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1. Introduction

�e space of left-orderings LO.G/ of a left-orderable group G is the set of all pos-
sible left-orderings on G endowed with a natural topology that makes it compact,
Hausdor� and totally disconnected, see [26] or §2.1. It was proved by Linnell that
this space is either �nite or uncountable [12]. �e problem of relating the topol-
ogy of LO.G/ with the algebraic structure of G has been of increasing interest
since the discovery by Dubrovina and Dubrovin that the space of left-orderings
of the braid groups is in�nite and yet contains isolated points [6]. Recently, more
examples of groups showing these two behaviors have appeared in the literature
[4, 9, 10, 17]. All these groups admit a non-abelian free subgroup. However, non-
abelian free groups [13], and more generally non-trivial free products of groups
have no isolated left-orderings [24].

In any case, the class of groups having isolated orderings is far from being
well understood. By contrast, left-orderable groups admitting only �nitely many
left-orderings have been classi�ed by Tararin [11, �eorem 5.2.1]. For short, we
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shall call these groups “Tararin groups.” Tararin groups form a very restrictive
and easy to describe class of �nite-rank-solvable groups, see §2.2. As already
mentioned, these are the only known examples of left-orderable amenable groups
with isolated points. Could they be the only ones? �is paper brings in a mod-
est contribution to this problem, answering it positively for (virtually) solvable
groups.

�eorem 1.1. �e space of left-orderings of a countable virtually solvable group

is either �nite or a Cantor set.

In particular we deduce

Corollary 1.2. If � is a (countable) left-orderable virtually solvable group of

in�nite rank, then LO.�/ is a Cantor set.

Recall that a polycyclic group is a solvable group whose successive abelian
quotients, in its derived series, are �nitely generated, see [21]. Among Tararin
groups, those which are virtually polycyclic turn out to be virtually nilpotent.
�erefore we deduce

Corollary 1.3. If � is a left-orderable virtually polycyclic group of exponential

growth, then LO.�/ is a Cantor set.

�e study of left-orderable amenable groups is intimately related to that of
Conradian orderings (see §2.5 for a de�nition) and to local indicability. Recall that
Morris gave a beautiful proof of the fact that all left-orderable amenable groups
admit Conradian orderings [14] (see also [15, 2] for older results in that direction,
and [5] for an interesting alternative proof). Together with a fundamental observa-
tion of Conrad [3], this provides a very natural characterization of left-orderable
groups among amenable groups as those which are locally indicable, i.e. all their
�nitely generated subgroups have a non-trivial morphism to Z.

�e dichotomy shown in �eorem 1.1 reminds of a similar one, this time for all
groups but in restriction to Conradian orderings. Indeed, in [22] the �rst author
proved that the space of Conradian orderings of a countable group is either �nite or
homeomorphic to the Cantor set. �is implies for instance, the general dichotomy
for left-orderable groups having only Conradian orderings, such as groups of sub-
exponential growth [16].

Remarks about the proof and organization of the paper. It is now well known
that countable groups are left-orderable if and only if they act faithfully by order-
preserving homeomorphisms on the real line (see for instance [7] or §2.3).
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�is dynamical approach has shown to be fruitful when trying to understand the
topology of the space of left-orderings of a given group or family of groups, see
for instance [16, 22, 24]. In this work, this point of view will be crucial.

In a previous version of this paper, �eorem 1.1 was proved for the class of
�nite-rank solvable groups. An important feature of this subclass is that they are
virtually nilpotent-by-abelian [25]. In this case, the proof can be summarized as
follows: if the action on the real line associated to an ordering has no discrete
orbits, then one can prove that the action is semi-conjugated to an a�ne action.
�en, if this a�ne action is non-abelian, it is not hard to see that the underly-
ing ordering is non-isolated, see Proposition 2.12 and Corollary 2.13. �e case
where the action factors through an abelian group of rank greater than one fol-
lows from [26]. Finally it is only when the initial action has discrete orbits or
when it factors through a rank-one abelian group, that Tararin groups may appear
(one needs to work an extra bit to decide whether it is the case).

�is approach strongly relies on the work of Plante [20], who shows that any
action of a �nite-rank solvable group on the real line quasi preserves a Radon
measure: that is, there is a Radon measure � such that for every element g in the
group there is a positive real number �g such that �.g�1A/ D �g�.A/ for every
measurable set A � R.

However, as already noted by Plante, there are actions of solvable groups on the
real line (such as ZoZ) in which no non-trivial Radon measure is quasi-preserved.
�is situation is much more subtle and requires a careful dynamical analysis. In
particular, the present proof of �eorem 1.1 is di�erent (and independent!) from
the one described above.

In §2 we give some necessary background. Most of the material is well known,
but not all. Notably Corollary 2.16 plays a crucial role in our proof. In §3 we
prove �eorem 1.1 in a simple example,1 namely SOL. �is example should serve
to illustrate the approach for �nite-rank solvable groups. We also give an explicit
description of its space of left-orderings. In §4 we illustrate the di�culties arising
when dealing with solvable groups of in�nite rank on a speci�c example, due to
Plante, of an action of Z oZ on the line. Finally the proof of �eorem 1.1 is carried
out in §5. Roughly speaking, the proof consists in showing that the action behaves
“at a certain scale” like an a�ne action (see §4 and Lemma 5.6).

Remark 1.4. We remark that LO.G/ is metrizable when G is a countable group
(see [16] or §2.1). Hence, to prove that LO.G/ is homeomorphic to the Cantor

1 Solvable Baumslag-Solitar groups could have been treated in a similar way, we leave the
easy adaptation of the proof to the reader.
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set, it is enough to show that it contains no isolated points (see for instance [8]),
which is indeed how we proceed. Also, in various places we employ the useful ter-
minology “pseudo-ordering” (De�nition 2.4) which means an invariant ordering
on a quotient of G by a (not necessarily normal) subgroup, but seen as a partial
ordering on G.

