ! T and T ! U are labeled tree diagrams, then the composition of the two
functions associated to these diagrams is the same as that described by S ! U .
In particular T ! S is the inverse of S ! T .

We will conclude this section with a illustrative computation. Notice that
t 7! 2t correspond to the diagram

⑧⑧ ❄❄ �! ⑧⑧❄
❄

ı �:
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Conjugating t 7! t C 1 by t 7! 2t yields t 7! t C 2, the square of the �rst map.
In terms of labeled tree diagrams, this computation can be carried out as follows:

�

⑧⑧⑧ ❄❄
❄ ! ⑧⑧⑧ ❄❄❄ı �

��1 �
�

⑧⑧⑧

⑧⑧⑧ ❄❄
❄

❄❄
❄ !

⑧⑧⑧ ❄❄
❄

❄❄
❄⑧⑧⑧

�

�
�

⑧⑧⑧ ❄❄
❄ ! ⑧⑧⑧ ❄❄❄ı �

�

D
�

⑧⑧⑧ ❄❄❄
⑧⑧⑧ ❄❄❄ı � ! ⑧⑧⑧

⑧⑧⑧ ❄❄
❄

❄❄
❄

�

�
�

⑧⑧⑧

⑧⑧⑧ ❄❄
❄

❄❄
❄ ! ⑧⑧⑧ ❄❄

❄

❄❄
❄⑧⑧⑧

�

�
�

⑧⑧⑧ ❄❄
❄

❄❄
❄⑧⑧⑧

! ⑧⑧⑧ ❄❄
❄

⑧⑧⑧ ❄❄❄ı �
�

D ⑧⑧⑧ ❄❄❄
⑧⑧⑧ ❄❄❄ı � ! ⑧⑧⑧ ❄❄

❄
⑧⑧⑧ ❄❄❄ı �

D ⑧⑧⑧ ❄❄❄

❄❄
❄

⑧⑧
⑧

⑧⑧⑧ ❄❄❄ı � ! ⑧⑧⑧ ❄❄
❄

⑧⑧⑧ ❄❄❄

⑧⑧⑧ ❄❄
❄

ı �

D
⑧⑧⑧

⑧⑧⑧

⑧⑧⑧

❄❄❄
❄❄❄
❄❄❄

ı �
ı

� ! ❄❄❄

❄❄❄

❄❄❄

⑧⑧⑧
⑧⑧⑧

⑧⑧⑧

�ı
�

ı

D
⑧⑧⑧

⑧⑧⑧

⑧⑧⑧

❄❄
❄ ❄❄
❄ ❄❄
❄

! ❄❄❄

❄❄❄

❄❄❄

⑧⑧
⑧⑧⑧

⑧⑧⑧
⑧

D
�

⑧⑧⑧

⑧⑧⑧ ❄❄
❄

❄❄
❄ !

⑧⑧⑧ ❄❄
❄

❄❄
❄⑧⑧⑧

�2

:

5. Su�ciency of the relations

In this section, we will prove that the relations in R and R0 are su�cient to give
presentations for G and G0. We will use without proof that the relations in R

which only refer to the generators in X give a presentation for F (see [3] [5]).
�e strategy of the proof is as follows. First, we will argue that any S -word can be
put into a standard form by applying the relations. Standard forms are not unique,
but are organized in a way which better facilitates further symbolic manipulations.
We will then de�ne the notion of a su�ciently expanded standard form, argue that
every standard form can be su�ciently expanded by applying the relations in R,
and that any su�ciently expanded standard form which represents an element of
F is an X-word.

We will begin by de�ning some terminology. In what follows, we will say
that an S -word �1 is derived from an S -word �0 if it is the result of applying
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substitutions of the following forms:

yi
t x

˙1
s H) x˙1

s yi

t:x˙1
s

ys H) xsys0y
�1
s10ys11

yuyv () yvyu

xiCj () xi xj

yiCj () yi yj

delete an occurrence of yi y�i

where s; t; u; v 2 2<! are such that t:xs is de�ned and u and v are incompatible,
and i; j are nonzero integers of the same sign. We will write this symbolically
as �0 H) �1. Notice that each of these substitutions corresponds either to a
relation in R or to a group-theoretic identity. Also observe that only S0-words can
be derived from S0-words.

De�nition 5.1. An S -word � is in standard form if it is the concatenation of a
X-word followed by a Y -word and whenever �.i/ D ym

s , �.j / D yn
t , and s � t ,

then j � i . We will write standard form to mean an S -word in standard form.
�e depth of a standard form � is the least l such that there is binary sequence s

of length l such that ys occurs in � (if � is an X-word, then we say that � has
in�nite depth).