Acknowledgements: �e �rst-named author would like to thank the hospitality
of ENS-Lyon where he enjoyed a posdoctoral position. He is specially grateful to
M. Triestino and É. Ghys for interesting discussions around this and other related
problems.

2. Preliminaries

2.1. �e topology on LO.G/. A basis of neighborhoods in LO.G/ is the family
of the sets Vf1;:::;fk

WD ¹�j id � f1; : : : ; id � fkº , where ¹f1; : : : ; fkº runs over
all �nite subsets of G. If G is countable, then this topology is metrizable [16]. For
instance, if G is �nitely generated, we may de�ne dist.�; �0/ D 1=2n, where n is
the �rst integer such that � and �0 do not coincide on n-th ball (with respect to
some generator system). For each g 2 G and �2 LO.G/, one can de�ne an other
element g.�/ 2 LO.G/ whose positive cone is the set of elements f 2 G such
that gfg�1 � id. �is de�nes a continuous representation of G in Homeo.LO.G//

called action by conjugation of G on its space of left-orderings.
�e following de�nition is classical [1, 11]. Given a left-ordered group .G; �/

and a subgroup H , we say that H is convex if for every g 2 G such that
h1 � g � h2, for h1; h2 in H , we have that g 2 H . Convex subgroups have
the nice property that they induce a total ordering on the left-cosets G=H by

g1H �� g2H () g1h1 � g2h2 for all h1; h2 in H:

�is ordering is invariant under the G-action by left translation on G=H . In par-
ticular, if H is normal, then G=H is a left-orderable group, in which case we
call �� the projected or quotient ordering. It follows that � decomposes “lexi-
cographically” as the ordering on the H -cosets and the ordering restricted to H .
More precisely we have that

id � g ()

8

<

:

H �� gH or

H D gH and id � g:

Elaborating on this, we conclude (see [23] for more details)
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Proposition 2.1. Let � be a left-ordering on G and let H be a convex subgroup.

�en there is a continuous injection

LO.H/ �! LO.G/;

having � in its image. Moreover, if in addition H is normal, then there is a con-

tinuous injection

LO.H/ � LO.G=H/ �! LO.G/

having � in its image.

Remark 2.2. Let � be a left-ordering on G, and H a normal convex subgroup.
�en, it is not hard to check that if the restriction of � to H and the projection of
� to G=H are Conradian, then � is also Conradian.

Observe that the set of convex subgroups of a given left-ordering are totally or-
dered for the inclusion. We call it the convex series of G. �e following Corollary
is well known, and appears for instance in [22]. For the readers’ convenience we
sketch a proof. Let G be a group and H be a (not necessarily normal) subgroup.
�en to any G-invariant ordering � on G=H , one can de�ne the so-called opposite

ordering �op de�ned by
g �op f () g � f:

We sometimes say that �op is obtained by �ipping �. Clearly �op is also G-in-
variant.

Corollary 2.3. Suppose that a left-ordered group .G; �/ has in�nitely many con-

vex subgroups. �en � is non-isolated.

Sketch of the proof: If the convex series is in�nite, then either there exists an
in�nite increasing sequence of convex subgroups C1 < C2 : : : or an in�nite de-
creasing sequence C 0

1 > C 0
2 : : :. Flipping the ordering on CnC1=Cn (resp. on C 0

n),
one obtains a sequence of orderings �n, distinct from �, which converges to �

when n goes to in�nity. �

Note that we often have to deal with orderings on a quotient G=H , where H is
not necessarily normal. It will therefore be convenient to see G-invariant orderings
on G=H as a “pseudo-ordering” on G, namely

De�nition 2.4 (pseudo-ordering). A pseudo-ordering � on a group G is a left-
invariant partial ordering on G induced from a G-invariant ordering �� on a quo-
tient

G=H W id � g () H �� gH:
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Given a pseudo-ordering on G, the set of elements which are not comparable to
the neutral element coincides with the subgroup H .

� Convex subgroup. A convex subgroup C of a pseudo-ordered group is
de�ned similarly as for orderings, with the additional requirement that C

must contain H . Note that H itself is convex, and so is the minimal convex
subgroup.

� Quotient by a convex subgroup. Given a pseudo-ordering � on
G and C a convex subgroup, the pseudo-ordering on G induced from the
ordering on G=C will be called the quotient of � by C .

Remark 2.5. If �0 is the quotient of � by a convex subgroup C of .G; �/,
then convex subgroups of .G; �0/ are exactly those convex subgroups of .G; �/

containing C .

2.2. Tararin groups. We give a slight modi�cation of the original statement of
Tararin [11, �eorem 5.2.1], describing groups admitting only �nitely many left-
orderings. Recall that a series

¹1º D G0 C G1 C � � � C Gm D G;

is said to be rational if each quotient GiC1=Gi is torsion-free rank-one abelian.

�eorem 2.6 (Tararin). Let G be a left-orderable group. If G admits only �nitely

many left-orderings, then G admits a unique (hence characteristic) rational series

¹1º D G0 C G1 C � � � C Gm D G;

such that, for every 2 � i � m, there is an element of Gi=Gi�1 whose action

by conjugation on Gi�1=Gi�2 is by multiplication by a negative rational number.

We shall call such a group a Tararin group.

Remark 2.7. �e left-orderings on a Tararin group G are very easy to describe.
Indeed, if ¹1º D G0 C � � � C Gm D G; is the associated rational series, then
on each quotient Gi=Gi�1, being rank-one torsion free abelian, there is – up to
�ipping – a unique left-ordering coming from an embedding into Q. For every
i , let �i be a choice of an ordering on Gi=Gi�1. �en we can produce a left-
orderings on G by declaring

g � id ()

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

gGm�1 �m Gm�1 ; or

g 2 Gm�1; and g �m�1 id; or

:::

g 2 G1 ; and g �1 id :
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It is not hard to check that in this way we can produce all possible (2m) left-
orderings (in fact, it is easy to show that they are all Conradian). Moreover, in
any such ordering, the groups Gi are convex, and conversely, every convex sub-
group is of this form.

Corollary 2.8. Let G be a virtually polycyclic group admitting only �nitely many

left-orderings. �en G admits a unique �ltration such that

Gi=Gi�1 ' Z:

�e action of (the generator of) Gi=Gi�1 on Gi�1=Gi�2 is by multiplication

by �1.

Since in a virtually polycyclic group, the group generated by ¹g2 j g 2 Gº has
�nite index [21], we deduce

Corollary 2.9. A virtually polycyclic group having only �nitely many left-order-

ings is virtually nilpotent.

We �nish this section with a rigidity statement for actions of Tararin groups
on the line. Let G be a Tararin group and ¹1º D G0 C G1 C � � � C Gm D

G its associated rational series. Since Gm�1 is convex in every left-ordering of
G, and G=Gm�1 is abelian we have that the sign of  2 G n Gm�1 is preserved
under conjugation. On the other hand, Remark 2.7 says that starting from a left-
ordering �, any other left-ordering on G is obtained by �ipping the ordering on
some of the convex subgroups. It follows from �eorem 2.6, that any �ipping on
any proper convex subgroup can be realized as conjugations by some element in G.
�is shows

Proposition 2.10. �e conjugation action of a Tararin group G on LO.G/ has

two orbits. Moreover, for any pair of left-orderings �, �0 of G there is g 2 G

such that g.�/ and �0 coincide over Gm�1. Moreover, if we let T be an element

in G n Gm�1 which acts on Gm�1=Gm�2 as multiplication by a negative number,

then g can be taken either in Gm�1 or in T Gm�1:

2.3. Dynamical realization. As mentioned in the introduction, an important in-
gredient in our proof of �eorem 1.1 is the fact that countable left-orderable groups
naturally act by order-preserving automorphisms of the real line, and vice versa,
a group acting faithfully by order-preserving automorphisms of the real line is
left-orderable [7].
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More precisely, given a left-ordered group .G; �/, there is an embedding of
G into HomeoC.R/, the group of order preserving automorphism of the real line,
such that

� G acts without global �xed points,

� for f; g in G, we have that f � g () f .0/ < g.0/, and

� the set of �xed points of a non-trivial f 2 G has empty interior.

�is construction extends to pseudo-orderings in the sense that every pseudo-order
on G with minimal convex subgroup H can be induced from an action of G on
the real line, where H is the stabilizer of 0.

We call such an action, a dynamical realization of .G; �/. Conversely, given an
embedding of G into HomeoC.R/, we can induce a left-ordering as follows: take
.x1; x2; : : :/ a dense sequence in R, and declare that an element g �.x1;x2;:::/ id
if and only if g.xi / > xi , where i is such that g.xj / D xj for every j < i .
We call such an ordering, an induced ordering from the action. Note that with
this procedure we can recover a left-ordering from its dynamical realization by
taking x1 D 0.

Remark 2.11. Let g 2 G, and �D�.x1;x2;:::/ be an ordering induced from an
action of G on the real line. �en g.�/ is the left-ordering induced from the
sequence .g�1.x1/; g�1.x2/; : : :/.

2.4. Orderings induced by a�ne actions. A general procedure for trying to
approximate a given left-ordering � on a countable group, is to consider its dy-
namical realization, and to induce an ordering �0 from a sequence .x1; x2; : : :/

where x1 is close to 0. �e fact that �0 is close to � when x1 is close to 0 follows
from the continuity of the action, and from the fact that 0 has a free orbit (details
are left to the reader). �e problem however, is that the two orbits may induce the
same ordering. �is is the case for instance if � has a least positive element.

Our �rst step in proving �eorem 1.1 is that left-orderings induced from non-
abelian a�ne actions, are non-isolated.

Proposition 2.12. Let � be a countable group, and suppose a left-ordering � on

� is induced from a faithful (order-preserving) a�ne action on the real line. �en,

if � is non-abelian, � is approximated by its conjugates.

Proof. Let �D�.x1;x2;:::/ be the left-ordering induced from the sequence
.x1; x2; : : :/. We note that, since the elements in the a�ne group have at most
one �xed point, it is enough to specify two points. So �D�.x1;x2/.
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By assumption, � has both non-trivial homotheties and non-trivial transla-
tions. It follows that the subgroup made of translations has dense orbits. In par-
ticular, the countable set � consisting of the points in R which are �xed by some
non-trivial element (homothety) of �, is also dense in R. �erefore, given any
two points x1; y1 2 R, x1 6D y1, there is a non-trivial homothety h 2 �, having
its unique �xed point between x1 and y1. In particular, the left-orderings �.x1;x2/

and �.y1;y2/, induced from .x1; x2/ and .y1; y2/ respectively, are di�erent.
We now show that y1 may be chosen so that �.y1;y2/ is close to �.x1;x2/.

As noted earlier, this is obvious if x1 has a free orbit, so let us suppose that it
is not the case. Let Stab�.x1/ be the stabilizer of x1 in �, and let S � � be a �nite
set of �-positive elements. We write S D S1 [ S2 where S1 D S \ Stab�.x1/,
and we call I the open interval between x1 and x2. Since S2 is �nite, there is
a small neighborhood U of x1 such that .x/ > x for every x 2 U and every
 2 S2. On the other hand, for every  2 S1, we have that .x/ > x for every
x 2 I (recall that  2 S1 is an homothety). �us, if we take y1 2 I \ U then
�.y1;y2/ and � (y2 being any point) are in the same open set associated to S . Since
I \ U has non-empty interior, it is easy to see that .y1; y2/ may be chosen so that
.y1; y2/ D ..x1/; .x2// for some  2 �, which shows that � is approximated
by its conjugates.

To state the following corollary, recall that given two actions A1, A2 of a group
� on the real line, we say that A1 is semi-conjugated to A2 if there is an increasing
surjective function F W R ! R such that

F ı A1./ D A2./ ı F .for all 2 �/:

Corollary 2.13. Let .�; �/ be a countable, left-ordered group. Suppose there is

an a�ne (order-preserving) action A W � ! A�C.R/ whose kernel is convex in �,

and whose range is non-abelian. Suppose further that the dynamical realization

of .�; �/ is semi-conjugated to A. �en � is non-isolated.