Notice in particular that a given ys can occur at most once in a standard form
(although possibly with an exponent other than ˙1). Observe that any group el-
ement which is expressible by a word in standard form allows us to describe the
group element via a labeled tree diagram in the sense of the previous section.

Lemma 5.2. For every s 2 2<! and every l 2 !, there is a standard form �

which can be derived from y˙1
s such that:

(1) if xu occurs in �, then u extends s;

(2) if yu occurs in �, then u extends s, has length at least l , and the exponent of
yu is ˙1;

(3) if yu and yv occur in � and u ¤ v, then u and v are incompatible.
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Proof. �e proof is by induction on l � jsj. If l � jsj D 0, there is nothing to
do since ys already satis�es the conclusion of the lemma. If l � jsj > 0, then
ys H) xsys0y

�1
s10ys11 and we can apply the induction hypothesis to obtain �s0,

�s10, �s11 which satisfy the conclusion of the lemma for ys0, y�1
s10, and ys11

respectively for the same value of l . By conclusion 1 of the lemma, we can
apply substitutions of the form yvxu H) xuyv for incompatible u and v move
the occurrence of xu in

xs�s0�s10�s11

to the left, placing the word a standard form which satis�es the conclusions of the
lemma. �e case of y�1

s is handled similarly using the substitution

y�1
s H) x�1

s y�1
s00ys01y

�1
s1 :

Lemma 5.3. If „ is an X-word, then there is an l0 such that if � is a standard
form of depth l � l0, then �„ H) �0 for some standard form �0 of depth at
least l � k where k is the word length of „.

Proof. If „ D x˙1
s , then observe that if t is a �nite binary sequence of length

at least 2 greater than that of s, then t:x˙1
s is de�ned and its length di�ers from

the length of � by at most 1. �us by repeated applications of the substitution
yi

t x
˙1
s H) x˙1

s yi

t:x˙1
s

, the �nal occurrence of xs in �x˙1
s can be moved to the

left of all occurrences of a yt . �is results in a standard form in which the depth
is changed by at most 1. �e general case now follows by induction.

Lemma 5.4. If � is any S -word and l 2 !, then � H) �0 for some standard
form �0 of depth at least l .

Proof. �e proof by induction on the word length n of �. �e case n D 1 is
handled by Lemma 5.2. Assume n > 1 and let l be given. By making a sub-
stitution of the form a˙.kC1/ H) a˙ka˙1 if necessary, we may assume that
� D �0�1 where �i is an S -word of positive length. By our induction hypothesis
�1 H) „‡ , where „ and ‡ are X- and Y -words respectively and ‡ has depth
l . Let k be the word length of „ and let m � l be such that if yu occurs in ‡ ,
u has length less than m. By our induction hypothesis, there is a standard form
�0

0 of depth at least m C k such that �0 H) �0
0. By Lemma 5.3 we have that

�0
0„ H) �00

0 for some standard form �00
0 of depth at least m, we have:

� H) �0�1 H) �0„‡ H) �0
0„‡ H) �00

0‡

Finally, notice that since the depth of �00
0 is at least m, �0 D �00

0‡ is a standard
form of depth at least l , as desired.
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If � is standard form and ys occurs in �, we say that s is exposed in � if
there is a �nite binary sequence u extending s such that if t is a binary sequence
compatible with u and yt occurs in �, then t is an initial part of s.

De�nition 5.5. A standard form � is su�ciently expanded if whenever ys occurs
in � and s is not exposed in �, then:

� ys0 occurs in � if ys occurs positively in �;

� ys1 occurs in � if ys occurs negatively in �.

�e motivation for this de�nition is as follows. Suppose that � is a standard
form which is not su�ciently expanded and that this is witnessed by �.i/ D yn

s

for n > 0. If we substitute
xsys0y

�1
s10ys11y

n�1
s

for yn
s in �, then whenever yt occurs before ys in �, t:xs is de�ned. A similar

conclusion holds – with x�1
s replacing xs – if n < 0 and the substitution

x�1
s y�1

s00ys01y
�1
s1 ynC1

s

is applied. �is plays an important role in the proof of the next lemma.

Lemma 5.6. If � is a standard form, then there is a su�ciently expanded standard
form which can be derived from �.

Proof. We will prove the lemma by de�ning a well-founded partial ordering G
on the set of standard forms and a notion of expansion on standard forms which
are not su�ciently expanded in such a way that produces a smaller standard form
in this ordering. Here a partial order is well-founded if it has no in�nite strictly
decreasing sequences. We will de�ne the ordering �rst.