Proof: In light of Proposition 2.1, it is enough to show the corollary when A

is a faithful action. Let F W R ! R be the function that realizes the semi-
conjugation, and let StabA.�/.F.0// be the stabilizer of F.0/ in A.�/: this is an
abelian subgroup of �. We claim that it is convex. Indeed, if 1 � g � 2,
then 1.0/ < g.0/ < 2.0/. So F.1.0// � F.g.0// � F.2.0//, and hence
A.1/.F.0// � A.g/.F.0// � A.2/.F.0//. From where the claim follows.

Now, if StabA.�/.F.0// is trivial then Proposition 2.12 applies directly, since
in this case � is realized as the induced ordering from F.0/ in the action A. If it
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has rank > 1, then the restriction of � to StabA.�/.F.0// is non-isolated, thus �

itself is non-isolated.
Now, if StabA.�/.F.0// has rank exactly 1, then the order restricted to

StabA.�/.F.0// is completely determined by the sign of any given non-trivial el-
ement, say A.t/ 2 StabA.�/.F.0//. Assume t � 0, then, because A.t/ acts as a
non-trivial homothety, there exists x 2 R such that A.t/.x/ > x. It follows that �

coincides with �.x1;x2/, the ordering induced form the action A where x1 D F.0/

and x2 D x. So � is non-isolated by Proposition 2.12. �

2.5. Conradian orderings. �ere is a special type of left-ordering, introduced
in [3], which will be very important in our proof of �eorem 1.1. �ese are the
so called Conradian orderings, which are left-orderings satisfying the following
additional property:2

f � id; g � id H) fg2 � g:

It turns out that Conradian orderings have a very interesting dynamical coun-
terpart. Recall from [16], that f; g 2 HomeoC.R/ are said to be crossed, if one of
them, say g, has a domain I (that is, an open interval, not necessarily bounded,
which is �xed by g, and on which g acts without �xed points), such that f .I / is
not equal, nor disjoint to I , see Figure 1. A group G � HomeoC.R/ is said to act
without crossings, if it does not contains crossed elements.

Figure 1. �ree di�erent crossings.

�eorem 2.14 (Navas [16]). �e dynamical realization of a Conradian ordering

on G is an action without crossings. Conversely, an induced ordering from an

action without crossings is Conradian.

2 In fact, in [3] the required property is f � id; g � id H) there exists n � 1 such that
fgn � g . �e fact that n D 2 is enough is a result from Navas and Jiménez, see [16].
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�e above theorem implies rather easily that, in a dynamical realization of a
Conradian ordering, the set of elements having �xed point is a subgroup
(obviously normal). With this, together with a theorem of Hölder stating that
every group acting freely on the real line is abelian (see for instance [7]), one can
deduce (see for instance [16]. Compare with [3].)

Corollary 2.15. Let G be a countable group, � be a Conradian ordering of G,

and N � G be the set of elements having a �xed point in the dynamical realization

of .G; �/. �en N is a normal subgroup of G. Moreover, if there is g 2 G having

no �xed point (for instance if G is �nitely generated), then G=N is a non-trivial

torsion-free abelian group which acts freely on the (non-empty) set of global �xed

points of N .

Let us state here a last corollary which plays a crucial role in the proof of
�eorem 1.1. It describes some constrains on the dynamics of a group acting on the
real line, when it has a normal subgroup acting without crossings. More precisely

Corollary 2.16. Let .G; �/ be a left-ordered group, let H be a normal subgroup

such that .H; �/ is Conradian, and consider a dynamical realization of .G; �/.

Let f 2 G, g 2 H and let I be a minimal open interval �xed by g. �en one of

the following holds.

� f .I / D I or

� f .I / is disjoint from I , or

� (up to changing f by its inverse) xI � f .I /. In this last case we say that f

acts as a dilation on I .

Proof. Notice that f .I / is a domain of gf D fgf �1 2 H . Hence, it follows from
�eorem 2.14 that g and gf are not crossed. In particular, I and its image by f

are either disjoint or one is contained in the other. Indeed, if this is not the case,
then f .I / would not be �xed, nor moved disjointly by g. So, up to changing f by
f �1, we can assume that I � f .I /.

We still have to rule out the possibility that these two intervals, although di�er-
ent, share a common extremity. �is is again easy. Indeed, suppose it is the case
that I and f .I / share a common extremity but I ¨ f .I /. �en gf can not move
I disjoint from itself. But, on the other hand, since gf have no �xed points inside
f .I /, we have that I can not be �xed by gf , contradicting �eorem 2.14.
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3. �e space of orderings of SOL

3.1. �e space of orderings of SOL is a Cantor set. In this section we treat
the simplest case of a non-virtually nilpotent polycyclic group, namely the group
SOL D Z2 ÌT Z, where T is an hyperbolic matrix (that is, a matrix in SL2.Z/

having trace greater than 2). In particular, T has two irrational eigenvalues. We
begin by proving that this group has no isolated orderings, and then we provide
a quite explicit description of its set of orderings (describing for instance its bi-
invariants orderings, which are left-orderings whose positive cone is preserved
under conjugation).

We denote by H the derived subgroup of SOL, which is isomorphic to Z2, and
by t the element of Z acting on H as T . Let � be a left-ordering on SOL, and
consider its dynamical realization.

Since H is abelian, the set of elements in H acting with �xed points form a
subgroup H 0. �is subgroup, being �nitely generated, actually has a global �xed
point. But because T is Q-irreducible, this subgroup is either trivial or must have
�nite index. In the latter situation, we have that H 0 D H as every global �xed
point of H 0 has a �nite H -orbit, so must be �xed by H . We therefore have two
cases to consider, namely

Case 1 . H has a global �xed point.

Let I be the maximal open interval around 0 without global �xed point of H .
Since H is normal in SOL, and SOL acts without global �xed points, we have
that the set of global �xed points of H is permuted by SOL and therefore must
be in�nite. In particular, I is a bounded interval which is either �xed or moved
disjointly from itself by the action of SOL. �erefore H D Stab.I / is convex.
Moreover, since H has rank two, the restriction of � to H is non-isolated. Hence,
Proposition 2.1 implies that � itself is non-isolated. Observe moreover that � is
Conradian.

Case 2. H has no global �xed point.

It follows that H acts freely on the real line, and so, by Hölder’s �eorem [7], it
is semi-conjugated to a group of translation. Now recall that Lebesgue’s measure
is the unique measure, up to scalar multiple, preserved by Z2 acting faithfully
by translations. In particular H preserves a unique atomless Radon3 measure �.
Moreover, the hyperbolicity of T implies that t does not preserves the measure �,
but it acts on it as a dilation by one of the two eigenvalues of T . We therefore obtain

3 Recall that a Radon measure is a measure giving �nite mass to compact sets.
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a faithful embedding of SOL in A�C.R/ which is realized by a semi-conjugation
(see equation (1) and (2) respectively). We then conclude from Corollary 2.13. We
observe that in this case, the proof of Corollary 2.13 shows that the ordering � is
realized as an induced ordering from the associated a�ne action.

3.2. Description of the space of orderings. It follows from the previous analy-
sis that there are two types of orderings on SOL: those which are Conradian, and
those which are induced by a�ne actions.

� Conradian orderings. �ese always form a closed subset [16]. Here, Conra-
dian orderings are exactly those for which the normal subgroup H ' Z2 is con-
vex. �erefore in LO.SOL/ there are two copies of the Cantor set LO.Z2/, each of
which corresponding to a choice of sign for t . Let us brie�y recall the description
of the space of left-orderings of Z2. First observe that each oriented line passing
through the origin in R2 delimits a unique half-plane (say the one on its right)
de�ning the positive cone of some pseudo-ordering on Z2. �e set of elements
of Z2 which belong to the line form a cyclic convex subgroup, which is trivial
precisely when the pseudo-ordering is an ordering (this happens exactly when the
slope of the line is irrational). It follows that this space of pseudo-orderings is
naturally parametrized by the unit circle. When the slope is rational, one needs
to specify an ordering of the convex subgroup, which is determined by a sign.
�erefore the space of orderings of Z2 can be parametrized by a Cantor set ob-
tained by “doubling” each rational point of the circle (see [26]). For simplicity in
Figure 2, we ignore this “blow up” procedure and represent each copy of LO.Z2/

as a “vertical” circle.

Figure 2. �e space of left-orderings of Z2 ÌT Z.
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� Bi-orderings. Now observe that among these orderings on Z2, those which
are invariant under conjugation by t are precisely those corresponding to lines
which are eigendirections of the matrix T . �e corresponding orderings of SOL
are those which are bi-invariant. Taking into account the choices of orientations,
this gives precisely eight4 bi-orderings.

� A�ne orderings. �e complement of Conradian orderings, namely those in-
duced by a�ne actions, is an open subset with eight accumulation points, namely
SOL’s bi-orderings. We represent these a�ne orderings by four copies of R, com-
pacti�ed at ˙1 by pairs of bi-orderings corresponding to two di�erent eigendi-
rections. �is requires some explanation.

First, these four intervals are to be thought as Cantor sets. Similarly to our
description of orderings of Z2, one can �rst consider pseudo-orderings �

.i/
x , i D

1 : : : 4, induced by the orbit of one point, x under an a�ne action of SOL on the
line. Such pseudo-ordering is determined by the following data: �rst, choose an
orientation of the line, then one needs to specify the action of t by multiplication
by one of the two eigenvalues of T . Hence these pseudo-orderings are naturally
parametrized by four copies of the real line. Note that �

.i/
x is an ordering precisely

when the stabilizer of x is trivial, which happens on the complement of some
dense countable subset D � R (this subset corresponds to the possible values
of translations of elements of Z2). Otherwise, to de�ne an ordering on SOL,
one needs to specify an orientation on the convex cyclic subgroup of homotheties
�xing x. �erefore the subset of a�ne orderings is locally a Cantor set, obtained
by doubling points belonging to D in each of the four copies of R.

Consider one of these intervals, corresponding to an action where t acts by
dilation (i.e. t�1 acts by contraction), and let �

.1/
x be the pseudo-ordering associ-

ated to the orbit of x. Observe that when x goes to 1, the action of t becomes
predominant over translations, so that �

.1/
x converges to an ordering where trans-

lations form a convex subgroup. Since the restriction of �
.i/
x to H is conjugation

invariant, one easily checks that this limiting ordering is one of our 8 bi-orderings.

Based on this description, it is not di�cult to describe the dynamics of the
action of SOL on its space of ordering, see for instance Remark 2.11. We leave
this as an exercise to the reader.

4 A classi�cation of �nitely generated groups admitting only �nitely many bi-ordering can
be found in [1].
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4. Plante’s action of Z o Z.

�e case of SOL which has been described in the previous section is a good rep-
resentative of what happens for solvable groups with �nite rank. �e goal of this
subsection is to illustrate the di�culties arising when dealing with solvable groups
of in�nite rank. For simplicity, we shall focus on abelian-by-cyclic groups H ÌZ.
�e prototypical example of such group is

� D Z o Z D
M

i2Z

Z Ì Z;

where Z acts by shifting the indices in H D
L

i2Z
Z.

In the �nite rank case, we only have to consider two cases: either H has a
global �xed point, or has an element which acts freely. Here by contrast, since
H is not supposed to have �nite rank, a third case can happen for which all el-
ements of H have �xed points, while H does not have any global �xed point.5
In [20, Section 5], Plante describes an explicit action of Z o Z corresponding to
this third case (in particular such an action does not quasi-preserve any Radon
measure).