If � is an S -word, let T .�/ denote the minimal pre�x set which has the prop-
erty that if yt occurs in �, then t has an extension in T . If �0 and �1 are standard
forms, de�ne

�0 G �1

if
jT .�0/j < jT .�1/j or jT .�0/j D jT .�1/j, and jk0j < jk1j,

where ki is the exponent in �i of the �lex-maximal s such that ys occurs in at
least one of �0 or �1 and for which k0 ¤ k1 (if ys occurs in only one of the
�’s, then the other exponent is 0). Notice that for a �xed m there are only �nitely
many pre�x sets of cardinality m. In particular the collection F of all �nite binary
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sequences which have an extension in a pre�x set of cardinality m is �nite. Since
the lexicographic ordering on !F is a well-order, G is well-founded.

Now suppose that � is a standard form which is not su�ciently expanded as
witnessed by �.i/ D yn

s . For simplicity, suppose that n > 0 and apply the substi-
tution

yn
s H) xsys0y

�1
s10ys11y

n�1
s

(if n D 1, the yn�1
s term is omitted) followed by substitutions of the form

ym
t xs H) xsym

t:xs
to move xs to the left, forming a new word �0 which is the

concatenation of a X-word followed by a Y -word. At this point, the only thing
preventing �0 from being a standard form is the newly introduced occurrences of
ys0, ys10, and ys11. Observe that ys1 can not occur in �0; for this to happen, s1

would have to equal t:xs for some t such that t:xs is de�ned, and such a t does not
exist. Furthermore, if yt occurs in �0 and t properly extends one of the sequences
s0, s10, or s11, then yt must occur before any occurrence of ys0, ys10, or ys11 in
�0. Similarly, if t is a proper initial part of s0, s10, and s11 and yt occurs in �0,
then t is actually an initial part of s and thus the occurrence is after the point of the
substitution. We may therefore apply substitution of the form yuyv () yvyu

for incompatible u and v in order to move any two distinct occurrences of ys0,
ys10, or ys11 to the same position in �0, resulting in a word �00 which is now in
standard form.

It now su�ces to show that �00 G �. Since s was not exposed in �, each of
s00, s01, and s1 has an extension in T .�/; recall that, by assumption, ys0 does
not occur in �. It follows that t:xs is de�ned for every element t of T .�/ and that

T .�0/ D ¹t:xs W t 2 T .�/º:

Hence T .�/ and T .�0/ have the same cardinality. Notice that if ys occurs in
�00, it occurs in �0 and hence T .�0/ dominates T .�00/. It follows that T .�00/

has cardinality at most that of T .�/. If T .�00/ has the same cardinality as T .�/,
then s is the �lex-maximal sequence such that the exponent of ys in � and �00

di�ers and in this case, it decreases by one in absolute value. �us we have shown
�00 G �.

Let B denote the set ¹0; 1; y; y�1º and let B<! denote the collection of all �nite
strings of elements of B . If ƒ is in B<! and ƒ.i/ is either y or y�1, we will say
that ƒ.i/ is an occurrence of y˙. We will use B-words to analyze the evaluation
of standard forms at binary sequences. �e following symbolic manipulations
correspond to the recursive de�nition of the function y W 2! ! 2! .
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De�nition 5.7. Suppose that ƒ is in B<! . An application of one of the substitu-
tions

y00 H) 0y;

y01 H) 10y�1;

y1 H) 11y;

y�10 H) 00y�1;

y�110 H) 01y;

y�111 H) 1y�1;

at an occurrence of y˙ is said to advance that symbol. If several advances of
occurrences of y˙ are applied to ƒ, resulting in ƒ0, then we say that ƒ can be
advanced to ƒ0, denoted ƒ H) ƒ0.

De�nition 5.8. Suppose that ƒ is in B<! . An occurrence of y˙ is a potential can-
cellation in ƒ if repeatedly advancing it results in an occurrence of the substring
yy�1 or y�1y in the modi�ed word.

Lemma 5.9. Suppose that ƒ is in B<! and contains no potential cancellations.
�en advancing any occurrence of a y˙ results in a word with no potential can-
cellations.

Proof. Suppose that ƒ is given and that the i th occurrence of y˙ is advanced to
create ƒ0. �e only possibility for introducing a potential cancellation is if i > 1

and a potential cancellation occurs at the .i �1/st occurrence of a y˙ in ƒ0. Return
to ƒ and advance the .i � 1/st occurrence of y˙ as much as possible to produce
ƒ00. Suppose for a moment that after advancing, this occurrence is a y; notice that
the next symbol is either 0 or y. We now have the following cases:

yy00 H) y0y;

yy01 H) y10y�1 H) 11y0y�1;

yy1 H) y11y H) 1111yy;

y0y00 H) y00y H) 0yy;

y0y01 H) y010y�1 H) 10y�10y�1 H) 1000y�1y�1;

y0y1 H) y011y H) 10y�1
1y;