We shall now recall the main properties of Plante’s action of Z o Z which are
responsible for the fact that the corresponding induced orderings are non-isolated,
see Figure 3. Let t be a generator of the cyclic group acting on H . For this action,
each non-trivial element h of H preserves a compact interval containing 0 in its
interior. Let Ih be the minimal such interval. �ese intervals are nested, and their
intersection is reduced to ¹0º. �e element t acts as an expanding homeomorphism
having 0 as its unique �xed point, and such that

t .Ih/ D Itht�1 :

Somehow, this action reminds of an a�ne action where t would be some kind
of homothety, while elements of H would play the role of translations. It turns
out that similarly to its a�ne cousin, this ordering can be approximated by its
conjugates. Indeed, take for instance the pseudo-ordering induced by the orbit
of 0. �e cyclic subgroup generated by t being the minimal convex subgroup,
this pseudo-ordering can be completed to an ordering by specifying the sign of
t . One easily checks that if t � 0 (resp. t � 0), then for any sequence of points
xn converging to zero from the right (resp. left), the sequence of orderings �xn

converges to �, while being distinct from it.

5 In the proof of �eorem 1.1, the �rst one of these three cases (concerning Conradian order-
ings) is treated implicitely as an initial step in our argument.
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Figure 3. Plante’s action: h1 D th0t�1.

5. Proof of �eorem 1.1

Let � be a left-ordering on virtually solvable group �. We assume that the convex
series of .�; �/ is �nite, because otherwise, from Corollary 2.3, � is non-isolated.
Say the convex series is

¹idº D Cn � Cn�1 � � � � � C0 D �:

We let T D Cj C1 � � be the Conradian soul of .�; �/, which is the maximal
convex subgroup on which the restriction of � is Conradian. It is known that if T

is not a Tararin group, then � is non-isolated (this follows from [16], and appears
explicitly in [19, Proposition 2.8]). So we shall assume that T is a Tararin group.

If T D �, then we are done: � admits only �nitely many left-orderings.
So we suppose that T D C` is a proper convex subgroup of �. We will show
that the restriction of � to C`�1 is non-isolated. Hence, in light of Proposition 2.1,
there is no harm in assuming that there are no convex subgroups between T and �.

To show that � is non-isolated, we consider a dynamical realization of .�; �/.
We let IT be the minimal interval stable by T and containing 0. �e following is
a direct consequence of the fact that T is convex.

Lemma 5.1. Every element of � either �xes, or moves IT disjointly from itself.

In particular, the stabilizer of IT is exactly T .
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We let z� be a �nite index, normal, solvable subgroup of �. We let

z�0 D z� and z� i D Œz� i�1; z� i�1�

be the associated derived series

¹idº D z�k C z�k�1 C � � � C z�1 C z� C �:

Note that each z� i is normal in �. We �x once and for all i , being the minimal index
such that z� i � T . Since T is a proper convex subgroup, we have that k � i � 1.
In a diagram

�

¹idº

z� i

T

z� i�1

T \ z� i�1

Lemma 5.2. �e order restricted to z� i�1 is Conradian.

Proof. Indeed, z� i�1 \ T is convex and normal in z� i�1. Moreover, its quotient
is abelian, so it admits only Conradian orderings. �e lemma then follows from
Remark 2.2.

Lemma 5.3. �e orbit of 0 under z� i�1 accumulates on ˙1.

Proof. Let I be the smallest open interval containing 0, and stable under z� i�1.
Since z� i�1 is normal in �, I is either �xed or moved disjointly by any  2 �.
In particular, Stab�.I /, the stabilizer of I , is a convex subgroup. Now, if I 6D R,
then the maximality of T implies Stab�.I / � T . But this implies z� i�1 � T ,
which is contrary to our assumptions.
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We have two cases to analyze in order to prove �eorem 1.1.

Case 1 . Suppose there is g0 2 z� i�1 having no �xed points.

Such case occurs for instance if z� i�1 has �nite rank. Combining the results from
[16, 20] we obtain the following proposition (by measure we shall implicitely mean
a Radon measure which is �nite on compact sets).

Proposition 5.4. �e action of � on the real line is semi-conjugated to a non-

abelian a�ne action ' W � ! A�C.R/.

Proof. Since the action of z� i�1 is Conradian and there is g0 2 z� i�1 without �xed
points, Corollary 2.15 ensures that z� i�1 has a maximal proper convex subgroup
N � z� i , which is normal. In particular, N �xes some open bounded interval IN

around 0. �e action of z� i�1 either has a discrete orbit or is semi-conjugated to
an action factoring through A D z� i�1=N . We claim that there is a z� i�1-invariant
measure �. Indeed, in the former case � may be builded as Dirac masses putted
along a discrete orbit of z� i�1. In the latter case, since A is abelian and has an ele-
ment acting without �xed point, [20, Proposition 3.1] implies that the correspond-
ing action has an invariant measure. Lifting back this measure yields a measure
� which is preserved by z� i�1 in the original action.

Since g0 acts without �xed points, the translation number homomorphism

�� W z� i�1 �! R;

given by

��.g/ D �..0; g.0/�/;

is non trivial (here and below, we use the convention �.Œx; y�/ D ��.Œy; x�/

for y < x). It now follows from [20, Lemma 4.1 and 4.2] that there is a mea-
sure, which we still call �, which is quasi-preserved by �, meaning that for every
 2 �, there is a positive real number � such that �.�/ D �� (where
�.�/.X/ WD �.�1.X//, X � R). In this way we have a homomorphism

' W � �! A�C.R/;

which extends ��, given by

'./.x/ D
1

�

x C �..0; .0/�/: (1)
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We �rst check that '.�/ is non-abelian. To this end we let

I� WD .a; b/;

where

a D sup¹x < 0 j x 2 supp.�/º

and

b D inf¹x > 0 j x 2 supp.�/º:

�en, since � is quasi-preserved (so in particular its support supp.�/ is preserved)
we have that Stab�.I�/ is either �xed or moved disjointly. In particular, Stab�.I�/

is a proper convex subgroup. So, Ker.'/ � Stab�.I�/ � T . �erefore if the a�ne
action of � was abelian, then T would be a normal and co-abelian subgroup, so
Remark 2.2 would imply that � is Conradian, which is contrary to our assump-
tions. In particular, there is 0 2 � such that �0

< 1.
Finally, we check that this a�ne action is semi-conjugated to the original dy-

namical realization action of .�; �/. Indeed, if for x 2 R we let

F.x/ D �..0; x�/;

then a direct computation shows that

F..x// D './.F.x//: (2)

�us, it only remains to show that F is continuous, or equivalently that � has no
atoms. But, if there were an atom x0, then every non-trivial element of ��.z� i�1/

would have absolute value at least �.¹x0º/. Nevertheless,

��.�n
0 g0n

0 / D �..0; �n
0 g0n

0 .0/�/ D �n
0

�.n
0 .0/; g0n

0 .0/�/ D �n
0

��.g0/

has absolute value going to 0 (the last equality follows from the z� i�1-invariance
of �, see [20]). �is �nishes the proof of the proposition.

Lemma 5.5. �e kernel of ' is a convex subgroup of .�; �/.

Proof. We keep the notations of the proof of Proposition 5.4.
We �rst claim that Stab�.I�/ D T (equivalently I� D IT ). Indeed, let �0 be

the pseudo-ordering of � induced by ' at F.0/ D F.I�/. Since ' is an a�ne
action, �0 has only one convex subgroup, namely

¹ 2 � j './.F.0// D F.0/º D Stab�.I�/:
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However, equation (2) implies that �0 is the quotient of � by

Stab�.I�/ W '.g/ �0 id H) g � id :

�us, the claim follows from Remark 2.5.
We now show that Ker.'/ is convex in .�; �/. First observe that the previous

claim implies that '.T / is the abelian subgroup of homotheties centered at F.0/.
If it was trivial, then we would have that T D ker ' is convex. Let us therefore
suppose that '.T / is non-trivial.

We let ¹idº D T0 C T1 C � � � C Tm D T be the convex series of the
Tararin group T . Recall that Ti=Ti�1 has rank 1 and that the action of TiC1 on
Ti=Ti�1 is by multiplication by some negative number. In particular T=Tm�1 is the
unique torsion-free abelian quotient of T . It follows that T=Tm�1 D '.T / and
ker ' D Tm�1 is convex.

Now the proof of �eorem 1.1 in case 1 follows from Corollary 2.13.

Case 2. Suppose every element g 2 z� i�1 has a bounded domain (i.e. an open
interval �xed by g with no �xed point of g in its interior) Ig around 0.

Our proof of �eorem 1.1 in Case 2 consists in showing that � can be approximated
by a left-ordering induced from the dynamical realization of .�; �/, where the �rst
reference point is chosen outside but very close to IT . For this purpose, we shall
prove that the action is quite similar to the one described in §4 (except that there,
IT was reduced to a point).

It follows from Lemmas 5.2 and 5.3 that the union of the Ig is all of R. In the
sequel, we exploit the facts that z� i�1 is normal in � and that the order restricted to
z� i�1 is Conradian to give a more precise picture of the action. First, Corollary 2.16
immediately implies

Lemma 5.6. Let f 2 � and g 2 z� i�1. �en one, and only one of the following

happen:

� f .Ig/ D Ig or

� f .Ig/ is disjoint from Ig or either

� (up to changing f by its inverse) Ig � f .Ig/, i.e. f acts as dilation on Ig .

�e following corollaries are easy and left to the reader.

Corollary 5.7. Let g 2 z� i�1 n T , and Ig its domain. If t 2 T , then t either �xes

Ig or acts on it as a dilation.
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Corollary 5.8. If I is an interval obtained as a union or an intersection of Ig’s

for g 2 z� i�1, then a weak form of Lemma 5.6 holds for I . Namely every element

f 2 � either moves I disjointly from itself, or up to replacing f by its inverse,

I � f .I / (if the intersection is strict, we say that f weakly dilates I ).

Using the fact that Tararin groups have �nite rank, we now obtain a useful
description of IT ..

Lemma 5.9. �e intersection of Ig for g 2 z� i�1 n T coincides with IT .

Proof. First observe that �eorem 2.14 implies that the Ig ’s, for g 2 z� i�1 n T

are totally ordered for the inclusion, and they all contain IT . We denote by J the
intersection of all Ig for g 2 z� i�1 n T . On the other hand, by Corollary 5.8, if no
element weakly dilates J , then the stabilizer of J is convex. �us it contains T by
Corollary 5.7 (which also applies to J ), so it must be equal to T . But this implies
that J D IT .

It is therefore enough to prove that no element weakly dilates J . Suppose by
contradiction that f �1 weakly dilates J (i.e. f weakly contracts J ). �en there
exists g 2 z� i�1 n T such that J \ Igf is strictly contained in J , hence that gf ,
and more generally gn D gf n

belongs to T for all n � 1. Moreover, f n.Ig/ is
a minimal interval (not necessarily containing 0) �xed by the element gn. Since
f acts as a dilation on Ig , we deduce that f nC1.Ig/ ¨ f n.Ig /. In particular
gk 2 Sn for all k � n, where Sn D StabT .f n.Ig//. Let x be a point in the

decreasing intersection of compact intervals f n.Ig/. We have that .Sn/n�1 is a
strictly decreasing sequence of convex subgroups of T for the pseudo-ordering
�x , violating the fact that T has only �nitely many orderings (and more generally
one could check that this is incompatible with the fact that T has �nite rank).

Since there are no proper convex subgroups above T , we have

Lemma 5.10. For any g 2 z� i�1 n T , there exists f 2 � acting as a dilation

on Ig . Moreover, for every g; g0 2 z� i�1 n T satisfying Ig � Ig0 , there exists

f 2 � such that Ig0 � f .Ig /.

Proof. Looking for a contradiction, suppose that there exists g 2 z� i�1 n T such
that elements of � either stablize Ig or move it disjointly from itself. It follows
that the stabilizer S of Ig is convex. By Corollary 5.7, S contains T , and the
inclusion is strict as S contains g. On the other hand S cannot be all of � since
Ig is bounded: a contradiction. �is shows the �rst part of the lemma.
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Let us prove the second statement of the lemma. Let

F D ¹f 2 � j f dilates Igº:

First note that for all f 2 F, we have f .Ig/ D Igf . �erefore the set of all f .Ig/

for f 2 F is nested, let I be its union. We claim that I is either �xed or moved
disjointly.