y0y�1
0 H) y000y�1 H) 0y0y�1;

y0y�1
10 H) y001y H) 0y1y H) 011yy;

y0y�1
11 H) y01y�1 H) 10y�1y�1:
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�e above lines list the possible contexts for two occurrences of y˙ in the .i �1/st
and i th in ƒ00 where the �rst occurrence is positive. In the above cases, the i th
occurrence of y˙ is advanced in ƒ00 and then the .i � 1/st occurrence is advanced
as much as possible, demonstrating that a cancellation does not occur. �e case in
which the .i � 1/st occurrence of y˙ in ƒ00 is y�1 is handled by symmetry – the
rules for advancement and potential cancellation are invariant under the following
involution:

y () y�1; 0 () 1:

Lemma 5.10. Suppose that ƒ is in B<! and contains no potential cancellations.
�ere is a �nite binary sequence u such that ƒau can be advanced to sayn for
some binary sequence s, where n is the number of occurrences of y˙ in ƒ.

Proof. �e proof is by induction on the number of occurrences of y˙ in ƒ.
If there is only one occurrence, advance the occurrence as many times as possible,
resulting in say, say�1, saya0, or say�1a1 for some �nite binary sequence s.
In the �rst case we are �nished; in the remaining cases, the choices u D 10,
u D 0, and u D 0 work. Now suppose that ƒ contains n C 1 occurrences of y˙.
Induction and Lemma 5.9 reduce the general case to the two special cases y0yn

and y�11yn. In these cases, use u D 02n

, observing that yn02n

can be advanced
to 0yn.

Lemma 5.11. If � is a su�ciently expanded standard form then either � is an
X-word or else � does not have the same evaluation as an X-word.

Proof. Notice that it is su�cient to prove the lemma when � is a su�ciently
expanded standard form which is a Y -word of positive length. Suppose that such
an � is given and let g W 2! ! 2! be the evaluation of � in G. It will be su�cient
to construct �nite binary sequences u and v such that the value of g at ua� is
vayn.�/ for some n > 0. �is is because if � D 02n

102n

1 : : :, then the value of g

at ua� is va012n

012
n

: : : , which is not tail equivalent to ua�.
�e �nite binary sequence u will be constructed by a recursive procedure. Let

u � i0 be the �nite binary sequence such that the last entry of � is a power of yu�i0 .
Suppose that u � i has been de�ned and that yu�i occurs in �. If u � i is exposed
in �, then let u � l be any �nite binary sequence extending u � i which witnesses
this. Otherwise, de�ne u.i/ D 0 if yu�i occurs positively in � and u.i/ D 1 if yu�i

occurs negatively in �. De�ne ƒ to be the result of simultaneously inserting yn

after s � i whenever yn
s�i

occurs in �. Notice that by the choice of our sequence u,
ƒ does not contain potential cancellations: any occurrence of y except for the �nal
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occurrence of y˙, is followed by 0y˙ and any occurrence of y�1 except for the
�nal occurrence of y˙ is followed by 1y˙. It follows from Lemma 5.10 that there
is a sequence s such that ƒas can be advanced to vyn for some binary sequence
v, where n is the number of occurrences of y˙ in ƒ (this number coincides with
the number of steps of the recursive procedure above, which is at least 1). Set u to
be the concatenation of u � l followed by s.

Recall now that we have assumed that � is a Y -word y
nk

tk
: : : y

n0

t0
which eval-

uates to g. Observe that

�:g D �:.y
n0

t0
: : : y

nk

tk
/ D .: : : .�:y

n0

t0
/: : : : /:y

nk

tk

Let �i be the result of applying the y
n0

t0
� � � yni�1

ti�1
to �. Observe that if tiC1 is an

initial part of �, then it is still an initial part of �i . �is follows from the fact that if
j � i , then tj either extends tiC1 or else is incompatible with tiC1. In particular,
if tiC1 is not an initial part of �, then �iC1 D �i . If tiC1 is an initial part of �i ,
then �iC1 D tiC1

ayni .�i/, where �i D ti
a�i . It follows from ƒas H) vyn that

�:g D va.�:yn/, where � is such that � D ua�.

To see that this �nishes the proof of the main theorem, suppose that � is an
S -word which evaluates to the identity function in G. By Lemma 5.4, � H) �0

for some word �0 in standard form. By Lemma 5.6, �0 H) �00 for some word
�00 which is in standard form and which is su�ciently expanded. In particular,
�00 is equivalent to � by the relations in R; if � was an S0-word, then �00 is an
S0 word and the derivation � H) �0 H) �00 utilizes only relations in R0.
By Lemma 5.11, �00 is an X-word. Since R includes a presentation for F , �00 can
be reduced to the identity using the relations in R0.
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