Indeed, let us �rst suppose that there exists h 2 z� i�1 such that h.I / strictly
contains I . A continuity argument implies that there exits f 2 F such that h ı

f .Ig / contains f .Ig/ (hence Ig ) and is not contained in I . �e �rst of these
statements implies that h ı f belongs to F, while the other implies that it does
not (by de�nition of I ), so this case cannot occur. Hence, from Corollary 5.8, our
claim follows. In particular, the stabilizer of I is a convex subgroup containing T ,
so I must be all of R. Hence the lemma.

We have given a combinatorial description of the dynamics of � around IT .
We now exploit this description to approximate �. First we show that orderings
induced by points outside of IT are distinct from �.

Lemma 5.11. For all x not in IT , there exists f 2 � such that f �x 0 and f � 0.

In particular, any left-ordering induced from the dynamical realization of .�; �/

with x as �rst reference point is di�erent from �.

Proof. Let x … IT , say on its left (the other case is symmetric). It results from
Lemma 5.9 that one can �nd g; g0 2 z� i�1 n T such that Ig � Ig0 and x 2 Ig0 n Ig .
On the other hand, Lemma 5.10 provides us with an element f such that f .Ig/

contains Ig0 . In particular, if f � id, then we are done because f �x id. So
we assume that f � id. Up to changing g by g�1, we can assume that g � id.
In particular, g.IT / is moved to the right of IT . �is implies, that for n large
enough, g�nfgn � id. But, in the same time,

g�nfgn.Ig/ D g�nf .Ig / D g�n.Igf / D f .Ig/;

where the last equality follows because g and gf are not crossed and Ig � Igf .
Hence the lemma.

�e following step consists in showing that when xn converges to an end point
of the interval IT , then �xn

converges to � outside of T .

Lemma 5.12. If xn converges to an end point x of IT , then �xn
converges to �

outside of T . More precisely, for every g 2 � n T , we have that g � 0 if and only

if g �xn
0 for all n large enough.
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Proof. Since the stabilizer of IT is precisely T , given any �-positive g 2 � n T ,
we have that g moves IT disjointly to its right. �erefore g � 0 if and only if
g �x 0. �e lemma then follows by continuity. �

To prove �eorem 1.1, we are left to proving that for a well-chosen sequence
.xn/ converging to an end point of IT , the orderings �xn

converges to � in restric-

tion to T . We shall use in a crucial way the fact that Tararin groups have “very few”
actions on the real line. More precisely, we have two following lemmas where the
action considered is still the dynamical realization of .�; �/. Recall that the con-
vex series of T is always given by ¹idº D T0 C T1 C : : : C Tm�1 C Tm D T .
We let T 2 T be a non trivial element in T=Tm�1 which acts on Tm�1=Tm�2 by
a multiplication by a negative (rational) number.

Lemma 5.13. If T �xes some point x, then so does T .

Proof: Suppose x is �xed by T but not by T . We can then induce a left-ordering
on T with reference point .x; x2; : : :/. In this ordering the stabilizer of x is a proper
convex subgroup, which is impossible since it does not coincide with any of the
subgroups Ti .

Lemma 5.14. For any y 2 R, which is not �xed by T , there is x between �2
T .y/

and 2
T .y/ such that � and �x coincide over Tm�1.

Proof. Recall that in a dynamical realization, the set of �xed points of a non-trivial
element has empty interior. Since T is countable, there is a point z between y and
�1

T .y/ whose orbit under T is free. In particular �z is a total ordering of T . Since
Tm�1 is convex in �z , there is a minimal open interval I containing z and which
is stabilized by Tm�1. Being moved disjointly from itself by any non-trivial power
of T , I contains at most one point of the orbit of y under hT i: In particular,
I is (strictly) contained between �2

T .y/ and T .y/. Now by Proposition 2.10,
there exists an element g either in Tm�1 or in T Tm�1 such that � and g.�z/ D�gz

coincide over Tm�1. Clearly x D gz satis�es the conclusion of the lemma.

�e last step in the proof of �eorem 1.1 is achieved by the following lemma.

Lemma 5.15. �ere exists a sequence .xn/ converging to an end point of IT from

outside such that the induced left-ordering �xn; 0 coincides with � over T for all n.

Indeed, combining Lemmas 5.12 and 5.15, We have that �xn; 0 converges to �.
On the other hand, Lemma 5.11 shows that �xn; 0 and � are di�erent. �is shows
�eorem 1.1 in Case 2.
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Proof of Lemma 5.15. �e idea is to take x … IT , x close to @IT , such that the
sign of T is preserved and then to use Lemmas 5.13 and 5.14.

By Lemma 5.9, there exists a sequence gn 2 z� i�1 n T such that Ign
converges

to IT .

Subcase 1 . T dilates Ign
.

Up to taking a subsequence, we can assume that Ign
� Ign�1

. For concreteness
we suppose T � id, and let yn be the left end-point of Ign

, so that the sequence
.yn/ converges to the left end-point z of IT (in the case T � id, we take yn

being right end-points). Since T dilates Ign
, T �yn

id. Let xn be the sequence
of points obtained from Lemma 5.14 between �2

T .yn/ and 2
T .yn/ such that �

and �xn
coincide in restriction to Tm�1. By continuity of T and its inverse, the

sequence .xn/ converges to the same limit z. �is shows the lemma in Subcase 1.

Subcase 2. T (hence T ) �xes Ign
.

Again we let xn be the left end-point of Ign
. Observe that �xn

is a pseudo-ordering
on �, for which the stabilizer Sn of xn is obviously convex and, from Lemma 5.13,
contains T . In particular, the left-ordering �xn; 0 coincides with � over T . �is
ends the proof of Lemma 5.15.
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